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Formal methods are mathematical techniques used for developing large systems. The
complexity of growing systems pose an increasing challenge in the task of formal devel-

opment and requires a significant improvement of formal techniques and tool support.

Event-B is a formal method used for modelling and reasoning about systems. The
Rodin platform is an open tool that supports Event-B specification and verification.
This research aims to address some challenges in modelling complex systems. The
main challenges addressed in this thesis cover three aspects: The first aspect focuses on
providing a way to manage the complexity of large systems. The second aspect focuses
on bridging the gap between the requirements and the formal models. The third aspect

focuses on supporting the reuse of models and their proofs.

To address the first challenge, we have attempted to simplify the task of formal devel-
opment of large systems using a compositional technique. The compositional technique
aims at dividing the system into smaller parts starting from requirements, followed on
by a construction of the specification of each part in isolation, and then finally com-
posing these parts together to model the overall behaviour of the system. We classified
the requirements into two categories: The first category consists of a different set of re-
quirements, each of which describes a particular component of the system. The second
category describes the composition requirements that show how components interact
with each other. The first category is used to construct Event-B specification of each
component separately from other components. The second category is used to show the

interaction of the separated models using the composition technique.

To address the second and the third challenges, we proposed two techniques in this the-
sis. The first technique supports construction of a formal model from informal require-
ments with the aim of retaining traceability to requirements in models. This approach
makes use of the UML-B and atomicity decomposition (AD) approaches. UML-B pro-
vides the UML graphical notation that enables the development of an Event-B formal
model, while the AD approach provides a graphical notation to illustrate the refinement
structures and assists in the organisation of refinement levels. The second technique
supports the reusability of Event-B formal models and their respective proof obliga-
tions. This approach adopts generic instantiation and composition approaches to form
a new methodology for reusing existing Event-B models into the development process
of other models. Generic instantiation technique is used to create an instance of a pat-
tern that consists of refinement chain in a way that preserves proofs while composition
is used to enable the integration of several sub-models into a large model. FreeRTOS
(real-time operating system) was selected as a case study to identify and address the

above mentioned general problems in the formal development of complex systems.
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Chapter 1

Introduction

Formal methods have been used for constructing the models of complex systems. There
are a number of different formal method languages such as B [2], Event-B [4], Z [79], and
VDM [22]. The research work focuses on methods that assist in the formal development
of the systems and cover issues such as the requirements and reusability. The quality
of requirements has a major influence on the construction and validation of formal
models, whereas the reuse of the formal models has the potential to reduce the time
and effort for developing systems. This chapter introduces the contribution of this
thesis and presents relevant background on formal methods. Section 1.1 outlines the
thesis motivation and contribution. Section 1.2 is an introduction on formal methods.
Sections 1.3, 1.4, 1.5, and 1.6 give an overview of several formal methods including B,
Event-B, Z, and VDM. Section 1.7 describes refinement. Section 1.8 shows comparison of
B, Event-B, Z, and VDM. Finally, Section 1.9 describes the motivation behind selecting
Event-B for modelling FreeRTOS.

1.1 Thesis Motivation and Contribution

One of the activities that addresses the Grand Challenges pilot projects, concerns with
the development of approaches supported by tools that cover all the aspects of verified

software construction [41, 85].

This thesis attempts to address some challenges in modelling complex systems. The
challenges cover three main issues: managing the complexity of large systems, bridging
the gap between the requirements and the formal models, and supporting reusability of
the models and their respective proof obligations. This thesis presents general techniques

for addressing the challenges that have emerged from the FreeRTOS case study.

FreeRTOS [11, 10] is a mini real time kernel for small embedded real time systems.
The development is realised with Event-B and the Rodin tool [6, 5, 3, 17]. Event-B is a

1



2 Chapter 1 Introduction

formal method used for specifying and reasoning about systems. The Rodin platform

is an open tool that supports the Event-B specification and verification.

Different modelling techniques are investigated throughout the modelling process which
are generic instantiation [72], the theory feature [18], UML-B [77], atomicity decompo-
sition approach [15, 33], and composition [73]. The generic instantiation technique
facilitates the reuse of Event-B models; it provides means of instantiating generic models
in a way that ensures the proofs associated to a generic model remain valid in the instan-
tiated one. The theory feature is another technique which provides facility to extend
the Event-B language and the proving infrastructure. It allows the development of oper-
ators, new data types, rewrite and inference rules, and polymorphic theorems. UML-B
is a graphical modelling environment that allows the development of an Event-B formal
model through the use of UML graphical notation. The atomicity decomposition ap-
proach provides a graphical notation to structure refinement and control flow between
the events. Finally, the shared event composition approach allows sub-components

to interact via synchronisation over shared events.

The first step towards achieving the research goal is to choose the appropriate develop-
ment strategy to manage the complexity of FreeRTOS development. We address com-
plexity by choosing a compositional strategy to build specification of FreeRTOS case
study. This involves the decomposition of the FreeRTOS development into components
that are easy to manage and then composing these components to show the overall be-
haviour of the system. Hence, FreeRTOS requirements are analysed into three main set
of requirements, each of which corresponds to a particular FreeRTOS components: task,
queue, and memory. The division of the requirements based on the system components
assist in managing the complexity of the system and allows to focus on modelling a
particular component separately without considering its interaction with the other com-
ponents. This in effect simplifies the development of the system and helps in producing
loosely coupled modelling components that can easily be reused in the development of
different systems. The interaction between the separated components then became an
explicit development task. Hence, another set of requirements called the composition re-
quirements were introduced to show how the different FreeRTOS components are linked

together.

Our focus after that was directed to find a way to bridge the gap between the require-
ments and the Event-B formal models and retain traceability to requirements in Event-
B. In order to achieve this purpose, we investigated an approach that consists of three
main steps: The first step focuses on categorizing the requirements based on Event-B
structure. The second step focuses on using semi-formal artifacts described in UML-
B and AD diagrams to represent the requirements. Representing requirements using
semi-formal artifacts is reasonably simple, and at the same time the movement from the
semi-formal artifacts to Event-B is straightforward. The third step is to use the UML-B
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tool and the AD tool to generate the Event-B models. This approach was successfully

used to build traceable Event-B model for some features of the queue component.

Moreover, three separate specifications: task, queue, and memory were constructed in
Event-B and some general guidelines for modelling the FreeRTOS kernel were drawn

from our experiment.

The composition task was carried out based on shared-event composition technique;
composition requirements assist in selecting which events to be composed to show the
overall behaviour of the system. Since, shared event composition is proved to be mono-

tonic [74], we were able to data refine the models individually.

The basic data structures of FreeRTOS are linked lists. This forces us to think of a
systematic approach to reuse the modelling patterns of the linked lists. Therefore, we
dedicated some time to study the possibility of building reusable modelling patterns
for linked lists that can be used to resume the specification of abstract structure of
FreeRTOS models “set” to the concrete data structures of linked lists. As there is little
support for modelling the linked lists, we dedicated time to the development of theories
that aid the modelling of linked lists using the theory feature. The developed linked list
theories have been used to build reusable modelling patterns for linked lists in Event-B.
We then focussed on the task of the incorporation of the developed modelling patterns to
resume the specification of FreeRTOS models. Therefore, we investigated an approach
based on generic instantiation and shared event composition approach to perform the
incorporation task. Generic instantiation technique is used to instantiate the modelling
pattern. The composition technique is applied to integrate the instantiated pattern into
the problem. The approach has been used successfully to refine the abstract “set” of
FreeRT'OS models to linked list structures. It allows us to incorporate several instances of
a modelling pattern into a development with the advantage that all the refinement steps
required for the development of the pattern can be incorporated into the development in
a single step. This is because generic instantiation allows us to instantiate the pattern
several times and the composition technique allows us to incorporate different refinement

levels of one or more patterns into the development.

1.1.1 Summary of Contributions
The following points summarise the main contributions of our work:

e Adopted compositional strategy to manage the complexity of systems development.
This involves the process of classifying requirements into a set of requirements
for each individual component, and a set of requirements for the compositional
purposes. The individual components then are modelled separately in Event-B,
and then are composed based on the composite requirements using the composition

technique.
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e Investigated an approach for constructing traceable Event-B models based on
UML-B and AD approaches. The investigated approach bridges the gap between
requirements and the Event-B models and enables the validation of the models

against their corresponding requirements.

e Proposed an approach for reusing the modelling patterns in Event-B based on
composition and generic instantiation techniques. The approach has been used to
carry out the data refinement of the abstract “set” of FreeRTOS specifications to

concrete linked lists structures.

We also have other sub-contributions as follows:

e Constructed Event-B models for FreeRTOS using compositional strategy. Three
Event-B models have been developed that correspond to the main components of
FreeRTOS: task, queue, and memory. The constructed models can contribute to
the Verified Software Repository [41, 85].

e Devised general modelling guidelines for RTOS kernels in Event-B. The guidelines
introduce Event-B modelling concepts for the basic features of an RTOS such as

scheduling, memory allocation, and interrupt handling.

e Developed theories with a set of reusable operators and rules of inference for linked
lists using the theory feature. The linked list theories can be used to supply a

library of Event-B theories in the future.

1.2 What is a Formal Method?

Formal methods are techniques used in the specification, development and verification

of complex systems based on mathematics and formal logics [4].

There are a wide range of formal methods, frequently supported by tools, each of which
is suited to a different domain and the emphasize on different aspects of the systems
based upon the adoption of different maths and formal logics. Formal specification lan-
guages and formal verification are two types of formal methods. Formal specifications
are formal description of what systems should do, whereas the formal verification is a
mathematical proof of the systems correctness. Formal specifications are normally based
on set theory and first order predicate calculus. Event-B, Z and VDM are some dom-
inating formal specification languages. Formal verification, on the other hand, such as
model checking [20] are based on temporal logics. Various projects have been success-
fully developed using formal methods including those pertaining to air traffic control,

railway signalling, and smart cards applications [87, 9, 12].
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The adoption of the formal method approach for systems development has many advan-
tages; one such advantage is that one is allowed to think more carefully and critically
about the system being specified before becoming too much involved in the coding.
This leads to a deeper understanding of the system and forces a detailed analysis of
the requirements, thus enabling the production of software that meets the requirements.
Formal methods provide precise and unambiguous system specifications. Many proofs
have to be performed in order to ensure that the final system is “correct by construc-
tion”. Another important benefit is the ability to detect defects earlier in the software
life-cycle, which enables the production of a reliable system. Formal methods can be
applied to different aspects of systems and throughout the various phases of the software
cycle. It encourages the identification of certain properties and analysis of the system
before any code is written, and this is an advantageous feature of formal methods which

is not replicated in other software approaches.

This chapter highlights four formal methods: B [2], Event-B [4], Z [79], and VDM [22]
with emphasis to Event B as it is the language employed to the model of the FreeRTOS

case study.

1.3 B Method

The B-method [2] (classical B) is a state-based method developed by Abrial in the
mid 1980s. It is used for the formal development of software systems. The B method
uses the set theoretic constructs such as sets, relations and functions to define variables
and invariants (constraints of variables). There are a number of safety-critical system
applications which have been developed successfully in classical B such as Paris Metro
Line 14 [12].

AtelierB [21] is a set of tools that provide support for writing B specification including

static checkers, automatic and interactive provers, and code generation.

B does not include facility to support user-defined extension of the mathematical lan-
guage and theory of B. Nevertheless, Event-B (an extension of the B formalism) includes
facility of extending the Event-B language and proving infrastructure, and allows users

to define new operators and data types.

MACHINE
SETS
CONSTANT
PROPERTIES
VARIABLES
INVARIANT
INITTALISATION
OPERATIONS
END
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MASHINE M
SETS NAME
VARIABLES name,id
INVARIANTS

name C NAME

id € name — ID

INITIALISATION Delete_Student(i)=

name := ¢ PR.E .

id = ¢ i € sran(id)
OPERATIONS THEN . .
Add_Student(s,i)= wWi=ad-{af o

PRE name := name \ {id " (i)}

END

s € NAME \ name

i € ID \ ran(id)
THEN

id = id U {5 — i}

name := name U {s}
END

Figure 1.1: An example of B specification.

The structure of B method abstract machine is given above. The MACHINE clause
specifies the name of the machine, The SETS clause specifies all the sets which are used
in the machine. The CONSTANT clause specifies all the constants which are used
in the machine. The PROPERTIES clause specifies the constraints on the constants
and the sets. The VARIABLES clause specifies all the variables which are used in
the machine. The INVARIANT clause specifies the properties of the variables that
must always remain true such as the type of the variables. The INITTALISATION
clause specifies the initial state of the machine. The OPERATIONS clause specifies

operations that can cause the variables to change their values.

Figure 1.1 shows a simple example of a B model that describes a student database
with two operations Add_Student which adds a student to the student data base and
Delete_Student operation that deletes a student from the student database.

There are two variables in this model: name that is defined as a set and id that is
defined as a function that maps names to their ids. There are two operations in this
machine M: Add_Student operation and Delete_Student operation. The PRE clause
identifies the preconditions which required to hold in order to execute the actions within
a THEN-END block.

1.4 Event-B

Event-B [4] is a successor language of B developed by Jean-Raymond Abrial. Event-
B uses set theory and first order logic to provide a formal notation for the creation
of models of discrete systems and the undertaking of several refinement steps. An

abstract Event-B specification can be refined by adding more detail and bringing it
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(a) when S(c,v) then R(v, c,v") end
(b) any ¢ where S(¢, c,v) then R(v,t,c,v") end
(c) begin R(c,v’) end

Figure 1.2: The outline of an event

closer to an implementation. A refined model in Event-B is verified through a set of
proof obligations expressing that it is a correct refinement of its abstraction. Event-B
may be used for parallel, reactive or distributed systems development, and has shown
success in the development of different complex real-life systems [16, 9]. The Event-B
notation contains two constructs: a context and a machine. The context is the static
part in which we can define the data of the model: sets, constants, axioms that are
used to specify assumptions about sets and constants, and theorems that are used to
describe properties derivable from the axioms. The dynamic and functional behaviour
of a model is represented in the machine part, which includes variables to describe the
states of the system, invariants to constrain variables, theorems to describe properties
that follow from the invariants, and events to trigger the behaviour of the machine. The
outline of an event takes one of the three forms described in Figure 1.2. In (a), the body
of the event is fired only when the commanded guard is true. R(v, ¢, v’) describes the
relationship between the values of the variables before and after the event is executed.
The second form (b) takes a local variable, ¢, that satisfies the guard S(t, ¢, v), and then
executes the body R(v,t,c,v’). The third form (c) is free of a guard and can be used

for initialisation.

Rodin [6, 5, 3, 17] is a platform used in the development of Event B models. Rodin
exhibits many features and can be extended further with supportive plug-ins; for exam-
ple, ProB [55] is an example of a Rodin plug-in which provides an automatic animation
and model checking of Event B models. The theory plug-in [18] allows users to define
reusable polymorphic operators, data types, rewrite rules, inference rules and polymor-
phic theorems. Shared event composition plug-in [73] allows the interaction between the
sub-models through the composition of events. The model decomposition plug-in [75]
allows to decompose a model into several sub-models. The generic instantiation plug-
in [72] allows reusability of existing models by instantiating the model and ensuring that
the proofs associated to an existing model remain valid in an instantiated development.
The atomicity decomposition plug-in [33] controls the order between the events (flows)

and demonstrates the relationship between refinement levels.

We use the student database example here to describe the two events: Add_Student and
Delete_Student event in Event-B.

There are two variables in this machine M: name that is defined as a subset of the carrier
set NAME, the carrier set NAME is defined in the context C. The machine M explic-

itly sees the context C| so it can access the context C' components (Here NAME set).
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CONTEXT C
SET NAME
MACHINE M
SEES C
VARIABLES name,id
INVARIANTS
invl name C NAME Delete,Stqdent
. : Any i
inv2 id € name — ID Where
Add_Student ) )
An grdl i € ran(id)
y oS Then
Where 1 id = {i} >-id
grdl s € NAME \ name ac T 1.
erd2 i€ ID\ ran(id) act2 name := name\ {id” (1)}
End
Then
actl id:=idU {s+— i}
act2 name := name U {s}
End

Figure 1.3: An example of Event-B specification.

There are two events: Add_Student and Delete_Student. The guards are the necessary

conditions for the event; they must hold in order for the actions to be performed.

1.5 Z Specification Language

Z [79] is a formal specification language based on first order predicate logic and Zermelo-
Fraenkel (ZF) set theory. The language was first developed at the Oxford University in
the 1980s. Z combines two sub-languages: mathematical language and schema language.
States, properties and operations of the system are described by mathematical language,
whereas the schema language is used for structuring the specification. A Z specification
is constructed as a series of schemas. Schema declarations contain state schemas and
operation schemas. State schemas describe states, the relationship between them, as
well as the restriction (constraining predicates) on them.

—_StateSpace

< wvariables declaration >

< wnvariants >

The structure of state schemas contains two parts: the part above the central line rep-
resents the variables declaration part and the variables local to the schema; and the part
below the line represents the predicate part of the schema that specifies the invariants
or the relationships that remain true in every state of the system. Operation schemas,
on the other hand, describe the changes in these states before and after executing the
operations. The Schema Calculus offers operators such as conjunction, disjunction,

composition, etc that are used to construct a large Z specification from some existing
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schemes. Schema can also be extended easily by adding new components, additional

invariants and operations.

Z contains a mathematical tool-kit [79] of useful definitions built on top of the basic
language. This tool-kit includes a collection of types and operators for sets, prod-
ucts, relations, functions, and sequences. The following schema illustrates the student
database example as a Z specification focusing on the addition and deletion of student’s

information.

__StudentDB
name : P NAME
studentld : NAME -+ ID

name = dom studentld

This schema describes the state space of the system; it contains the variable declarations
and invariants. We have two variables: name of type NAME and studentld which is
a function that maps a student’s name to its id. We have one invariant to indicate
that the set name is the same as the domain of the function studentld, and it should
be maintained by every operation on it. This invariant allows the value of the variable
name to be derived from the value of studentld.

__ AddStudent
AStudentDB
name? : NAME
1d? : ID

1d? & ran(studentid)

studentld’ = studentld U {name? — id?}

name’ = name U {name?}

__DeleteStudent
AStudentDB
id? : ID

studentld’ = studentId & {id?}

name’ = name \ name( {id?} |

These two schemas are operation schemas; the first adds new entry where name? and
id? are input parameters. The second, DeleteStudent operation, removes the entry

associated with a particular id (¢d?).
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The A convention indicates that states do change; the variables name’ and id’ are the
states after the change, whereas the variables name and id are the states before the

change.

1.6 Vienna Development Method (VDM)

VDM [22, 71] is a popular formal method that was developed in the 1970s by Cliff
Jones and Dines Bjrner at IBM labs in Vienna. The method is used to model systems
at different levels of abstraction, hence it combines a specification language and an
approach to refine the specifications into code. VDM has been successfully used in
many projects, such as the development of compilers and in disciplines of programming
language semantic such as CHILL, Modula-2, and Ada [48].

There are three dialects of VDM: VDM-SL [36], VDM-RT [81, 82] and VDM++ [35].
VDM-SL is a specification language standardised by the International Standards In-
stitute (ISO) in the 1990s. VDM-RT is a version used to model real time embedded
and distributed systems and VDM++ is an object-oriented extension based on VDM-
SL that is used for the specication of object-oriented models. VDM is supported by
strength tools called VDMTools [1] that were developed by IFAD in the 1990s, and are
now owned by CSK Systems.

The VDMTools provide a type checker, theorem prover, and a facility for testing speci-
fications. The tools can be used for producing an executable code of a subset of VDM

through the automated code generation feature, or the simulation of model feature.

VDM uses modules for system specifications. The structure of a module is shown as

follows:

module Module_Name
;i;eﬁnition types

state

functions

operations

end Module_Name

Figure 1.4: The structure of VDM-SL module.
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types
Name=String;
String=seq of char;
ID= nat;
StudentID= map Name to ID;
functions
AddStudent: Name*ID*StudentID — > StudentID
AddStudent(name, id, studentID) ==
studentID munion {name | — > id}
pre id not in set ran studentld;
DeleteStudent: ID*StudentID — > StudentID
DeleteStudent(id, studentID) ==
studentID > { id}
pre id in set ran studentld;

Figure 1.5: An example of VDM-SL specifications

The type clause is used to specify the various types to be used in the specification.
The state clause specifies the state definition of the global variables which can be refer-
enced inside the operations. The operation clause specifies the behaviour of a system.
The functions clause defines the functionality of the system used to specify a rule for
obtaining a result from zero or more arguments. The difference between operations
and functions is that, operations can manipulate both global and local variables but

functions can not access global variables or define local variables.

Figure 1.5 shows the simple student database example in VDM-SL that focuses on two
operations: AddStudent, which adds a new entry to the system, and DeleteStudent,

which deletes a student’s entry from the system.

The specification above has two parts: data definition part and the function definition
part. In the data definition part, Name is defined as a string, ID is defined using a basic
data type nat which stands for natural numbers, StudentID is defined from other types
by “mapping type” constructor that consists of two parts domain data type Name and

range data type ID.

The function part consists of two functions, AddStudent to add a student to student
database. DeleteStudent to delete a student from the student database.

The definition of a function in function block of a VDM-SL specification, may include
a signature, an explicit function definition, and pre/post conditions. The signature
part shows the inputs and outputs data types. For example, the input parameter data
types of AddStudent function are Name, ID, and StudentID and the output data type is
StudentID. “munion” is used to add student to ID mapping whereas D>~ is used to delete
a student from ID mapping.
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1.7 Refinement

Refinement [29, 7] refers to the process of transforming the abstract specification to a
more concrete specification through a series of refinement steps. Refinement assists in
managing the complexity of a system being developed. The core functions of a system
can be focused on in an abstract model whereas other aspects of the system can be
focused on through different refinement levels. The posit-and-prove and transformational
are two main refinement styles [14, 53]. In the first style, a refined model is verified
through a set of proof obligations to prove that it is a correct refinement of its abstraction.
This is done using theorem provers or model checkers (i.e. S T S’ if and only if S’
satisfies all desired properties that S satisfies). The latter style, however, is performed by
transforming the abstract model into a concrete one by applying transformation rules in

the abstract model to automatically extract a concrete model satisfying its abstraction.

There are also two aspects of refinement to make a model closer to implementation:
horizontal refinement and vertical refinement [4]. Horizontal refinement or superposition
is also known as a feature augmentation refinement, and centres on enriching the model
gradually by integrating the system’s details through different refinement steps [4]. In the
horizontal refinement stage, the specifier follows the system requirements document and
extracts the variables and events, formalising them through several steps of refinement.
It is possible to add new variables and guards, or strengthen guards in a refined model.
It is also possible to add new actions to an event or even extra events. This kind of
refinement is usually finalised when the specifier reaches the point where there is no

further requirement element left to be formalised.

Vertical refinement or data refinement is a type of refinement in Event-B which centres
on the replacement of the abstract model with more design details in each refinement
step down to an implementation [4]. Data refining finite set variables to array structure
is a typical example of the vertical refinement [4]. In this kind of refinement, we can
eliminate unnecessary variables of the prior models and identify gluing invariant(s) that

relate the new concrete variables and the abstract ones [4].

The concrete level of the model must reflect the behaviour of the abstract level to
ensure the correctness of the system. This can be achieved through the validation of the

refinement level via specific proofs, called the refinement proofs.

The refinement in classical B is one to one; each abstract operation is refined by only
one concrete operation and it is not allowed to introduce new operations. In Event-B,
several different refined events may refine the same abstract event. It is also possible in
Event-B to introduce new events during the stepwise refinement steps. Z employs some
rules for the operation and data refinement. The validity of the refinement is ensured by
simulations. A simulation is a representation of one state by another. It combines some

rules to validate a refinement. There are two ways of simulations: downward simulation
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(ensures the correctness of refinement from an abstract state to a concrete one) and
upward simulation (ensures the correctness of refinement from a concrete state to an
abstract one) [86]. The refinement mechanism in VDM is done through data reification
and operation decomposition; data reification maps the abstract data types to more
concrete ones, while operation decomposition is performed later and is used to map

operations and functions to algorithmic representations [22].

1.8 Comparison of B, Event-B, Z and VDM

B, Event-B, Z, and VDM are model based languages that view a system as a state
machine with a set of states and a collection of operations over these states. Event-B,
Z and VDM are different but they all describe a system precisely as a mathematical
entity and use set theory and first-order predicate logic. This section gives a comparison
of Event-B, Z and VDM in terms of syntactic changes, data types, tool support and

mathematical extension and refinement.

Syntactic Changes: As mentioned previously, the syntaxes differ between B, Event-
B, Z, and VDM. In what follows, we will mention two examples of the most obvious
syntax changes between the three languages. The first example is of state changing
specification, Z uses prime variables to distinguish the states of the model after change.
B and Event-B do not use specific symbols to denote the initial value of the variable
before and after change. VDM, however, uses hooked variable for the before state and

unhooked variable for after state.

The second example is of inputs and outputs specification, B and Event-B do not have
any explicit way of distinguishing inputs from outputs. Input variable names in Z,
however end up in “?” whereas output variable names end with “!”. In VDM rd “read
only” is used for states that are not allowed to be changed and wr “write” keyword is

used for states that can change.

Data types: The basic data types in B, Event B and Z are sets and relations. VDM
does not have the notion of relation data type and consequently it does not support

relational image which Z and Event-B do support.

VDM and Z include record types and B does not; however, in Event B, it is possible to
specify record types following the Evans and Butler approach [32].

VDM has different data types such as character type that are not found in Z, B and
Event-B.

Tool Support: Z has some proof tools such as Proofpower-Z [54] and Z/EVES [66]
theorem prover. AtelierB is a set of tools for B formalism that provides syntax checker,

automatic and interactive provers, and code generation. RODIN is a platform used
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for developing Event-B models that provides support for refinement and mathematical
proof. It has different supportive plug-ins such as proof obligation generator, automated
and interactive provers, theory plug-in that provides capabilities of mathematical exten-
sion in Event-B language and the proving infrastructure, and moreover RODIN offers
code generation plug-in that aids in translating Event-B into a C or Ada code. VDM-
Tools support VDM and include set of tools support software development and provides
a bunch of features such as a type checker, document generator, theorem prover, and

code generation to C++ or Java.

Mathematical Extension: B lacks the ability to extend the B mathematical lan-
guage; Event-B, on the other hand, adopts theory plug-in, which is a recent feature
providing support for extending Event-B language and proving infrastructure. It allows
the development of new data types, set of operators, inference and rewrite rules, and

theorems.

Z has an extensible mathematical tool-kit that provides a library of standard mathe-

matical notions of operators and data types useful for building a system specification.

VDM, on the other hand, is a rich language of operators and data constructors such as
union, sequences and record types from which user-defined data types can be built. It

also has a large expression and statement language such as if-then-else and while-do.

Refinement: With respect to the refinement, operations in B, VDM and Z are “refined”
on a one-to-one basis, therefore, one abstract operation is refined by only one concrete
operation. In Event-B, however, an abstract event can be refined by one or more concrete
events. It is also possible in Event-B to introduce new events (stuttering steps) in the

refinement step.

1.9 The Motivation Behind Selecting Event-B For Mod-
elling FreeRTOS

Event-B is a natural candidate for the FreeRTOS case study. We chose Event-B to
develop FreeRTOS because Event-B is a stepwise formal method which has a platform
supported with various plugins. The stepwise methodology allows the complexity to
be managed through several refinement steps. Rodin, the platform for Event-B, is
supported by useful plugins. As FreeRTOS uses complex data structures (circular linked
lists), we make use of several plug-ins that facilitate building and reusing complex formal
models involving complex data structures such as linked lists. We use the theory plug-
in to develop reusable data structures including operators, polymorphic theorems, and
inference rules. Generic instantiation is used to create an instance of a generic model
while preserving the proofs associated with the generic model. A composition technique

is used to compose the separated modelling components into a single model. We also
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make use of the atomicity decomposition technique to manage flows between events and
organise refinement steps. We also combine several techniques in Event-B to propose
new approaches that facilitate building traceable formal models and support the reuse of
Event-B modelling patterns. Chapter 4 and chapter 7, outline respectively an approach
for building traceable Event-B models and an approach for reusing Event-B modelling

patterns.






Chapter 2
Techniques in Event-B

This chapter describes some of the techniques in Event-B used in this thesis. The
techniques cover: proof obligations, shared event (de)composition, generic instantiation,

the theory definition, the atomicity decomposition and UML-B.

2.1 Introduction

This chapter presents relevant technical background of some techniques in Event-B which
are adopted in the research. During the development of FreeRT'OS, we adopted a number
of techniques in Event-B such as: (de)composition, generic instantiation, the theory fea-
ture, the atomicity decomposition and UML-B. Applying the decomposition technique
results in obtaining simpler models and enables the developer to focus on certain aspects
of an Event-B model. For the purpose of developing reusable modelling component “pat-
terns”, generic instantiation technique provides us with a mechanism for instantiating
Event-B models in a way that ensures the validity of the instantiated model proofs. On
the other hand, the theory technique provides us with the facility of defining a set of
reusable operators, polymorphic theorems, rewrite and inference rules. The atomicity
decomposition approach provides a graphical notation to illustrate the refinement struc-
tures and assists in the organisation of the refinement levels. The UML-B provides UML
graphical notation that enables the development of an Event-B formal model. Finally,
the shared event composition allows sub-components to interact via synchronisation over
shared events to show the overall behaviour of the FreeRTOS. Chapter 4 and Chapter 7
present new approaches for bridging the gap between the requirements and the formal

models and support reusability in Event-B using some existing Event-B techniques.

Section 2.2 to section 2.7 describe the proof obligations, the composition and decompo-
sition techniques, the generic instantiation technique, the theory feature, the atomicity
decomposition, and the UML-B.

17
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2.2 Proof Obligations

A proof obligation is a mathematical formula that requires to be proven, in order to
ensure the correctness of an Event-B model. Proofs in Event-B are constructed using
a number of sequents. A sequent is of the form (H F G), where H is is a hypothesis
that contains a finite set of predicates and G is the goal. The proofs of the sequent
are carried out using inference rules that prove that the goal is a consequence of the
hypotheses. The POs can be classified into consistency and refinement POs. In order
to check the consistency of an Event-B machine, three main proof obligations should
be proven true for each event: the well-definedness PO (WD), the event feasibility PO
(FIS) and the invariant preservation PO (IP). The well-definedness PO ensures that
invariants, guards, events, axioms, and variants (used to prove that a convergent event
do not take over the execution) are well defined, for instance, in order to prove the
well-defindeness of the cardinality of a set s: card(s), the set s must be a finite set. The
event feasibility states that it should be possible to execute an event from any state when
both the machine invariant and the event guard hold. The invariant preservation states
that the invariant should always be maintained. On the other hand, there are several
proof obligations generated for refinement. Here we mention three important POs for
refinement: the guard strengthening PO (GRD), the action simulation PO (SIM) and
the variant decreasing PO (VAR). The guard strengthening PO ensures that the concrete
guard in the refined event is stronger than the abstract one. The action simulation PO
ensures that the concrete event action simulates the abstract event actions. Finally,
the variant decreasing PO ensures that the new convergent event reduces the variants
to ensure that the convergent event do not take over the execution. The variants are
defined as an integer number or a finite set and has to become smaller each time the

convergent event is executed to prove that the convergent events do not execute forever.

The POs are generated by the proof generator and can be discharged either automatically
or interactively. The automatic theorem prover discharges many proofs automatically,
however, it is possible that some POs are not discharged automatically, in which case

they can be discharged by the user using the interactive prover.

Assuring consistency of requirements is important. The properties of the system driven
by requirements are encoded as invariants in Event-B model. The invariants must not
contradict each other. Proving that an invariant is always true for a given Event-B model
through initialisation and event consistency POs ensures consistency (i.e. Absence of
contradiction from the invariants). However, adding more invariants to an Event-B
model may add inconsistency, but, the standard POs will detect that and it can be
fixed.
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2.3 Composition and Decomposition

Composition [73] is the process of composing several sub-models in a variety of styles.
Composition has the potential of model reusability where it provides a way of construct-
ing specifications as a combination of other different specifications. We focus on shared
event composition style [73]. In this style, sub-models interact through synchronised
events. Several events can be composed in a single event. The composed event includes
the conjunction of guards of sub-model events and combines the actions of sub-model
events. The approach has a restriction that prevents the sub-models to include any
shared variables. A tool has been developed to support this style of composition in
Rodin [73].

M1 M2
el e2 e3 ed
e GO Co
el2|| e3
| el | | e2/3 | ed

Figure 2.1: Shared event composition style.

Figure 2.1 illustrates this style; suppose we have a model M1 that has events e1, e2 with
variable v1. Model M2 has events e3 and e4 with variable v2. Events e¢2 and e3 can
be synchronised since e2 updates v1 and e3 updates v2 and v! and v2 are independent

variables.

Event e2 in M1 and event e3 in M2 have the following form:

e2% any p e3 £ any p
where where
G1(v1, p) G2(v2, p)
then then
vl := E(vl,p) v2:= E(v2,p)
end end

Therefore, e2 from model M1 and e8 from model M8 are composed. The resulted

composed model c¢m, therefore, share the two independent variables: v1 and v2.

The resulted composed event has the following form:
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e2 || e3 £ any p
where
G1(v1, p)
G2(v2, p)
then
vl:= E(vl,p)
v2:= E(v2,p)

end

Composition may also be applied in reverse in a top-down way by factorising a model into
a composition of smaller models. We refer to this as decomposition. The decomposition
approach is used to divide a model into sub-models that can be refined separately than
the whole. Large system models involve a large number of features (state variables and
machine events) which are extended throughout the refinement steps. As the model
becomes larger, some state variables and machine events are considered in the next
level. Thus, decomposition [7] is used as a means of dividing the system into small and

manageable parts that ease dealing with the whole system.

Event-based decomposition is a style of decomposition proposed by Butler [74]. In this
style, the machine events are split into sub-models and variables can not be shared
between the sub-models. Figure 2.1 can be used to illustrate this style. The modeler
can start with the model c¢m, and then decomposes it into two sub-models M1 and M2.
Where variables v1 and v2 of model ¢m are partitioned between M1 and M2 and event
e2/3 is split into two events e2 and e3. Event e2 updates variable v1 and therefore is

located in M1 whereas event e3 updates variable v2 and is located in M2.

A decomposition plug-in [75] has been developed for the Rodin tool which can be used

to support event based decomposition.

2.4 Generic Instantiation

Instantiation means the reuse of a pattern (chain of machines and contexts) where vari-
ables, events, constants and carrier sets can be renamed in an instance and reused in
another development [72]. It ensures that the proofs associated with a generic develop-
ment (pattern) remain valid in the instantiated development. This requires the creation
of a new context (called “parameterisation context”) containing the carrier sets and
constants that will be used by the instance machine (or chain of machines). After the
creation of an instance from the pattern, the pattern axioms are converted into theorems

in the instantiated machine to ensure the correctness of the instantiation [72].

To illustrate this approach, supppose we have a generic pattern P with machines pg
to pn. Suppose that in some points in another development M, we find that its useful

to reuse development P with some slight modification to resume development M. This



Chapter 2 Techniques in Event-B 21

can be achieved by instantiating the various variables, events of P. The pattern axioms
of development P should become theorems in development M in order to show the
correctness of the instantiation by satisfying the pattern assumptions. This approach is

also supported by a tool [72].

Pattern Pattern instantiation
p0 mo
I refines I
p1 m1
¢ [
Pn Mp

Figure 2.2: Generic instantiation.

Since refinement is monotonic, it is possible to go from mg to m, directly by instanti-
ating p,. The instantiated machine m,, will be a refinement of mgy. Assuming that the
pattern machine p,, is parameterised by some sets s and constants ¢, the pattern instan-
tiations is parameterised by some sets ¢ and constants d. The instantiation performed
by replacing s and ¢ by some expression E(t) and F(t,d). If the pattern has axioms
A(s, c), the pattern instantiation has theorems B(t,d). The POs that ensure that the
proofs associated to the pattern P remain valid in an instantiated development M are:
B(t,d) = A(E(t), F(t,d)).

2.5 The Theory Extension

The theory feature [18] is a Rodin extension that allows users to define new data types,
operators, rewrite and inference rules, and theorems. With the theory plug-in, users are
able to define different data types and operators of their Event-B specifications. The
polymorphic nature of the definitions of data types and operators provide the ability to
reuse them across different modelling patterns. Here is a simple example of a sequence

operator:

operator seq

prefix

args S

well-definedness condition S C T
definition seq(S) 2 {f,n-f€1..n—=S|f}
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Here, seq is defined as an operator that takes an argument S. S is a subset of T as given
by the well-definedness condition. T is a type parameter, thus seq is polymorphic on T.
The definition of seq is given by the final clause where seq(iS) is the set of total functions

from 1..n to S.

Polymorphic theorems provide reusable properties on reusable operators; they use to
verify that definitions of operators are valid and to ensure that operators capture the
intending behaviour of the system. The rewrite rules provide means to rewrite formu-
lae to equivalent forms, whereas the inference rules are a special kind of polymorphic
theorems which include hypothesis and conclusions. Rewrite and inference rules can be

used to facilitate proofs.
The definition of inference rules in the theory component is presented in Figure 2.3:

inference name
[automatic] [interactive]
vars i, .., Ip
given Gy,.., G,

infer 1

Figure 2.3: The structure of inference rule definitions.

The structure of the inference rule can be read as follows: given conditions Gi, .., G,
one can infer I. The developer decides whether the rule can be applied automatically or

interactively with intervention from the user.
Figure 2.4 shows an inference rule for the sequence theory [18]:

inference FiniteSeq
vars s, m
given s C T
m € seq(s)

infer finite(m)

Figure 2.4: Definition of sequence operator.

2.6 Atomicity Decomposition Approach

The atomicity decomposition (AD) approach [33] is introduced to show the relationships

between abstract and concrete events and represents an explicit ordering between events
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of a single level of refinement. The AD approach provides a graphical notation that helps
to refine structure in Event-B by showing the relationships between events of different
refinement levels. The AD diagrams can provide visual view of the ordering between

some events as well as the overall structure of several refinement levels.

Figure 2.5 shows an example of an AD diagram.

machine M1 refines MO sees CO

variables Eventl Event2
invariants
@invl Eventl € PAR_SET
@inv2 Event2 < Eventl
@inv3 Event2 = AbstractEvent

[ Root, abstract event, is decomposed into sub events ]
event INITIALISATION then

@actl Eventl :== @
@act2 Event2 == ¢ [ AbstractEvent (par) ]
end 7
Ve
event Eventl any par where [ A dashed line: refines skip ]/ A solid line: refines AbstractEvent ]
@grd1 par € Eventl 7

then

Z
end@actl Eventl := Eventl U {par} [ Eventl (par) ] [ Event2 (par) ]

event Event2 refines AbstractEvent
any par where
@grd1 par € Eventl
@grd2 par ¢ Event2
then
@actl Event2 := Event2 U {par}
end

[ The sub events are read from left to right and indicate sequential contrul]

Figure 2.5: Atomicity decomposition diagram [33].

Assume we have a machine M1 that refines machine M0 which contains the abstract
specification of AbstractFvent. The control flow is shown in the AD diagram presented
in Figure 2.5. The leaf events are read from left to right and indicate sequential control
from left to right (this is based on JSD diagrams [44]). Thus, the AD diagram shown in
Figure 2.5 indicates that AbstractFvent at the abstract level M0 is realised at the refined
level by the execution of Fventl followed by that of Event2. The refining relationship
between an AbstractEvent and a concrete event Event2, is indicated with a solid line in
the AD diagram, whereas the non-refining relationship is indicated with a dashed line
to indicate that Fventl is a new event which refines skip. The corresponding Event-B
model of the AD diagram is shown on the left hand side of Figure 2.5. The ordering

between Fventl and Fuvent? is represented by guards on the events.

In the diagrammatic representation, control parameter name par appears in between
parentheses after the event name. In the Event-B model, par represents a list of pa-
rameters, parl, ..., par,. The parameter par appears in the AD diagram to indicate that
AbstractEvent and its sub-events can execute several times (for different values of the
parameter). The set control variables Event! and Event2 have same name as the events
and are used to show that an event can occur multiple times with different values for
the parameter par. The guard par € Eventl of Event2 means that Fvent! has occurred
with value par whereas the guard par ¢ Fvent2 means that Fvent2 has not occurred

for value par.
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At the most abstract level of an Event-B model, the root of the AD diagram appears as
an oval and the leaves represent the most abstract events as can be shown in Figure 2.6.
They are connected to the root via dashed lines since the most abstract events do not

refine the root node.

[ Eventl (par) ] [ Event2 (par) ]

Figure 2.6: Atomicity decomposition diagram for the most abstract level.

There are several AD patterns such as sequence/and patterns, or/xor patterns, loop/al-
1/some patterns, and one pattern. The description of these AD patterns are given in the

following table:

Pattern Description

sequence- Execute events in a sequence. The difference between ‘se-
/and- quence’ and ‘and-constructor’ is that an ‘and-constructor’ exe-
constructor cutes all the available events in any order, whereas the sequence

constructor executes the events in a particular order.

or -constructor | Execute one or more events from two or more available events,

in any order.

xor- construc- | Execute exactly one event from two or more.

tor

loop pattern Execute an event zero or more times.

all-replicator Execute an event for all instances of a defined set.

some- Execute an event for one or more (some) instances of a defined
replicator set.

one-replicator | Execute an event for one instance of a defined set.

Table 2.1: Description of the AD patterns.

2.7 UML-B

UML-B [77] is a diagrammatic notation based on UML and Event-B. It provides a
graphical modelling environment that allows the development of an Event-B formal
model through the use of UML graphical notation. There are four types of UML-
B diagrams: package diagrams, context diagrams, class diagrams and state machine
diagrams. The package diagrams represent the structure and the relationship between
Event-B contexts and machines. A context diagram describes the context part of an
Event-B model. The class diagrams and state machine diagrams describe the state and

the behaviour and are used in Event-B machines. The class diagrams in UML-B may
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contain attributes (variables), associations (relationships between two classes), events
and state machines (transitions between states). The state machine diagrams describe

the behaviour of instances of classes as transitions linked to the events.

UML-B assimilates the notion of refinement. It is possible to introduce a class in a
concrete machine that refines a class of its abstract machine. A refined class can keep
all the attributes of its abstract class, corresponding to the case where a refined ma-
chine keeps all the variables of an abstract machine. It is also possible that a refined
class drops some of the attributes of the abstract class, corresponding to the case of
removing variables through performing data refinement. Moreover, a refined class can
introduce new attributes in the class diagram, corresponding to the case of introducing

new variables in the refinement levels.

A UML-B tool [78] has been developed for the Rodin platform which can be used to

generate an Event-B model corresponding to a UML-B development.






Chapter 3

Experiences, Challenges and

Contribution

This chapter outlines a number of challenges that we have faced during the course of
our research and shows our experience of addressing some of theses challenges with two
useful approaches in Event-B: The first approach supports the construction of traceable
Event-B models from requirements and the second approach supports the reusability of

Event-B models to resume other development.

3.1 Introduction

FreeRTOS is a real-time operating system. It is a complex system which involves complex
data structures such as linked lists. The complexity of the system poses an increasing
challenge on its development using Event-B. The following listing outlines a number of
challenges involved in the development of complex systems that must be considered and
overcome. Although, these challenges have emerged from the FreeRTOS case study, they
can also be applied to other kinds of systems such as complex real-time and distributed

systems.

e Handling large and complex system functionality

e Building Event-B models from the requirements and retaining traceability of re-

quirements in Event-B models

e Deriving requirements/specifications from the source code to assist code mainte-

nance and evolution

e Constructing modelling guidelines to aid the development of building Event-B

models

27
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e Supporting reusability to facilitate the construction of Event-B models
e Modelling complex data structures

e Verifying linear temporal properties

The remainder of this chapter is organised as follows: Section 3.2 gives an overview
of the RTOS and FreeRTOS. Section 3.3 briefly describes the FreeRTOS mod-
els. Section 3.4 outlines our experience, challenges, and contribution of modelling
FreeRTOS. Section 3.5 describes briefly the combination of some of the Event-
B techniques to investigate an approach for reusing Event-B formal models and
an approach for building traceable Event-B models from requirements. Finally,
Section 3.6 discusses some related work regarding the use of formal methods in

operating systems.

3.2 An Overview of RTOS

RTOS is a class of operating systems that is used for applications which have

time constraints (Real Time Application). These kinds of operating systems are

characterised by features such as fault tolerant design and fast task scheduling as

they always have specific timing requirements, and they are usually small in size.

The structure of an RTOS is shown in Figure 3.1; as can be seen, the RTOS forms

the intermediate layer that masks the hardware details to the application level.
Application

Software
A~ A

h 4 A 4

Hardware

Figure 3.1: The RTOS structure.

The components of most RTOSes are [56]:

Scheduler: Special algorithms that are used to schedule objects. Some of the
commonly used scheduling algorithms are: preemptive priority-based scheduling
and round-robin scheduling. In preemptive priority-based scheduling, each task
must be assigned a priority. At every clock tick, the scheduler runs the highest
priority task that is ready to run. In round-robin scheduling, the tasks with equal

priority get an equal share of processing time.
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Objects: Entities that are used by the developers to create applications for real-
time embedded systems. Some object constructs are: tasks which are objects cre-
ated by a developer to handle a distinct topic, queues which are used for task-task
communication, semaphores and mutexes which are used for the synchronisation

between the tasks and the interrupts.

Services: Operations performed by the kernels such as task management, inter
task communication and synchronisation, interrupt handling, and resource man-
agement. The task management includes operations such as task creation, task
deletion, task suspension and changing task priority. Inter task communication and
synchronisation are mechanisms that enable information to be transmitted from
one task to another such as: message queues, pipes, semaphores and mutexes.
Interrupt handling are software routines used to handle interrupts; an interrupt is
a signal to the microprocessor indicating that an event needs immediate attention.
Resource management are some kernel functions used to manage system resources

such as the CPU, memory and time.

3.2.1 FreeRTOS

FreeRTOS [11, 10] is an open source, mini real time kernel. It was primarily
developed by Richard Barry and written in C with few assembler codes, with
the result that it can be modified and extended as required. FreeRTOS code is
freely available under GPL license and supports different platforms such as ARM7
and ARM9, MicroBlaze, MSP430, Coldfire V1,V2, and V85078KOR. FreeRTOS
has one scheduler that schedules the highest priority thread first and this can be

configured for preemptive or cooperative operation.

Data transfer is established by means of queues, semaphores, and mutexes. FreeR-

TOS is characterised by its simplicity of design, its portability, and scalability.

There are two architectural layers in FreeRTOS design which are the “hardware
independent” layer and the “portable” layer. The “hardware independent” layer is
responsible for performing the operating system functions and contains four C files
which are Task.c, queue.c, list.c and co-routines.c. Tasks.c provides functionality
for task management, queue.c provides functionality for the task communication
of any synchronisation mechanism, list.c contains the implementation of list data
structure that is used by the scheduler, and co-routines.c contains the co-routine
macros and function prototypes. The second layer, on the other hand, contains
hardware specific processing and includes some files such as heap.c that provides
memory allocation functionality. Tasks are implemented using circular doubly
linked lists, queues are implemented using circular buffers and memory manage-

ment schemes are implemented using arrays and singly linked lists.
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3.3 FreeRTOS Models

FreeRTOS is a complex system composed of different components. We consider
that the complexity of developing FreeRTOS can be reduced by dividing FreeR-
TOS into different independent components and later compose these individual
components. This can be achieved by considering each component of FreeRTOS
independently, and collecting requirements associated only to that component. Re-
quirements that show the interaction between the components can be treated as

composition requirements and used later to compose the individual components.

The main components of FreeRTOS are task, queue, and memory. Thus, each
of these components was handled separately. We gathered requirements from dif-
ferent tutorials [10, 11] and FreeRTOS code [10]. We then classified these re-
quirements into two classes: the first class has three sets of requirements: task
requirements, queue requirements, and memory requirements. Each of these re-
quirements handles a particular component of FreeRTOS. The second class is com-
position requirements that show the interaction between task, queue, and memory.

The requirement document are presented in appendix A.

The modelling activity initially was carried out by modelling each set of require-
ments independently. The specification in Event-B starts by an abstract model
followed by a number of refinement steps. Each refinement augments more details
than the previous model. The following steps outline an overview of the FreeRTOS

specifications:

Task management

An abstract specification- Some Basic Functionality of Task Management and the Kernel

We begin with an abstract model of task management and the kernel fo-
cusing on task creation, task deletion, interrupt handling and context switch.
The interrupt handling mechanism handles events that are usually signalled
by the interrupts by executing its interrupt service routine (ISR). Context

switch is the mechanism used for swapping the tasks.

First Refinement-Scheduler States
The first refinement level specifies the scheduler states. The scheduler can

exist in one of the following states: not started, running, and suspended.

Second Refinement-Task States
The second refinement specifies the task states. A task can be in one of the

following states: ready, blocked/delayed, or suspended state.

Third Refinement- Hardware clock and timing properties
This refinement level specifies the hardware clock and timing properties as-

sociated with a delay task such as: the sleep time and the wake-up time.
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Fourth Refinement- Delay Operations
This refinement level distinguishes two kinds of delay operations: “delay” and
“delay until”. The “delay” operation places the calling task into the blocked
state for a fixed number of tick interrupts without consideration of the time
at which the last task left the blocked state, whereas “delay until” is an
alternative operation that delays a task until a specific time has passed since
the last execution of that operation. Thus “delay until” allows a frequent
execution of a task so it is suitable for the periodic tasks (arriving at fixed

frequency).

Fifth Refinement- Clock Overflow
This refinement specifies clock overflow. It introduces a collection of overflow-

delay tasks to store tasks whose wake-up time has overflowed.

Sixth Refinement- Priority
This level introduces priority. FreeRTOS uses a highest priority first sched-
uler. This means that the higher priority task runs before the lower priority
task. The scheduler then uses this priority to schedule the task with the
highest priority.

Seventh Refinement- Contexts
This level specifies task contexts; the task context represents the state of the
CPU registers required when a task is restored. If the scheduler switches from
one task to another, the kernel saves the running task context and uploads
the context of the next task to run. The context of the previous running task
is restored the next time the task runs. Therefore, the kernel resumes the

task execution from the same point where it had left off.

Queue management

An Abstract Specification-Queue types
The initial model formalises three types of queues: queues, binary semaphores
and counting semaphores which are used for communication and synchroni-

sation between the tasks, or between the tasks and interrupts.

First Refinement-Waiting Events
This level of refinement considers additional requirements pertaining to the
addition of a task to event lists; TaskWaitingToSend variable is introduced to
store the tasks that failed to send items to a queue because the queue was
full, and TaskWaitingToReceive variable is introduced to store the tasks that failed

to receive items because the queue was empty.

Second Refinement-Lock Mechanism
This level defines lock mechanism. Lock mechanism is used to prevent an ISR
from updating the event lists TaskWaitingToSend OT  TaskWaitingToReceive While a

task is being copied to the event lists.
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Third Refinement - Mutexes
Our third refinement specifies the mutex; mutex is a type of binary semaphore
that uses priority inheritance mechanism to reduce priority inversion. Priority
inversion is a problem which occurs when a high priority task awaiting a mutex
has been blocked by a low priority task which holds that mutex. Priority
inheritance works by raising the priority of the lower priority task that owns
the mutex to that of the highest priority task that is attempting to obtain

the same mutex.

Fourth Refinement -Recursive Mutex
This level introduces a recursive mutex. Recursive mutex is a type of mutex
that enables a token to be “taken” repeatedly by its owner. Its only becomes
available again when the owner unblocks the mutex the same times it has
locked it.

Memory management

An Abstract Specification - Memory Blocks and Addresses

There is two abstract models for memory. The first abstract model defines
schemel. It includes variables for blocks and addresses. The blocks are
classified into a number of allocated blocks and one free block. This is because
schemel fills the heap from the bottom and leave the top of the heap to be
free.

The second abstract model defines scheme2. It includes variables for blocks
and addresses. The blocks are classified into a number of allocated blocks and
a number of free blocks. Unlike schemel, memory in scheme2 can be freed

once it has been allocated.

The proof statistics of the FreeRTOS models are given in following table:
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Task Management (TM)
Machines Total POs Automatic Interactive
MO 32 30 2
M1 10 10 0
M2 72 68 4
M3 24 24 0
M4 39 38 1
M5 28 25 3
M6 41 32 9
M7 34 29 5
Total (TM) 280 256 24
Queue Management (QM)

MO 53 46 7
M1 28 24
M2 109 70 39
M3 70 42 28
M4 19 10 9
Total (QM) 279 102 87

Memory Management-Schemel (MM1)
MO | 32 24 | 8

Memory Management-Scheme2 (MM2)
MO 32 22 10
Overall 623 494 129

Table 3.1: Proof statistics of the FreeRTOS models.

3.4 Experiences and Challenges

This section serves as an overview of the overall thesis. It highlights some of the
challenges that were faced throughout the development of FreeRTOS and suggests
solutions to overcome these challenges. Some of these challenges are left as future
work. The actual detail contributions will be discussed in subsequent chapters of
the thesis.

— Handling Large and Complex System Functionality

The method we provide for structuring requirements into two classes consists of a
set of requirements for each individual component and another set of requirements
for composition purposes. In that way, we provide means of handling large and
complex systems by dividing a problem into different independent smaller compo-
nents and later composing these individual components. This method identifies the
system based on compositional strategy in which the overall specification emerges
from composing its sub-systems. In addition, with this method, the decomposition
techniques are not used while modelling as the identified components do not re-
quire further breakdown. The compositional design strategy seems to be useful in
designing reusable models specially with redundant modelling components. This

is because the constructed formal models using compositional design strategy are
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loosely-coupled models and are easier to adapt with different developments than

the formal models that share several properties and variables.

In contrast to the compositional strategy, an alternative design strategy of complex
system is to start with a single model that captures the main features of FreeRTOS
problem and then decomposes that model into several sub-models using shared
event /shared variable decomposition techniques to handle each aspect separately.
This design approach seems to be useful when it is important to reason earlier
about the initial model to ensure that it adequately models the desired system,
but it does not help to construct reusable modelling components since it results in

constructing models that share properties and variables.

— Building Event-B Models from Requirements and Retaining Trace-
ability to Requirements in Event-B Models

The ability of building links between the requirements and the formal modelling
holds crucial in system development. It enables bridging the gap between the in-
formal requirements and formal models, and also verifies if all the requirements
are fulfilled or not. Moreover, with this ability, formal models can be verified to
meet changes in the requirements. During the modelling activity of FreeRTOS,
it was a difficult task to go from requirements to build FreeRTOS models. The
informal nature of the requirements makes the movement from requirements to
models more cumbersome. We were not quite sure whether all the requirements
were covered or not, and also it was difficult to validate the model against the
requirements and maintain changes in the model when requirements are changed.
We attempted to address this issue by providing an approach that uses intermedi-
ate languages represented in UML-B diagrams and AD diagrams to assist in the
construction of traceable Event-B models. The UML-B provides a UML graphical
notation that enables the development of an Event-B formal model, while the AD
approach provides a graphical notation to illustrate the refinement structures and
assists in the organisation of refinement levels. The AD approach also combines

several constructor patterns to manage control flows in Event-B.

The proposed approach brings the natural language requirements and Event-B
models together, and links each requirement directly to the Event-B constructs
through UML-B and AD diagrams in three main steps: The first step is based on
classifying requirements according to the Event-B constructs, the second step uses
an intermediary (semi-formal) notation using UML-B and AD diagram to repre-
sent requirements and bridge the gap between the requirements and the Event-B
models. The AD diagrams are also used in this step to develop refinement strategy.
The third step uses UML-B tool and the AD tool to generate Event-B models. We
applied the approach to specify queue management model. Details of the approach

are given in Chapter 4 and Chapter 5.
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— Deriving Requirements/Specification from the Source Code to As-

sist with Code Maintenance and Evolution

The textual requirements that are collected from authoritative resources are impor-
tant for building the formal models. However, finding all necessary information in
such resources can be difficult. Incomplete, inconsistent and ambiguous require-
ments are often encountered during this process. Another important source of
information is the systems code. Extracting design requirements from the sys-
tems code is a difficult task. For instance, FreeRTOS is implemented roughly into
four C files and the process of inspecting FreeRTOS code to understand details
implementation would require devoting great time and efforts. Most FreeRTOS
materials are usually devoted to explain FreeRTOS from the application devel-
oper’s point of view. The design details of FreeRTOS are hidden in the C code
and are usually not mentioned in the FreeRTOS materials. Therefore, there is a
clear need to investigate and learn C code to better understand the implemen-
tation of FreeRTOS. A possible technique to understand the C code is to reverse
engineer FreeRTOS code. Reverse engineering refers to the process of constructing
high level representations of an implementation. Reverse engineering is considered
as a good solution for handling legacy code than developing software from the
original requirements. As a future plan, we will attempt to address this difficulty
by investigating an approach that assists in the reverse engineering of structured
programs to Event-B models. By focusing on structured programs, we find that
structured programs are often composed of hierarchical program flow structures
such as selection and repetition. On the other hand, the AD approach in Event-B
provides a set of patterns that supports flow in Event-B models. We believe that it
might be useful to use the AD approach to translate the programme flow structures
to the corresponding AD flow structures and generate the Event-B specifications.
This idea is not explored yet in this thesis and is considered as a future of our

work.

— Constructing Modelling Guidelines to Aid Building Event-B Mod-

els

The ability to reuse modelling components for recurrent concepts are demanded to
save time and efforts. The RTOS kernels are good example of this. RTOS kernels
share similar components such as task and queue, scheduler, and a set of services
such as task management, queue management and memory management. The
derivation of modelling guidelines for recurrent concepts of RTOS is a good means
to support reusability and assistance in the development of RTOS using formal
methods. One of the objectives of this thesis is to come up with a set of modelling
guidelines that can aid modelling of the RTOS kernels in Event-B. We dedicated

time to extract general modelling guidelines for RTOS kernels. The modelling
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guidelines were extracted based on our experience with modelling Event-B. We
believe that these guidelines can be of benefit to assist the development of RTOS

kernels. Full details about these guidelines are given in Chapter 8.
— Supporting Reuse to Facilitate the Construction of Event-B Models

Reusing Event-B models to resume the development of other developments is cru-
cial to save time and efforts especially with complex systems that involve several
recurrent components. During the modelling activity of FreeRTOS, we found out
that there is a great need of reusing existing models to resume the development
of FreeRTOS specification. In particular, we found that the abstract “set” in the
task, queue and memory models must be data refined into a circular doubly/s-
ingly linked lists. Tasks states: running, ready, delay, suspend, and blocked in

“set” and need to be data refined into a circular

the task model are specified as
doubly linked list. The process of refining each set to circular doubly linked lists
demands a significant modelling and proving efforts. Therefore, developing an ap-
proach that aids reusing of models to resume other developments is necessary to
save time and reduce modelling and proof efforts. We attempted to construct a
single model of circular doubly linked list model “pattern” which refines a “set”
and reuses it to data refine task sets. To achieve this, we found that it is necessary
to have a renaming mechanism that renames the pattern to suitable names each
time it is reused for the development. We also found out that it is necessary to
have a mechanism to incorporate the pattern into the development. Luckily, both
mechanisms are supported in Event-B. Generic instantiation supports the instan-
tiation of the refinement pattern including proofs and allows renaming the pattern
components (types, constants, variables, and events) to suitable names for the
problem specification. Composition (shared-event style) enables the incorporation
of the instantiated pattern in the development. Thus, we investigated an approach
based on the combination of generic instantiation and composition techniques to
facilitate the reuse of existing Event-B models to resume the development of other

models. More details about the proposed approach can be found in Chapter 7.
— Modelling Complex Data Structures

The main data structure of FreeRTOS is linked lists. Linked lists are complex
data structures which consist of a group of nodes and pointers. Linked lists are
widely used data structures which can be used to implement many important
data structures such as stacks, queues, and graphs. Linked lists can be used
to implement several systems such as the internals of a file system to maintain
available blocks of storage and directory structure to maintain a directory of names.
There is a little support for modelling linked lists in Event-B, however, the theory
feature in Event-B provides a mechanism to enhance the extensibility of Event-B

toolset. It allows construction of new operators and new proof rules to suit users
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needs. Thus, we make use of the theory feature to develop theories for linked
lists to aid modelling of linked lists in Event-B. The developed linked list theories
include sets of polymorphic operators to update a pointer structure when an item is
added or removed from the linked list. It also includes polymorphic theorems and
rewrite rules that assist in discharging proof obligations. The developed linked list
operators are reusable and can contribute to supply a library of different theories

in the future that would be of benefit to Event-B specifiers.
— Verifying Linear Temporal Properties

The verification of temporal properties is considered very important. Some re-
quirements such as the requirements that describes liveness properties are hard to
trace to components of Event-B model but simple to be formulated as temporal
logic expressions. An example of a requirement that describe liveness property is

the following requirement:

LIV A task having been scheduled

will eventually be executed.

It is crucial to find a method that specifies and verifies temporal properties for any
modelled system such as the real-time kernels. Encoding temporal properties in
Event-B and using Rodin tool to ensure that the encoded temporal properties are
provable is a challenging task. In future work, we are going to study the possibility
of formalising temporal properties using AD diagrams. The important motivation
for selecting the AD approach to formalise the temporal properties in Event-B is
that the AD approach explicitly shows the relationship between the abstract and
refined events. The AD diagrams are translated into Event-B models as invariants,
guards, and actions that can be verified using Rodin tool. Although, this topic
is not covered in the thesis, we identify it as an issue and we plan to investigate
the possibility of using the AD approach to support the verification of temporal

properties in the future.

3.5 Two Approaches Supporting Formal Developments
in Event-B

We have investigated two approaches that combine the existing Event-B techniques
to support formal modelling. The first approach assists in reusing the Event-B
formal models to resume the development of other models, whereas the second
approach assists in building traceable Event-B models from requirements. The

following subsections are briefly described both the approaches.
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3.5.1 An Approach for Reusing Event-B Models

We present an approach for reusing the modelling patterns in Event-B through
the process of constructing a new model in such a way that preserves the proofs.
The reusability approach is based on the (de)composition and generic instantiation
techniques. The decomposition technique is applied to extract part of the problem
that matches with the pattern. The generic instantiation technique is then used
to instantiate the pattern. Finally, the composition technique is applied to inte-
grate the instantiated pattern into the problem. The reusability approach has the
potential to reduce proof effort specially if the modelling patterns are integrated
into building larger systems. The presented approach is applied to data refine
the abstract FreeRTOS structures “set” into circular doubly linked list and singly
linked list.

The architecture of the reusability approach is depicted in the following figure.

Pattern Shared Event  Generic Instantiation Shared Event Composition
Decomposition

p0 M yb ‘ oy
!data refines I_d|ecompose compose

pl x mMy b oum otV iy thow

Figure 3.2: The architecture of the reuse approach.

We have a pattern P that consists of two machines, p0 with variable x and p! that
refines p0 and has the variable x/ that refines x. At the abstract machine M, in a
particular specification with variables y and list of variables b, we figure out that a
suitable continuation of the development would be to reuse the pattern P. In order
to apply the pattern P to resume the development of M, we start by extracting
the part that matches with the pattern in M using shared event decomposition
approach. The part that matched the pattern of M is placed in machine mM, the
remaining unmatched part of M is placed in machine uM. In the second step, we
apply generic instantiation approach to instantiate the pattern with proofs and
rename the pattern components to suitable names. The pattern P with machine
p0 and pl has been instantiated to rP pattern with machines rp0 and rpl. x has
been replaced by y and z/ has been replaced by y/. In the third step, we composes

uM with rpl and show that the resulting composed machine is a refinement of M.
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3.5.2 An Approach for Building Traceable Event-B Model from
the Requirements

We present an approach for constructing a formal model from the informal require-
ments with the aim of retaining traceability to requirements in the models. In our
approach, we make use of UML-B and Atomicity Decomposition (AD) approaches.

The presented approach comprises of the following three stages:

— Requirement Classification
The requirements are classified based on the Event-B components. The clas-
sification consists of five classes: data-oriented, constraint- oriented, event-
oriented, flow-oriented, and others. The data-oriented requirements represent
attributes and relationships between the attributes, the constraint-oriented
requirements represent conditions that must remain true in the system, the
event-oriented requirements represent the activities of the system and its
components, the flow-oriented requirements represent relationships between
the events, and others represents other requirements that do not fit into the

previous classes.

— Construct Semi-Formal Artifacts and Develop Refinement Strategy
We use semi-formal artifacts described using UML-B, atomicity decomposi-
tion diagrams and structured English to represent the requirements. The
UML-B is used to represent data-oriented requirements. The atomicity de-
composition is used to represent flow-oriented requirements and the struc-
tured English is a way of breaking down constraint and event-oriented re-
quirements into shorter sub-requirements and mapping each sub-requirement
to the proper class (constraint or event-oriented). Representing requirements
using semi-formal artifacts is reasonably simple, and at the same time the
movement from the semi-formal artifacts to the Event-B is straightforward.
We also combine atomicity decomposition diagrams and use them to assist

the process of developing the refinement strategy.

— Construct Formal Models

We use the UML-B tool and the AD tool to generate Event-B models and
also write manually the corresponding Event-B from the structured English

representation.

3.6 Related work

This section examines some of the related work regarding the use of formal methods

in operating systems.

Craig’s work is one of the fundamental sources in this field [23, 24]. He focuses

on the use of formal methods in OS development, and the work is introduced
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in two books. The books contain formal specifications of simple and separation
kernels along with the proofs written by hand. The first book is dedicated to
specify the common structures in operating system kernels in Z [79] and Object
Z [76], with some CCS [59] (Calculus of Communicating Systems) process algebra
used to describe the hardware operations. It starts with a simple kernel with few
features and progresses on to more complex examples with more features. For
example, the first specification introduced in the book is called a simple kernel,
and involves features such as task creation and destruction, message queues and
semaphore tables. However, it does not contain a clock process or memory man-
agement modules, whereas other specifications of swapping kernel contain more
advanced features including a storage management mechanism, clock, interrupt

service routines, etc.

The second book is devoted to the refinement of two kernels, a small kernel and a
micro kernel for cryptographic applications. The books contain proofs written by
hand, with some mistakes and some missing properties resulting due to manual

proofs, some of which have been highlighted by Freitas [37].

Freitas [37, 80] has used Craig’s work to explore the mechanisation of the formal
specification of several kernels constructed by Craig using Z/Eves theorem prover.
This covers the mechanisation of the basic kernel components such as the process
table, queue, and round robin scheduler in Z. The work contains an improvement
of Craig’s scheduler specification, adapting some parts of Craig’s models and en-
hancing it by adding new properties. New general lemmas and preconditions are
also added to aid the mechanisation of kernel scheduler and priority queue. Mis-
takes have been corrected in constraints and data types for the sake of making the
proofs much easier, for instance, the enqueue operation in Craig’s model preserves
priority ordering, but it does not preserve FIFO ordering within elements with

equal priority; this has been corrected by Freitas in [37].

Furthermore, Déharbe et al [27] specify task management, queues, and semaphores
in classical B. The work specifies mutexes and adopts some fairness requirements

to the scheduling specification. The formal model built was published in [26].

The modelling work outlined in this chapter attempts to use a compositional strat-
egy to build RTOS kernel modelling component using the Event-B. The compo-
sitional strategy allows us to specify each redundant modelling components in a
separate model without considering the interaction between the components. The
compositional strategy directs us to divide the requirements into several sets. Each
requirement set is related to a specific component of FreeRTOS. Following that,
we model each set of requirements separately without considering the connection
between the different components. The composition of the separated models then
becomes an explicit task. The compositional strategy helps in producing loosly-

coupled models that can be reused easily than models that share several properties.
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There is also an earlier effort by Neumann et al [60] to formally specify PSOS
(Provably Secure Operating System) using a language called SPECIAL (SPECI-
fication and Assertion Language) [34]. This language is based on the modelling
approach of Hierarchical Development Methodology (HDM). In this approach,
the system is decomposed into a hierarchy of abstract machines; a machine is
further decomposed into modules, each module is specified using SPECIAL. Ab-
stract implementation of the operations of each module are performed and then
is transformed to efficient executable programmes. PSOS was designed at SRI
international [64]. The work began in 1973 and the final design was presented in
1980 [60]. PSOS was focusing on the kernel design and it was unclear how much
of it has been implemented [28]. Yet, there are other works inspired by the RSOS
design such as Kernelized Secure Operating System (KSOS) [62] and the Logical
Coprocessing Kernel (LOCK) [69].

The aforementioned examples follow a top-down formal method approach, where
the specification is refined stepwise into the final product. On the other hand,
there are also some earlier efforts in the area of formal specification and correctness
proofs of kernels based on the bottom-up verification approach. The bottom-up

approach adopts program verification methods to verify the implementation.

An example of this approach is a work by Walker et al (1980) [83] on the formali-
sation of the UCLA Unix security kernel. The work is developed at the University
of California at Los Angeles UCLA for the DEC PDP-11/45 computer. The kernel
was implemented in Pascal due to its suitability for low-level system implemen-
tation and the clear formal semantics [42, 63]. Four levels of specification for the
security proof of the kernel were conducted. The specifications were ranging from
Pascal code at the bottom to the top-level security properties. After that, the
verification based on the first-order predicate calculus was applied that involves
the proof of consistency of different levels of abstraction with each other. Yet, the

verification was not completed for all components of the kernel.

Finally, there was an effort by Klein et al [50, 49] on the formal verification of
the sel.4 kernel starting with the abstract specification in higher-order logic, and
finishing with its C implementation. The design approach is based on using the
functional programming language Haskell [43] that provides an intermediate level
that satisfies bottom-up and top-down approaches by providing a programming
language for kernels developer and at the same time providing an artefact the
can be automatically translated into the theorem prover. A formal model and
C implementation are generated from sel.4 prototype designed in Haskell. The
verification in Isabelle/HOL [61] shows that the implementation conforms with

the abstract specification.






Chapter 4

Staged Approach for
Constructing Models from the

Requirements

Constructing traceable Event-B models from the requirements is crucial in the
system development process. It enables the validation of the model against the
requirements and allows to identify different refinement levels, which is a key to
successful formal modelling with a refinement-based method. The objective of this
chapter is to present a way based on the use of semi-formal structures to bridge
the gap between the requirements and Event-B models and retain traceability
to requirements in Event-B models. The presented approach makes use of the
UML-B and atomicity decomposition (AD) approach. The UML-B provides UML
graphical notation that enables the development of an Event-B formal model,
while the AD approach provides a graphical notation to illustrate the refinement
structures and assists in the organisation of refinement levels. The AD approach
also combines several constructor patterns to manage control flows in Event-B. The
intent of this chapter is to harness the benefits of the UML-B and AD approaches
to facilitate construction of the Event-B models from requirements and provide

traceability between requirements and Event-B models.

4.1 Introduction

This chapter describes how FreeRTOS requirements are identified and also presents
an approach for incrementally constructing a formal model from informal require-

ments with the aim of retaining traceability to requirements in models.

Decomposing the requirements into three components can be seen as a preparation
step for a compositional development in which the overall specification emerges

from composing its sub modules. There are a number benefits to this process.

43
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Firstly, decomposing the problem into sub-problems promotes reusability; sub-
problems can be treated as reusable component “patterns” and could be used in
the development of other systems. Secondly, decomposing a problem into set of
sub-problems supports team collaboration environment; where each developer or
team can participate in handling a specific sub-problem separately from other sub-
problems. Moreover, if the decomposition is made at the requirements level; there
would be no need for adopting decomposition techniques and getting restricted by
the model decomposition pitfalls such as the inability of refining shared variables

in shared-variable decomposition technique.

We aim at providing clearly-defined requirements of FreeRTOS components. The
architecture of the FreeRTOS has influenced our analysis of the FreeRTOS re-
quirements. The division of the FreeRTOS into several layers: tasks, queue, etc
enables the study of each layer separately from the others. Therefore, we began
by studying each component “source code C File” separately and came up with
a set of requirements for each component. We have three set of requirements:
task management, queue management and memory management. Each set of re-
quirements concerns only with a particular component of FreeRTOS and does not
show how a component interacts with the other components. Therefore, we intro-
duce another set of requirements namely composition requirement that shows the
interaction of FreeRTOS components. The requirements of the FreeRTOS have
been collected from the FreeRTOS codes and several other resources that discuss
FreeRTOS [11, 10]. Following that, we present an approach that helps to bridge
the gap between the requirements and the formal models. The approach helps to
identify the modelling elements from the requirements, assists in the construction
of a formal model, and facilitates layering the requirements and mapping the in-
formal requirements to traceable formal models. Traceability supports the process
of validation of the model against the requirements document and allows missing

requirements to be easily accommodated in the model.

In our approach, we make use of UML-B [77] and atomicity decomposition (AD) [15,
33| approaches. UML-B provides a graphical modelling environment (UML nota-
tion) which enables the development of an Event-B formal model. The AD ap-
proach provides a graphical notation to structure refinement and describes the
ordering between the events. The visual view of the system provided by the AD
assists in the development of the refinement strategy before the actual work on
modelling is performed. The combined AD diagrams, which show the overall re-
finement structure of the system, can be modified until an acceptable refinement
structure is reached. In addition, the AD approach provides several constructor
patterns that can be used to manage the flow of events and define event ordering.
Moreover, Event-B models corresponding to AD diagrams and UML-B diagrams
can be generated automatically by the AD and UML-B tools.

The presented approach comprises of three stages, shown in Figure 4.1.
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Classify requirements Construct semi-formal artifacts and Construct formal models
develop refinement strategy
Requirements Event-B model
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Figure 4.1: Steps for constructing a traceable formal models.

The first step in our approach is requirement classification. The requirements are
classified based on Event-B components. The classification consists of five classes:
data-oriented, constraint-oriented, event-oriented, flow-oriented, and others. The
data-oriented requirements represent attributes and relationships between the at-
tributes, the constraint-oriented requirements represent conditions that must re-
main true in the system, the event-oriented requirements represent the activities
of the system and its components, the flow-oriented requirements represent rela-
tionships between events, and “others” represent other requirements that do not

fit into the previous classes.

The second step consists of three main stages: Firstly, we use semi-formal artifacts
described using UML-B, AD diagrams and structured English to represent the
requirements. The UML-B is used to represent data-oriented requirements. The
AD is used to represent the flow-oriented requirements. The structured English is a
way of breaking down constraint and event-oriented requirements into shorter sub-
requirements, and mapping each sub-requirement to the proper class (constraint or
event-oriented). The semi-formal artifacts serve as an intermediate representation
that map the requirements to Event-B formalism. Representing requirements using
semi-formal artifacts is reasonably simpler, and at the same time the movement
from the semi-formal artifacts to the Event-B is straightforward. Secondly, we
merge the fragmented structured English of a single event together to facilitate
tracing of the event components. Thirdly, we combine AD diagrams and use these

diagrams to assist the process of developing the refinement strategy.

The third step of the proposed approach is to use the UML-B tool and the AD tool
to generate Event-B models, and also write manually the corresponding Event-B

from the structured English representation.

The remainder of this chapter is organized as follows: Section 4.2 outlines the
requirement classification. The description of the presented approach is intro-
duced in Section 4.3. Section 4.4 introduces some related works in requirement

traceability. The conclusions are drawn in Section 4.5.
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4.2 Requirements Classification

The way we construct the requirements document is based on the Abrial style [4],
and there are two parts to this process. The first part is the text that explains
the system to be modelled; this aids in understanding the problem at hand. The
second part is a reference text that is short, precise and is labelled and numbered;
this part is the one the modeler will reference while modelling. TSK2 is an example
of a reference text requirement. Large requirements can be decomposed into a set
of shorter and understandable requirements. Good requirement documents list
the requirements in order, starting from the requirements that describe a problem
abstractly to more detailed ones. Ordering the requirements points the specifier
to the right organisation of the model and the right order of the refinement levels.
For instance, the requirements T'SK2 and TSK1j show the need of modelling the
collection of ready tasks after the scheduler so that the idle task is added to the
collection of ready tasks when the scheduler starts (i.e the event responsible for
running the scheduler is extended to add the idle task to the collection of ready
tasks).

TSK2 When the scheduler is started, the idle task is created.
TSK14 | When a task is created, it is added to the collection of ready tasks.

Ordering the requirements document and structuring refinement levels demand
significant efforts. Thorough analysis of requirements are required to decide the
most appropriate organisation of the refinement levels. We attempted to make
use of the atomicity decomposition approach [33] to organise the refinement levels.

Detail description on this issue is given in stage 3 of section 4.3.2.

Revising the requirement document is usually a continuous process, so after struc-
turing the requirements, we embark on the modelling task. It is quite often that an
ambiguous, inconsistent or missing requirement is experienced whilst modelling;

therefore the requirements document must be revised continuously.

Requirements elicitation and requirements structuring are the main two phases of
system analysis. Information that describe what the system should function can be
gathered from several sources. Interviewing, survey, directly observing users, etc
are example of requirements collecting methods. Requirement structuring phase
focuses on augmenting methods to present the requirements such as data flow
diagrams and entity-relationship diagram. Collection of FreeRTOS information
carried out using different materials that describe FreeRTOS and from the source
code. To reduce the complexity of structuring high volume of data, we classi-
fied the requirements into different sets. The obvious classification of FreeRTOS
requirements is based on its components. Therefore, we classified FreeRTOS re-

quirements into three classes. Task requirements set, queue requirements set, and
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memory requirements set. The requirements TSK3 and QUE2 are examples of
this classification. Requirements classification can vary according to the system
architectures and the core features that the developers looking at. For instance,
controlled system requirements can be classified into controlled requirements, mon-

itored requirements, and commanded requirements.

In addition to task, queue, and memory classes of FreeRTOS requirements. We
noticed that some requirements formed part of two independent requirements sets.
We considered such requirements as composition requirement since each require-
ment of this class describes a possible connection between two independent com-
ponents. Thus, we added another class called requirements composition set. The

requirement COMP3 — EVT is an example of composition requirements.

’ TSK3 Only one task can execute on a processor at a time.

QUE2 The length of the queue is identified when the queue is cre-
ated.

COMPS3- The running task can send/receive an item

EVT to/from a queue.

The requirements that represent the connections between the sub-problems need
special attention. Each requirement of this type needs to be decomposed into

several parts that can map to appropriate sub-problems.

The requirement COMP3-EVT, for instance is shared between the task sub-problem
and the queue sub-problem. Therefore, it can be decomposed into two require-
ments: The first requirement labelled as TSK10, relates the first part of the re-
quirement COMP3-EVT to the task sub-problem whereas the second requirement
labelled as QUE1/ relates the second part of the requirement COMP3-EVT to
the queue sub-problem. The requirements TSK10 and QUFE1/ fit the first class
(i.e. requirements associated to a certain component), whereas COMP3-EVT is a
composition requirement as it shows the connection between different components

in different sub-models.

TSK10 | The running task can hold an item
or remove an existing item.
QUE1/ | A queue can be used to send and

receive items.

The way the requirement COMP3-EVT is decomposed gives an insight into the
possible composition techniques that could be used to show the interaction between
the requirements T'SK10 and QUFE14. In fact, both the requirements, T'SK10 and

QUE1/, are event-oriented requirements as explained in Section 4.3.1, and the
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composition clearly could be obtained using shared event composition technique.
The event driven by requirement TSK10 could be combined with the event driven
by the requirement QUE14 to build the interaction between the task and queue
components. An important point to note is that the composition requirements

given in this thesis could be of two types:

— Composition requirements that connect the relevant events as shared events
such as the requirement COMP3-EVT

— Composition requirements that specify the invariants linking variables of dif-

ferent sub-models such as the following requirement:

COMP1-INV | Tasks and queues are distinct.

In more complex cases, it is quite difficult to decompose some requirements; con-

sider, for example the following requirement:

COMPY-EVT | The running task will be added to the collection of delay tasks
and the collection of tasks waiting to send, if it attempts to send

an item to a full queue.

According to the other requirements, we know that the collection of delay tasks
stores the blocked tasks, so, the first part of the requirement COMP9-EVT belongs
to the task sub-problem. We also know that each queue has a sending task-waiting
list that stores tasks that fail to send items to that queue. The difficulty here
lies in determining the appropriate requirement class for the sending task-waiting
list. The sending task-waiting list is a strong mapping between the two separate
components: task and queue and the identification of the correct class for the

sending task-waiting list remains unclear.

Nevertheless, if we consider the second part of the requirement particularly check-
ing out the availability of the queue, we might find that the queue requirements
could be the appropriate class to define sending task-waiting list. Therefore, we

can decompose the requirement COMPY-EVT into the following two requirements:

TSK21 | The running task can be put in the collection of delay task.
QUE14 | The running task is added to the collection of tasks waiting to

send if it attempts to send an item to a full queue.

Likewise, the composition can be obtained by combining the event driven by the
requirement T'SK21 with the event driven by the requirement QUFE1.
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4.3 Steps for Constructing Traceable Event-B Models

This chapter also presents an approach for constructing traceable Event-B models
using UML_B and the AD approach. In this chapter, we do not address the
question of how we arrive at the requirements. Requirements could have been
sorted out by deploying the use cases [51]. In use cases, the systems functionality
is described through structured stories in an easy-to-understand textual form, from
which requirements could be drawn. Our objectives are to provide a link between
the requirements and the formal models and to facilitate building traceable Event-
B formal models from requirements. The following subsections describe the steps

proposed to achieve these goals.

4.3.1 Step 1: Classify Requirements

Based on the structure of Event-B models, we classify the requirements into the fol-
lowing five classes: data-oriented requirements, constraint-oriented requirements,
event-oriented requirements, flow requirements, and other requirements. Each re-
quirement must be classified into at least one category. A detailed description of
the requirement classification, with examples of lift controller requirements taken

from [65], is given below.

Data-oriented requirements: are requirements that describe the attributes
of the nouns and the relationships between them. Nouns represent objects and
attributes represent the values of the object. Here are two examples of this re-

quirement class:

REQ1 | Each floor has one button for requesting travelling to another floor.
REQ2 The lift-door can be closed or opened.
REQ3 The lift can be moving or stopped.

The nouns “ floor” and “button” in the requirement REQ1 are identified as data-
oriented requirement. The noun “lift-door” and the attributes “closed” and ¢
opened” in the requirement REQ2 are also identified as data-oriented requirement
since they describe states of the door. Similarly, the noun “lift” and the attributes
“moving”, and “stopped” in the requirement REQS are defined as data-oriented

requirement since they describe different states of the lift.

Constraint-Oriented Requirements: are requirements that describe the prop-
erties of the data that should always remain true. They are normally identified
by keywords such as never, must not, always etc. The following is a constraint-

oriented requirement:

’ REQ4 ‘ The lift door of a moving lift must be closed.
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Requirement REQ/ describes a system property relating the position of the lift

door and the lift motion.

Event-oriented requirements: are requirements that describe behavioural char-

acteristics of the system or its components (i.e. how an object acts). Events are

4

normally identified by the “verbs”, such as the following requirement:

’ REQ5 ‘ People on a floor press a button to request a lift. ‘

The verb “request” denotes that REQS5 is of event-oriented type. The part of
an event-oriented requirement that describes the conditions under which an event
can happen is called a guard requirement, whereas the part of an event-oriented
requirement that describes how the state is going to change is called an action

requirement.

Flow requirements: are requirements that describe the connection between the
operations/events. This class describes the order in which operations/events are
occurred. We can classify flow requirements generally into three types: sequence
requirements which describe sequencing between the operations, selection require-
ments which describe “if-then-else” structure to indicate the selection between two
or more operations, and repetition requirements which describe the iteration of a
particular operation multiple times. Table 4.1 provides several examples of the

flow requirements:

Flow

Require- | Example Description

ments

Sequencing

quirements

Re-

REQ6 The floor door closes
before the lift is allowed to

move.

The relationship between the door
closing operation and the lift mov-
ing operation can be seen as a se-
After the lift-door closes,

the lift is allowed to move.

quence.

Selection

quirements

REQT7 If a lift is stopped then
the floor-door for that lift may

be open.

In this requirement the lift door can
be either be opened or left closed

when the lift is stopped.

Repetition

quirements

REQ8 There might be more
than one external floor re-
quest in a particular floor,
the lift will respond to them

(stop) only once.

Here, “more” indicates the iteration

of the floor request operation.

Table 4.1: Description of flow requirements.
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The above classification seems to be more applicable to many case studies. Nev-
ertheless, the flow requirements are not restricted to this classification only and

other classes can be identified by analysing more case studies.

Other Requirements: are those requirements that do not fit into the previous
classes. This includes the requirements that are very hard to model in Event-B,

such as the requirements that represent temporal properties or timing properties.

4.3.2 Step 2: Construct Semi-formal Artifacts and Develop Re-
finement Strategy

This step comprises of three stages described as follows:

4.3.2.1 Stage 1: Use Semi-Formal Artifacts (UML-B, AD, and Struc-
tured English)

In the first stage, the requirements are represented in a semi-formal notation de-

pending on their type:

— Data-Oriented Requirements are represented using UML-B diagrams:
nouns or attributes are represented using class diagrams, relationships be-
tween the nouns are represented using UML-B associations, and transitions

between the attributes are represented using the state machine diagrams.

— Constraint and Event-oriented requirements are represented using struc-
tured English. The structured English is a way of breaking down constraint
and event requirements into smaller requirements and mapping each sub-
requirement into their requirement identifiers to facilitate the traceability of
requirements.

The structured English representation for the constraint-oriented require-

ments is of the following form:

constraint : < constraint requirement >——< REQ >

The structured English representation for event-oriented requirements is of

the following form:

event name
guard : < guard requirement >———< REQ >
action : < action requirement >—— < REQ >

In the above notation, the arrow is used for tracing back to the original

requirement, and REQ denotes the requirement identifier.

— Flow requirements are mapped to the appropriate AD diagram: sequence
requirements are mapped to sequence/and diagrams, selection requirements

are mapped to or/ror diagrams, and repetition requirements are mapped to
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loop/all/some replicator diagrams. The description of the AD patterns is

given in Section 2.6.

Representing requirements into a graphical/structured English notation provides
an intermediate level of tracing information and enables the validation of the model

against the requirements.

Assuming that the requirements are analysed based on the described requirement
classification, the following examples illustrate how to represent each requirement

class into a graphical or structured English notation.

The data-oriented requirement REQ1 is represented as follows:

© Button= BOOL @ Floor
1..1 o FloorButton®..n

Attributes
o FloorButto

Figure 4.2: The class diagram for REQ1.

The class Floor consists of the association FloorButton of type Button which is
defined as a boolean that indicates whether there is a request for the lift to stop
at that floor. The multiplicity property for the association FloorButton specifies
a many-to-one relationship (i.e., there are n+1 floors and a boolean for each floor

to indicate whether there is a request for the lift to stop at that floor).

The data-oriented requirement REQ2 is represented using the state machine in
Figure 4.3, which shows two states, “open” and “ close”, and two transitions
OpenLiftDoor and CloseLiftDoor.:

4+ closeDoor
< open 4 close

% openDoor
Figure 4.3: The state machine diagram for REQ2.
The data-oriented requirement REQ3 is represented using the state machine in

Figure 4.4, which shows two states, “stopped” and “ moving”, and two transitions
LiftStop and LiftMoving.

s+ LiftMove
< stopped <+ moving
%+ LiftStop

Figure 4.4: The state machine diagram for REQ3.



Chapter 4 Staged Approach for Constructing Models from the Requirements 53

The constraint-oriented requirement REQ4 is represented as follows:

’ constraint : The lift door of a moving lift must be closed —— REQ/ ‘

The event-oriented requirement REQS5 is represented as follows:

event RequestFloor
guard : a request at floor f is made — REQ5
action : new request is added to the pool of pending requests — REQ5

The flow requirements REQ6, REQ7 and REQS8 can be represented as follows:

LiftMove LiftStop LiftStop
P Sao r
4 “ 2 . _!‘\
rd L e £
CloselLiftDoor LiftMove LiftStop OpenlLiftDoor NotOpenlLiftDoor RequestFloor LiftStop
Figure 4.5: The Figure 4.6: The Figure 4.7: The
ADD for REQ6. ADD for REQT. ADD for REQS.

Figure 4.5 shows that the behaviour of the LiftMove event is exhibited by execut-
ing the CloseLiftDoor event followed by the LiftMove event. The xor-constructor
pattern in Figure 4.6 indicates that the behaviour of the LiftStop event in the root
node is exhibited by executing the LiftStop event followed by either the OpenlLift-
Door event or the NotOpenLiftDoor event. The latter event has skip action and
is used to skip from applying any change to the lift-door status; this is because
the “xor” pattern forces the execution of only one leaf. Finally, the behaviour of
the LiftStop event in Figure 4.7 is exhibited by executing the RequestFloor event
multiple times followed by the LiftStop event.

4.3.2.2 Stage 2: Merging Structured English of a Single Event

It is possible that two or more structured English requirements refer to a single
event. If such requirements exist, we merge them here. However, in this small case

study we do not have any such requirements that refer to a single event.

4.3.2.3 Stage 3: Develop Refinement Strategy

Here, we combine the AD diagrams developed in the first stage in order to organise
the refinement levels. Flow is one criterion that can be considered in devising the
refinement strategy. The nature of the requirements, the architecture that the
refinement is aiming towards, and the data types being refined are other important
criteria that might come before the flow criterion since they may influence the
flow requirements. The visualisation of the overall structure of the system gives

more insight into the development of the refinement strategy before any Event-B
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modelling is carried out. It allows the developer to visually illustrate the hierarchy
of the model based on the important criteria, the developer is aiming at, and
also helps to control the size of the model and view the number of events in each
refinement level. Another advantage of the diagrammatic view of the refinement
strategy is that it allows to visualise event dependencies and structure/variable
dependencies. For example, in Event-B, events that update a particular variable
should be introduced in the same modelling level. This is a restriction imposed by
Event-B, and is often only discovered during the modelling activity. The visual
view of the events given by the AD diagrams help us to deal with this restriction
before modelling. Moreover, using this view, the developer can first introduce
the basic properties of the system, and then introduce more complex properties
that depend on the basic properties in the refinement levels. For instance, the
developer of a real-time operating system (OS) can introduce basic properties of
the processes used by the application developer in the abstract model, and in deep
refinement levels, the developer can introduce complex properties that are used by

the real-time OS to handle the processes.

Figure 4.8 shows the refinement levels for the lift controller case study.

 Abstract model < LiftController > N
T R
- -
- S -
- o it -
a® bl P
LiftStop LiftMove
1st refinement \~\\ /!
b ’
Kxor 2 ’
o~ Y
o7 TN ‘
LiftStop OpenlLiftDoor NotOpenlLiftDoor CloselLiftDoor LiftMove

pnd Refinement/jf’ l
-/

RequestFloor LiftStop OpenliftDoor NotOpenLiftDoor CloseliftDoor LiftMove

-
P

Figure 4.8: The combined AD diagrams for the lift controller.

In the abstract level, we decided to model two abstract events: AbstractLiftStop
and AbstractLiftMove. We use a sequence pattern to indicate the sequencing be-
tween the abstract events. In the first refinement, we decided to combine the tree
structure with the root AbstractLiftStop, that corresponds to the AD diagram in
Figure 4.6 and the tree structure with root AbstractLiftMove that corresponds to
the AD diagram in Figure 4.5. Finally, we make use of the AD diagram given
in Figure 4.7 to refine the LiftStopl event. We note that because of a restriction
in the AD tool, event names in the combined AD diagrams are changed slightly
from their names in the individual AD diagrams. The AD tool automatically gen-
erates flags and gluing invariants according to the event names. The generated
gluing invariants show the relationship between the abstract flags and concrete
flags. Therefore, the flag names for the abstract events are required to be different

from the flag names for the refined events.
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4.3.3 Step3: Construct Formal Models

In stage 3, we organised the refinement levels based on the combined AD diagram
and then we structured the hierarchy of the class diagrams according to the com-
bined AD diagram. So, we have three UML-B contexts: c0, cI that sees cI, and
c2 that sees cI. We also have three UML-B machines, the abstract machine m0,
the first machine m1 that refines m0, and the second machine m2 that refines m1.
Similarly, the AD gives rise to three contexts: c¢0, ¢ and ¢3 and three machines:
m0, m1, and m2. In this subsection, we use the UML-B and AD tools to convert
the diagrams of step 2 to Event-B models. We also manually convert the struc-
tured English representation into Event-B. The Event-B model for the class and
state machine diagrams are generated using UML-B. Since UML-B support the
refinement concepts. Each UML-B machine gives rise to both an Event-B context
and an Event-B machine. Similarly, each AD machine gives rise to an Event-B

context and an Event-B machine.

Here, we give some examples on the Event-B specifications arises from the UMI-B
and the AD tool.

The Event-B specification of the requirements REQ1, REQ2, and REQS3, generated

from the class and state machine diagrams are as follows:

Requirements REQI, REQ2, and REQS:

REQ1 | Each floor has one button for requesting travelling to another floor.
REQ2 The lift-door can be closed or opened.
REQ3 The lift can be moving or stopped.

The Event-B model of REQI, REQ2, and REQS is:

SETS
Floor_SET, door_STATES, lift_STATES
CONSTANTS
open
close
moving
stopped
AXIOMS
open.type open € door_STATES
close.type close € door_STATES
distinctStates_door_STATES partition(door_STATES, {open}, {close})
distinctStates_lift_STATES partition(lift _STATES, {moving}, {stopped})
End

Figure 4.9: Sets, constants and axioms generated from the class and state ma-
chine diagrams.
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Figure 4.2 contains a class represented by the variable Floor. This variable is de-
fined as a subset of Floor_SET, which represents the set of all possible instances
of Floor. The set of instances of Button class are defined as boolean type. The
UML-B associations are translated into variables whose type is a function from
the class set to the attribute type. Hence, FloorButton in Figure 4.2 is translated
into a function from Floor to Button. The multiplicity of an association deter-
mines the type of the function: partial, total, injective etc. Here (0..n — 1..1) is
translated into a total function that maps Floor to Button. The state machine
in Figure 4.3 is translated into Event-B as disjoint sets representation as shown
in axiom distinctstates_door_STATES. States open and close are translated into
constants of type door_STATES. Each transition is translated into an event whose
guard specifies the source state and whose actions specify its target state. Hence,
OpenLiftDoor is an event that changes the lift door from close state to open state
and CloseLiftDoor is an event that changes the lift door from open state to close
state. The state machine in Figure 4.4 is translated in a similar manner to the

state machine in Figure 4.3.

variables

Floor Button FloorButton door lift

invariants

Floor € P(Floor_SET)

Button = BOOL

FloorButton € Floor — Button
door € Floor — door_STATES

event CloseLiftDoor
any self
where

self € Floor
door(self) = open
then

door(self) := close

event OpenlLiftDoor
any self
where
self € Floor
door(self) = close
then
door (self) := open

lift € lift_STATES end end
event LiftMove event LiftStop
where where
lift= stopped lift= moving
then then
lift :== mowving lift .= stopped
end end

Figure 4.10: Variables, invariants and events generated from the class and state
machine diagrams.

The Event-B specification written manually for the requirement REQ/ is as fol-

lows:

Requirement REQ4:

’ REQ4 ‘ The lift door of a moving lift must be closed. ‘

The Event-B model of REQ4:

YV f.f € dom(door) A lift = moving = door(f) = close




Chapter 4 Staged Approach for Constructing Models from the Requirements 57

Also, the structured English for the requirement REQS can be formalised manually

as follows.

Requirement REQS5:

’ REQ5 ‘ People on a floor press a button to request a lift.

The Event-B model of REQS5:

event RequestFloor
any f
where
grdl f € Floor \ request
then
actl request := request U {f}

Figure 4.11: The Event-B specification of the structured English for the require-
ment REQS.

The Event-B specification generated from the AD diagram for the requirement
REQS is as follows.

Requirement REQS:

REQS8 | There might be more than one external floor request in a particular floor, the

lift will respond to them (stop) only once.

The Event-B model of REQS:

event LiftStop2 refines LiftStopl
event RequestFloor where
where LiftStop2 = FALSE
LiftStop2 = FALSE then
end LiftStop2 = TRUE
end

Figure 4.12: The Event-B specification generated from the AD diagram (loop
pattern).

According to the loop pattern rule, the RequestFloor event can be executed zero
or more number of times before the execution of the LiftStop event. Thus, the
RequestFloor event does not have a variable and an action to record the loop
execution. It only has one guard, LiftStop2 = FALSE that allows zero executions
of the loop event. We need to make a slight change to this pattern to allow
the RequestFloor event to be executed at least one time before the execution
of the LiftStop event. This can be achieved by manually adding a boolean flag
RequestFloor together with the action RequestFloor:=TRUF in the RequestFloor
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event instead of the guard LiftStop2 = FALSE in the RequestFloor event. Also, we
add the guard RequestFloor=TRUFE to the LiftStop event to check the execution
of the RequestFloor event. That way, RequestFloor must be executed at least one
time before the LiftStop event. This modification can be considered as a new
repetition pattern that allows the execution of an event once or more number of
times before the execution of the other events. Clearly, there is a need to investigate

different AD patterns for different requirement types.

The following gluing invariant is generated by the AD tool for the leaf with solid
line in the loop AD diagram in Figure 4.7:

LiftStop2 = LiftStopl

The gluing invariant defines the relationship between the abstract flag LiftStop1
and the concrete flag LiftStop2, and is used to discharge the refinement proof

obligation.

Requirements REQ6 and REQ7 are dealt with in a similar way. In this step, we
obtain two generated Event-B models: The first one is the Event-B model gener-
ated from the UML-B as well as the manual work resulting from converting the
structured English representation into Event-B model, and the second one is the
Event-B model generated from the AD. The generated Event-B models from AD
diagrams and UML-B diagrams can be combined using shared-event composition
[74]. Shared-event composition merges the variables and the invariants of each
of Event-B machine. In each composed machine, events of Event-B model gen-
erated by UML-B are synchronised with events of the Event-B model generated
by AD tool. For instance, event openDoor in the UML machine m1 is synchro-
nised with event OpenLiftDoor in the AD machine m1: UML — B.m1.openDoor ||
AD.m1.OpenLiftDoor. Therefore, we obtained three contexts and three composed
machines resulted from composing Event-B machines and contexts from the UML-
B and the AD. The contexts:

Cxtemp0 : UML — B.cO || AD.cO
Cxtempl : UML — B.cl || AD.cl
Cxtemp2 : UML — B.c2 || AD.c2.

The composed machines:

Mcemp0 : UML — B.m0 || AD.m0
Mcempl : UML — B.ml || AD.m1
Mcmp2 : UML — B.m2 || AD.m2.
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4.4 Related Work

This section presents different works in the area of requirements structuring, re-

quirements traceability, requirements consistency, and requirements completeness.

There are several works regarding requirements structuring and requirements clas-
sification, we will present four of them. SOFL (Structured Object-Oriented Formal
Language) [57] is an approach that uses graphical and textual formal notation for
system construction. It is an integration of Data Flow Diagrams, Petri Nets, and
VDM-SL. The graphical and textual formal notation serve as a good communica-
tion mechanism between the user and the developer. One of the main differences
between our work and [57] is that our work makes use of the structured English
and graphical notations represented in UML-B and the AD approach to bridge
the gap between the requirements and Event-B models, whereas the semi-formal

artifacts used in the SOFL approach are used to document the requirements.

Gandhi [38] proposes a method for visual requirements analytics framework to
characterise its key components and relationships. The framework consist of five
stages: User phase that represents a stakeholder using VA (Visual Analytic) ap-
proaches, methods, and tools to tackle RE (Requirement Engineering) tasks. Data
phase that focuses on extracting the appropriate requirements information from
raw date for further automatic and visual analysis using different methods such
as stemming, stop word removal, and other data cleaning and normalisation pro-
cedures. Model phase that covers the definition of the entities and relationships
of data. This phase can augment use cases, features, problem frames, and social
networks of stakeholders. Visualisation phase that covers data analysis using re-
quirement visualisation (a type of information visualisation). Finally, knowledge
phase which is an iterative process that augments users knowledge discovery driven
by the visual view of requirements and leads to decision making. The [38] platform
helps different stakeholders such as requirements engineers, analysts, and decision
makers to gain insights from the high volumes of data whereas our approach does
not capture how the requirements were arrived at; it rather focuses on mapping re-
quirements and Event-B models and enables the construction of traceable Event-B

model from requirements.

Behaviour trees [30] are formal, graphical modelling language to represent natural
requirements. Its originally developed by Dromey [30] and refined by University
of Queensland, Griffith University research group. Behaviour trees are of two
forms: Requirement behaviour trees and Integrated behaviour trees. Requirement
behaviour trees are used to graphically capture all functional behaviour in each
individual natural language requirement. Integrated behaviour trees are used to
compose all the individual requirement behaviour trees where every individual re-
quirement is expressed as a behaviour tree and has a precondition associated with

it. The integrated behaviour trees check that all preconditions are satisfied so
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defects can be discovered and corrected. The similarity between the behaviour
trees and our approach is that both approaches allow to express the system in
detail and at an abstract level. The behaviour trees allow behaviour to be easily
partitioned and separated out and the atomicity decomposition allows to visualise
the system at different abstract levels. Behaviour trees and atomicity decompo-
sition diagrams are composable, however, behaviour trees can expose behavioural
defects whereas atomicity decomposition approach used to generate the flow and

show relationships between abstract and refined events.

Yeganefard and Butler [88] described an approach for structuring the requirements
of the control systems to facilitate refinement-based formalisation. The approach
has three stages: In the first stage, requirements are categorised into monitored
(MNR) requirements, commanded (CMN) requirements and controlled (CNT) re-
quirements. The second step builds up on layering requirements by modelling one
feature at a time in each refinement level where the developer chooses which fea-
ture to model at each refinement level. They suggest modelling the main role of
the system with a minimum set of requirement in the very abstract model. The
third step is based on revising the requirements document and the formal model
to investigate any inconsistent, ambiguous or missing requirements. Comparing
our work with [88], the approach used in [88] is specific to control systems whereas
the approach presented in this chapter is based on Event-B structures. We also
think that structuring refinement levels based on a textual requirement document
is difficult. We believe that the visualisation of Event-B components using AD
diagrams gives a clear overview of the whole system and helps better in deciding
which feature to be modelled at every refinement level. It is possible to combine
the strategy used in our approach and the approach of [88] to obtain more effective

guidelines for developing traceable Event-B models for the control systems.

Requirements traceability is an important topic that have been studied a lot,
in this section we present three works that deal with requirements traceability.
Jastram [47] identifies a number of steps for mapping the requirements to B models.
The first step is based on extracting a data structure (data types and events) from
a set of requirements. They suggest the use of UML-B to map the data structure
into Event-B models for complex system development. The second step is to map
the safety requirements to invariants. The third step is to use LTL formulas to
describe liveness properties. The fourth step is performed by structuring events.
Finally, the last step aims to improve the model repeatedly and deal with changes
in requirements. The main difference between our approach and Jastram’s [47] is
that besides the advantage of producing traceable Event-B models, our approach
also supports the development of a refinement strategy through the use of AD
diagrams. The two approaches can in fact complement each other: the use of LTL
formulae in [47] can be augmented to the steps of our approach to obtain a more

comprehensive approach.
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Jastram et al [46, 45] presented another approach to achieve requirement traceabil-
ity. They structured the requirements based on WRSPM. WRSPM is a model used
for the formalisation of system requirements. It differentiates between phenomena
(state space and transitions of the system) and artifacts (the restriction on states
and transitions). The artifacts are classified into the groups: Domain Knowledge
(W), Requirements (R), Specifications (S), Program (P) and Programming Plat-
form (M). Once the requirements are structured using WRSPM, the second step
is to use a formal model for system specification. WRSPM elements are mapped
to Event-B. This mapping provides a way for the traceability between the require-
ments and the Event-B model. They distinguish three types of possible traces:
evolution traces, explicit traces, and implicit traces. Evolution traces are explored
through the requirement evolution over time. Explicit traces are used to link each
non-formal requirement to a formal statement. Implicit traces are discovered via
refinement relationships, references to model elements or proof obligations. The
approach has tool support with Rodin called ProR [45]. The main difference be-
tween our approach and the approach of [46, 45] is that the latter focuses more
on the traceability and uses intermediate constructs based on WRSPM to provide
traceability between the requirements and Event-B models. On the other hand,
the intermediate constructs which we use are based on the requirements classifica-
tion derived from the Event-B components. In effect, the process of converting the
semi-formal artifacts into an Event-B model are straightforward, as this is done us-
ing the UML-B and AD tools. Another difference is that, a requirement in [46, 45]
work may be traced in a forward or backward direction whereas a requirement in
our work is traced in forward direction. Moreover, our approach focuses not just

on traceability but also on building Event-B models.

Chanda et al [19] propose a formal model for UML use case, activity and class
diagrams. The work uses context free grammar to formally define UML diagrams.
A set of verification criteria composed of traceability rules are defined. The de-
fined traceability rules are based on the relationships among the diagrams. The
traceability rules ensure that use case events map to activity events in the anal-
ysis phase and finally to class methods in the design phase. Comparing to [19]
approach, our approach uses AD and UML diagrams as intermediate artefacts to

facilitate traceability and no formal traceability rules are imposed in our approach.

Assuring consistency and completeness of requirements is important in the area
of requirement engineering. Although, our guidelines do not deal with consistency
and completeness of requirements, we aim to do more research later on this topic.
There are several works cover consistency and completeness of requirements. In
this section, we mention three of them. Boehm [13] identifies three fundamental
characteristics for requirements completeness which are: (1) no information is left
undefined, (2) all objects or entities of the information are defined, (3) no infor-

mation is missing from the document. The first two characteristics are typically
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referred to as internal completeness of the document. The third characteristic is
referred to as external completeness of the document. External completeness is the
process of ensuring that all of the information required for problem definition is
found within the requirement specification [89]. Capturing the external complete-
ness of the document is hard process [89]. There is however, some techniques that
could assist on that such as domain modelling [89]. Requirement completeness is

out of the scope of the thesis.

Zowghi et al [90] proposes a method to check consistency in natural language re-
quirements. The method combines a simple engine for natural language parsing
called Cico and the reasoning engine of CARET. Cico parses the natural language
requirements and translate them into symbolic logic acceptable to CARET . The
translated logical statements of requirements can be analysed for inconsistency us-
ing the reasoning engine of CARET. The algorithm for checking any inconsistency
between requirements is based on well-known theories of classical logic, nonmono-

tonic reasoning and belief revision.

In [25], the authors present controlled language described by use cases scenarios
and safety properties for analysing requirements consistency against constraints
(safety properties) with B method. The controlled language is used to translate
use case scenario sentences and some properties to B specifications. Following that,
ProB is used to check the formal specification to find out inconsistencies such as

missing a precondition constraint of an operation.

4.5 Conclusions

The first part of this chapter concentrated on categorising FreeRTOS requirements
into two classes. The first class focuses on providing a set of requirements for each
FreeRTOS component. Each set of requirements is specific to a particular FreeR-
TOS component and does not provide information about the interactions between
the different components. The second class focuses on the composition require-
ments to show the interaction between different components and give complete
prospective of the behaviour of FreeRTOS components. The categorisation of the
requirements is not specific to FreeRTOS case study and it could be used as a
preparation step for a compositional development in which the overall specifica-

tion emerges from composing its sub modules.

The second part of this chapter introduced an approach which facilitates construct-
ing Event-B models and provides a clear traceability between the requirements and
the Event-B model. The approach is based on the use of the UML-B and AD tools.
The UML-B provides UML graphical modelling environment that allows the de-
velopment of an Event-B model, whereas the AD approach provides a graphical

notation to structure the refinement and manage flows in an Event-B model.
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Applying UML-B at the requirement level facilitates the mapping from data-
oriented requirements to Event-B models. Event-B models of the UML-B diagrams
are generated automatically by the UML-B tool. On the other hand, applying the
AD approach at the requirement level assists a developer in the process of decid-
ing which features to be modelled at each refinement step. Moreover, the Event-B
model is generated automatically by the AD tool, which reduces the burden of the
manual work especially in the development of complex systems. The combined
AD diagrams provide insight into the overall visualisation of the refinement struc-
ture and demonstrate the relationship between the events even before any model

1s written.

Most of the requirements were classifiable according to the classification scheme.
Each requirement must be assigned to at least one class. It is also possible that a
requirement fits several classes such as the requirement REQ5. The nouns “peo-
ple”, “floor” , “button” and “lift” are identified as data-oriented requirements,
whereas the verb “request” denotes that REQS5 is of event-oriented type. The
intermediate semi-formal artifacts represented in UML-B, AD diagrams and struc-
tured English are applied easily for each of the requirements class. However, as
described in the sub-section 4.3.3, more patterns are needed to cover several kinds
of flow requirements. In addition, converting each semi-formal artefact to Event-B
is straightforward. The UML-B and AD tools convert diagrams automatically to
Event-B and we only need to focus on translating the structured English to Event-
B model. The process of translating the structured English to Event-B model is
an easy task. This is because all the variables and data-types and some events
that are generated from the state machines diagrams are already generated from
the UML-B tool. Therefore, it is easier to complete an existing model than start-
ing the model from the beginning. Moreover, the combined AD diagrams assist
in developing the refinement strategy, and therefore it is clear in which modelling

level, the events need to be specified.

The application of the proposed approach to several case studies is the primary
goal of our future work. In this chapter, we have described one kind of constraint-
oriented requirement, namely requirements on the system being developed, such
as requirement RFEQ4. We also need to investigate another type of constraint-
oriented requirement, which describes assumptions on the environment, such as

the following requirement:

REQ9 | The lift can make a transition from stopped to moving-up or moving-down,

from moving-up or moving-down to stopped, but not from moving-up to

moving-down or vice versa.

Exploring the scalability of the graphical models is another direction for the fu-

ture research. The visual view of the refinement strategy provides some support
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for scalability: the ADD diagrams are hierarchical and it is always possible to par-
tition the diagram into sub-hierarchies; UML-B class diagrams can also be layered
through refinement. Further work is needed to investigate the scalability issue. Fi-
nally, further investigation of several AD patterns is necessary to support a larger

class of flow requirements.



Chapter 5

The Application of the Staged
Approach for Constructing
Queue Management Model

This chapter describes the application of the staged approach presented in Chap-
ter 4 to queue management case study. Throughout the presented case study, some
useful conclusions were drawn and we suggest further evaluation of the approach

through more case studies.

5.1 Introduction

Queues are mechanisms used to serve communication for a task-to-task or a task-
to-interrupt service routine (ISR) [10]. Interrupt service routine is a software
routine invoked in response to an interrupt (a signal to the CPU that requires
immediate attention). In this chapter, we apply the staged approach presented in
Chapter 4 to construct queue management Event-B model from the requirements
given in Table 5.1. The application of a particular technique to a case study has the
advantage of illustrating the use of the approach and validating its effectiveness.
A number of lessons can be learnt from this process and some guidelines can be

drawn to facilitate the application of the technique to a variety of applications.

This remaining of the chapter is organised as follows: Section 5.2 outlines the ap-
plication of the staged approach to construct queue management Event-B models

from the requirements. The conclusions are presented in Section 5.3.

65
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5.2 The Application of the Staged Approach to Con-
struct Queue Management Event-B Model from Re-

quirements

The following sub-sections present the result of applying the staged approach to

queue management case study through three steps.

5.2.1 Stepl: Classify Requirements

Queue management requirements presented in Table 5.1 have been collected from
different materails and from the FreeRTOS’s source code [11, 10]. The require-
ments that are collected describe several functions such as create queues, send
messages on queues, receive messages on queues and wait for messages. In or-
der to classify the queue management requirements, we first need to classify the
requirements based on data-oriented class, event-oriented class, and constraint-
oriented class. Its possible that a single requirement classified based on more than
one categorisation. After that, we classify the requirements based on flow-oriented
requirements. The separation of flow requirements from other requirements is
because the flow requirements can sometimes be extracted from more than one
requirement, and to clarify this, we need to group requirements that show a par-

ticular flow together, and separate them from the other requirement classes.

Table 5.1 categorises the queue management requirements based on data-oriented,

event-oriented, and constraint-oriented classes.
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Label Requirements Classification
TSK1 Tasks can be created and deleted. Event-oriented  and
Data-oriented
QUE1 Queues can be created and deleted. Event-oriented  and
Data-oriented
TSK2 Only one task is running at a time. Constraint-oriented
and Data-oriented
TSK3 Tasks are assigned priority when created. Event-oriented  and
Data-oriented
QUE2 The length of the queue is identified when the queue is created. | Data-oriented and
Event-oriented
QUE3 Task can only send item to a queue when there is enough room | Event-oriented  and
in the queue. Similarly, task can only receive an item from a | Data-oriented
queue when the queue is not empty.
QUEA4 A queue contains a limited number of items Constraint-oriented
and Data-oriented.
QUES Each queue has two collections of waiting tasks: tasks waiting | Data-oriented
to send and tasks waiting to receive.
QUEG6 Tasks fail to send an item to a queue because the queue is full | Event-oriented  and
are placed into the collection of tasks waiting to send. Sim- | Data-oriented
ilarly, tasks fail to receive an item from a queue because the
queue is empty are placed into the collection of tasks waiting
to receive.
QUE7 Every task is mapped at most to one collections of waiting | Constraint-oriented
tasks. and Data-oriented
QUES | When a queue becomes available (there is an item in the queue | Event-oriented — and
to be received) then the highest priority task waiting for item | Data-oriented
to arrive on that queue (if any) will be removed from the
collection of tasks waiting to receive.
QUE9 When a queue becomes available (there is room in the queue), | Event-oriented — and
then the highest priority task waiting to send item to that | Data-oriented
queue will be removed from the collection of tasks waiting to
send.
QUE1L0 | The queue must be locked when the running task failed to | Event-oriented  and
send or receive an item to a queue. Data-oriented
QUE11 | All tasks that wait to receive an item from a locked queue are | Event-oriented  and
removed and and vice versa and the queue is unlocked. Data-oriented
QUE12 | When all tasks that wait to receive/send an item from/to a | Event-oriented  and
locked queue are unblocked, the queue is unlocked. Data-oriented
Table 5.1: Data-oriented, Event-oriented, and Constraint-oriented Require-

ments classification.
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Table 5.2 categorises the queue management requirements based on flow-oriented

requirements

Label Requirements Classification

QUE3 Task can only send an item to a queue when there is enough

| - C U Flowl
room in the queue. Similarly, task can only receive an item

from a queue when the queue is not empty.

QUEG6 Tasks fail to send an item to a queue because the queue is

full are placed into the collection of tasks waiting to send.
Similarly, tasks fail to receive an item from a queue because
the queue is empty are placed into the collection of tasks

waiting to receive.

QUE3 Task can only send an item to a queue when there is enough

. L . . Flow2
room in the queue. Similarly, task can only receive an item

from a queue when the queue is not empty.

QUES When a queue becomes available (there is an item in the

queue to be received), then the highest priority task waiting
for an item to arrive on that queue (if any) will be removed

from the collection of tasks waiting to receive.

QUE1L0 | The queue must be locked when the running task fails to

send or receive an item to a queue. Flow3

QUE1L1 | All tasks that wait to receive an item from a locked queue

are removed and and vice versa.

QUE12 | When all tasks that wait to receive/send an item from/to a

locked queue are unblocked, the queue is unlocked.

Table 5.2: Flow Oriented Requirements Classification.

In Table 5.2, we notice a connection between the requirements. Essentially they
describe different cases. In Flowl, a task can either send an item to a queue
successfully if the queue is available or fails to send that item, thus placing it into
the tasks waiting to be sent. A similar scenario is revealed when a task attempts
to receive an item from a queue. In Flow2, we notice a connection between the
requirement QUES and the requirement QUES. When an item has been sent out
successfully to a queue, the task waiting for that item will be unblocked (removed
from task-waiting). Finally, Flow3 shows a connection between the lock and un-
lock events. The queue must be locked when a task has failed to send or receive
an item to a queue. The running task will then be added to the collection of

waiting-tasks because it is blocked. Following that, the queue must be unlocked.
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5.2.2 Step2: Construct Semi-Formal Artifacts and Develop Re-
finement Strategy

5.2.2.1 Stagel: Use Semi-Formal Artifacts (UML-B, AD, and Struc-
tured English)

TSK1

TSK1 Tasks can be created and deleted. Event-oriented
and Data-

oriented.

The verbs “created” and “deleted” identify that TSKI requirement is of type
event-oriented requirement, therefore, we represent it using structured English.
The noun Tasks identifies that TSK1 is a data-oriented requirement. Therefore,

the tasks are represented using the class diagram as shown in Figure 5.1.

event : CreateTask
. ) event : DeleteTask
action : new task is added to

the pool of tasks

QUE1

action : delete an existing task

QUE1 Queues can be created and deleted. | Event-oriented
and Data-

oriented.

Like the requirement TSK1, QUE1 requirement is classified as an event-oriented
requirement and data-oriented requirement, therefore, we represent it using struc-

tured English and the class diagram shown in Figure 5.3.

event : CreateQueue
. . event : DeleteQueue
action : new queue is added to . o
action : delete an existing queue

the pool of queues
TSK2

QUE1 Only one task is running at a time. | Constraint-
oriented and

Data-oriented.

QUE! requirement is a type of constraint-oriented and data-oriented requirement,
therefore, we represent it using structured English. Running state identifies a
possible state of a task, therefore we represent it using the class diagram shown in

Figure 5.1.
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o Task

Attributes
© CurrentTask...

Invariant : < Only one task is running at | mariants
<~ card(Curren. ..
a time >———< QUE1 >

Figure 5.1: The class dia-
gram for QUEL.

TSK3

TSK3 Tasks are assigned priority when created. | Event-oriented
and Data-

oriented.

The verb “assigned” denotes that TSKS3 requirement is of type event-oriented.
Therefore, we represent it using structured English. The noun “priority” is iden-
tified as data-oriented requirement and is represented as an attribute in the class

diagram shown in Figure 5.2.

o Task

Attributes
event : CreateTask o Priority

action : priority of a new task is set

Figure 5.2: The class dia-
gram for TSKS3.

QUE2

QUE2 The length of the queue is identified when the queue | Data-oriented

is created. and Event-

oriented

The verb “identified” denotes that QUEZ2 requirement is of type event-oriented.
Therefore, we represent it in structured English. The noun “length” is identified
as a data-oriented requirement and is represented as an attribute of queue class

diagram.
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o Queue
event : CreateQueue Attributes
action : The length of the queue o Length
is identified

Figure 5.3: The class dia-
gram for QUE2.

QUE3

QUE3 Task can only send an item to a queue when there is | Event-oriented
enough room in the queue. Similarly, task can only | and Data-
receive an item from a queue when the queue is not | oriented

empty.

The verbs “send” and “receive” are identified as event-oriented requirements.
Therefore, QUES is represented as events using structured English representa-
tion. “Queue item” and “task item” identify the relationships between the nouns

“task” and “Queue”, therefore, we represent them using the UML-B associations.

event : TaskQueueSend
guard : there is enough room event : TaskQueueReceive
in the queue guard : the queue is not empty
action : Task can send item to action : Task can receive item from a queue
a queue
O Task O ltem 0 Queue
Attributes
1] 0.n O Quewelem Q. g, 11
0 Tasktem | o Tasktom Task | O Quedefem

Figure 5.4: The class diagrams for QUE3.

QUE4

QUE4 A queue contains a limited number of items | Constraint-oriented and

Data-oriented

QUE/ requirement is a type of constraint-oriented requirement, therefore, we rep-

resent it in the following structured English. “Queue items” is identified already as
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a data-oriented requirement and is represented as an attribute in the class diagram
of Figure 5.4.

Invariant : < A queue contains a limited number of items >———< QUE4 >

QUE5

QUES5 Each queue has two collections of waiting tasks: tasks | Data-oriented

waiting to send and tasks waiting to receive.

The attributes “tasks waiting to send” and “tasks waiting to receive” are identified
as a data-oriented requirement. Therefore, we represent the requirement QUES
using the following class diagram.

o (uewe -
! 1..1 o TaskWaitingToSend 6.0 ¥ fasg

Mtributes
11 ) 0 TasknaitingToSend: Queve
0 Taskiaitingloheceive ™" o TasiiaitingToneceive: Quete

Figure 5.5: The class diagrams for QUES.

QUES6

QUEG6 Tasks fail to send an item to a queue because the queue | Event-oriented
is full are placed into the collection of tasks waiting to | and Data-
be sent. Similarly, tasks fail to receive an item from a | oriented

queue because the queue is empty are placed into the

collection of tasks waiting to be received.

The requirement QUE6 is identified as an event-oriented requirement as it repre-
sents the action of placing tasks that have failed to send/receive to the collections
of waiting-tasks. Therefore, QUFEG6 is represented using structured English form.
The nouns “tasks”, “queue”, “item”; “task waiting to send”, and “task waiting to
receive” classify QUE6 as a data-oriented requirement. The class diagrams that

represent these nouns are already given in Figure 5.4 and Figure 5.5.

event : PlaceOnTaskWaitingToSend event : PlaceOnTaskWaitingToReceive
guard : the queue is full guard : the queue is empty

action : stores the task into the collection action : stores the task into the collection of
of tasks waiting to send an item to the queue tasks waiting to receive an item from the queue

QUE7
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QUET Every task is mapped at most to one of the collections | Constraint-
of the waiting tasks. oriented and

Data-oriented

The requirement QUE7 describes property about the task and is represented via
structured English. The collection of waiting tasks classifies QUE7 requirement as
a data-oriented requirement and is already captured using the class diagram given

in Figure 5.5.

Invariant : < Every task is mapped at most to one of the collections of the waiting tasks >
— < QUET >

QUES

QUES8 When a queue becomes available (there is an item in | Event-oriented
the queue to be received) then the highest priority task | and data-oriented
waiting for an item to arrive on that queue (if any)

will be removed from the collection of tasks waiting to

receive.

The requirement QUES is identified as an event-oriented requirement as it repre-
sents the action of removing tasks from the collection of tasks waiting to receive
when the queue becomes ready (there is an item in the queue to be received).
Therefore, QUES is represented in structured English format. The nouns “tasks”,
“queue”, “item”; “task waiting to receive”, and “priority” classify QUES as a data-
oriented requirements. The class diagrams that represent these nouns are already

given in Figures 5.2, 5.4 and 5.5.

event : RemoveFromTaskWaitingToReceive

guard : there is an item in the queue to be received
action : the highest priority task waiting

for item to arrive on that queue will be removed

from the collection of tasks waiting to receive

item from that queue

QUE9

QUE9 When a queue becomes available (i.e. when there is | Event-oriented
a room in the queue), then the highest priority task | and Data-
waiting to send item to that queue will be removed | oriented

from the collection of tasks waiting to send.
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The requirement QUFEY is identified as an event-oriented requirement as it rep-
resents the action of removing tasks from the collection of tasks waiting to send
when the queue becomes ready (i.e. there is a room in the queue). Therefore,
QUEY is represented using structured English format. The nouns “tasks”, “queue”,
“item”, “priority”, and “task waiting to send” classify QUE9 as a data-oriented
requirement. The class diagrams that represent these nouns are already given in
Figures 5.2, 5.4 and 5.5.

event : RemoveFromTaskWaitingToSend

guard : there is room in the queue

action : the highest priority task waiting for an item
to arrive on that queue will be removed from the
collection of tasks waiting to send an item to

that queue

QUE10

QUE10 | The queue must be locked when the running task fails | Event-oriented

to send or receive an item from a queue and Data-

oriented

The requirement QUE10 is identified as an event-oriented requirement as it repre-
sents the action of locking queue. Therefore, we represent it via structured English.
It also shows that queue can be in a locked state and therefore is a data-oriented
requirement represented through the class diagram. The class diagrams for the

nouns “queue”, “task” are already captured in Figure 5.4.

o Queue
event : LockQueue Attributes
guard : the QueueFlag is False o Queueflag
action : the QueueFlag is True

Figure 5.6: The class dia-
gram for QUE10.

QUE11

QUE1L1 | All tasks that wait to receive an item from a locked | Event-oriented

queue are removed and and vice versa. and Data-

oriented

The requirement QUF11 is identified as an event-oriented requirement as it rep-

resents the action of removing tasks from a locked queue. Thus, we represent it
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using structured English. The class diagrams for the nouns “queue”, “task”, and

the collection of waiting tasks are already captured in Figure 5.4, and Figure 5.5.

event : RemoveTaskFromTaskWaitingToSend2 event : RemoveTaskFromTaskWaitingToReceive2
guard : queue ¢ is locked guard : queue q is locked
action : remove tasks from the collection action : remove all tasks from the collection
of task waiting to send of task waiting to receive
QUE12

QUE12 | When all tasks that wait to receive/send an item | Event-oriented

from/to a locked queue are unblocked, the queue is | and Data-

unlocked. oriented

The requirement QUF12 is identified as an event-oriented requirement as it rep-
resents the action of un-locking the queue. Therefore, we represent it in struc-
tured English. The nouns “queue”, “task”, the collection of waiting tasks and
the unlocked state of a queue are all data-oriented requirements as captured in
Figures 5.4, 5.5 and 5.6.

event : UnLockQueue
guard : the QueueFlag is True

action : the QueueFlag is False

Flowl

QUE3 Task can only send an item to a queue when there is enough room in the

queue. Similarly, task can only receive an item from a queue when the queue

is not empty

QUEG6 Tasks fail to send an item to a queue when the queue is full are placed into

the collection of tasks waiting to send. Similarly, tasks fail to receive an item
from a queue when the queue is empty are placed into the collection of tasks

waiting to receive.

In this case study, we are interested to represent flows as it described in FreeR-
TOS. FreeRTOS combines several functions and uses different structures such as
“if-then-else” or loops to manage the order of execution of these functions. The
requirements QUFES andQUEG6 describes the “if-then else” structure. A task can
successfully send /receive an item to/from a queue if the queue is ready or other-
wise the task is placed into the collections of waiting tasks. We identified QUES3
and QUEG6 requirements as flow requirements and therefore represent the flow using
the following AD diagram. The “xor” pattern is used to represent “if-then-else”

structure.
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Z Task Send process /\
-

N

( xor )

Cal
~
¢ ~

TaskQueueSend(c) PlaceOnTaskWaitingToSend(c)

Figure 5.7: ADD for Flowl.

Flow2

QUE3 Task can only send an item to a queue when there is enough room in the
queue. Similarly, task can only receive an item from a queue when the queue

is not empty

QUES When a queue becomes available (i.e. there is an item in the queue to be
received), the highest priority task waiting for the item to arrive on that

queue (if any) will be removed from the collection of tasks waiting to receive.

The requirements QUES and QUES describe the sequence structure. The action
of sending/receiving an item successfully to/from a queue, is followed by the action
of removing highest priority task waiting for that item, from the collection of tasks

waiting to receive.

We identified QUES andQUES requirements as flow requirements and therefore
represent the flow using the following AD diagram. The “sequence” pattern is

¢

used to represent the sequence structure. The “xor” pattern is used to allow a

task to be removed from the collection of tasks waiting to receive only if such a
task exists. This is because it is possible that the collection of tasks waiting to

receive is empty when a task successfully sends an item to a queue.

TaskQueueSend(c)

TaskQueueSend(c) NoTaskInTaskWaitingToReceive(c)  RemoveFromTaskWaitingToReceivel(c)

Figure 5.8: ADD for Flow2.

Flow3
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QUE10 | The queue must be locked when the running task fails to send or receive an
item in a queue.
QUE11 | The queue should be unlocked when the running task has been added to the

collection of waiting tasks.

QUE12 | When all tasks that wait to receive/send an item from/to a locked queue are

unblocked, the queue is unlocked.

The requirements QUE10,11 and QUFE12 show sequence ordering between the fol-
lowing events when the current task failes to send an item to queue: LockQueue,
PlaceOnTaskWaitingToSend, RemoveFromTaskWaitingToReceive, and UnLockQueue.
It also show a sequence ordering between the following events when the current
task failes to receive an item from a queue: LockQueue, PlaceOnTaskWaiting-
ToReceive, RemoveFromTaskWaitingToSend, and UnLockQueue. In this chapter,
we consider the first case that shows the sequence ordering between events occur

when the current task failes to send an item to queue as shown in Figure 5.9.

FailedTaskQueueSend(c)

LockQueue(c) PlaceOnTaskWaitingToSend(c) RemoveFromTaskWaitingToReceive(c) unLockQueue(c)

Figure 5.9: ADD for Flow3.

Stage2: Merging the Structured English Representation of a Single

Event

This step merges the fragmented structured English that refers to a single event
together. Grouping the fragmented structured English into a single structure,
facilitates the process of translating the structured English representation into

single events in stage 3.

TSK1, TSK3

event : CreateTask
action : new task is added to
the pool of tasks

action : priority of a new task is set

QUE1, QUE2
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event : CreateQueue

action : new queue is added to
the pool of queues

action : The length of the queue
is identified

5.2.2.2 Stage3: Develop Refinement Strategy

In this step, we combine AD diagrams and develop the refinement strategy. In
the abstract level we model the abstract send event that appears in the ap-
plication level of FreeRTOS. In the first and the second refinement levels we
add more details specific to RTOS level including adding tasks that failed to
send item to queue to the collection of tasks waiting to send and queues lock-
ing. The abstract model includes TaskQueueSend event and Failed TaskQueueSend
event (an abstract event of PlaceOnTaskWaitingToSend event). The introduction
of FailedTaskQueueSend event in the most abstract level reduces the complex-
ity and allow us to defer the introduction of PlaceOnTaskWaitingToSend event,
RemoveFromTaskWaitingToSend event, PlaceOnTaskWaitingToReceive event and
RemoveFromTask Waiting ToReceive to the first refinement level, where the atomic-
ity of the Fuailed TaskQueueSend event is broken down into the first refinement level
as PlaceOnTaskWaitingToSend event, RemoveFromTaskWaitingToSend event and

RemoveFromTask Waiting To Receive event.
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UnlockQueue(c)
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RemoveFromTaskWaitingToReceive2(c)
RemoveFromTaskWaitingToReceive2(c)

FailedTaskQueueSend(c)
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Figure 5.10: The combined ADD for task-send.

The most abstract level in the Figure 5.10 demonstrates task-send process. The
tree with the root Task_Send corresponds to the AD diagram shown in Figure 5.7.
The behaviour of the Task_Send process is exhibited by executing either the
TaskQueueSend event when a task successfully sends an item to a queue or by
executing the FailedTaskQueueSend event when a task fails to send an item to
a queue. In the first refinement level, the atomicity of TaskQueueSend which
corresponds to the AD diagram shown in Figure 5.8 is broken down into three
events. The abstract TaskQueueSend event is realised in the refinement by firstly
executing the refinement TaskQueueSend event, then executing either NoTaskIn-
Task Waiting To Receieve event or RemoveFromTaskWaitingToReceive event. Simi-

larly, the abstract Failed TaskQueueSend event, which corresponds partially to the
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AD diagram shown in Figure 5.9, is realised in the refinement by firstly execut-
ing the PlaceOnTaskWaitingToSend event, followed by RemoveFromTaskWaiting-
ToReceive2 event for all the tasks placed on the TaskWaitingToReceive. In the
second refinement level, the abstract PlaceOnTaskWaitingToSend event is realised
by executing the LockQueue event followed by executing the PlaceOnTaskWait-
ingToSend event. RemoveFromTaskWaitingToReceive2 event, on the other hand,
is realised by firstly executing the RemoveFromTaskWaitingToReceive2 event and
then the UnlockQueue event.

The class diagrams that correspond to the refinement structure of the combined

AD diagrams in Figure 5.10 are:

Abstract model

0 Task o ltem 0 Queue
Attributes Attributes Attributes
o priority: N1 ¢ Queueltem: ...

o Length: N1

o CurrentTask... 1-1© Taskitem 0.0 o roupem: 1. | 0-® Queueiteml.l

13t refinement
& Queue A
Lo 1.1 o TaskuaitingTosend 6,.n |0 T3Sk
Attributes
L1 _ )0 TaskWaitingToSend: Queue
©20 TaskaitingToRecelve ™" | 4 TaskWaitingToReceive: Queue

2M refinement
o Queue

Attributes
o QueueFlag

Figure 5.11: Queue management class diagrams.

The UML-B class diagrams are layered through the refinement based on the refine-
ment strategy decided based on the combined AD diagrams in Figure 5.10. The
abstract model specifies the abstract send/receive events. The first refinement
specifies the collection of the waiting tasks and their events, whereas, the second

refinement level specifies the queue lock mechanism.

5.2.3 Step3: Construct Formal Models

In stage 3 of the subsection 5.2.2, we showed that refinement strategy are organised
based on the combined AD diagrams and the hierarchy of class diagrams are
structured according to the combined AD diagrams. Therefore, we obtained three

machines in the combined AD diagrams and three machines of the class diagrams.
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In this sub-section, we will show some parts of the generated Event-B models from

the class diagrams and AD diagrams.

The Event-B model corresponds to the class diagrams shown in Figure 5.5:

machine M1
refines MO
sees Cntzt
variables
Task Queue TaskWaitingToSend TaskWaitingToReceive
invariants
TaskWaitingToSend.type TaskWaitingToSend € Queue — Task
TaskWaiting ToReceive.type TaskWaitingToReceive € Queue — Task
events INITIALISATION
then
TaskWaitingToSend.init TaskWaitingToSend := @&
TaskWaitingToReceive.init TaskWaitingToReceive := &
end

end

The Event-B model generated by AD tool that corresponds to Flow3 is:

1st Refinement FailedTaskQueueSend(c)

ﬂvent PlaceOnTaskWaitingToSend \ / \

refinesFailedTaskQueueSend event RemoveFromTaskWaitingToReceive2

anhyc anyc
w erz $PlaceOnTaskWaltineToSend where
tf)gr _pts ciPlaceOnTaskWaitingToSen @grd_seq cE€PlaceOnTaskWaitingToSend
en
end

@act_pts PlaceOnTaskWaitingToSend=
PlaceOnTaskWaitingToSend U {c}

U J\ Y,

The guard ¢ € PlaceOnTaskWaitingToSend in RemoveFrom WaitingToReceive2
event assures that RemoveFrom Waiting ToReceive2 event is executed after PlaceOn-
TaskWaitingToSend. The solid line indicates that PlaceOnTaskWaitingToSend
event refines Faild Task WaitingToSend event.
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2nd Reﬁnement PlaceOnTaskWaitingToSend(c)

[ \ ﬁvent PlaceOnTaskWaitingToSend \
refines PlaceOnTaskWaitingToSend

event LockQueue
anyc
anyc
where
where @grd_pts c€PlaceOnTaskWaitingToSend
@grd_lg célockQueue gra_p 4
then @grd_seq cELockQueue
then
eng)act_lq LockQueue= LockQueue U {c] @act_pts PlaceOnTaskWaitingToSend:=
PlaceOnTaskWaitingToSend U {c}

\_ AN /

The sequence pattern shown here indicates that PlaceOnTaskWaitingToSend is

the refined event that executed after LockQueue event.

2nd Refinement RemoveFromTaskWaitingToReceive2(c)

ﬂvent RemoveFromTaskWaitingToReceive2 \ C vent UnLockQueue \

refines RemoveFromTaskWaitingToReceive2 anyc

ar;vc where

w erz - FromTaskWaitineToReceive? @grd_seq ¢ ERemoveFromTaskWaitingToReceive2
thef)gr |_ptr cERemoveFromTaskWaitingToReceive @grd_uq cUnlockQueue

" . then
@act_ptr RemoveFromTask.VIVa|t1ngToR.ece|ve2~ @act_ug UnLockQueue= UnLockQueue U {c)
removeFromTaskWaitingToReceive2 U {c} end

end

J\. J

RemoveFromTask Waiting ToReceive?2 is a refined event that get executed before

UnlockQueue event.

The Event-B model corresponds to the structured English of PlaceOnTaskWait-
ingToSend is:

event PlaceOnTaskWaitingToSend
refines FuailedTaskQueueSend

any c q 1

where

grdl ¢ € CurrentTask

grd2 q € Queue

grd3 i € TaskItem™'[{c}]

grd4 Length(q) = card(Queueltem™*[{q}])
then

actl TaskWaitingToSend := TaskWaitingToSend U {q — ¢}
end

The complete generated Event-B models are given in appendix B.

Since we have three Event-B machines generated from the AD diagrams and also

three Event-B machines generated from UML-B diagrams. We need to combine
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them to obtain one Event-B model consists of three machines that integrate Event-
B machines of the AD diagrams and Event-B machines of the UML-B diagrams.
Shared Event composition tool is used to integrate Event-B models generated
from UML-B diagrams and Event-B models generated from AD diagrams. The
Event-B components of the structured English is added manually to the com-
posed machines. More discussions about the integration steps of UML-B, AD and

refinement are given in Chapter 4.

5.3 Conclusions

From the application of our approach to the queue management case study, four
conclusions were drawn: Firstly, we found that most of the requirements were clas-
sifiable according to the classification scheme. Several requirements can be classi-
fied as event/constraint and data oriented requirements such as TSK3, QUE2,
and QUE7. We think it is useful to define clearly data-oriented requirement
and separate them from event/constraint-oriented requirements. We can consider
that data-oriented requirement always only describe that attributes of the system,
constraint-oriented requirements describe properties about the system and event-
oriented requirements describe the activities of the system. We ignore all the
nouns and attributes mentioned in the constraint/event -oriented requirements.

Therefore, the requirement T'SK3 can be restructured as follows:

TSK3-1 | Each task has a priority associated
with it.
TSK3-2 | Tasks are assigned priority when

created.

In the above formulation, T'SK3-1 is a data-oriented requirement whereas TSK3-2
is an event-oriented requirement. In TSK3-2, we only focus on the action of assign-
ing a task priority when created, and thus consider T'SK3-2 as an event-oriented
requirement. We regard priority as an attribute of a task in T'SK3-1 and classify
TSK3-1 as a data-oriented requirement. Secondly, we found that the flow require-
ments can sometimes be extracted from more than one requirement as shown in
Table 5.2. Thirdly, AD patterns do not cover all possible flows; we sometimes need
to modify them to represent the exact flow we are looking for, or even explore some
new patterns. For example, one might need to represent “one or more” executions
of an event. This is currently not supported by the existing patterns, however, the
loop AD pattern together with an additional manual flag can be used to represent
this particular case. Finally, it is possible that a particular event becomes a leaf in
different AD diagrams. In some cases however, it is necessary to change the name

of the recurrent leaf to avoid an invalid combination of AD flags. Assume that an
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event z is a leaf in a sequence diagram and also a leaf in an “xor” diagram. If this
leaf has the same name in both trees, then the AD tool will generate “xor” flags
and sequence flags for the event z. Mixing flags together in a single event can result
in mis-behaviour of the intended flows. Overall, further investigations should be
considered to evaluate the presented approach and to explore more useful patterns

for managing the flows.



Chapter 6

Linking Composite
Requirements with Composed
Model

We adopted a compositional strategy and structured the requirement document
into two main categories: The first category covers the requirements for each com-
ponent (task, queue, memory), and the second category covers the composition
requirements that link the separated components. As a result, we ended up with
three sub-models which are task management, queue management, and memory
management specified separately. Each sub-model defines a particular idealised
projection of the behaviour of the whole system. The separated sub-models must
be composed into a whole. The sub-model interactions must be verified to comply
with the desired behaviour semantics of the system. The interaction usually occurs
by means of a shared state, shared event, or a combination of both. The compo-
sitional strategy we adopted for building FreeRTOS models has confirmed our
decision on using the shared event composition approach to show the sub-model
interactions. In the shared event composition approach, sub-models interact via
synchronisation over shared events and shared variables are not allowed. In Chap-
ter 4, each composition requirement is split into sub-requirements, each of which
belongs only to a particular component. The sub-requirements are specified as
events in the sub-models as they are event-oriented requirements. We did not in-
troduce shared variables [40] in the specified sub-models; rather used carrier sets as
a means of common entity to provide links between the sub-models and facilitate
applying shared event composition approach. In this chapter, we use composition
requirements to select the events to be composed and apply composition using

shared event composition approach.
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6.1 Introduction

We attempt to make use of a compositional strategy to support the manage-
ment of modelling complex systems in Event-B. When the size of the model is
increased, the refinement process becomes difficult and the number of POs are
increased. One solution to manage the complexity of big models is to use decom-
position approaches to break down the models into sub-models that are easy to
manage. However, decomposition approaches in Event-B have some limitations;
for instance, shared-variables can not be refined in the shared-variable decompo-
sition approach. Moreover, with decomposition approaches, it is essential to have
an abstract model with global properties and shared elements before applying the
decomposition. As a consequence, the sub-models will somehow be linked together
through shared elements and shared properties which makes reusability of a par-

ticular sub-model (component) with other similar systems difficult.

An alternative approach to manage the complexity of big systems is to use a
compositional strategy to model the system. The compositional strategy encour-
ages building separate components without the need of having an abstract model
with global properties. Each separate model deals only with a particular compo-
nent and has its own set of requirements which has the advantage of producing
loosely-coupled sub-models. The sub-models of FreeRTOS case study were built
using the compositional strategy. We did not include shared-variables rather used
only shared entities (carrier sets). The global properties are postponed until the

composition level.

This chapter is organised as follows: Section 6.2 outlines the task and memory
models. Section 6.3 describes the approach of using the shared event composition
to compose sub-models with shared entities. It also outlines the application of this
approach to a small example and compares it with the shared event composition
approach that composes sub-models with shared variables. Section 6.4 outlines

the composition of FreeRTOS specifications. Conclusions are given in Section 6.5.

6.2 Task and Memory Event-B Models

Before embarking into the composition task, it is necessary to introduce the formal
models of task and memory to give an insight into the models to be composed. This
section outlines the task and memory formal models. The queue formal models

are given in appendix B.

6.2.1 Task Management

The task management model includes two parts: The context part which defines

carrier sets, constants and axioms, and the machine part, which defines variables,
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invariants and events. The task model contains two contexts c¢0 and c1. Part of
the context c0 is given below:
CONTEXT <0
SETS
SCHEDULER_STATE, OBJECT, ...
CONSTANTS
TASKS, INTERRUPTS, PRIORITY, NOT_STARTED, RUNNING, SUSPENDED, ...
AXIOMS
axml : finite(OBJECT)
axm2 : partition(SCHEDULER_STATE, {NOT_STARTED}, {RUNNING}, {SUSPENDED})
axm3 : PRIORITY € N1
axmé4 : TASKS C OBJECT
axm5 : INTERRUPTS C OBJECT
axmé : TASKS N INTERRUPTS = ¢

END

OBJECT is a carrier set that represents tasks and interrupts. SCHEDULER_STATE
represents the scheduler, where the constants NOT_STARTED, RUNNING, and SUSPENDED
represent the scheduler states. Axm6 shows that interrupts and tasks are disjoint

objects.

The context c1 defines some constants which represent the configuration items
of the configuration file of FreeRTOS. There are several items that identify some
features of FreeRTOS and these features are present only if their items have been
configured. For instance updating the priority of a task feature is only available

when INCLUDE_PrioritySet is set to TRUE. Part of the context c1 is given below:

CONTEXT cl
EXTENDS c0
CONSTANTS
INCLUDE_ PrioritySet , INCLUDE_PriorityGet, INCLUDE_TaskDelete, ...
AXIOMS
axml : INCLUDE_PrioritySet = TRUE
axm2 : INCLUDE PriorityGet = TRUE
axm3 : INCLUDE_TaskDelete — TRUE

END

6.2.1.1 An Abstract Specification-Some Basic Functionality of Task

Management and the Kernel

In this abstraction, we begin with an abstract model of task management focusing

on task creation, task deletion, interrupt handling and context switch.

We identified five machine variables: AilTask represents the set of all created tasks.
idle task is a special task used to run when there is no task is available to run.
CurrentTask represents the current running task. Interrupts represents the set of in-
terrupts. ISR represents the interrupt handling routines. CurrentInterrupt represents

the current running interrupt. The invariants of the abstract specification are:
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invl: AllTask C TASKS U {idle}

inv2 : CurrentTask C AllTask

inv3: card(CurrentTask) <1

invd : Interrupts C INTERRUPT

invs: ISR € Interrupts - INTERRUPT_HANDLER
invé : CurrentISR C ran(ISR)

inv7 : card(CurrentISR) <1

Since FreeRTOS is a single core kernel, inv3,7 are added to indicate that CurrentTask

and CurrentISR are singleton sets.

In addition, we introduced seven simple machine events: CreateTask event creates
a new task, CreateldleTask event creates the idle task, ContestSwitch event switches
between tasks, HandleInterrupt event processes interrupt requests, DeleteRunningTask
deletes the running task, Finishinterrupt deletes any interrupt that has been handled,

and finally Deiete deletes all created tasks and interrupts.

The specification of ContestSwitch and HandleInterrupt events are given below:

ContextSwitch

Handlelnterrupt
any t

any t
where

where

grdl ¢ € AllTask \ CurrentTask

grdl t € Interrupts
grd2 CurrentISR = ¢

th then
en
actl CurrentISR := {ISR(t)}
actl CurrentTask := {t}
end
end

6.2.1.2 First Refinement- Scheduler States

The machine specifies the scheduler states. We introduced a machine variable

namely Scheduler to represent the current state of the scheduler (Scheduler € SCHEDULER_STATE).

Several events were introduced at this level; StartScheduler event extends CreateldieTask
to ensure that there is always at least one task that is able to run when the
scheduler is running, TaskEndScheduler event extends Delete event to ensure that all the
tasks and interrupts are deleted when the scheduler is not started. SuspendScheduler

and ResumeAll update the Scheduler status.

The specification of SuspendScheduler and ResumeAll events are given below:

SuspendScheduler ResumeAll

where where

grdl Scheduler # NOT_STARTED grdl Scheduler = SUSPENDED
then then

actl Scheduler .= SUSPENDED actl Scheduler = RUNNING
end end
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6.2.1.3 Second Refinement- Task States

This machine specifies the task states. ReadyTask, DelayTask, SuspendTask are the set
variables for readied, blocked, and suspended tasks respectively. TaskWaiting Termina-
tion represents tasks that have been deleted, PendingTask represents the readied tasks

while the scheduler is suspended. They are subsets of the variable AliTask C OBJECT.

In addition, seven events are introduced at this level. AddToReady event adds a task
to a ready set, AddToPending event adds delay tasks that have been readied while
the scheduler is suspended to pending ready set, AddToDelay event adds a task to
delay set, AddToSuspend event adds a task to suspend set, SuspendRunningTask adds the
running task to the suspend set, DeleteRunningTask event deletes the running task,

and ResumeTask event adds a suspended task to ready set.

The specification of AddToSuspend event is as follows:

AddToSuspend

any t

where

grdl t € (ReadyTask \ {idle}) U DelayTask
grd2 INCLUDE_TaskSuspend = TRUE
grd3 t ¢ CurrentTask

grd4  Scheduler # NOT_STARTED
then

actl SuspendTask := SuspendTask U {t}
act2 ReadyTask := ReadyTask \ {t}
act3 DelayTask := DelayTask \ {t}

end

Grd2 ensures that the constant INCLUDE_TaskSuspend is set to TRUE to indicate
the availability of suspension feature to the user. In addition, ResumeAll event is
refined by adding the action to process pending tasks. ReadyTask := ReadyTask U {t |
t € PendingReadyTask} and the action PendingReadyTask == ¢ . Finally, the StartScheduler

event is extended by adding the idie task into the collection of ready tasks.

6.2.1.4 Third Refinement- Hardware Clock and Timing Properties

This refinement level specifies the hardware clock and timing properties associated
with a delay task such as the sleep-time (SieepTask € AliTask + SLEEP) that repre-
sents the amount of time the task should be delayed for and the wake-up time
(TimeToWake € DelayTask - N) represents the time at which the task should be woken
up. SLEEP is an integer set constant defind in the context c0. Any task can sleep
for certain ticks and placed into the collection of delay tasks based on its wake-up
time. The time at which the task should be woken is calculated by adding the

delay time of a task to the current time pointed out by the clock time (Tick € N).

A machine event namely IncrementTick is introduced to represent the clock interrupt

by incrementing the Tick counter. The mcrementTick event is specified as follows:
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IncrementTick

any t

where

grdl Tick >0

grd2 Scheduler = RUNNING

grd3 TimeToWake # @ = min(ran(TimeToWake)) > Tick
then

actl Tick := Tick + configTICK_RATE_HZ

end

Grd3 is added to ensure that all the tasks with expired timeouts are already
woken. The predicate: min(ran(TimeToWake)) > Tick assures that the minimum
wake time of delayed tasks is greater than the current tick time, meaning that no
task has an expired timeout. configTICK_RATE_HZ is a constant that identifies the
length of the time slice of the timer. In addition, AddToDelay event is extended by
calculating the time at which the task should be woken up by the following action:
TimeToWake(c) := SleepTask(c) + Tick, where SleepTask identifies the delay time of a task
and Tick identifies the current time pointed out by the timer. The AddToReady
event is also extended by adding the guard TimeToWake(t) < Tick to ensure that the
woken time of the delayed task is expired so it can be added to the collection of
readied tasks. There are some existing approaches that model timing properties.
Sarshogh work [68] focuses on modelling discrete timing properties in Event-B
including deadline, delay, and expiry through several levels of refinement. The use
of timing patterns introduced by Sarshogh is out of the scope of the thesis. Further
work in the future is necessary to add more timing constraints on the refined levels
of the FreeRTOS model.

6.2.1.5 Fourth Refinement- Delay Operations

In this refinement, the AddToDelay event is refined into two events: The first event
TaskDelay specifies the delay operation and the second event TaskDelayUntil specifies
the delay-until operation. Delay until operation delays a task until a specific time
has passed since the last execution of that operation. That way “delay until”
allows a frequent execution of a task making it suitable for periodic tasks (arriving
at fixed frequency). Delay operation, on the other hand, does not care about when
the task last left the blocked state.

The TuskDelay event has the additional guard INCLUDE_TaskDelay = TRUE t0 ensure
that delay operation is set to true so that it is available to the user. The TuskDelayUn-
til event has an extra guard and action that calculates the time at which the task
last left the blocked state, thus the task will be blocked until a specific time in ticks
has expired since the time pointed by PreviousWakeTime. PreviousWakeTime is a variable

that stores the last time a task was unblocked: PreviousWakeTime € DelayTask + N.

The specification of the TaskDelayUntil event is as follows:
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TaskDelayUntil extends AddToDelay

any c

where

grd3 INCLUDE_TaskDelayUntil = TRUE

grd4 c € CurrentTask

grd5 SleepTask(c) > 0

grd6  PreviousWakeTime(c) > 0

then

acts TimeToWake(c) := Previous WakeTime(c) + Sleep Task(c)
act6 Previous WakeTime(c) := TimeToWake(c)
end

Grd3 is introduced to ensure that the constant INCLUDE_TaskDelayUntil is set to true
for the delay until operation to be available. Grd6 ensures that PreviousWakeTime
has been set, the wake-up time is then updated for the next call in act5. The time
at which a task should be woken up in case of delay until feature is calculated by
adding the sleep time of a task to the previous wake time (the time at which the
task last left the blocked state).

Moreover, since the scheduler can be suspended several times, the scheduler will
get out of the suspended state by resuming the scheduler for every preceding call
that has suspended it. For this, we introduce a counter SchedulerSuspend € N and a
boolean flag ResumeScheduler € bool. Each time an event wants to ask the scheduler
to be resumed, it sets the flag ResumeScheduler to true. ResumeAll event is refined
into two events: DecreaseSchedulerSuspend event which refines skip and ResumeAll event

that refines the abstract event Resumeall as shown in the figure:

ResumeAll

DecreaseSchedulerSuspend

‘ ResumeAll ‘

Figure 6.1: Refinement diagram of event ResumeAll.

DecreaseSchedulerSuspend is introduced to decrement the counter SchedulerSuspend by 1,
each time an event set ResumeScheduler is set to TRUE. The ResumeAll event is refined
by adding a guard that checks if the SchedulerSuspend counter is equal to 1, so that
an action is introduced to assign the counter to zero, and set a flag ResumeScheduler
to FALSE indicating that the scheduler is resumed.

6.2.1.6 Fifth Refinement- Clock Overflow

This machine specifies clock overflow. An increase in the tick count will eventually
overflow and return to zero. A new delay variable is introduced to store the delay
tasks whose wake-up time has overflowed. The wake-up time of a delay task is

calculated by adding the sleep time of the task to the current tick count. If the
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clock has overflowed, delay set should not have any task therefore, delay set and
the new overflow delay set are swapped. DelayTask is partitioned into two disjoint
sets which are NormalDelayTask to store tasks whose delay time does not overflow,

and OverflowDelayTask t0 store tasks whose delay time overflows.

We further refine the TaskDelay event to TaskNormalDelay and TaskOverflowDelay events.
AddToOverflowDelay event has an extra guard that checks whether the task time-out
of the current task c is not overflowed: TimeToWake(c)+ SleepTask(c) < Tick; so the task
is added to OverflowDelayTask Set by the action: OverflowDelayTask := OverflowDelayTask U
CurrentTask. Similarly TaskNormalDelay has an extra guard and action to check if the
tick has not overflowed. The refinement of TaskDelayUntil event is similar to the
refinement of TaskDelay event. The following figure shows the structure of delay

events in the fourth/fifth refinement levels.

AddToDelay

TaskDelayUntil

4t refinement TaskDelay

5t refinement | TaskNormalDelay ‘ |Task0verﬂowDelav | TaskOverflowDelayUntil

TaskNormalDelayUntil ‘

Figure 6.2: The structure of delay events in the fourth/fifth refinement levels.

Finally, the IncrementTick event is refined into IncrementTickOverflow and IncrementTic-
ENoOverflow events. This is because we need to distinguish two cases; the first case,
when the wake-up time of a task has overflowed, for instance, consider an 8 bit
counter (i.e. the max value for counter is 255), if the tick counter is 240 and the
task wants to sleep for 30 ticks, the wake up time will overflow the results in 15, the
task then will be kept in the OverflowDelayTask, later when the tick counter overflows
the two lists NormalDelayTask and OverflowDelayTask are swapped, so the overflowed

tasks can be processed.

The IncrementTickOverflow has the guard: Overflow(Tick, TickLength ) assesses if the tick
counter is overflowed. It also has the action: NormalDelayTask := OverflowDelayTask for

swapping the delay sets and the action: OverflowDelayTask := ¢.

The IncrementTickNoOverflow event hOWGVGI‘, has the guard: notOverflow(Tick, TickLength )

to ensure that tick counter is not overflowed.

Note that the use of the operators Overflow and notOverflow is to check if the clock has
overflowed or not. Overflow is caused if the value exceeds the largest representable
integer value. Overflow returns true if the value overflowed and false otherwise, the

opposite takes place with notOverflow.

Overflow(z,y) 2 COND(z + y > 2147483647, T, 1)
notOverflow(z, y) = —Overflow(z, y)
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6.2.1.7 Sixth Refinement- Priority

This level introduces priority. FreeRTOS uses a highest priority first scheduler
which runs the higher priority task run before the lower priority task. Scheduler
then uses this priority to schedule the task with highest priority. Priority variable
represents the priority of the task that can be modified (Priority € AliTask— PRIORITY).
BasePriority variable represents the base priority of the task which is always per-
manent (BasePriority € AllTask — PRIORITY). InterruptPriority represents the interrupt

priority. PRIORITY is an integer constant set defined in the context c0.

It is frequently required to retrieve the priority of a certain task or set a new
priority to it. Therefore, we introduce two more events for this purpose which are:
PriorityGet t0 obtain a priority of a task and PrioritySet to set the priority of a task

to a new priority.

6.2.1.8 Seventh Refinement- Contexts

This level specifies the task contexts. Task context represents the state of the CPU
registers required when a task is restored. If the scheduler switches from one task
to another, the kernel saves the running task context and uploads the context of
the next task to run. The context of the previous running task is restored the
next time the task runs. Therefore, the kernel resumes the task execution from
the same point where it had left off. This level also specifies critical sections.
FreeRTOS performs critical sections by disabling the interrupts, i.e. no interrupt
takes place, until the critical section is exited. TaskContezt variable represents task
contexts, InterruptContest variable represents interrupt contexts and Contert variable

represents the physical context (processor context).

ConteztSwitch extends ContextSwitch
where

grd8 CurrentISR = @

then

act6 Context := TaskContext(t)

act? TaskContext(c) := Context

end

6.2.2 Memory Management

Among one of the most important features provided by FreeRTOS and other oper-
ating systems is memory management. FreeRTOS adopts three different schemes
to allocate memory. The first scheme is targeted to small applications that do
not require free memory. It uses malloc() function to allocate a fixed amount of
memory to each object, memory de-allocation does not exist in this scheme. The
second scheme adopts the best fit algorithm to re-allocate memory that have been

freed. The third scheme is a wrapper calling the standard malloc() and calloc()
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functions. FreeRTOS memory management schemes are RTOS independent. They
can be used for managing memory for different RT'OS; therefore, the development
of FreeRTOS memory schemes provide generic memory management development

patterns that can be used across different RTOS.

The memory management model consists of two abstract models with one context

c. Part of the context ¢ is given below:

CONTEXT ¢
SETS
BLOCK, OBJECT, ...
CONSTANTS
ADDR, StartAddressHeap, EndAddressHeap, ...
AXIOMS
axm0 : StartAddressHeap € N
axml : EndAddressHeap € N
axm2 : StartAddressHeap < EndAddressHeap
axm3 : ADDR = StartAddressHeap .. EndAddressHeap

The oBJECT carrier set is shared between the three models: task, queue, and
memory as shown in Figure 6.3. StartAddressHeap is a constant that represents the
starting address of the heap structure. EndAddressHeap is a constant that represents

the ending address of the heap structure.

OBJECT
Queue Task T Memory
llIQueue AllTask object
‘ Queue ‘ Semaphore ‘ Mutex
ReadyTask Pending DelayTask Suspend TaskWaiting
List ReadyTaskList List TaskList Termination

Figure 6.3: Shared entity “Object” between Task, Queue, and Memory models.

The abstract models of memory management for schemel and 2 are presented in

the following sub-sections.

6.2.3 Schemel

Schemel allocates memory of an adequate size to an object but it does not free an
allocated memory. The abstract specification specifies memory blocks and their

addresses.
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6.2.3.1 An Abstract Specification- Memory Blocks and Addresses

This machine defines the memory structure including the blocks and addresses. We
have four state variables: ablocks represents the allocated blocks , fblock represents the
free block, blockSize represents the size of the blocks, and finally blockAddr represents
the starting addresses of the blocks.

The definition of the state variables along with the invariants are given below:

invl : blocks C BLOCK

inv2 : ablocks C blocks

inv3: fblock C blocks

inv4 : fblock N ablocks = ¢

inv5 : blockSize € (ablocks U fblock) — N

inv6 : blockAddr € (ablocks U fblock) - ADDR

inv7 : Vb-b € blocks=-block Addr(b) > StartAddressHeap N blockAddr(b)+blockSize(b)—1 < EndAddressHeap

inv8: Vbi,b2-b1 € blocks N b1 # b2=blockAddr(b1). .(block Addr(b1)+blockSize(b1)—1)Nblock Addr(b2). .
(block Addr(b2) + blockSize(b2) — 1) = @

inv9 : malloc € blocks - OBJECT
inv10: card(fblock) <1

Inv8 assures that the blocks are disjoint. Invi0 states that the free-block is only
one, this is because schemel fills the heap from the bottom and leave the top of

the heap to be free.

In addition, this machine has two events that describe the allocation process.
Malloc1 event subdivides the large free-block in grd2 into two blocks: the first block

of the required size is allocated to the object, the second block returns a free-block.

Mallocl

any s b c o p

where

grdl s € Ny

grd2 b € fblock

grd3 p € portBYTE_ALIGNMENT_MASK

grd4d ¢ € BLOCK \ (ablocks U fblock)

grd5 blockSize(b) > allign(s, p)

grd6 o € OBJECT \ ran(malloc)

then

actl blockAddr := blockAddr <— {b — blockAddr(b) + allign(s, p), ¢ — blockAddr(b)}
act2 blockSize := blockSize < {b — blockSize(b) — allign(s, p), ¢ — allign(s,p)}
act3  ablocks := ablocks U {c}

actd malloc := malloc U {c — o}

end

allign used in grd5 and actl,2 is an operator defined to ensure that blocks are

always aligned to the required number of bytes p. It is defined as follows:

(((s—=1)/p)+1)xp.
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Where s is the required size and p is the portBYTE_ALIGNMENT_MASK . portBYTE_ALIGNMENT_MASK

is defined as a constant in the context c.

Malloc2 event is used when the free-block is of adequate size to the object as

captured by the guard grd4:

Malloc2

any s b c o p

where

grdl s € Ny

grd2 b € fblock

grd3 p € portBYTE_ALIGNMENT
grd4 blockSize(b) = allign(s, p)
grd5 o € OBJECT \ ran(malloc)
then

actl fblock := @

act2 ablocks := ablocks U {b}
act3 malloc := malloc U {b — o}
end

6.2.4 Scheme?2

This scheme uses the best-fit algorithm which works by searching for all free blocks
and then placing an object in the block of adequate size to which it will fit; if no
block of adequate size is found and there is a block larger than what is required,
it is split into two, one block of the requested size is assigned to the object and
the second block is added to the list of free blocks.

The initial model of scheme?2 is similar to schemel with some changes related to
freeing the allocated memory. The state variables are the same, but we do not
include the invariant card(fblock) < 1, as we have several free blocks. In addition,
there are three events in this level, Malioc1,2 events are used for allocation and Free
is used for de-allocation. Malloct event is used to allocate a block of adequate size

to the created object as captured by grd5:

Mallocl

any ¢ s p o

where

grdl c € fblocks

grd2 o € OBJECT \ ran(malloc)
grd3 s € Np

grd4d p € portBYTE_ALIGNMENT
grd5 blockSize(c) = allign(s, p)
then

actl malloc := malloc U {c — o}
act2 fblocks := fblocks \ {c}

act3 ablocks := ablocks U {c}
end

Malloc2 event is used when the free blocks are larger than what is required as

captured by grd4, and hence the free-block is split into two blocks: one block of
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the requested size is assigned to the object and the second block is added to the

set of free blocks.

Malloc2

any ¢ s bl p o

where

grdl c € fblocks

grd2 s € Ny

grd3 p € portBYTE_ALIGNMENT

grd4 blockSize(c) > allign(s, p)

grd5 Vk.k € blockSize[fblocks] A k < blockSize(c) = k < allign(s, p)
grd6 bl € BLOCKS \ (fblocks U ablocks)

grd7 blockSize(c) — allign(s, p) > heapMINIMUM _BLOCK _SIZE
grd8 o € OBJECT \ ran(malloc)

then

actl malloc := malloc U {c — o}

endact2 blockSize := blockSize <— {c — allign(s, p), bl — blockSize(c) — allign(s,p)}
act3 blockAddr := blockAddr U {b1 — blockAddr(c) + allign(s,p)}
actd  ablocks := ablocks U {c}

actb  fblocks := (fblocks \ {c}) U {b1}

Grd7 ensures that the differences between the size of the block found and the
required size is larger than hespMINIMUM_BLOCK_SiZE. This condition must hold
to allow the block found to be split into two blocks: heapMINIMUM_BLOCK_SIZE is

a constant that defines the minimum acceptable size of a memory block.

Free event allows the previously allocated blocks to be freed.

Free

any b

where

grdl b € ablocks

then

actl ablocks := ablocks \ {b}
act2 fblocks := fblocks U {b}
end

6.3 Description of the Approach

Shared entities are shared carrier sets between sub-models which we use instead
of shared variables to link sub-models together. This section outlines the generic
structure for two machines of different sub-models that include shared entities
instead of shared variables. We attempt to use shared entities to provide links
between the individual sub-models without the need of replicating shared proper-
ties on shared variables across the sub-models. Shared entities seem to produce
loosely-coupled models and it helps to avoid the constraints imposed by having
shared variables across the sub-models such as the inability of the data refinement
of shared variables. This section also outlines an example that compares the appli-
cation of the shared event composition to sub-models that include shared entities

and sub-models with shared variables.



98

Chapter 6 Linking Composite Requirements with Composed Model

Assume that we have two sub-models: modell with machine M1, and model2 with
the machine M2. Both sub-models have the context C. The carrier set D is shared
between modell and model2. Machine M1 of modell consists of variable d1 that
is defined in terms of the carrier set D and possibly some other variables/sets K
(d1:(D, K)), list of variables ¥, and invariants (7).
modifies d1, and list of events e2 that modify ¥. Machine M2 of model2 consists

It also has event el that

of variables d2 which are defined in terms of the carrier set D and some other
variables/sets H (d2:(D, H)), list of variables ¢, and invariants L(f). M2 has
event el that modifies d2 and the list of events e2 that modify . Both sub-
models do not include shared-variables. The variables d1 and d2 are localised in

each sub-model.

Context C
Sets D

Figure 6.4: Context C of modell and model2.

Machine M1 sees C Machine M2 sees C
variables dl ¥ variables d2 t

invariants

invariants

dl: (D, K) d2: (D, H)
1(¥) L(@)
events events
eléanyk eléanyk
where where
ke D k€ D
G(k,d1) R(k, d2)
then then
dl := E(d1, k) d2 := L(d2, k)
end end

e2 2 any § where

e2 2 any § where

J(, ) M(E, q)
then then

v = (¥, 9) 7= (7,9
end end

Figure 6.5: Generic machine M1 of modell and M2 of model2.

We compose M1 and M2 using the shared event composition. We are interested
here to show the composition between e! in M1 and el in M2 as both events
update variables that are defined in terms of the shared entity “D”. Therefore, we
have the composed event cmp.el which combines event el from machine M1 and

event el from machine M2.

Since dI and d2 are localised in each sub-model, it was not possible to specify
properties (invariants) that connect these variables together in one of the sub-
models. Therefore, we add the invariant I(d1, d2) to specify properties that relate
the variable dI from machine M1 and the variable d2 from machine M2. The
shared event paramater(s) k represents a key part of the interface between M1

and M2, therefore, it must have the same names in the events to be composed and
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must not disappear during the refinement of the individual models, modell and
model2.

COMPOSED MACHINE c¢m
INCLUDES
M1
M2
INVARIANTS
I1(d1, d2)
Events
cmp.el
Combines Events Ml.el || M2.el

END

Figure 6.6: The composed machine cm.

6.3.1 An Example of Shared Event Composition with Shared En-

tities

We use shared entities instead of shared variables as a means to link individual
models together. Shared entities assist in providing loosely coupled models. It
allows to avoid replicating constraints and properties on shared variables across the
individual models. Shared properties are only introduced during the composition

of the individual models.

We here outline a small example of two sub-models to illustrate the application of

the shared event composition approach to shared entities sub-models.

The example consists of two sub-models: memory model (scheme2) and queue
model. Machine m! in memory model, allocates RAM to each object via two
events: Mallocl and Malloc2. Malloc1 allocates memory of adequate size to the
object. Malloc2 is used if no block is available with adequate size for the object. It
subdivides the large free block into two blocks: the first block of the required size is
allocted to the object and the second block returns a free block. On the other hand,
machine mI in the queue model deals with the creation of three different types of
queues: general queues, binary semaphores, and counting semaphores. We need
to show the composition between the allocation events in the memory model and
the creation events in the queue model. The requirement COMPI1-EVT shows
that there is a connection between the allocation events in the memory model
and the creation events in the queue model. Therefore COMP1I is a composition
requirement. As described in Chapter 4, composition requirements describe the
connection of the relevant events as shared events, shown in COMPI1-EVT and
can also specify invariants that link variables of different sub-models such as the
requirement COMPI1-INV. The composition requirement that describes events are
subdivided into a number of sub-requirements, each of which describes an event in
a single sub-model. In fact, the sub-requirements fit the first class of the require-

ment classification given in Chapter 4 (i.e. requirements associated to a certain
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component). The requirement QUE! is a sub-requirement in the queue model

that is used to introduce queue creation event. The requirement MFEM]1 is a sub-

requirement in the memory model that is used to introduce the allocation events.

The requirement MEM?2 is a sub-requirement in the memory model that is used

to describe Mallocl and Malloc2.

The creation events of the queue model that correspond to requirements TSK1,
QUE1 and QUE13 are:

CreateQueue
any o ql
where

grd2 ql >
then

act2 Leng
end

grdl o ¢ Queue

actl Queue := Queue U {o}

CreateBinarySemaphore
any o ql
ar;y where
:;;‘dfrea ¢ BinarySemaphore grdl o ¢ CountingSemaphore
1 then grd2 ql >1
then

th(o) := ql...

actl BinarySemaphore :=

BinarySemaphore U {0}

act2 Length(o) := 1...
end

CreateCountingSemaphore

actl CountingSemaphore :=
CountingSemaphore U {o}
act2 Length(o) := ql...

end

Figure 6.7: CreateQueue event, CreateBinarySemaphore event and CreateCountingSemaphore
event in the queue model.

CreateQueue event creates a new queue of length grater than one. CreateBinary-

Semaphore creates a binary semaphore of length one. CreateCountingSemaphorecreates

a counting semaphore of length greater than one. where Queue, BinarySemaphore

and CountingSemaphore are defined as follows:

AllQueue C OBJECT

Queue C AllQueue
BinarySemaphore C AllQueue
CountingSemaphore C AllQueue

partition( AllQueue, Queue, BinarySemaphore, CountingSemaphore)

We recall that the allocation events of the memory model described in section 6.2.4
which correspond to requirements MEM1 and MEMSS are:

Mallocl
any c
where
grdl
grd2
grd3
grd4
grd5
then
actl
end

s p o

c € fblocks

o € OBJECT \ ran(malloc)

s € Ny

p € portBYTE_ALIGNMENT
blockSize(c) = allign(s, p)

malloc := malloc U {c — o}...

Malloc2

any c¢

where
grdl
grd2
grd3
grd4
grd5
grd6

then
actl
act2

end

s bl p o

¢ € fblocks

o € OBJECT \ ran(malloc)

s € Ny

p € portBYTE_ALIGNMENT

blockSize(c) > allign(s, p)

V k.k € blockSize[fblocks] A k < blockSize(c) = k < allign(s, p)...

malloc := malloc U {c — o}
blockSize := blockSize <— {c — allign(s, p), bl — blockSize(c) — allign(s, p)}...

Figure 6.8: Malloc1 event and Malloc2 event of memory model.

Where malloc is defined as follows:
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malloc € blocks - OBJECT

The carrier set OBJECT is shared between the memory and queue models. The
parameter o in the creation events and allocation events is a shared event param-
eter. It links the object instance from the queue model with the object instance
from thememory model. The shared parameter o must have the same name in
both models and must not disappear during the refinement of memory and queue

models.

To visually demonstrate the interaction between the sub-models via synchronisa-
tion over events, we introduce a diagram called composition diagram. The com-
position diagram of the example given in this sub-section is shown in the following

figure:

Memory(scheme?2) Queue
m0 q0

/J‘ CreateQueue

Mallocl i
R \\\\-‘ CreateBinarySemaphore

Malloc2 \*‘ CreateCountingSemaphore

Figure 6.9: The composition diagram of sub-models with shared entities.

Each machine is represented into a block diagram that describes the sub-model
names and the machine names. The small rectangles within each block represents
the events to be composed. The number of lines gives the number of composed
events. Thus, Figure 6.9 demonstrates the interaction between Mallocl and Mal-
loc2 in schemel model at machinem(@ with CreateQueue, CreateBinarySemaphore,
and CreateCountingSemaphore in queue model at machine g0. The number of the

composed events are six events.

In order to show the interaction between memory and queue models, we apply the
shared event composition approach. The structure of the composed machine is

shown in Figure 6.10:
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COMPOSED MACHINE c¢m
INCLUDES
q0
m0
INVARIANTS
ran(malloc) = AllQueue
Events
MallocQueuel

Combines Events

q0.CreateQueue || m0.Malloc1
MallocQueue2

Combines Events

q0.CreateQueue || m0.Malloc2
MallocBinarySemaphorel

Combines Events

Q0. CreateBinarySemaphore || m0.Malloc1
MallocBinarySemaphore2

Combines Events

q0.CreateBinarySemaphore || m0.Malloc2
MallocCountingSemaphorel

Combines Events

q0. Create CountingSemaphore || m0.Malloc1
MallocCountingSemaphore2

Combines Events

q0. Create CountingSemaphore || m0.Malloc2
END

Figure 6.10: The composed machine ¢m of sub-models with shared entities.

Composed machine ¢m includes machines g0 and m0. An invariant connecting the
two machines ran(malloc) = AllQueue is added to restrict the range of malloc function.
We add this invariant in the composed machine because it connects malloc function
to AllQueue. Events of c¢m are identified as the parallel composition (interaction)

of q0 events and m0 event.

6.3.2 An Example of Shared Event Composition with Shared Vari-
ables Sub-models

We analyse Figure 6.7 and 6.8 to compare shared event composition with shared
variable sub models. The variables Queue, BinarySemaphore, and CountingSemaphore
become shared between queue model and Memory model. The allocation events in
the memory model contains six events: Malloc1Queue event, Malloc2Queue event,
Malloc1BinarySemaphore event, Malloc2BinarySemaphore event, Malloc1 CountingSemaphore

event, and Malloc2CountingSemaphore event.

The specification of MallocIQueue event and Malloc2Queue event in the modified
memory model (with shared variables) that correspond to requirements MEM1
and MEMSS can be seen as follows:
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MallocQueuel
any ¢ s p o
where
grdl c € fblocks
grd2 o € Queuel
grd3 s € Np
grdd p € portBYTE_ALIGNMENT
grd5  blockSize(c) = allign(s, p)
then
actl malloc := malloc U {c +— o}...
end

any c¢
where
grdl
grd2
grd3
grd4
grds
grd6
then
actl
act2
end

MallocQueue2

s p o s

¢ € fblocks

0 € Queuel

s € Ny

p € portBYTE_ALIGNMENT

blockSize(c) > allign(s, p)

V k.k € blockSize[fblocks] N k < blockSize(c) = k < allign(s, p)

malloc := malloc U {c — o}
blockSize := blockSize <— {c¢ +— blockSize(c) — s, ¢ +— s)}...

Figure 6.11: Malloc1Queue event and Malloc2Queue event of the modified machine

m0 of memory model.

In the above figure, Queuel, BinarySemaphorel, and CountingSemaphorel are

defined in the memory model:

AllQueuel C OBJECT

Queuel C AllQueuel
BinarySemaphorel C AllQueuel
CountingSemaphorel C AllQueuel

malloc € blocks — AllQueuel

partition(AllQueuel, Queuel, BinarySemaphorel, CountingSemaphorel)

The variable malloc connects the memory and the queue models. The variables

Queuel , BinarySemaphorel, and CountingSemaphorel are also shared between the queue

and memory models. They are renamed differently in the modified memory model

because of a limitation in the shared event composition tool which could be fixed.

The shared event composition tool does not allow composing models with variables

having similar names. We cope with this limitation for now by adding some addi-

tional invariants in the composed machine to show that Queueil, BinarySemaphorel,

and CountingSemaphorel variables are the same as Queue, BinarySemaphore, and Count-

ingSemaphore variables.

The composition diagram in this case can be as follows:

Malloc2BinarySemaphore

Malloc1CountingSemaphore F

‘MallocZCountingSemaphore r

Memory(scheme2) Queue

mO q0

[ MalloclQueue | CreateQueue ‘
Malloc2Queue

l Malloc1BinarySemaphore |

"l CreateBinarySemaphore ‘

== CreateCountingSemaphore ‘

Figure 6.12: The composition diagram of sub-models with shared variables.

The structure of the composed machine is shown as follows:
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COMPOSED MACHINE c¢m
INCLUDES
q0
mo
INVARIANTS
AllQueuel=AllQueue
Queuvel =Queue
BinarySemaphorel=BinarySemaphore
CountingSemaphorel=CountingSemaphore
Events
Malloc1Queue
Combines Events
q0. CreateQueue || m0.Malloc1Queue
Malloc2Queue
Combines Events
q0. CreateQueue || m0.Malloc2Queue
Malloc1BinarySemaphore
Combines Events
queue0. Create BinarySemaphore || m0.Malloc1BinarySemaphore
Malloc2BinarySemaphore
Combines Events
q0. CreateBinarySemaphore || m0.Malloc2BinarySemaphore
Malloc1CountingSemaphore
Combines Events
q0. Create CountingSemaphore || m0.Malloc1CountingSemaphore
Malloc2CountingSemaphore
Combines Events
q0. Create CountingSemaphore || m0.Malloc2CountingSemaphore
END

Figure 6.13: The composed machine ¢m of sub-models with shared entities.

As discussed in this section, the composition can be achieved successfully with
two approaches shared entities and shared variables. However, it seems that con-
necting the sub-models using shared entities encourages modularity of building
models and promotes reusability. The sub-models are required to be built sepa-
rately of others and the properties associated to the inter-connection between the
sub-models can be introduced only in the composition level through additional
invariants. The sub-models can be incorporated to build different systems. For
instance, the memory model can be incorporated to provide memory management
functionality to different systems such as FreeRTOS, UCOS, etc. The memory
model provides general functionality for memory allocation and de-allocation and
does not include specific properties that connect particular objects such as task or
queue to memory blocks. As a limitation of using shared entities to connect the
sub-models, shared properties that link sub-models cannot be localised within sub-
models; they can only be added during the composition level. In addition, shared
parameters must have the same name in the events to be composed, and must not
disappear during refinement because they form the interface between the included
models (this limitation imposed by shared-event composition tool which could be
fixed in the next releases of the tool). In addition, the properties associated to
the inter-connection between the sub-models are introduced in the composition
level through adding extra invariants. The generated proof obligations for these

invariants are discharged automatically.
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As for the second approach (shared variables), the properties associated to the
sub-models are localised within the sub-models that have shared variables. On
the other hand, when sub-models have shared variables, they must have different
names in the sub-models since the shared event composition tool prohibits having
shared variables in the included machines. Consequently, it becomes necessary at
the composition level to add additional invariants to show that two variables names
refer to the same variable (this limitation imposed by shared-event composition
tool which could be fixed in the next releases of the tool). Although, the compo-
sition can be achieved successfully when sub-models have shared-variables; shared
variables and properties are replicated across the sub-models. Thus, reusability
of the sub-models becomes more difficult, and the individual sub-models become

more targeted to a particular system.

6.3.3 Simplifying the Connection Between Sub-models with Ab-

straction

Another important point to note here is that, it is possible to simplify the connec-
tion between the queue and memory models and reduce the number of composed
events composed events given in Section 6.3.1 from six to two. In order to do this,
we need to return to the abstract machine g0 in queue model and makes it more
abstract. We can only define one variable in the modified abstract machine ¢0,
which is AllQueve with a single event named CreateAllQueue that is specified as

follows:

Create AllQueue

any o

where

grdl o ¢ Queue

grdl gl >1

then

actl AllQueue := AllQueue U {0}
end

Figure 6.14: The abstract CreateAliQueue event of the modified machine ¢0 in the
queue model.

After that, we can create another machine g1 that refines the modified machine
g0. The machine g1 includes the variables Queue, BinarySemaphore, and Count-
ingSemaphore with three events: CreateQueue event, Create BinarySemaphore event,

and CreateCountingSemaphore event which refine CreateAllQueue event.

As a consequence, the composition in this case can be applied between Malloc1,2
events and the abstract event CreateAllQueue. The number of composed events
in this case is reduced from six events to two events as shown in the following

composition diagram:
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Memory(scheme2) Queue
mO0 q0

Mallocl = CreateAllQueue
| Malloc2

Figure 6.15: The composition diagram after the abstraction of g0 of the queue
model.

6.4 The Composition of FreeRTOS Specifications

This section outlines the composition requirement of FreeRTOS and the specifi-
cation of some of the individual events and the composition diagrams that show
the connection between the task management, queue management, and memory

management of FreeRTOS case study.

6.4.1 Requirement COMP1

The composition requirement COMP1-EVT connects the task model, the queue

model, and the memory model through event sharing.

COMP1-EVT | The kernel has to allocate RAM each time a task, queue,
semaphore or mutex is created.
COMPI1-INV Tasks and queues are distinct.

The sub-requirements of COMP1-EV'T are:

MEM1 Kernel allocates RAM to each created object.
MEMSS8 | The created object in scheme?2 is placed in the block of ade-
quate size in which it will fit (if any), if no block of adequate

size is found and there is a block larger than what is required,
it will be split into two; one block of the requested size is
assigned to the object and the second block is added to the
list of free blocks.

TSK1 Tasks can be created.

QUE1 Queues can be created.

QUE13 | Queues are of three types: queues, semaphores, and mutex.

The composition diagram in Figure 77 illustrates the connection between the cre-
ation events in the the queue model and the allocation events in scheme2 model.
The connection between the creation events in the the queue model and the allo-

cation events in schemel model is similar to Figure 77.
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Memory(scheme2) Queue
mO0 q0

/1 CreateQueue

Mallocl =~

\—‘ Eéj CreateBinarySemaphore
Malloc2 f\

i CreateCountingSemaphore

Task
to

CreateTask

Figure 6.16: The composition diagram of the requirement COMP1-EVT.

The composition requirement COMPI-INV indicates the addition of the following
invariants to the composition level to show that AllTask and AllQueue are disjoint:
partition(ran(malloc), AllTask, AllQueue) and AllQueue N AllTask = ¢

The composition diagram that shows the connection between the creation events
in the task and queue sub-models and the allocation events in scheme2 model are

similar to the above diagram.

6.4.2 Requirement COMP2

The composition requirement COMP2 connects the task model, queue model, and

memory model through event sharing.

COMP2-EVT | The kernel has to free RAM each time a task, queue,

semaphore or mutex is deleted.

The sub-requirements of COMP2 requirements are:

MEM10 | Memory in scheme2 can be freed once it has been allocated.
TSK1 Tasks can be deleted.
QUE1 Queues can be deleted.

QUE13 | Queues are of three types: queues, semaphores, and mutex.

The following diagram illustrates the connection between the deletion events in

the task and queue models and the freeing memory events in schemel model.
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Memory(scheme2) Queue
m0 q0

/ﬂ DeleteQueue
Free | -
\j DeleteBinarySemaphore

[ DeleteCountingSemaphore

Task
to

DeleteTask

Figure 6.17: The composition diagram of the requirement COMP2-EVT.

The composition diagram that shows the connection between the deletion events
of the task and queue models and the freeing memory events of scheme2 model is

given in the figure.

6.4.3 Requirement COMP3

The composition requirement COMPS3 connects the task model and the queue

model through event sharing.

COMP3-EVT | The running task can send/receive an item to/from a queue.
COMP3-INV Task items and queue items are distinct.

The sub-requirements of COMP3-EV'T requirement are:

TSK10 | The running task can obtain an item or remove an existing

item.

QUE14 | A queue can be used to send and receive items.

The specification of TaskRemoveltem event and ObjectQueueSend event are:

ObjectQueueSend
TaskRemoveltem ]
) any ¢ i
any c 1
where

grdl ¢ € CurrentTask

dl g€ All
grd2 i € Taskltem™"[{c}] gral g Queue

grd2 i € ITEM \ dom(Queueltem)...

then
) then
actl TaskItem := TaskItem \ {i — c} .
d actl Queueltem := Queueltem U {i — ¢}
en

end

Figure 6.18: TaskRemoveltem event of task model and ObjectQueueSend event of queue
model.
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The following composition diagram illustrates the connection between the task

send/receive events and queue send/receive events

Task Queue
t1 q2
TaskRemoveltem } ObjectQueueSend

TaskObtainltem ObjectQueueReceive

Figure 6.19: The composition diagram of the requirement COMP3-EVT.

The following invariant is added to the composition level:

dom(TaskItem) N dom(Queueltem) = ¢

6.4.4 Requirement COMP4

The composition requirement COMP/ connects task model and queue model

through event sharing.

COMP4-EVT

A task that is removed from the collection of waiting tasks
is placed into the collection of pending-ready tasks if the
scheduler is suspended or placed into the collection of ready

tasks if the scheduler is running.

COMP4-INV1

A task that is added to the collection of waiting tasks must

also be added to the collection of delay tasks.

The sub-requirements of COMP4-EVT requirements are:

QUE14 | An object can be removed from the collections of waiting
tasks.

TSK14 | A task can be put into the collection of ready tasks if the
scheduler is running.

TSK20 | A task can be put into the collection of pending-ready tasks
if the scheduler is suspended.

The specification of AddToReady event and RemoveFromTaskWaitingToSend event

are:
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AddToReady RemoveFromTaskWaitingToSend
any t any q t
where where
grdl t € DelayTask ... grdl ¢ € AllQueue
then grd2 t € TaskWaitingToSend ~1[{q}]...
actl ReadyTask := ReadyTask U {t} then
act2 DelayTask := DelayTask \ {t} actl TaskWaitingToSend := TaskWaitingToSend \ {t — q¢}...
end end

Figure 6.20: AddToReady event of task model and RemoveFromTaskWaitingToSend event
of queue model.

The following figure shows the composition diagram of the requirement COMP/

Task Queue
2 ql

RemoveFromTaskWaitingTo

AddToReady send
>< RemoveFromTaskWaitingTo

AddToPending Receive

Figure 6.21: The composition diagram of the requirement COMP4-EVT.

The following invariant is added to the composition level based on the composition
requirement COMP4-INV1:

dom(TaskWaitingToSend) C DelayTask

6.4.5 Requirement COMP5

The composition requirement COMPS5 connects task model and queue model

through event sharing.

COMP5-EVT | The blocked running task with block-time that is greater
than zero and less than the value determined by the con-
stant PortMAX_DELAY is added to the collection of wait-

ing tasks and also the collection of delay tasks.

The sub-requirements of COMPS5-EV'T requirement are:

QUE14 | An object can be added to the collection of waiting tasks if
its block-time is greater than zero and less than the constant
PortMAX_DELAY .

TSK21 | The running task can be put into the collection of delay
tasks.
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The composition diagram of COMP5-EVT requirement is:

Task Queue
2 q1

J‘ PlaceOnTaskWaitingToSend

AddToDelay
\# PlaceOnTaskWaitingTo

Receive

Figure 6.22: The composition diagram of the requirement COMP5-EVT.

6.4.6 Requirement COMP6

The composition requirement COMP6 connects task model and queue model

through event sharing.

COMP6-EVT | The blocked running task with block-time that is equal to
the value determined by the constant PortMAX_DELAY is
added to the collections of waiting tasks and also the collec-

tion of suspend tasks.

The sub-requirements of COMP6-EV'T are:

QUE15 | An object can be added to sending/receiving collections
of waiting tasks if its block-time is equal to the constant
PortMAX_DELAY .

TSK22 | The running task can be put in the collection of suspend
tasks.

The composition diagram of COMP6-EVT requirement is:

Task Queue
t2 ql

\‘ PlaceOnTaskWaitingToSend

AddToSuspend
\# PlaceOnTaskWaitingTo

Receive

Figure 6.23: The composition diagram of the requirement COMP6-EVT.

6.4.7 Requirement COMP7

Priority inheritance mechanism is a method for minimising priority inversion. It
allows a task having taken a mutex to run the highest priority task amongst the

blocked tasks waiting for that mutex. The events responsible for modifying a
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task-priority are defined in the task sub-model whereas the events responsible for

creating mutex is defined in the queue sub-model.

The composition requirement COMP7-EVT connects the task model and queue

model through event sharing.

COMPT-EVT

The priority inheritance is used to raise the priority of the

mutex-holder task whenever the higher priority task (run-

ning task) attempts to hold that mutex.

The sub-requirements of COMP7-EVT requirement are:

TSK56 | A task with lower priority can be raised by the priority of
the running task.
QUE16 | The object that holds a mutex can be obtained.

The specification of PrioritySet2 in the task model and GetMutexHolder event in

the queue model are:

PrioritySet2
any t ¢ np
where

grdl t e AllTask

end

grd2 np € PRIORITY

grd3 ¢ € CurrentTask grdl q € Mutex
grdT TaskPriority(t) < TaskPriority(c)... grd2 t = MutexHolder(q)
then end

actl TaskPriority(t) := TaskPriority(c)...

GetMutexHolder
any q t

where

Figure 6.24: PrioritySet2 event of task model and GetMutezHolder event of the queue

model.

The composition diagram of COMP7-EVT requirement is:

Task
6

TaskPrioritySet2 GetMutexHolder

Queue
q3

Figure 6.25: The composition diagram of the requirement COMP7-EVT.

6.4.8 Requirement COMPS8

The composition requirement COMPS-EVT is similar to COMP7-EVT require-

ment. It connects the task model and queue model through event sharing.
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COMPS-EVT | The priority disinheritance is used to set the active priority
of the task holder back to its original priority.

The sub-requirements of COMPS-EV'T requirement are:

TSK44 | The active priority of a task can be replaced by its original
priority.
QUE16 | The object that holds a mutex can be obtained.

The composition diagram of COMPS-EVT requirement is:

Task Queue
t6 q3
TaskPrioritySet3 | GetMutexHolder ‘

Figure 6.26: The composition diagram of the requirement COMPS8-EVT.

6.5 Conclusions

This chapter has contributed to support the process of composing the separate
sub-models: task management, queue management, and memory management to

give a complete perspective of FreeRTOS.

Shared event composition is used to compose the three sub-models. Shared entities
“carriers sets” were used as a means of connection between the sub-models instead
of shared variables. The sub-models are linked together through shared entities,
and the properties that are shared across the sub-models must only be introduced
in the composition level through additional invariants. This approach of building
models seem to promote reusability since the models to be composed are loosely-

coupled and do not include shared properties.

Composition can also be obtained using shared variables. The properties can be
shared across the sub-models and therefore do not require to be introduced at the
composition level. Having shared variables between the sub-models results in more
coupled models and therefore shared variables approach is less interesting when

the reusability of models is important.

This chapter also provides an example of the composition resulted from composing
the sub-models with shared variables using the shared event composition approach

as illustrated in Section 6.3.2.

Moreover, Section 6.3.3 has demonstrated by an example the possibility of simpli-
fying the connection between the sub-models with an abstraction. It shows that
the more abstract the sub-models are composed, the less is the effort and the

number of events we need to compose.






Chapter 7

Reusing Data Refinement
Patterns through Generic

Instantiation and Composition

The benefits of applying reuse at different stages of the software development
cycle are widely recognised. The essence of reuse is the use of existing artifacts
during the construction of a new one. Reusing in formal modelling incorporates
the reuse of models through the process of constructing a new model in such a
way that proofs are preserved. The main objective of this chapter is to present
an approach to facilitate the reuse in Event-B formal method through the use of
generic instantiation and composition techniques. An example of data refinement
of the abstract “ set” of FreeRTOS model to linked lists is presented to illustrate
the use of this approach and to show the significant benefits of reusing models in

formal modelling.

7.1 Introduction

Software reuse is a promising area for better quality and increased productivity
in software [67]. Reuse is known in the area of formal methods: a model can be
constructed by combination of several modelling patterns. Besides the advantages
of applying patterns such as reducing time, cost, and proof effort, there is also an
opportunity for the reused patterns to go through a review process and this will

lead to an improvement of the quality of the patterns.

A pattern may be developed as a general pattern applicable in several different
modelling problems such as patterns for data structures (e.g. arrays, linked lists,
queues, and stacks). A pattern also might be specified for a particular domain.
Developing reusable patterns for recurring modelling concepts in given contexts is

useful. For instance, real time operating systems meet a set of criteria that can
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be formalised as a number of patterns to aid the formal modelling of operating
systems. Consequently, this would increase the reuse of the formal modelling in

the operating system domain.

The advantages of applying patterns can be achieved by having several reusable
patterns available for the designer. A modelling reuse repository with various
reusable modelling patterns should be developed to facilitate rapid adaptation of

a pattern as per designer needs.

Our main contribution is an approach for reusing modelling patterns in Event-
B [4] based on generic instantiation [72] and composition [73] techniques. Generic
instantiation technique is used to create an instance of a pattern that consists of a
refinement chain and allowing replacement of the pattern names (types, constants,
variables, events) by names that suit the development at hand. The composition
technique, on the other hand, enables the integration of several sub-models into
a large model. Composition may also be applied in reverse in a top-down way
by factorising a model into a composition of smaller models. We refer to this
as decomposition. The techniques are well-established and widely used in mod-
elling with Event-B. Detailed descriptions of generic instantiation and composition

techniques are given in Chapter 2.

This chapter is mainly divided into two parts. The first part presents an approach
that aids in reusing Event-B models and incorporating them to resume the specifi-
cation of other development. The presented approach has been used successfuly to
replace the abstract “set” of FreeRTOS specification to linked lists structure. The
second part focuses on developing theories of linked lists involving set of operators

and inference rules that support the development of linked lists models.

Section 7.2 presents an approach that supports reusing Event-B models. Sec-
tion 7.3 introduces a theory of circular linked lists. Section 7.4 outlines the circular
doubly linked list pattern. Section 7.5 outlines the application of the presented
approach to FreeRTOS case study. Section 7.6 presents some related work to the

presented approach. Conclusions are given in Section 7.7

7.2 Description of the Approach

This section describes our approach and shows how generic instantiation and com-

position techniques are used to support reuse in Event-B.

Assume that we have a pattern P consisting of a context z with a list of sets N;
and two machines, an abstract machine p0 and its refinement pl. The abstract
machine p0 has a list of variables s;, invariants T'(s;, N;), and evt; that represents
a list of events all of which operate on the same variables s;. ¢; in evt; represents a
list of parameters. Machine p1 refines p0 and has the variables s, that data refine

s;, the gluing invariants GI(s;, s), and the concrete events evt] that refine evt;.
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The pattern P[vars : s;,sets : N;] has the following form:

MACHINE p0 sees c
VARIABLE s;
INVARIANTS T(si, N;)

context z
sets N;
axioms Q(N;)

event evt;
any c;
where

G(Si, Ci)

then
8§ = E(Si7 Ci)
end

MACHINE p! sees c
refines p0
VARIABLE s,
INVARIANTS GI(s;,s))
event evt{ refines euvt;
any c,

where

(sl ¢l)

then

s; = E(s],c})

end

We further assume that at some abstraction level of a particular specification M,

we figure out that a suitable continuation of the development would be to reuse the

pattern P. M contains a list of variables x;, a list of variables , invariants U (z;, T;)

and I(¥) and a list of events e;. j; and § in e; represent a list of parameters.

The model M|vars : z;, ¥, sets : T;] has the following form:

context r
sets T;
axioms Q(T;)

MACHINE M sees r
VARIABLE z;, v
INVARIANTS U(a, T3)
1(%)
event ¢;

any j; ¢ where

G (i, ji)

In order to resume the specification of the problem M using the pattern P, we

need to check that pattern machine p0 matches problem machine mI1. This can

be ensured by using one of the following approaches:

Approach 1: Syntactic matching: In the syntactic matching we need to check

the following conditions:

— The suitable renaming of free variables of pattern formula f would lead to

problem formula g. Meaning that, the elements of the abstract model of a

pattern (variables, guards, actions, ..etc) are syntactically the same as the

elements of the problem.

— Other elements in the problem (guards and actions) that are not matched

with the pattern cannot modify a matched variable with the pattern.
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Approach 2: Semantic matching

In the semantic matching, the pattern formula f matches problem formula g if
suitable renaming of free variables of pattern formula f would lead to a formula

that is semantically equivalent to problem formula g.

Following the first approach, we notice that variables s; in the pattern are matched
syntactically with variables z; in the problem. The guards G(z;, p;) and actions
z; := E(x;, p) of events e; in the problem are the only guards and actions that
modify x; and they match with guards G(s;, ¢;) and actions s; := E(s;, ¢;) of the

pattern. Other guards and actions in the problem do not modify the variables x;.

The refinement of the machine M can be obtained by combining generic instantia-
tion technique and shared event composition technique. The generic instantiation
technique is used to instantiate the refinement pattern including proofs and allows
renaming of the pattern components (variables, types, and constants) to suitable
names for the problem specification. Composition (shared-event style) enables the

incorporation of the instantiated pattern in the development.

The structure of the new model that combines generic instantiation and shared-
event composition techniques is an extension of Event-B that is not currently

supported by Rodin. The outline of the new structure is shown as follows:

MACHINE m2
refines M

import P.ip0[z;, T;]
Events

e, refines e;

Combines Events ip0.evt;[z;] | M.e; = any G...end

Machine m2 is the created machine that refines the abstract machine M of the
problem. The keyword import enables machines instantiation of a pattern or
a set of patterns. An instance of the pattern machine is created by replacing
(variables, types, and constants to specific names according to the instance). Here,
the clause P.ip0O[z;, T;] is shorthand of generic instantiation. It demonstrates that
the machine p0 of the pattern P is instantiated using generic instantiation and
the parameters (c;, and M) of p0 are replaced by the parameters (z;, and T;) in
the new instance ip0. Events of the problem that modify a matched variable are
refined based on the composition technique. The refined events are generated by

combining two types of events which are:

— Selected event(s) of the created instance.

— Guards/actions that refer to unmatched variable of the event to be refined in

the problem.
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Therefore, events e; of the problem are refined by combining ewvt; of the instantiated
machine (i.e. ip0.evt;[z;]: evt; of the instance ip0 where all occurances of ¢; are

replaced by ;) with the unmatched guards/actions of event e; in the problem.

The main difference between the syntactic matching and semantic matching is
that, correctness of the matching in the syntactic matching is syntactically checked
rather than proved. The modeller must check the model carefully before applying
the pattern. No proof effort need to be performed, this is because generic instan-
tiation preserves the correctness of the instantiated model [72] and also because
shared event composition preserves refinement [74]. In the semantic matching, on
the other hand, the modeller needs to prove that the instantiation of the abstract
pattern is a correct refinement. In our case, we need to prove that events e; of M
are refined by the combination of the abstract evt; with the residual guards and

actions of e; in case of the semantic matching.

7.2.1 Example of a Pattern and Its Instantiation into a Problem
Refinement

The Pattern consists of two machines p0 and pI that refines p0. The abstract
model of the pattern p0 consists of two disjoint sets a and b and two events
AddToA and RemoveFromA. AddToA moves entities from set b to the set a whereas
RemoveFromA moves entities from set a to the set b. In the data refinement of
this model, we replace the two abstract variables a and b with status function.
The new variable status is a total function from Entity to STATUS. STATUS is an
enumerated type with distinct values InA and OutA. The refined events AddToA’
and RemoveFromA’ update the status function rather than modifying the InA4 and
OutA variables.

The Pattern has the following form:

MACHINE PatternM1

MACHINE PatternMO0
sees PatternC
VARIABLE ab

event RemoveFromA

sees PatternC
refines PatternMO0
VARIABLE status
INVARIANTS

INVARIANTS
C Entit status € Entity — STATUS
: E Ent?zy event AddToA
a b Tizd)y refines AddToA
@ - any i
event AddToA
. where
context PatternC any 1 i € Entit
sets Entity STATUS where Z.t ¢ Tzz)yi OutA
constants InA OutA i€ Db t}f st = 2
e
axioms finite(Entity) then fnf ) InA
status(i) := In
partition(STATUS, {InA}, {OutA}) a:=aU{i} d
en
end

event RemoveFromA
refines RemoveFromA

any 1 any @
where
i€ a where
%
th i € Entity
en
) status(i) = InA
b:=buU {i}
then
end

status(i) := OutA
end
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The first model we need to refine using the Pattern is of a system for checking
users in and out of a building. The abstract model has variables to represent the
set of people who are in the building in and those that are outside the building
out. It also has an invariant that shows that a user cannot be simultaneously
inside and outside the building and two events to model users entering and leaving
the building. Enter event allows a user outside the building to enter the building

whereas Leave event allows a user inside the building to leave the building.

The Building model has the following form:

MACHINE BuildingM0
sees BuildingC
VARIABLE in out
INVARIANTS
in C USER
out C USER
in N out = ¢
event Enter

any u
context BuildingC where
sets USER u € out
axioms finite(USER) then

in = 1in U {u}
end

event Leave
any u
where
u € in
then
out := out U {u}
end

We notice that, by renaming the pattern variables ¢ and b with the variables in
and out, and the carrier set Entity with the carrier set USER we get a model
that is syntactially same as BuildingM(0. Therefore, we can apply the proposed
approach to refine BuildingM0 to BuildingM1.

The structure of the new model that refines the abstract model BuildingM0 is

shown as follows.

MACHINE BuildingM1
refines BuildingM0
import Pattern.building0lin, out, USER]
Events
Enter’ refines FEnter
Combines Events building0. AddToA[in, out]

Leave' refines Leave

Combines Events building0. RemoveFromAlin, out]

The second model specifies lift controller system. The abstract model of this
speification contains variables open and close, an invariant that shows that floor
door cannot be simultaneously open and close and events OpenFloorDoor and
CloseFloorDoor.

The lift controller model has the following form:
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context LiftControllerC
sets FloorDoor LIFTSTATUS
axioms finite(FloorDoor)
partition(LIFTSTATUS, {MOVING}, {STOPPED})

MACHINE LiftControllerM0
sees LiftControllerC

VARIABLE open close LiftStatus

INVARIANTS open C FloorDoor

event CloseFloorDoor
close C FloorDoor

d
open N close = ¢ any f
. where
LiftStatus € LIFTSTATUS e
event OpenFloorDoor . open
LiftStatus = STOPPED
any fd
here then
w
close := close U {fd}
fd € close d
en
LiftStatus = STOPPED
then

open := open U {fd}
end

By considering the syntactic matching, we figure out that Lift ControllerM0 matches
PatternM0. The replacement of the variables a and b of Pattern with variables
open and close and the set FEntity with USER, would lead to a model that is
matched syntactically with LiftControllerM0. Thus, its possible to apply the pro-
posed approach to refine the abstract model LiftControllerM0 using the Pattern.

The structure of the new model that refines the abstract model LiftControllerM0

is shown as follows.

MACHINE LiftControllerM1
refines LiftControllerM0O
import Pattern.lift ControllerO[open, close, FloorDoor]
Events
OpenFloorDoor’ refines OpenFloorDoor
Combines Events liftController0. AddToA[open, close] ||
OpenFloorDoor £ where LiftStatus=STOPPED end
CloseFloorDoor’ refines CloseFloorDoor
Combines Events liftController0. RemoveFromA[open, close] ||
CloseFloorDoor 2 where LiftStatus=STOPPED end

It is important to point out how to deal with several cases while applying the
patterns. If the model consists of several events that match with a single event
in the pattern, then the pattern can be applied once to refine these events. The
composition allows to combine the refined event of the instantiated pattern several
times with several events of the problem. In addition, several variables can be
data-refined at the same time if they have corresponding matched variables in
the pattern. Finally, if there are several variables that need to be refined using a
single or several patterns, then the patterns can be instantiated several times in
one or more refinement levels to data-refine these variables, this case is described

in details in section 7.5.
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7.3 Theory of Circular Doubly Linked List

Linked lists are used for various applications especially applications which have to
deal with an unknown number of objects. Linked lists are also used as a building
block for many other data structures, such as stacks, queues and their variation.
Before constructing a modelling pattern for circular doubly linked list ( a kind of
linked list), we need first to develop a theory for the circular doubly linked list
data structure to overcome the lack of supportive operators on a circular doubly
linked list in Event-B. The theory we developed includes operators for inserting
an item to the end of a circular doubly linked list and operators for removing an
item from a circular doubly linked list, as well as theorems and inference rules.
The circular doubly linked list modelling pattern can be used to data refine “set”

structure and makes it close to implementation.

Let us first take a moment to explain the circular doubly linked list structure. A
circular doubly linked list consists of nodes, each of which contains a data and a
pointer that references the next node and a pointer that references the previous
node. The next pointer of the last node (tail node) is always pointing to the head
node and the previous pointer of the head is pointing to the tail as illustrated in

Figure 7.4.

fst

R

Figure 7.1: Circular doubly linked list structure.

We present two sets of operators; the first set of operators are used to insert an
item at the end of a circular doubly linked list whereas the second set of operators

are used to remove an item from a circular doubly linked list.

7.3.1 Operators for Inserting an Item to the End of a Circular
Doubly Linked List

The operators presented here is used to insert an element at the end of a circular

doubly linked list. Figure 8.2 illustrates how it works.

fsta

s (2] == [e] ={TT¢]

Figure 7.2: inserting an element at the end of the circular doubly linked
list.
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We need first to show how the structure of circular doubly linked is modelled using
a set of nodes nds, a first node fst, a next pointer nzt, and a previous pointer pruv.

The definitions of these variables and the invariants are listed as follows.

invl fst € nds U {null}

mv2 nxt € nds —» nds

inv3 pru = nat~!

mvd nds # ¢ < fst # null

nvd nds = @ < fst = null

inv6 isCircular(nds, fst, nat)

thm card(nds) = 1= nds = {fst} A nata(fst) = fst

Inv6 states that all nodes are reachable from any node (reachability property).
isCircular is predicate in the theory feature that is defined as follows Vn-n €
nds = cls(nat)[{n}] U{n} = nds, where cls is transitive closure operator defined
in the theory feature as follows: cls(r) = fizr(As-s € P(S x §) | r U (s; r)). The
explanation of the definition can be found in [4]. Thm states that nodes cannot

point to themselves except in case where fst node is the only node in nds.

There are four important well-definedness conditions for the operators used to

insert an element at the end of a circular doubly linked list which are:

— finite(nds)
— fst € nds & fst # null
— nds = @ < fst = null

— isCircular(nds, fst, nxt)

The operators used to insert a node to the end of a circular linked lists are three
operators. The first operator named getNzt_insertLast_cl used to return the next
pointer nzt after inserting a node ¢ to the end of the circular linked list. The
second operator named getPrv_insertLast_cl used to return the previous pointer
after inserting a node ¢ to the end of the circular linked list. The third operator
getFst_insertLast_cl operator used to return the first node after inserting a node
¢ to the end of the circular linked list.

The definitions of these operators are as follows:

getNxt_insertLast_cl(nds, fst, nat, ¢) = nat <— COND(fst = null, {c — c},
{nat™1(fst) — ¢} U {c s fst})

getPru_insertLast_cl(nds, fst, nat, ¢) 2 getNzt_insertLast_cl(nds, fst, nat, ¢) ™
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getFst_insertLast_cl(nds, fst, ¢) = COND(fst = null, c, fst)

7.3.2 Operators for Removing an Item from a Circular Doubly
Linked List

The following diagram illustrates the case where an element is removed from the

end of the circular doubly linked list.

fsta

T,

Figure 7.3: delete the last element from the circular doubly linked list.

The operators used to remove a node from a circular linked lists are three operators.
The first operator named getNxt_deleteNode_cl used to return the next pointer
after removing a node ¢ from any position in the circular doubly linked list. The
second operator named getF'st_deleteNode_cl used to return the first node after
removing a node ¢ from any position in the circular doubly linked list. The third
operator getPrv_deleteNode_cl used to return the previous pointer after removing

a node ¢ from any position in the circular doubly linked list.

The definition of these operators are as follows:

getNzt_deleteNode_cl(nds, fst, nat, ¢) = COND (nzt(fst) = fst, p,

({c} < nat) < {nat~(c) = nat(c)})

getFst_deleteNode_cl(nds, fst, nst, c) £ COND(c = fst,
getFst_deleteFst_cl(nds, fst, nxt), fst)

where getFst_deleteFst_cl returns the new first element after removing the head

of the circular doubly linked list
getFst_deleteFst_cl(nds, fst, nat) = COND (card(nds) > 1, nat(fst), null))
Definition:

getPru_deleteNode_cl(nds, fst, nzt, ¢) £ getNat_deleteNode_cl(nds, fst, nat, ¢) ™
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Additional well-definedness condition for deletion node operators is necessary to
check that the list must not be empty: nds # ¢.

7.3.2.1 Inference Rules

A sequent in Event-B is of the form H = G. The inference rules are used in Event-
B proofs to show that a goal G is a consequence of the hypotheses H. When the infer
clause of an inference rule matches the goal of a sequent, the proof is completed by
considering the instantiated given clauses as the new sub-goals (backward reason-
ing). Alternatively, when given clauses of an inference rule matches the hypotheses
of a sequent, the proof is completed by adding the instantiated infer clause as a
hypothesis (forward reasoning). The following inference rules are added to allow

the prover to proof that the theorem thm is sound.
insert_Last_inf

Given

isCircular(nds, fst, nat)

fst € nds U {null}

nzt € nds —» nds

n €S\ nds

Infer

isCircular(nds U {n}, getFst_insertLast_cl(nds, fst, ¢), getNxt_insertLast_cl(nds, fst, nzt,n))

delete_Node_inf
Given
isCircular(nds, fst, nat)
fst € nds

nzt € nds —» nds

n € S\ nds

Infer

isCircular(nds\{n}, getFst_deleteNode_cl(nds, fst, nat, n), getNxt_deleteNode_cl(nds, fst, nat,n))

7.4 Circular Doubly Linked List Pattern

In this section we outline a pattern for refining operations on a set by operations on
a circular doubly linked list. The circular doubly linked list pattern CDLinkedList
consists of two machines, the abstract machine p0 contains a set a defined as
a C T, the concrete machine pI relates the abstract specification of the set a to

a circular doubly linked list via data refinement.
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The abstract machine p0: This level defines two abstract events. The AddToA
event adds an element to a set a, whereas RemoveFromA event removes an element

from the set a.

AddToA RemoveFromA
any t any t

where where

grdl t € T\ {a} grdl t€a
then then

actl a:=a U {t} actl a:=a\ {t}
end end

The first machine p1:

This machine refines the abstract machine into a circular doubly linked list. Let us
first take a moment to explain the circular doubly linked list structure. A circular
doubly linked list consists of nodes, each of which contains a data and a pointer
that references the next node and a pointer that references the previous node. The
next pointer of the last node (tail node) is always pointing to the head node and

the previous pointer of the head is pointing to the tail as illustrated in Figure 7.4.

fst

nxt

LY

Figure 7.4: Circular doubly linked list structure.

In order to model this, pointer variables are introduced to replace the sets by

circular linked list structure.

The pointer variables in this level are: nzta, prva, fsta. nzta represents the next
pointer, prva represents the previous pointer, and fsta represents the first node in
the list.

The definition of the variables and the invariants are listed as follows:

invl fsta € a U {null_a}

mv2 nata € a—» a

inv3 prva = nata!

invd fsta € a < fsta # null_a

b a =< fsta = null_a

inv6 isCircular(a, fsta, nata)

thm card(a) = 1= a = {fsta} A nata(fsta) = fsta

Two events that refineAddToA are introduced in this level. The first event Ad-
dToStart, adds an element to the beginning of the circular doubly linked list a.
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The second one AddToEnd, adds an element to the end of the circular doubly
linked list a.

Here is the specification of the AddToFEnd event:

AddToEnd refines AddToA

any e

where

grdl e€ T\ a

then

actl nata := getNat_insertLast_cl(a, fsta, nxta, e)
act2 prva := getPru_insertLast_cl(a, fsta, nata, e)
act3 fsta := getFst_insertLast_cl(a, fsta, e)

actd a:=a U {e}

end

In addition, three events that refined DeleteFromA are introduced in this level. The
first one DeleteFst, deletes the first element from the circular doubly linked list
a. The second event DeleteLst, deletes the last element from the circular doubly
linked list a. Finally, the third event DeleteAny deletes an arbitrary element from
the circular doubly linked list a.

Here is the specification of the DeleteAny event:

DeleteAny refines RemoveFromA

any e

where

grdl e € a

then

actl naxta := getNzt_deleteNode_cl(a, fsta, nzta, €)
act2 prva := getPrv_deleteNode_cl(a, fsta, nzta, e)
act3 fsta := getFst_deleteNode_cl(a, fsta, nata, e)
actd a:=a\{e}

end

7.5 Applying the Proposed Approach to Resume the
Development of FreeRTOS Case Study

This section shows the application of the proposed approach to resume the devel-

opment of FreeRTOS case study using CDLinkedList pattern .
The description of the case study is given in Chapter 3.

The variables of tasks in the abstract specification of task management case study
are sets which need to be refined into circular doubly linked lists. Therefore, tasks

sets: ReadyTask, SuspendTask, DelayTuask, TaskWaiting Termination, PendingTask
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need to be refined to circular doubly linked lists. The process of refining each set
to circular doubly linked lists without having mechanism for reusing modelling
patterns demands a significant modelling and proving efforts. The proposed ap-
proach assists in refining the development of FreeRTOS case study using only one
modelling pattern: circular doubly linked list. In order to apply the CDLinkedList
pattern to refine the m1 development, we need to perform syntactic checking. We
notice that, each variable of the abstract machine m1: ReadyTask, DelayTask,
SuspendTask, PendingTask, TaskWaitingTermination is matched with variable a
in the pattern. The syntactic checking need to be checked five times (once for each
matched variable). For instance, variable ReadyTask is matched with variable a
and the events that modify variable ReadyTask are also matched with the events
that modify variable a in the pattern. Event AddToReady in m1 is matched with
AddToA in p0 and event AddToSuspend in m1 is matched with RemoveFromA in

p0. The same scenario applies to other variables: DelayTask, SuspendTuask, etc.

The structure of the new model that refines the abstract model m1 is shown as

follows.

MACHINE m2
refines m1
import CDLinkedList.readyO[ReadyTask, TASK]
CDLinkedList.delayO[Delay Task, TASK]
CDLinkedList.suspend0[SuspendTask, TASK]...
Events
AddToReady’ refines AddToReady
Combines Events ready0.AddToEnd[Ready] || delay0.DeleteAny[Delay] ||
AddToReady £ where scheduler = RUNNING then skip end
AddToSuspend’ refines AddToSuspend
Combines Events suspend0.AddToEnd[Suspend] || ready0.DeleteAny[Ready] ||
delay0.DeleteAny[Delay] ||
AddToSuspend 2 any ¢t where t ¢ CurrentTask N scheduler # NOT_STARTED then skip end ...

The created model m2 refines the abstract model m1 of FreeRTOS specification. It
instantiates machine p0 of the CDLinkedList pattern five times. One instance for
each set variable: ReadyTask, SuspendTask, DelayTask, TaskWaitingTermination,
PendingTask. The refinement of AddToReady in the created model m2 is generated
by composing AddToEnd event of the instance of ReadyTask variable (ready(0) and
the DeleteAny event of the instance of DelayTask variable (delay0) and the un-
matched guard Scheduler=RUNNING of AddToReady event. Similarly, the refine-
ment of AddToSuspend event in the created model m2 is generated by composing
AddToEnd event of the instance of SuspendTask variable (suspend0), DeleteAny
event of the instance of ReadyTask variable (ready0), DeleteAny event of the in-
stance of DelayTask variable (delay0), and the unmatched guard t ¢ CurrentTask
and Scheduler # NOT_STARTED of AddToSuspend event

The case study presented here is oversimplified. FreeRTOS makes use of about
8 task lists. It uses two delay lists for delay tasks; the first list DelayTaskList
stores tasks that have not overflowed the current tick count and the second list
OverflowDelayTaskList stores the tasks that have overflowed the current tick. It
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also has two event lists to store tasks waiting for events which are TaskWait-
ingToSendList and TaskWaitingToReceiveList. ReadyTaskList and event lists in
FreeRTOS are sorted based on priority, thus, a pattern that deals with prioritised

tasks is required to data refine ReadyTaskList and event lists.

The overall POs of the pattern machine p1 is 41 POs of which 17 were proved
interactively. Reusing the pattern using the proposed approach saves proving
efforts because POs that are originated from the pattern only need to be discharged

once and not for all instantiations of the pattern.

7.6 Related Work

This section presents some works of supporting reuse in the area of formal method.

In Classical B [70, 2], reusing an existing machine in other development can be
performed through the use of the clauses INCLUDES, USES and IMPORTS. IN-
CLUDES is used to include a machine as part of another machine, USES clause
is used to have a read access to a certain machine. The difference between IN-
CLUDES and USES clauses is that INCLUDES has control to all relevant oper-
ations of the including machine but USES has only control to all the operations
except the ones of the used machine [70]. IMPORTS clause, on the other hand,
is used to import any number of abstract machines into the implementation ma-
chine [70]. Our approach differs from including/importing mechanisms in two
ways: firstly, it is possible to incorporate refinement using our approach but this
is not supported by including/importing mechanisms in Classical-B. Secondly, our
approach allows the user to rename the pattern with specific names using generic
instantiation technique while renaming mechanism in Classical-B annotate the

pattern with certain attributes using prefixing mechanism.

Z formal method offers several operators of schema calculus to combine schemas
such as conjunction operator that is used to join the declaration parts of schemes
and the predicate parts of the schemes and disjunction operator that merges the
declaration parts and disjoints the predicate parts [79]. It also possible to rename
the components of a schema and moreover it is possible to use a generic schema
as a pattern for a variety of schemes with different types [86]. The variables of the
generic schemas are defined as polymorphic type using formal parameter X, hence,
they can be instantiated later with any set [86]. Like Classical-B and in contrast to
our approach, Z also allows only reusing specification and do not support reusing

refinement.

In Event-B, Thai Son Hoang et al proposed an approach that supports reusing
formal models as patterns in Event-B [39]. The approach is supported by tool

and primarily depends on matching the specification of the pattern (variables and
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events) with the problem. The steps required by this approach are: firstly, match-
ing the problem and the specification. Then, checking the validity of the matching
using syntactical checking mechanism. After that, renaming the variables and
events of the pattern refinement. Finally incorporating the renamed refinement of
the pattern to create the refinement of the problem. The main differences between
our approach and [39] is that our presented approach combines existing techniques
in Event-B (generic instantiation and composition) to support reuse whereas [39]
approach provides different mechanisms to support reuse by performing renaming
and incorporation mechanisms which are done automatically by a tool. Further-
more, before generating the problem refinement using [39] approach, the user is
asked to enter the gluing invariant so the tool can check whether the variable in
the development matches a disappearing variable in the pattern so it will also

disappear or not.

7.7 Conclusions

Modelling patterns are a promising technique for supporting reuse in system devel-
opment. They have the potential to reduce time, cost, proof effort and to improve

the quality of the patterns through the review process.

We proposed an approach for supporting the process of reusing modelling pat-
terns. Any repeated structure can be specified once as a modelling pattern and
then reused whenever suitable throughout the combination of existing method-
ological approaches in Event-B (generic instantiation and composition). Generic
instantiation technique is used to create an instance of a pattern allowing replace-
ment of the pattern names (types, constants, variables, events) by names that suit
the development at hand. Generic instantiation assures that proofs associated to
a generic development remain valid in an instantiated development which helps
to avoid unnecessary re-proof when reusing models. The composition technique,
on the other hand, enables the integration of the instantiated patterns into a de-
velopment. The flexibility offered by the combination of generic instantiation and
composition facilitates the reusability of patterns. The structure of the new model
allows to instantiate a pattern or set of patterns several times with several pa-
rameters in one or more refinement levels. The composition, on the other hand,
allows events in the pattern or set of patterns to be matched to several events in

the problem.

The proposed approach has been applied to refine the development of FreeRTOS

case study and has been very effective in saving proof effort.

Further work is concerned with developing a tool to automate this approach. An-

other direction of further work is establishing a repository of modelling patterns
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in order to attract more designers into depositing their own patterns to promote

reuse of models.






Chapter 8

Guidelines for Modelling and

Theory Development based on
FreeRTOS Experiences

Drawing upon our experience with modelling FreeRTOS, this chapter presents a
set of guidelines for modelling OS kernels for embedded real-time systems in Event-
B and some tips for theory development. The presented modelling guidelines are
intended to assist specifiers of real-time kernels with a set of modelling steps for
the construction of formal models of real-time kernels. Each of these guidelines
gives directions on how to model a certain aspect of RTOS kernels. The guidelines
focus on the basic functionality of RT'OS and represent the primary requirements
of RTOS for an Event-B model. Design details that are RT'OS-specific are left out
from the guidelines. Design details of a specific-RTOS can be specified through
a refinement of the abstract model driven by the guidelines. The identified mod-
elling guidelines can be understood as a modelling pattern for the following RTOS
features: task management, scheduling and context switch, interrupts, queue man-
agement, and memory management. The presented tips for theory development
provide a guide to developing theories including managing complex theories and

checking the validity of the developed operators.

8.1 Introduction

Engineering cookbooks and guidelines for modelling, refinement, and proofs are
important in the context of formal methods. They can be used to systematise the
modelling and refinement process and aid the proofs, therefore reducing the time

and cost of the formal development of systems.

Both new specifiers and professionals can gain benefit from adopting such guide-

lines and modelling patterns for their specifications. The guidelines tell us how to
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model a system most effectively and provide good examples and lessons that aid
the formal development of several systems. The guidelines also save the specifier’s
time and make the formal methods approach more acceptable in industry. More-
over, these guidelines can shed light into the requirements of systems and draw
attention towards some important properties of systems that might be ignored
in the absence of the guidelines. The guidelines may also give an insight to the
specifier regarding the requirements that should be modelled first and how the
refinement steps can be organized; this is usually considered a source of difficulty

in the process of modelling and refinement.

This chapter is divided into two parts, the first part provides a set of modelling
guidelines for RTOS whereas the second part provides some tips for theory develop-
ment. Although the guidelines provided in this chapter draw upon our experience
with modelling FreeRTOS, it is believed that these guidelines can also be used for
constructing formal models of different real-time operating system (RTOS) ker-
nels. This is because various RTOS kernels share similar features and contain the
same components [56]. Table 8.1 describes some of the basic features and concepts
of four RTOSes: FreeRTOS [10], UCOS [58], eCos [31], and VxWorks [84].
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Concept/Feature FreeRTOS [10] UCOS [58] eCos [31] VxWorks [84]
process TCB yes yes yes yes
Null process yes yes yes yes
process  creation | yes yes yes yes
and termination
process priority yes yes yes yes
clock tick yes yes yes
process states ready, running, | dormant, ready, | running, sleeping, | ready, suspended,

blocked, suspended | running  waiting, | countsleep, sus- | pended (blocked)
ISR pended, creating, | and delayed
exited

scheduler state

start the scheduler,

lock the scheduler,

start the scheduler,

lock the scheduler,

lock the scheduler, | and unlock the | lock the scheduler, | and wunlock the
and unlock the | scheduler and unlock the | scheduler
scheduler scheduler

context switch yes yes yes yes

interrupts handling | yes yes yes yes

priority manipula-

changes a process

changes a process

changes a process

changes a process

tion priority and re- | priority priority priority and re-
turns the priority turns the priority
of a process of a process
delay operation yes yes yes yes
scheduling priority-based priority-based priority based | priority-based
round robin | scheduling and | round robin and | scheduling and
scheduling round robin | bitmap schedulers round robin
scheduling scheduling
Queue creation and | yes yes yes yes
termination
process  synchro- | queues, Semaphores, Mes- | message box, sema | message queues,
nization semaphores, mu- | sage mailbox, Mes- | phore, queue pipes, semaphores
texes sage queues, Tasks
and Interrupt ser-
vice routines (ISR)
waiting list for | yes yes yes yes

tasks

to retrieve/post

waiting

message to a queue

MemoryManagement

memory allocation

and deallocation

memory allocation

and deallocation

memory allocation

memory allocation

and deallocation

Table 8.1: General RTOS Concepts: FreeRTOS, UCOS, eCos, and VxWorks

The subsequent sections identify Event-B modelling guidelines for the general
RTOS concepts summarised in Table 8.1. Section 8.2 to Section 8.7 identify the

modelling concepts for task management, scheduler states, scheduling and context

switching, interrupts, queue management, and memory management. Section 8.8

compares the presented modelling guidlines with Craige’s models of operating sys-

tem kernels. Section 8.9 presents some tips for theory development drawn from

our experience with the theory extension.
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8.2 Task Management

8.2.1 Process

A process is an independent thread of execution [10, 56]. RTOS can execute
multiple processes concurrently [10, 56]. The processes appear to execute con-
currently, however, the kernel interleaves the execution sequentially based on a
specific scheduling algorithm [10, 56]. The term process is also called “thread” or
“task” in some RTOSes.

To model a process, we define a new type in the context level PROCESS “carrier
set”, where each process within the kernel is an element of this set. We also add
an axiom to indicate that the process set is finite. This is because the processor

runs finite number of processes.

finite(PROCESS)

8.2.2 Process Table

A process table is a data structure consisting of a collection of elements to store
the information of a process [56, 52]. Each process has its own control block that
contains the process information such as the process id, the process priority, etc.
A process table could consist of more than 10 elements. To deal with a process

table, we introduce the following Event-B concepts:
Process set: A set of the possible processes available in the system.

Process elements functions: These functions map processes to the process

elements, where each element has a total function.

Process creation event: An event used to create a process.

Formalising a process table is simple; process elements variables can be modelled
by introducing a function for each element. For instance, let us use P to identify
the set of the created processes, P1,P2,..., PN, for process elements such as name,
priority, etc. The process variables pei, pes,..., pe, can be defined as follows:

per € P— P1,
pea € P— P2...,
pen, € P— PN

We use total functions because we assume that each process has P1, P2, ..., PN el-
ements. The functions corresponding to the process elements do not need to be
introduced in one machine; some of the elements can be postponed until a later
refinement depending on the features the specifier wants to model first and the

features the specifier wants to postpone.
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When a new process is created, the kernel instantiates the process block of the
created process. To model this, we introduce a process creation event as follows:

PC= anyp
where p € P
then pel(p) := vl || pe2(p) :== v2...end

A process creation event needs to be extended further in later refinement steps

when a new element of a process is introduced.

The definition of a process table is similar to an approach to record in Event-B [32].
In fact, the carrier set P can be understood of as a record type. The attributes
pe1, pea,..., pe, are defined using a projection function (function from P to some
type P1,P2,..,PN). PC event is used to modify the value of the attributes pe;.
It is possible to extend the record type P by adding more attributes in another

refinement step.

8.2.3 Process Priority

In real-time kernels, each process has a priority as defined in the process block.
Most RTOS imply a combination of base priority and active priority. The base
priority is the original priority specified when the task is constructed. The active
priority is the priority that can be possibly modified. One possible use of base
and active priorities is in the priority inheritance protocol. A priority inheritance
protocol takes place when a lower priority process blocks some higher priority pro-
cesses; this problem is called a priority inversion. The priority inheritance protocol
resolves this problem by raising the priority of the process that caused the problem
against the highest priority process blocked by it to release the blocked processes.
When the process that caused the problem releases the blocked processes, its pri-
ority then returns back to its base priority. For this reason, it is important to have
a base priority that holds the original priority of the process and active priority
that holds the priority that can be changed. To deal with this, we need to define
two elements in the process block, one for active priority and one for base priority:

ActivePri € P — PRIORITY
BasePri € P — PRIORITY

We also need to introduce the following Event-B events that capture the most
common operations related to the process priority- priority set PriSet and priority
get PriGet:

PriSet = any p np
where p € P A np € PRIORITY A ActivePri(p) # np
then ActivePri(p) := np end

PriGet = any p np!
where p € P N np! = ActivePri(p) end
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We use the “!” convention to represent result parameters as shown in the np!

parameter.

8.2.4 Process States

At any time, the process can be in any one state [10, 52]. There are different states
of a process, for instance, in FreeRTOS a process can be in one of the following

states: ready, suspended, blocked, and running.

State diagrams are always a useful way to show the transition of process states. Fig-
ure 8.1 shows a possible transitions among the states RUNNING, READY , SUSPENDED
and BLOCKED during a process life.

Event

Blocked

)
Block

[ Runningm Ready ]<—°

Suspend

Figure 8.1: Process states.

To deal with process states, we identify the following Event-B modelling concepts:
Process states variables: These variables are defined for each possible state.

One way of defining process variables states in an Event-B model is to have a
different set for each state; each set is disjoint from other sets indicating that a
process must be in any one state at any given time. Each created process must
belong to one of these sets. We use the partition operation to indicate that the

collection of the sets is disjoint.

partition(P, READY , SUSPENDED, BLOCKED)

To check the state of a particular process, we check which set the process belongs

to.

Running set, RUNNING in our diagram corresponds to the runnable process and
demands a special treatment. It is special process of ready set. It should be defined

as a singleton set if we are dealing with one core processor.

RUNNING C READY
card(RUNNING) < 1

An alternative way to represent process states is to use a state function style as

follows:
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state € Process — STATE

A process is a carrier set that defines processes of the system and a STATE is a
carrier set of all possible process states: partition(STATE,{READY}, {SUSPENDED},
{BLOCKED} )

Process states event(s): These events are used to update the state of the pro-
cess to a new one. Process states events model the transitions between the states.
According to the Figure8.1, we have four process states events: RunToReady, Run-
ToBlock, RunToSuspend, ReadyToRun, ReadyToSuspend, BlockedToReady, BlockedToSuspend,
and SuspendToReady.

The formalism of RunToReady would be of the form:

RunToReady = any p
when p € RUNNING
then RUNNING := RUNNING \ {p} || READY := READY U {p} end

The conditions around which the transitions is occured are considered as guards

for the process states events.

In later refinement levels, process states variables “sets” are refined according to
the appropriate data structure. For instance, ready state is usually implemented
as a linked list for each priority. This level of detail can be left until data refine-
ment levels. In data refinement levels sets are data refined to the appropriate data
structure such arrays or linked lists depending on the data structure implementa-
tion adopted for the specified RTOS. For instance, the data structure for process
states in FreeRTOS is a circular doubly linked list [10].

8.2.5 Null Process

A null or idle process is a special process that is run when there is no process
available to run [10, 52]. A null process is permanently ready to run and is assigned

to the lowest priority.

It is important process as the kernel needs always to execute a process or interrupt
handler, and there might be a situation where there is no ready process available

to run, in this case, the kernel switch control to the null process.

The definition of a null process is:

Null € READY

8.2.6 Timing Behaviour

A scheduler interrupts at regular frequency to schedule tasks. An RTOS measures

time using a tick count variable. A timer increments the tick count accurately.
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Each time the tick is incremented the scheduler checks to see if a task needs to be

woken. If this is the case, the scheduler executes the newly woken task.

An important operation used by many RTOSs is the Delay operation. It is used to
suspend a process until a fixed time point in the future. The delay operation takes
the process and the time as parameters and returns the process delayed until the

specified delay time.

To deal with the timing behaviour, we identify the following Event-B modelling
concepts:

Tick variable: A counter that measures the system time.

Tick length constant: A constant that defines the length of the tick depending

on the hardware timer’s design.

Sleep time function: A partial function that maps the processes to the sleep
time. The partial function indicates that only some processes in the system have

a delay time and not all processes.

TimeToWake function: The partial function describes the wake-up time of a
delayed task.
The definitions of these variables can be written as follows:

Tick € N

Sleep € P + N

PreviousTime € P + N

TimeToWake € BLOCKED — N

where, BLOCKED identifies the set of delayed processes.
Since, all processes that have a wake-up time, also have sleep time, we add the

following invariant:

dom(TimeToWake) C dom(Sleep)

IncrementTick: An event used to increment a tick counter with a strict accuracy.

IncrementTick = where Tick >0
A TimeToWake # & = min(ran(TimeToWake)) > Tick
then Tick := Tick + TickLength end

The guard, TimeToWake # @ = min(ran(TimeToWake)) > Tick, ensures that all de-
layed processes have un-expired delay time. This is because each time a tick count

is incremented, it must check if a delayed task needs to be woken.

delay: An event used to delay a process for a fixed time.
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Delay = any p
where p € RUNNING A p € dom(Sleep)
then BLOCKED := BLOCKED U {p}
|| TimeToWake(p):=Sleep(p)+ Tick
| RUNNING := RUNNING \ {p}

end

8.3 Scheduler States

The scheduler can exist in one of the different states [10, 52]. For instance, the

possible scheduler states in FreeRTOS are: not-started, running, and suspended.
To deal with scheduler states, we have:
Scheduler states constants: Constants represent scheduler states.

Scheduler status variable: A variable whose value determines the state of the

scheduler.

Scheduler events: These events are used to update the value of the scheduler

variable to a new one.

Assuming that we have a scheduler with three states, si,s: and s3. We use ss to
represent the scheduler variable, s;,s» and s; are constants corresponding to the
scheduler states ss that are defined in the context level and SE is a scheduler event.

To define scheduler states ss a partition operation can be used as follows:

Partition(ss, s1, s2, $3)

A scheduler event would be of the form:

SE = when ss = s

then ss := s3 end

The conditions under which the transitions occur are considered to be the guards

for the scheduler states events.

There might be more than one event that changes the value of the scheduler

variable and would take the aforementioned form.

Many operations in the RT'OS occur when the scheduler is running or suspended.
For instance, the IncrementTick event described in Section 8.2.6 must occur in
FreeRTOS when the scheduler runs; therefore the IncrementTick event is extended

by adding the guard ss = s; where s; denotes the scheduler running state.
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8.4 Scheduling and Context Switching

8.4.1 Context Switch

A context switch occurs when the scheduler switches from one process to another.
It is the technique of replacing the process being executed by another process that
is ready to run [56, 52]. A context switch takes place when the kernel decides to
switch control to another process; so it exchanges the registers’ contents by saving
the information of the current executing process to resume its execution later and

loading the information of the new process to the processor registers.

There are many situations in which a context switch is performed. The most
common context switch performed is the tick interrupt. At every tick, the scheduler
checks if a new process should run. If such a process is found, the scheduler will save

the current process information to resume it later and execute the new one [10].

The kernel schedule processes are based on a specific algorithm. There are dif-
ferent scheduling algorithms; a preemptive priority scheduling mechanism is one
of the most common scheduling algorithms. In this algorithm, each process has a
priority, and the higher readied priority process runs first. The preemptive priority
scheduling algorithm can augment round robin algorithm by giving processes of

the same priority an equal share of processor time.
To deal with a context switch, we introduce the following modelling concepts:

Context function: A total function that maps each task to its context (attribute

in the process table).

ProcessContext € P — CONTEXT

Current context: The physical context that captures the current process that

holds the processor.

physicalContext C CONTEXT
card(physicalContext) < 1

Context switch event(s): Event(s) that replace the current process by another

one.

These guidelines deal with the preemptive priority scheduling algorithm. At every
tick, a context switch is performed when there is a process with a priority higher
than or with equal priority of the current one being executed (equal in this context
allows time slicing between processes with same priorities). The guards or the
conditions that constrain the context switch CS event rely on checking the priority

of the readied processes. The context switch event can be of the form:
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Contexrt_Switch = any p cp ph
where p € READY A cp € RUNNING A activePri(p) > activePri(cp)
A ph € physicalContext
then RUNNING := {p} || physicalContext := { ProcessContext(p)} ||
ProcessContezt(cp) := ph end

The actual context switch is done by saving the state of the current context in

the process context and setting the current context for the new running process.

Context switch flag: A boolean flag that is set to true to indicate the need of

performing a context switch. We use csFlg for a context switch flag.

There are different cases in which a context switch may perform. For instance,
context switch might perform when a certain process transmits to ready state or
when a new process is created.This is because it is possible for these situations to
introduce a process with a priority higher than the priority of the current executing
one in which case the context switch should perform. Therefore, for every event
that may require a context switch, we need to add an additional action that sets
the context switch flag to true. And we add an additional guard to ensure that
the context switch flag is true in the context switch CS event, and that finally the
context switch flag is assigned back to false in the CS event. Thus, we extend CS

event to be:

Context_Switch = any p cp ph
where p € READY A c¢p € RUNNING A activePri(p) > activePri(cp)
A ph € physicalContext A csFlg=TRUE
then RUNNING := p || physicalContext := { ProcessContext(p)}
|| ProcessContext(cp) := ph || csFlg:=FALSE end

In order to prevent any event to be enabled when calling the context switch event,
we add an additional guard, csFlg=FALSE to any events that might get enabled and

affect the execution of the context switch.

Another important issue raised here is what if an event calls a context switch and
sets the csFlg to true but not all the guards of the context switch CS event are
satisfied. This situation occurs when the event that called a context switch does
not introduce a readied process with higher or equal priority than the executing
one. This means that the context switch event is not enabled and consequently
the value of the csFlg is always true which leads to a deadlock. To prevent this
situation, we suggest having two versions of context switch events, the first one
performs the context switch if all the guards of CS event are satisfied, the second

one, however, triggers only to set csFlg back to false when the guards of the



Chapter 8 Guidelines for Modelling and Theory Development based on FreeRTOS
144 Experiences

the context switch are not satisfied. This is to prevent a possible deadlock from

occurring. Therefore, the revised CS events are:

Contezrt_Switchl = any p cp
where p € READY A ¢p € RUNNING A activePri(p) > activePri(cp)
A ph € physicalContext N\ csFlg=TRUE
then RUNNING :=p || physicalContext := { ProcessContext(p)}
|| ProcessContext(cp) := ph || c¢sFlg := FALSE end
Contert_Switch2 = any cp
where c¢p € RUNNING A maz(activePrilREADY]) < activePri(cp)
A csFlg .= TRUE
then csFlg := FALSE end

The above context switch specification is abstract and only represents the general
operations performed in any context switching. Context switching is a hardware-
dependant operation. In order to model context switch in details, the registers of
the target processor needs to be modelled along with the other specific context

switch details for the targeted architecture.

8.5 Interrupts and Interrupt Service Routines

Interrupts are hardware mechanisms used to inform the kernel that an event has
occurred [10, 52]. A process can be interrupted by external interrupts raised by
peripherals or software interrupts raised by executing a particular instruction.
Interrupts are handled by ISRs which are stored in interrupt vector table. When
an interrupt occurs, the kernel saves the current context of the process being
interrupted and jumps to the ISR to handle that interrupt. After processing the
ISR, the kernel returns to the process level and resumes the process that was
interrupted [10, 52].

Interrupts may ready a blocked process for an external device when an event has
occurred, so, the kernel might execute a different process before completing the

preempted one.
To deal with interrupts, we introduce the following modelling concepts:

Interrupt data type: A new data type for interrupts. We will use INTERRUPT
“carrier set” as interrupts data type. The scheduler runs a process or interrupt.
So, we can define processes and interrupts in terms of one carrier set (e.g. Obj)

and then distinguish between them by adding the following invariant:

PN INTERRUPT = ¢

Interrupt variable: A set of the raised system interrupts.
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Interrupts C INTERRUPT

Interrupt handler function: A function that maps each interrupt to its ISR.
We will use an interrupt handler (a total function that maps an interrupt to its

corresponding interrupt service routine).

ISR € Interrupts - INTERRUPT_HANDLER

Where INTERRUPT_HANDLER is a carrier set defined in the context.

Current interrupt: A variable that stores the current executing interrupt.

currentISR C ran(ISR)
card(currentISR) < 1

The invariant card(currentISR) < 1 is added in case of single kernel.

Handle interrupt event: An event used to handle interrupts.

Handle_Interrupt = any int
where int € Interrupts

then currentISR := {ISR(int)} end

Complete interrupt event: An event used to discard completed interrupts

Complete_Interrupt = any int
where int € Interrupts A currentISR = {ISR(int)}
then currentISR := ¢ || Interrupts := Interrupts \ {int}
|| ISR := {int} < ISR end

For later refinement steps, more features can be introduced to be used from within
an ISR and we need to make a distinction between the features used by process
level and the features used by interrupt level. For instance, if we were to introduce
an event for sending an item to a queue that is used by ISRs and processes, we
need to introduce two events: QueueSendFromISR is an event used by ISRs and

QueueSendProcess is an event used by processes.

Interrupts have priority, an interrupt with lower priority can be interrupted by
other interrupt of a higher priority. To deal with this, we identify the following

Event-B modelling concepts:

Interrupt priority variable: A function that maps each interrupt to its priority

InterruptPriority € Interrupts — INTERRUPT_PRIORITY

where INTERRUPT_PRIORITY 1is a constant set defined in the context level.

The event Handle_Interrupt and Complete_Interrupt can be extended as follows:
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Handle_Interrupt = any int ¢ cint

where int € Interrupts
( ¢ € currentISR A cint = ISR™"(c)
A InterruptPriority(int) > InterruptPriority(cint)) V currentISR = &
then currentISR := {ISR(int)} end

Complete_Interrupt = any int
where int € Interrupts A currentISR = {ISR(int)}
then currentISR := ¢ || Interrupts := Interrupts \ {int}
|| ISR := {int} < ISR
|| InterruptPriority := {int} < InterruptPriority end

The processor always gives priority to execute interrupts over tasks; the ISR
must complete its execution without being interrupted by tasks. When the ISR is
completed, the kernel dispatches the correct task. To deal with this, we identify

the following Event-B modelling concepts:

Interrupt context: A function that maps each interrupt to its context.
InterruptContext € Interrupts - CONTEXT

In order to separate a process context from an interrupt context; we add the

following invariant:

ran(InterruptContext) N ran(ProcessContext) := ¢

The Handle_Interrupt and Complete_Interrupt are extended as follows:

Handle_Interrupt = any int c¢ cint ph
where int € interrupts
(( ¢ € currentISR A cint = ISR™*(c)
A InterruptPriority(int) > InterruptPriority(cint))
V currentISR = @) A ph € physicalContext
then currentISR := {ISR(int)}
I physicalContext := {InterruptContext(int)}
|| InterruptContezt(c) := ph end
Complete_Interrupt = any int
where int € Interrupts A currentISR = {ISR(int)}
then currentISR := ¢ || Interrupts := Interrupts \ {int}
|| ISR := {int} < ISR
|| InterruptPriority := {int} < InterruptPriority
|| InterruptContext := {int} < InterruptContext
|| physicalContext := ¢ end
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An extra guard, the currentISR = ¢ is needed in context switch events to prevent
any context switch while there is an ISR running.

Timer interrupt given in Section 8.2.6 is a perfect example of an interrupt. In
every tick, the tick-ISR represented in IncrementTick event wakes up the blocked
process that has an expired delay time. If the woken process has a priority higher
than the current process, the ISR then will return control to the higher priority

process.

8.6 Queue Management

Processes often need to communicate. There are several ways of communications
that most RTOSs offer such as queues and semaphores. Queues are the primary
object of process-process communications. Queues can be used to send messages
between processes. Semaphores are a special kind of queue which are usually used
for mutual exclusion and synchronisation (communication between processes and
ISRs). Semaphores can be binary or counting. Binary semaphores are queues of

length one, whereas counting semaphores are queues of length greater than one.

To define a queue, we define a new type in the context level QUEUE “carrier set”

where each created queue is an element of this set.

AllQueue C QUEUE

AllQueue identifies all possible created queues in the system.
We also add the following axiom to indicate that the queue set is finite

finite(QUEUE)

A queue has a length that defines the maximum number of messages the queue
can hold.

Qlength € AllQueue — N

In order to identify the message (data) that is stored in the queue, we define the
following variable:

QMessage € DATA + AllQueue

We use a partial function because the queue can be empty.

In order to identify the message (data) that is sent by an object Process or ISR,
we define the following variables:

PMessage € DATA + P
ISRMessage € DATA - ISR
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Again, we use a partial function since some processes or ISR have no data to send.

The following invariant is added to show that a process message is different from
an ISR message:

dom(PMessage) N dom(ISRMessage) = ¢

Queue messages are usually of fixed size. To define this we add the following
constraint invariant:

MessageSize € AllQueuve — N

Since there are different types of queues such as general queues, binary semaphore,

counting semaphores, we can define them as follows:
partition( AllQueue, queue, binarySemaphore, countingSemaphore)

To define the length of each queue kind, we define the following:

YV q-q € queue = QLength(q) > 1
V q-q € binarySemaphore = QLength(q) =1
Y q-q € countingSemaphore = QLength(q) > 1

There are three important operations supported by the queues. A queue creates an
operation that is used to create a queue. Enqueue or process send operation that
is used to send data by a process to another and a dequeue operation or process

receive that is used by the other process to receive the data.

To deal with the queue creation operation, the queue send operation and the queue

receive operation, we introduce the following Event-B concepts:

Queue_Create = any q
where ¢ € QUEUE \ AllQueue
then AllQueue := AllQueue U {q} || Qtype := Qtype U {q}...end

Qtype can be replaced by one of the variables: queue, binarySemaphore, or count-

ingSemaphore. For each queue type, there should be one queue creation event.

The queue send event can be of the following form:

Queue_Send = any p ¢ m
where p € Obj A q € Qtype A card(QMessageil{q}) < Qlength(q)
A m € ObjMessage \ dom(QMessage)
then QMessage := QMessage U {m +— ¢} || ObjMessage := {m} < ObjMessage end

The guard, card(QMessage™*{q}) < Qlength(q) ensures that there is a room in the
queue, so the running process can send a message to the queue ¢q. Obj refers to the

object that has sent a message to a queue, so it needs to be replaced by P or ISR.
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ObjMessage denotes the message of the object, so it needs to be replaced by PMessage
or ISRMessage. Obj, Qtype and ObjMessage need to be replaced by appropriately
defined variables to show the object-sender and the type of the queue the object
wants to send the message to.

The queue receive event can be of the following form:

Queue_Receive = any p q m
where p € Obj A g € Qlype AN'm € QMessagefl[{q}]
then QMessage := {m} < QMessage || ObjMessage := ObjMessage U {m — o}

end

The guard, m € QMessage™'[{q}] ensures that the queue is not empty, so that the

process can receive a message from a queue.

Similarly, Obj, Qtype and ObjMessage need to be replaced by appropriately defined
variables to show the object-receiver and the type of the queue the object wants

to receive the message from.

An important point to note is that enqueue and dequeue operations usually require
to be done in FIFO order. Therefore, one way to deal with this is to define an
abstract sequence instead of a set that allows the queue to store messages or refine
a set into a sequence to deal with this aspect. It is also possible that a queue

message set is refined by a linked list to maintain the order between messages.

8.6.1 Waiting Messages

If the queue is full, the sending process will not be successful and has to be blocked
and wait before sending its message until the queue has a room to receive the
message. Similarly, if the queue is empty, the receiving task will not be successful

and has to wait and block until a message is arrived.
To deal with this, we introduce the following Event-B concepts:

waiting to send queue: A function that store processes that are blocked to send

item to a queue:
WaitingToSend € P + AllQueue

waiting to receive queue: A function that store processes that are blocked to

receive item from a queue:
WaitingToReceive € P -+ AllQueue

waiting messages events: Two events are defined to add blocked processes to
the appropriate waiting queues: waiting to send queue or waiting to receive queue
and two events are defined to remove a process from waiting queues: waiting to

send queue or waiting to receive queue.
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The formalization of the operation of blocking a process waiting message events

can be expressed as follows:

Add_ToWToS = any q ¢
where ¢ € Qtype A ¢ € RUNNING A QLength(q) = card(QMessagefl[{q}])
then WaitingToSend := WaitingToSend U {c — ¢}

end

The guard QLength(q) = card(QMessage™'[{q}]) ensures that the queue ¢ is full, so
that the process ¢ must be blocked.

Add_ToWToR = any q c
where ¢ € Qtype A ¢ € RUNNING A card(QMessage™*[{q}]) =0
then WaitingToReceive := WaitingToReceive U {¢ — q}

end

The guard card(QMessage™*[{¢q}]) = 0 ensures that the queue ¢ is empty and so the
process ¢ must be blocked.

Remove_FromWToS = any q t
where ¢ € Qtype At € WaitingToSend ™ '[{q}]
A card(QMessage™ '[{q}]) < QLength(q)
then WaitingToSend := {t} < WaitingToSend

end

Remove_FromWToR = any q t
where ¢ € Qtype At € WaitingToReceive ' [{q}]
A card(QMessage™ ' [{q}]) > 0
then WaitingToReceive := {t} < WaitingToReceive

end

Locking queue mechanism and critical sections vary so much from one RTOS to
another, it is hard to give universal guidance about how a locking mechanism is
used by several RTOSes in any given situation. Therefore, this part has been left

out from the presented guidelines.

8.7 Memory Management

The RTOS provides memory management techniques to assign memory to ob-
jects. The memory usually is divided into fixed size memory blocks which can
be requested by objects. Each object in the system (process, queue, semaphore,

...etc) is assigned a private memory space.
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To deal with memory management techniques, we introduce the following Event-B

concepts:

block set: A set of all memory blocks:
Blocks C BLOCK
block-size function: A function that defines the size of each block:
BlockSize € Blocks — N
blockAddr function: A function that defines the start address of each block:
BlockAddr € Blocks - ADDR

where, ADDR is a constant set defined as: ADDR = StartAddress.. EndAddress. StartAd-
dress and EndAddress are constants representing the start and the end addresses of
the heap structure and are defined in terms of N.

object: A set of objects in the system:
object € Blocks — OBJECT

The memory blocks can be further divided into two sets, allocated blocks and free

blocks as follows:

partition(Blocks, FreeBlocks, AllocBlocks)

To ensure that blocks are consecutive and guarantee that a block can not be

allocated for two distinct objects, we introduce the following invariant:

Vb1, b2-b1 € Blocks A b2 € Blocks A bl # b2 = BlockAddr(bl) .. (BlockAddr(bl) +
BlockSize(b1) — 1) N BlockAddr(b2) .. (BlockAddr(b2) + BlockSize(b2) — 1) = @

In order to model the process of memory allocation and deallocation, we introduce
Alloc1,2 events to allocate memory and assign it to an object and Free event to
free memory blocks.

Allocl = any s b co
where s € N A b € FreeBlocks N s >0
A BlockSize(b)=s N ¢ € BLOCK \ Blocks A o € OBJECT \ ran(object)
then FreeBlocks := FreeBlocks \ {b} || AllocBlocks := AllocBlocks U {b}
|| object := object U {b — o} end

Alloc! is used to allocate enough memory to be assigned to the object. The size
of the memory is equal to the size requested by the object. However, if all blocks
are not of adequate size to the requested one, the following event can be used to
divide the free memory block into two blocks. The first block is of equal size as
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requested and is used to allocate to the object. The second block is added to the
set of free blocks. This allocation process is know as the best-fit algorithm.

Alloc2= any sbcok
where s € N A b € FreeBlocks N s> 0
A BlockSize(b) > s A (Vk.k € BlockSize|FreeBlocks] A\ k < BlockSize(b) = k < s)
¢ € BLOCK \ Blocks N o € OBJECT \ ran(object)
then BlockAddr := BlockAddr <— {b — BlockAddr(b) + s, ¢ — BlockAddr(b)}
|| BlockSize := BlockSize <— {b — BlockSize(b) — s, ¢ — s}
|| AllocBlocks := AllocBlocks U {c} || object := object U {c + o0} end

The guard Vk.k € BlockSize[{ FreeBlocks}] A k < BlockSize(b) = k < s guarantees that
the free-block b is the best-fit free block.

To free an allocated memory block, the following event is introduced:

Free = any b
where b € AllocBlocks
then FreeBlocks := FreeBlocks U {b} || AllocBlocks := AllocBlocks \ {b}

end

The problem of fragmentation occurs when part of allocated blocks are unused.
The fact that the system allocated memory is more than is requested can be dealt
with in an abstract form. However, we have left this topic from the guidelines as

FreeRTOS do not deal with fragmentation problems.

8.8 Comparison

This section compares our guidelines to Craig’s models of operating system kernels.
Craig carried out his development in Z, and Object Z with some CCS (Calculus of
Communicating Systems) whereas we use Event-B formal method to develop our

guidelines.

In our modelling guidelines, the main abstract data structure is a“set”. Sets are
simple data structures that can be easily refined to more complex data structures,
such as sequence and linked lists. The approach we presented in Chapter 7 assists
in reusing data refinement patterns to resume the development of our the abstract

models’ “

sets”. This way we save more time and proof efforts while building
FreeRTOS models. Craig [23, 24] does not adopt any approach that helps to reuse
data refinement models. He rather focuses on his second book [24] to carry out

the refinement of the abstract models mentioned in the first book [23].

Our guidelines majorly cover the common concepts of any RTOS, such as process

tables, queues, semaphores and memory. Craig’s models, however, are richer and
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cover different concepts that can be found in some complex kernels, such as virtual

storage.

Some of the definitions and data structures used in Craig’s models are different
from the definitions we adopted in the presented guidelines. Here we are going
to compare the definition of some of the modelling concepts of our guidelines and
Craig’s models for three aspects: process management, queue management, and

memory management.

The definition of process management in Craig’s models is similar to the one
presented in the guidelines. Craig defines processes as set of process names and
the attributes of the process are mappings from process identifiers to the various
attribute types. Process status is defined as a function from process names to
process state set and he also defines a number of operations to change a process
from a state to another, such as: SetProcessStatusToReady, SetProcessStatusToRunning,
SetProcessStatus ToWaiting, etc. The context switch specified in Craig’s book involves
a number of variables for registers and stacks which we do not specify in our
guidelines. The registers and stacks defined in Craig’s models are: the general
register set is hwregset, the stack is in hwstack, the instruction pointer (program
counter) is hwip and the status word is denoted by hwstatwd. STATUSWD is an
enumeration, for example: overflow, division by zero, carry set. He also defines
a number of attributes for a process which map from process identifiers to reg-
isters and stacks which are process stack pstatcks, process status words pstatwds,
process general registers pregs, and process instruction pointer pips. The context
switch then happens saving all hardware registers used by the running process (i.e
hwtack' (pid?) = hwstack, pip’s(ids?) = hwip, etc) and restoring all hardware registers

for the new process (hwstack’ = pstacks(p?), hwip = pips(p?)).

Craig modelled FIFO queue as an injective sequence while we are abstracting the
queues as sets. With our investigation on patterns, the abstract set of queue can
easily be refined by sequence pattern or ordered linked list pattern depending on

the implementation of queue.

We define two events to send and receive items from queues which are: Queue_Send
and Queue_Receive. Waiting messages are defined in our guidelines as a function
from process set to queue set. We define two waiting messages events to store
processes that failed to send/receive items to/from queues which are: Add_ToWToS
and Add_ToWToR. Craig defines Enqueue and Dequeue operations using concate-
nation and extraction operations. Concatenation is used to add an element to a
sequence, whereas extraction is used to remove an element from a sequence. Craig
also defines waiting messages operations to store processes that failed to send an
item to a queue or receive an item from a queue. The AddWaitingSenders opera-
tion is defined to enqueue the failed process to the sequence of failed processes
waitingsenders whereas AddWaitingReceivers operation is defined to enqueue the failed

process to the sequence of failed processes waitingReceivers.
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Memory management in Craig’s model has a number of definitions. ADDRESS
defines the address of memory. It ranges from 1 to maximum constant value.
MEMDESC describes a region of store whose address is given by the first component
and whose size is given by the second. The free space is called Holes and is defined
as sequence of MEMDESC. The used memory is captured by usermem which is also
defined as a sequence of MEMDESC. He defines a number of operations such as:
RSAllocateFromHole performs storage allocation from free store. FreeMainstoreBlock is
used for freeing of an allocated block MergeAdjacentHoles is used to merge djacent

holes to form larger ones.

Our guidelines defines memory blocks as sets. We also define the address of a
block as a function from blocks to address set. The size of blocks are defined as a
function from blocks to set of natural number, N. The guidelines cover two types
of events: allocation events to allocate memory to the created object and free event
to free allocated memory. Unlike Craig’s models, the fragmentation issue is not

addressed in the presented guidelines.

8.9 Some Tips on Developing Theories in Event-B

In this section, we provide some suggestions drawn from our experience of using
the theory feature. The suggestions explain how to develop a theory using the

theory plug-in and how to validate theories.

Defining Operators

Operators can be expressed in terms of predicates or expressions. A predicate
resembles an operator that returns either true or false. A predicate is formed
from a number of expressions. On the other hand, expressions can be formed by
applying predicates to expressions. For instance, the addition formula over two
integer numbers, Add (3, 5) is an expression and is called an expression operator.
On the other hand, the comparison predicate over integers bool(3 > 5) is called a

predicate operator.

Well-definedness(WD) can be used to specify the preconditions over the parameters
and to ensure their WD. For instance, if the defined operator has two parameters
a and b, and the requirement is of a greater than or equal to b, then, this can be

regarded as the well-definedness condition a > b.

Defining Recursive Operators

Operators can be defined in terms of themselves. Such operators are called re-

cursive operators. Recursive definitions in theories are defined on inductive types.
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Two steps are required to define a recursive operator: The first is to have an ar-
gument (of an inductive type) for the recursive definition and the second step is

to formulate the recursive definition.

For instance, one may need to define summation operator. This can be achieved
by:

— Constructing an inductive data type: list € List(N)

— Writing the inductive definition of summation over the inductive data type:

Definition:

match list

sum(nil) 0

sum(cons(n,1)) | n+ sum(l)

Note that List is an inductive data type defined in [18].

We define the recursive operator over a recursive data type (List). The result
of recursive operator sometimes needs to be converted to a suitable data type.
For instance, one may need to add a certain number to each element of a set,
this requires the formalisation of a recursive definition over an inductive data
type such as List, which adds a number to each element of the set resulting in
an answer of the form List. In order to convert it to a set, another recursive
definition is needed to convert a list to a set. The recursive operator listToSet

transforms a list to a set. It can be defined as follows:

Parameter:

« list € List(T) : List of any type (e.g. natural numbers)

Definition:

match list
listToSet(nil) o)
listToSet(cons(n, 1)) | {n} U listToSet(l)

Note that the theory plug-in does not support the definition of a recursive operator

over two or more inductive arguments.

8.9.1 Defining Polymorphic Constants

Polymorphic constants are quite useful in formalising several operators.

getFirst_deleteFirst_sl can return the constant null if the removed node is the
only node available in the list. The theory plug-in allows to define some polymor-
phic constants such as empty sequence. The polymorphic empty sequence can be

defined as an operator with no argument as follows:
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O: 7+ A

Polymorphic constants that form an element of a set such as nil can not be defined
by the theory. For all the operators that require such a constant, we need to regard
that constant as an input parameter of the operator. An example of this is the

aforementioned operator getFirst_deleteFirst_sl(nds, nxt, fst, null)

In this operator, we regarded null as an input parameter, since the theory does

not allow null to be formalised as an operator with no argument.

8.9.2 Conditional Expressions

Case analysis can be performed by using conditional expressions. Conditional
expressions allow a single assignment statement to choose between different values
based on condition(s). Although, there is no operation that allows a specifier to
directly perform a case analysis in a single action of an Event-B model, theory
plug-in supports the use of COND for operators definitions. For instance, the
definition COND(a < b,5,6) corresponds to the statement if ¢ < b then 5 else
6. For more complex statments such as if a < b then 5 else if b < ¢ then 3
else 4. We can write COND (a < b,5, COND(b < ¢,3,4)). The condition(s)

written in COND can be of any type and not just natural numbers.

8.9.3 Composition of Operators

The theory feature supports combining operators into more complicated ones. We
can build up complicated operators from simple ones, where the output of one
operator becomes the input of another. For instance, listToSet operator is
used in conjunction with the List operator as described in the following example:
listToSet(cons(10, cons(23, cons (4,mil)))). Operators can also be defined
over mixed theories where it is possible for an operator to include operators from
multiple theories. This requires importing the required theories into the one being

used to define the wanted operator.

8.9.4 Decomposition of Operators

Decomposing operators is the reverse process of composing operators. It is of-
ten convenient to decompose a complicated operator into two or more operators.
Breaking down the complex operator into smaller operators will facilitate the treat-
ment of complex operators and simplify discharging of their proofs. For instance,
let us define an operator that adds a node a based on its priority ap to the appro-
priate position of a descendingly ordered singly linked list. Before embarking into
the definition of the operator, we need to understand the structure of singly linked

list. Singly linked list is composed of nodes, each of which contains a data and a
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pointer that references the next node. The following diagram shows the structure

of singly linked list.

Pri(c)=10  pri(b)=4

ap=3

Figure 8.2: inserting a node based on its priority to descendingly ordered
singly linked list.

The parameters of the operator are: a set of nodes nds, a first node fst, a next
pointer nxt, priority of nodes pri, a new node a, and the priority of the new node

ap. The definitions of these variables are listed as follows.

nds € P(S)
fst € nds U {null}
nat € nds \ {null} — nds \ {fst}

— pri € nds - N
—a€Ss
—ap €N

The definition of the operator used for updating nzt pointer can be written as

follows:
Definition:

L

getNext_insert_desc_sl(nds, nat, pri, fst, a, ap)

net <+ ({a > fst | ap > pri(fst) V fst = null} U{j — a | Im-j — m € nat A
pri(j) > ap A ap > pri(m)} U{ar— m|3j-j— m € nat A

pri(§) > ap A ap > pri(m)} U {nzt ™ (null) — a | ap < pri(nat™(null))})

The first union adds the new node at the beginning of the list if its priority is
greater than or equal to the first node, the second and the third unions add the
new node in the middle of the list, if the priority of the node to be inserted is less
than a certain node j and greater than or equal the node m (the successor node
of j), the last union adds the new node at the end of the list if its priority is less
than the last node.

Although this definition is correct from the mathematical point of view, it is com-
plex to understand and prove. Thus, it is very convenient to break this complex

operator up into a composition of the following operators.
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— dnsertToFirst(nds, fst, pri, a, ap) = {a > fst | ap > pri(fst) V fst = null}

L

— insertToMiddle(nds, nxt, val, pri, a, ap)
{J—al|3Im-j— menzt Apri(j) > ap A ap > pri(m)} U
{a—m|3j-5— menzt Apri(j) > ap A ap > pri(m)}

— insertToLast(nds, va, pri, a, ap) = {nzt = (null) — a | ap < pri(nzt=(null))}

The definition of getNext_insert_desc_sl can be re-written to:

getNext_insert_desc_sl(nds, nat, pri, fst, a, ap) =
nxt <+ insertToFirst(nds, fst, val, pri, a, ap)U
insertToMiddle(nds, nxt, val, pri, a, ap)U

insertToLast(nds, val, pri, a, ap)

Decomposing complex operators into two or more operators introduces additional
operators that are not of direct use to the users and mixing them together with
other operators makes it difficult for a user to differentiate between the operators
used in the definition of other operators and the operators used by the users.
Thus, it is recommended to split the theory into two parts: the first one has all
the operators developed for the users and the second one has all the operators used

in the definition of other operators.

8.9.5 How to Check the Validity of the Operators

Discharging the POs of the formulae does not guarantee that the formulae is what
the users intended to define. The definitions of the formulae can sometimes return
unintended results. So it is important to check the validity of the formula to ensure
that it always return the correct result. Verifying the validity of the definitions can
be obtained by the use of rewrite rules, theorems, and inference rules to capture
different execution cases. The definitions of rewrite and inference rules can be used

to facilitate proofs and can also help in verifying the validity of the formulae.

For instance, assume that we have two operators: getNext_insertFirst_sl(nds, n, nxt, fst)
updates a next function after inserting a new node at the beginning of a singly
linked list and getNext_deleteFirst_sl(nds, fst, nzt) operator updates a next func-
tion after removing the head from a singly linked list. In order to assure the

validity of both operators, we need to prove the following theorem:

getNext_insertFirst_sl(nds \ {fst}, fst,
getNext_deleteFirst_sl(nds, fst, nxt),
getFirst_deleteFirst_sl(nds, nxt, fst)) = nxt



Chapter 9

Conclusions and Future Work

We aim to provide systematic approaches that support the development of complex
systems in Event-B. We have attempted to support reusability and traceability
mechanisms, along with the management of complexity in complex systems of
Event-B. FreeRTOS was chosen as a case study to identify and address the general
problems (complexity, reusability and traceability) in the formal development of

complex systems.

We applied compositional design strategy to manage the complexity of FreeRTOS.
With the compositional design strategy, FreeRTOS is divided into smaller and in-
dependent components that are easy to manage and are recomposed later. Thus,
we categorise requirements into a set of requirements for each component and a set
of composition requirements for the composition purposes. The models then are
carried out separately without the need of using decomposition approaches, follow-
ing the necessary composition of these separate models. We applied composition

technique to link composite requirements with the composed model.

To facilitate building Event-B models from the requirements and retain traceability
to requirements in Event-B models, we proposed a staged approach and evaluated

the approach through a queue management case study.

To support reusability, we proposed an approach based on the generic instantiation

and composition techniques to support the reusability of data refinement patterns.

Apart from the above mentioned main contributions of the thesis, we also have sub-
contributions including the development of theories for the linked lists in Event-
B, the construction of Event-B models for FreeRTOS that can contribute to the
Verified Software Repository, and the derivation of a set of modelling guidelines
for RTOS based on our experience with FreeRTOS models.

The following sections give more details about the main contributions and outline

the future directions of this research.
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Chapter 9 Conclusions and Future Work

9.1 Summary of Contributions

9.1.1 Building Traceable Event-B Model from Requirements

Bridging the gap between the requirements and the formal models to support re-
quirements traceability is a key part of requirements validation. Our work presents
an approach for incrementally constructing a traceable formal model from the in-
formal requirements. The approach makes use of UML-B and atomicity decom-
position (AD) approaches. UML-B provides the UML graphical notation that
enables the development of an Event-B formal model, while the AD approach pro-
vides a graphical notation to illustrate the refinement structures and assists in
the organisation of refinement levels. The presented approach comprises of three

stages:
— Classify Requirements

In this stage, the requirements are classified based on the Event-B components.
The classification of the requirements based on Event-B structures, helps to bridge
the gap between the requirements and the Event-B models, and enables the use of
existing Event-B techniques (UML-B and AD) to construct the Event-B models.

— Construct Semi-Formal Artifacts and Develop Refinement Strategy

We make use of UML-B, AD diagrams and structured English to represent the re-
quirements as semi-formal artifacts. Representing requirements using semi-formal
artifacts is reasonably simple, and at the same time the movement from the semi-

formal artifacts to the Event-B is straightforward.
— Construct Formal Models

In this stage, we use the UML-B tool and the AD tool to generate the Event-B
models and also manually write the corresponding Event-B from the structured
English representation depending on the type of requirements/semi-formal arti-

facts. The composition technique is used to integrate the resulting Event-B.

We applied the approach to queue management case study, and drew some con-
clusions in Chapter 5. Further evaluation of the approach through larger case
studies is needed to study the scalability of the graphical models and evaluate the

requirements categorization.

9.1.2 Linking Composite Requirements with Composed Model

We adopt compositional strategy to manage the complexity of FreeRTOS develop-
ment. The compositional strategy aims to divide the system into independent and

smaller parts, and later recompose these parts. Thus, FreeRTOS requirements are
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divided into two classes: the first class introduces a set of requirements for each
individual component and the second class introduces composition requirements
for linking the individual components together. Following that, each set of the
requirements of the first class are used to construct an Event-B formal model.
Thus, the models are constructed separately and later, we apply the composition
technique to link the composite requirements with the composed model. During
this work, we make use of carrier sets as a way of linking models together in-
stead of shared variables. The use of carrier sets instead of shared variables helps
to avoid replicating the shared variables/properties across the individual models,
and provides us loosely-coupled models that could be reused easily than the mod-
els with shared variables/properties. Carrier sets also help to avoid restrictions
imposed by shared variables such as the inability to perform data refinement of
shared variables. Properties that are shared across the models can be described
only in the composed models. Shared event composition is used to generate the
composed models. The composite requirements point us clearly to the events to
be composed. We found out that the composition could be simplified through ab-
straction; the more abstract the sub-models are composed, the lesser is the effort

of composing the number of the events.

9.1.3 Reusing Data Refinement Patterns through Generic Instan-

tiation and Composition

The benefits of applying reusability at different stages of the software development
cycle are widely recognized. In this thesis, we attempted to present an approach
to facilitate the reusability in Event-B formal method through the use of generic
instantiation and composition techniques. Generic instantiation technique is used
to create an instance of a pattern that consists of refinement chain and allows re-
placement of the pattern names (types, constants, variables, events) by the names
that suit the development at hand. The composition technique, on the other hand,
enables the integration of several sub-models into a large model. The combination
of generic instantiation and composition techniques provides renaming and incor-
poration mechanisms to integrate the pattern into the problem. We applied this
approach to data refine the abstract “set” of FreeRTOS to circular doubly linked
list. The overall POs of the pattern machine is 41 POs, of which 17 were proved
interactive. Reusing the pattern using the proposed approach saves proving efforts
because POs that are originated from the pattern only need to be discharged once

and not for all the instantiations of the pattern.
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9.2 Future Work

9.2.1 Reverse Engineering of Structured Languages to Event-B

Systems source code is considered an important source of information that de-
scribes the actions to be performed by the system. Understanding how a program
works is a difficult task specially for systems that are not very well documented.
The process of constructing high level representations of an implementation is
known as reverse engineering. During our work, we find that most of the resources
of FreeRTOS describe the system from the application developer point of view
and do not give more details about the RTOS level. We have spent time to un-
derstand FreeRTOS C codes to come up with design requirements. As a future
goal, we plan to look at the effect of using AD diagrams to bridge the gap between
the code and the Event-B formal models, and ultimately extract the requirements
from the structured programs. In a structured language, such as C, a program is
divided into blocks called functions or procedures. Each function is performed a
specific task and isolates one block of code from other independent block of code.
Structured programs are often composed of flow structures such as selection and
repetition. The reason of choosing AD approaches to assist in the process of re-
verse engineering the structured program code into Event-B models is due to the
availability of AD patterns that support flow structures of structured program-
ming languages. AD diagrams offer patterns that support sequence, selection and
repetition, which are common flow structures of structured programs. Sequence
flow structures of structured programs cover ordering execution of statements. The
selection flow structures of structured languages cover if-then-else conditions and
the repetition flow structures of structured programs cover for/while loop...etc.
The AD diagrams can be combined to show the overall structures of a piece of
code, and this adds another value and facilitates the organization of the refine-
ment strategy. There are some issues that should be explored more thoroughly
such as the need of some guidelines that assist in extracting invariants from the

programs.

9.2.2 Verifying Linear Temporal Properties

One important formal verification approach of the kernel of real-time operating
systems (RTOS) is the verification of temporal properties such as liveness proper-

ties.

One of the main future direction is to study the use of AD approach to support

the verification of linear temporal properties of Event-B formal models.

The strength of the AD approach is that it shows the relationships between the

abstract and refinement levels. Expressing temporal properties using AD diagrams
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can be translated easily into Event-B models. The proof of refinement guarantees
that the formal model satisfies these temporal properties. We are going to study
how to express liveness properties into Event-B formal models using AD diagrams
and guarantee the preservation of these properties. We are also trying to investi-

gate several AD patterns that support different kinds of temporal properties.

9.2.3 Evaluate the General Guidelines for Modelling RTOS Ker-
nels

The devised guidelines given in Chapter 8 need to be evaluated through several case
studies. As a direction for future research, we are going to choose an RTOS kernels
such as UCOS, and evaluate the guidelines by applying them to build UCOS Event-
B model. We expect to improve these guidelines further while applying them to
different case studies. Moreover, applying the guidelines to different case studies
helps in learning different lessons and have solid experience about building RTOS
kernels using the formal methods. We also would like to extend the guidelines
to cover timing properties. We will adopt Sarshogh patterns [68] to verify timing

properties (expiry, delays and deadlines) throughout the refinement levels.

We also would like to utilise several case studies to clarify, evaluate and strengthen
our approach for generating traceable Event-B models. More guidelines can be
added to extract the appropriate Event-B formalism from requirements. We also
would like to augment ProR tool [45] with our approach to add a capability of

tracing requirements in backward direction.
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FreeRTOS Requirements

A.1 Task management requirements

Label | Requirements

TSK1 | Tasks can be created and deleted.

TSK2 | Only one task can be executed on a processor at a time.

TSK3 | Tasks assigned priority when created.

TSK4 | The processor handles events that are usually signaled by interrupts by
executing its interrupt service routine (ISR).

TSK5 | Context switch is the mechanism used for swapping tasks.

TSK6 | The scheduler can exist in one of the following states: not started, run-
ning, and suspended.

TSK7 | When the scheduler is started, the idle task is created to ensure that
there is always at least one task that is able to run.

TSKS8 | No context switch is performed when the scheduler is not in the running
state.

TSK9 | When the scheduler in the not started state all the created tasks are
deleted.

TSK10| A task can hold an item, a task-item considers one field that descripes
the information of the TCB of a task.

TSK11| The running task can send/receive an item.

TSK12| The interrupt can send/receive an item.

TSK13| A task can be in one of the following states: ready, blocked or delayed,
or suspended state.

TSK14| A task can be put in the collection of ready tasks if the scheduler is
running.

TSK15| When the idle task is created it will be added to the collection of ready
tasks.

TSK16| The idle task is always ready and never blocks.
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Label

Requirements

TSK17

A suspended task can be resumed by any task.

TSK18

The running task can resume a suspended task.

TSK19

A delayed task can get out of delay state and transfers to the ready state

when the scheduler is running.

TSK20

A task can be put in the collection of pending tasks if the scheduler is

suspended.

TSK21

A task can be put in the collection of delay tasks.

TSK22

A task can be put in the collection of suspended tasks.

TSK23

When the scheduler returns to the running state, any task in the collec-

tion of pending tasks will be moved to the collection of ready tasks.

TSK24

The scheduler should be suspended while adding the running task to the

collection of delay tasks to prevent a context switch from occurring.

TSK25

INCLUDE_TaskSuspend must be set to TRUE to be available.

TSK26

A task can delete itself or any other task. This feature is available only
when INCLUDE _TaskDelete is set to TRUE.

TSK27

Any task can sleep for certain ticks and placed into the collection of
delay tasks based on its wake-up time. The time at which the task
should be woken is calculated by adding the delay time of a task to the

current time pointed by the timer.

TSK28

A delay task is moved to ready state only when its delay time is expired.

TSK29

The clock that generates interrupts at a regular rate to measure time.

TSK30

The length of the time slice is set by configTICK _RATE_HZ configu-

ration constant.

TSK31

The scheduler runs itself at the end of each time slice to check if there

is any task requires to be woken and to select the next task to run.

TSK32

Delay feature is only available if the configuration constant
INCLUDE_TaskDelay is set to TRUE.
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Label

Requirements

TSK33

Delay wuntil feature is only available if the configuration
constantINCLUDE_TaskDelayUntil is set to TRUE.

TSK34

Delay until feature delays a task until a specific time has passed since the
given time reference whereas delay feature delays a task for the defined
time from the time of call, thus, the time at which a task should be
woken in case of delay until feature is calculated by adding the sleep
time of a task to the previous wake time (the time at which the task last
left the blocked state).

TSK35

The number of ticks have been passed while the scheduler is suspended

are consider missed ticks.

TSK36

When the scheduler returns to the running state, missed ticks should be
processed by by incrementing the tick counts once for each missed tick

to check if any delay task requires waking.

TSK37

The scheduler can be suspended several times, the scheduler will get out
of the suspended state by resuming the scheduler for every preceding

call has suspended it.

TSK38

A blocked task is placed into either the collection of delay tasks if its
wake-up time has not overflowed or the collection of overflow delay tasks

if its wake-up time has overflowed.

TSK39

When the tick is incremented, the collection of delay tasks and the collec-

tion of overflow delay tasks are swapped if the tick count has overflowed.

TSK40

The maximum priority is set by the configuration constant
configMAX_PRIORITIES.

TSK41

Base priority stores the original priority the task has when it is created,

whereas active priority can be modified at any point in time.

TSK42

Higher priority readied tasks run before lower priority readied tasks,

task within the same priority share CPU time in time slices.

TSK43

The idle task has the lowest possible priority (priority zero) to ensure it

never prevents a higher priority task.

TSK44

The active priority of a task can be replaced by its original priority.

TSK45

Updating the priority of a task or returning the priority of a task
operations are available only when INCLUDE_TaskPriorityGet and
NCLUDE_TaskPrioritySet are set to TRUE.

TSK46

A context switch should perform if the priority being set by updating

task priority operation is higher than the currently executing task.
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Label

Requirements

TSK47

A context switch should perform when there is a ready task with higher
priority than the current running one and the state of the scheduler is
running but when the scheduler is suspended, the context switch will
perform and schedule the highest priority task as soon as the scheduler

is resumed.

TSK48

The are some other cases where a context switch can perform such as:
incrementing the tick count, adding a new task to the collection of ready
tasks, suspending the running task, deleting the running task, resuming
a task, resuming the scheduler, moving delay tasks to the collection of
ready tasks. All these cases can result in having a task with a priority
higher than the priority of the current running task, thus a context

switch is necessary to schedule the highest priority task.

TSK49

Interrupts also have priority,configMAX _PRIORITY defines the high-

est interrupt level available to interrupts.

TSK50

Higher priority interrupt run before lower priority interrupt.

TSKb51

Lower priority task/interrupt can be interrupted by higher priority
task/interrupt before the lower priority task/interrupt completed its ex-

ecution.

TSK52

Each task has its own context.

TSK53

Context switch is performed by storing the context of the running task

and loading the context of next task to run.

TSKbH4

Critical section protection is used to protect regions where mutual ex-
clusion protection is needed, the protection is performed by disabling

interrupts.

TSKbH5

The processor always gives priority to execute interrupts over tasks, the

ISR must complete its execution without being interrupted by tasks.

TSK56

When the ISR is completed, the kernel dispatches the correct task.

TSK57

Interrupts must save their context to the stack.

TSKb5H8

Tasks in the blocked state always have a 'timeout’ period, after which
the task will be unblocked.
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A.2 Queue management requirements

Label Requirements

QUE1 Queues can be created and deleted.

QUE2 The length of the queue is identified when the queue is created.

QUE3 Task can only send item to a queue when there is enough room in the queue. Simi-
larly, task can only receive an item from a queue when the queue is not empty.

QUEA4 A queue contains a limited number of items.

QUES5 Each queue has two collections of waiting tasks: tasks waiting to send and tasks
waiting to receive.

QUEG6 Tasks fail to send an item to a queue because the queue is full is placed into the
collection of tasks waiting to send. Similarly, tasks fail to receive an item from a
queue because the queue is empty is placed into the collection of tasks waiting to
receive.

QUE7 Every task is mapped at most to one collections of waiting tasks.

QUES When a queue becomes available (there is an item in the queue to be received) then
the highest priority task waiting for item to arrive on that queue (if any) will be
removed from the collection of tasks waiting to receive.

QUE9 When a queue becomes available (there is a room in the queue), then the highest
priority task waiting to send item to that queue will be removed from the collection
of tasks waiting to send.

QUE10 | The queue must be locked when the running task failed to send or receive an item
to a queue.

QUE11l | The queue should be unlocked when the running task has been added to the collec-
tion of waiting tasks.

QUE12 | Unlock queue operation processes the waiting tasks by removing all tasks from the

collections of waiting tasks.
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A.3 Memory management requirements

Label Requirements

MEM1 Kernel allocates RAM to each created object.

MEM2 Memory blocks are consecutive to each other and non-overlapping.

MEM3 Memory in schemel does not be freed once it has been allocated.

MEM4 The total size of the array is defined by configTOTAL_HEAP_SIZE
constant.

MEM5 The scheduler ensures that blocks are always aligned to the required
number of bytes.

MEMG6 FreeRTOS provides different alignment masks based on architecture.

MEMT7 Before allocation, the scheduler ensures that the size of the requested
memory is valid (not zero) and that there is enough free memory to
serve the request.

MEMS The created object in scheme?2 is placed in the block of adequate size in
which it will fit (if any), if no block of adequate size is found and there is
a block larger than what is required, it will be split into two; one block
of the requested size is assigned to the object and the second block is
added to the list of free blocks.

MEM9 In scheme?2 if  the block found is larger than
heapMINIMUM _BLOCK _SIZFE, then it can be split into two blocks.

MEM10 Memory in scheme2 can be freed once it has been allocated.

A.4 Composition requirements
COMPI1-EVT | The kernel has to allocate RAM each time a task, queue,

semaphore or mutex is created.

COMP1-INV Tasks and queues are distinct.

The sub-requirements of COMPI1-EVT are:

MEM1

Kernel allocates RAM to each created object.

MEMSS8 | The created object in scheme? is placed in the block of ade-

quate size in which it will fit (if any), if no block of adequate
size is found and there is a block larger than what is required,
it will be split into two; one block of the requested size is
assigned to the object and the second block is added to the
list of free blocks.

TSK1

Task can be created.

QUEL

Queues can be created.

QUEL3

Queues are three types: queues, semaphores, and mutex.
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COMP2-EVT

semaphore or mutex is deleted.

The sub-requirements of COMP2 requirements are:

MEM10 | Memory in scheme2 can be freed once it has been allocated.

TSK1 Task can be deleted.

QUE1 Queues can be deleted.

QUE13 | Queues are three types: queues, semaphores, and mutex.
COMP3-EVT | The running task can send/receive an item to/from a queue.
COMP3-INV Task items and queue items are distinct.

The sub-requirements of COMP3-EVT requirement are:

TSK10

The running task can hold an item or remove an existing

item.

QUE14

A queue can be used to send and receive items.

COMP4-EVT

tasks if the scheduler is running.

COMP4-INV1

also be added to the collection of delay tasks.

The sub-requirements of COMP4-EVT requirements are:

QUE14 | An object can be removed from the collections of waiting
tasks.
TSK14 | A task can be put into the collection of ready tasks if the
scheduler is running.
TSK20 | A task can be put into the collection of pending-ready tasks
if the scheduler is suspended.
COMP5-EVT | The blocked running task with block-time that is greater

ing tasks and also the collection of delay tasks.

The sub-requirements of COMPS5-EVT requirement are:

The kernel has to free RAM each time a task, queue,

A task that is removed from the collection of waiting tasks
is placed into the collection of pending-ready tasks if the

scheduler is suspended or placed into the collection of ready

A task that is added to the collection of waiting tasks must

than zero and less than the value determined by the con-
stant PortMAX_DFELAY is added to the collection of wait-
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QUE14 | An object can be added to the collection of waiting tasks if
its block-time is greater than zero and less than the constant
PortMAX_DELAY .

TSK21 The running task can be put into the collection of delay
tasks.

COMP6-EVT | The blocked running task with block-time that is equal to
the value determined by the constant PortMAX_DELAY is

added to the collections of waiting tasks and also the collec-

tion of suspend tasks.

The sub-requirements of COMP6-EVT are:

QUE1L5 | An object can be added to sending/receiving collections
of waiting tasks if its block-time is equal to the constant
PortMAX_DELAY .

TSK22 The running task can be put in the collection of suspend
tasks.

COMPT-EVT | The priority inheritance is used to raise the priority of the

mutex-holder task whenever the higher priority task (run-

ning task) attempts to hold that mutex.

The sub-requirements of COMP7-EVT requirement are:

TSK56 | A task with lower priority can be raised by the priority of
the running task.
QUE16 | The object that holds a mutex can be obtained.

COMPS-EVT | The priority disinheritance is used to set the active priority
of the task holder back to its original priority.

The sub-requirements of COMPS8-EVT requirement are:

TSK44 | The active priority of a task can be replaced by its original
priority.
QUE16 | The object that holds a mutex can be obtained.
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Queue Event-B Model

The context:

CONTEXT Cntxt
SETS
ReadyTask
Task_ SET
Queue_SET
Item SET

END

The abstract model:

MACHINE MO0

SEES Cntxt

VARIABLES
TaskQueueSend
FailedTaskQueueSend
CurrentTask
Task
Queue
Item
priority
Length
Queueltem
TaskItem

INVARIANTS
Task.type : Task € P(Task_SET)
Queue.type : Queue € P(Queue_SET)
Item.type : Item € P(Item_SET)
priority.type : priority € Task — N,
Length.type : Length € Queue — N,
Queueltem.type : Queueltem € Item — Queue
TaskItem.type : Taskltem € Item — Task
invl : CurrentTask C Task
inv2: card(CurrentTask) <1
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inv_TaskQueueSend type : TaskQueueSend C CurrentTask
inv_FailedTaskQueueSend type : FailedT askQueueSend C CurrentTask
inv_xor : partition((TaskQueueSendUFailedT askQueueSend), TaskQueueSend, FailedT askQueueSend)
EVENTS
Initialisation
begin
act_TaskQueueSend : TaskQueueSend := @
act_FailedTaskQueueSend : FailedT askQueueSend := &
Task.init : Task := @
Queue.init : Queue := &
Item.init : Item := @
priority.init : priority := &
Length.init : Length := @
Queueltem.init : Queueltem := &
TaskItem.init : Taskltem := @

end
Event CreateTask =
any
t
where
grdl: t € Task_SET \ Task
then
actl: Task := Task U {t}
end
Event DeleteTask =
any
t
where
grdl: t € Task
then

actl: Task :=Task\ {t}
end

Event CreateQueue =

any
q
l
where
grdl: q € Queue_SET \ Queue
grd2: le N,
then

actl: Queue := Queue U {q}
act2: Length(q) =1

end

Event DeleteQueue =

any
q

where
grdl : q € Queue

then
actl: Queue := Queue \ {¢}
act2: Length := Length > {Length(q)}
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end
Event TaskQueueSend =
any
c
q
)
where
grd_self : ¢ ¢ TaskQueueSend
grd_xor : ¢ ¢ FailedTaskQueueSend
grdl : c € CurrentTask
grd2: q € Queue
grd3: i € TaskItem™ *[{c}]
grd4 : Length(q) < card(Queueltem™"[{q}])
then
act : TaskQueueSend := TaskQueueSend U {c}
actl: Queueltem := Queueltem U {i — ¢}
act2: Taskltem := TaskItem \ {i — c}
end
Event FailedTaskQueueSend =
any
c
q
1
where
grd_self : ¢ ¢ FailedTaskQueueSend
grd_xor : ¢ ¢ TaskQueueSend
grdl: c € CurrentTask
grd2: q € Queue
grd3: i € Taskltem™*[{c}]
grdd : Length(q) = card(Queueltem™*[{q}])
then
act : FailedTaskQueueSend := FailedT askQueueSend U {c}

end

END

The first refinement:

MACHINE M1

REFINES MO

SEES Cntxt

VARIABLES
TaskQueueSend
FailedTaskQueueSend
NoTaskInTaskWaitingToReceive
RemoveFromTaskWaitingToReceive
PlaceOnTaskWaitingToSend
Task
Queue
Item
priority

Length
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Queueltem
TaskItem
CurrentTask
TaskWaitingToSend

TaskWaitingToReceive

INVARIANTS

inv_NoTaskWaitingToReceice_seq: NoTaskInTaskW aitingToReceive C TaskQueueSend
inv_RemoveFromTaskWaitingToReceive_seq: RemoveFromTaskW aitingToReceive C TaskQueueSend
inv_PlaceOnTaskWaitingToSend type : PlaceOnTaskW aitingToSend C CurrentTask
inv_PlaceOnTaskWaitingToSend gluing : PlaceOnTaskWaitingToSend = FailedT askQueueSend
TaskWaitingToSend.type : TaskWaitingToSend € Queue — Task

TaskWaitingToReceive.type : TaskW aitingT oReceive € Queue — Task

EVENTS

Initialisation

extended
begin
act_TaskQueueSend : TaskQueueSend := &
act_FailedTaskQueueSend : FailedTaskQueueSend := &
Task.init : Task (=
Queue.init : Queue := <
Item.init: Item:= O
priority.init : priority:= <
Length.init : Length := <
Queueltem.init : Queueltem := &
TaskItem.init : TaskItem := &
act_NoTaskWaitingToReceice : NoTaskInTaskW aitingT oReceive := &
act_RemoveFromTaskWaitingToReceive : RemoveFromTaskW aitingT oReceive := &
act_PlaceOnTaskWaitingToSend : PlaceOnTaskW aitingToSend := @
TaskWaitingToSend.init : TaskWaitingToSend := @
TaskWaitingToReceive.init : TaskWaitingToReceive := &

end

Event CreateTask =
extends CreateTask

any
t
where
grdl: t € Task SET \ Task
then
actl: Task:= Task U {t}
end

Event DeleteTask =
extends DeleteTask

any
t
where
grdl : t € Task
then
actl: Task:= Task\ {t}
end

Event CreateQueue =

extends CreateQueue

any
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a
1
where
grdl : q € Queue_SET \ Queue
grd2: 1 e€N;
then

actl: Queue := Queue U {q}
act2: Length(q) :=1
end
Event DeleteQueue =
extends DeleteQueue
any
q
where
grdl : q € Queue
then
actl: Queue := Queue \ {q}
act2: Length := Length > {Length(q)}
end
Event TaskQueueSend =
refines TaskQueueSend
any
c
q
7
where
grd_self : ¢ ¢ TaskQueueSend
grd _xor : ¢ ¢ PlaceOnTaskW aitingToSend
grdl : c € CurrentTask
grd2: q € Queue
grd3: i € Taskltem™*[{c}]
grd4 : Length(q) < card(Queueltem™"[{q}])
then
act : TaskQueueSend := TaskQueueSend U {c}
actl: Queueltem := Queueltem U {i — ¢}
act2: Taskltem := Taskltem \ {i — c}
end
Event NoTaskInTaskWaitingToReceive =
any
c
where
grd_self : ¢ ¢ NoTaskInTaskW aitingToReceive
grd_seq: c¢ € TaskQueueSend
grd_xor : ¢ ¢ RemoveFromTaskW aitingT oReceive
grdl : TaskWaitingT oReceive = &
then
act : NoTaskInTaskW aitingToReceive := NoTaskInTaskW aitingT oReceiveU{c}
end
Event RemoveFromTaskWaitingToReceivel =

any
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where
grd_self : ¢ ¢ RemoveFromTaskW aitingT oReceivel
grd_seq: ¢ € TaskQueueSend
grd_xor : ¢ ¢ NoTaskInTaskW aitingT oReceive
grdl : q € Queue
grd2: q+— c € TaskWaitingT oReceive
then
act : RemoveFromTaskW aitingToReceive1l := RemoveFromTaskW aitingT oReceive1U
{e}
actl: TaskWaitingToReceive := TaskW aitingToReceive \ {q — c}
end
Event PlaceOnTaskWaitingToSend =
refines Fuiled TaskQueueSend
any
c
q
i
where
grd_self : ¢ ¢ PlaceOnTaskW aitingT oSend
grd_xor : ¢ ¢ TaskQueueSend
grdl : c € CurrentTask
grd2: q € Queue
grd3: i € TaskItem™ *[{c}]
grd4 : Length(q) = card(Queueltem™*[{q}])
then
act : PlaceOnTaskW aitingToSend := PlaceOnT askW aitingToSend U {c}
actl: TaskWaitingToSend := TaskW aitingToSend U {q — ¢}
end
Event RemoveFromTaskWaitingToReceive2 =
any
c
q
where
grd_seq: ¢ € PlaceOnTaskW aitingToSend
grdl : q € Queue
grd2 : g+ c € TaskWaitingT oReceive
then
actl: TaskWaitingT oReceive := TaskW aitingToReceive \ {q — c}
end

END

The second refinement:

MACHINE M2

REFINES M1

SEES Cntxt

VARIABLES
TaskQueueSend
FailedTaskQueueSend
NoTaskInTaskWaitingToReceive

RemoveFromTaskWaitingToReceive
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PlaceOnTaskWaitingToSend
LockQueue
RemoveFromTaskWaitingToReceive2
UnlockQueue
Task
Queue
Item
priority
Length
Queueltem
TaskItem
CurrentTask
TaskWaitingToSend
TaskWaitingToReceive
QueueFlg
INVARIANTS
inv_LockQueue_type : LockQueue C CurrentTask
inv_PlaceOnTaskWaitingToSend seq: PlaceOnTaskW aitingToSend C LockQueue
inv_RemoveFromTaskWaitingToReceive2_seq: RemoveFromTaskW aitingT oReceivez C
PlaceOnT askW aitingToSend
inv_UnlockQueue_seq: UnlockQueue C RemoveFromTaskW aitingT oReceive2
QueueFlg.type : QueueFlg € Queue - BOOL
EVENTS
Initialisation
extended
begin
act_TaskQueueSend : TaskQueueSend := &
act_FailedTaskQueueSend : FailedTaskQueueSend := &
Task.init : Task (=<
Queue.init : Queue ;=9
Item.init : Item:= &
priority.init: priority: =
Length.init : Length :=J
Queueltem.init : Queueltem := O
TaskItem.init : TaskItem:= &
act_NoTaskWaitingToReceice : NoTaskInTaskWaitingToReceive := &
act_RemoveFromTaskWaitingToReceive : RemoveFromTaskWaitingToReceive := J
act_PlaceOnTaskWaitingToSend : PlaceOnTaskWaitingToSend := &
TaskWaitingToSend.init : TaskWaitingToSend := &
TaskWaitingToReceive.init : TaskWaitingToReceive := &
act_LockQueue : LockQueue := @
act_RemoveFromTaskWaitingToReceive2 : RemoveFromTaskW aitingT oReceive2 :=
%)
act_UnlockQueue : UnlockQueue := &
QueueFlg.init : QueueFlg := &
end
Event CreateTask =
extends CreateTask
any
t

where
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grdl: t € Task_SET \ Task
then
actl: Task:= Task U {t}
end
Event DeleteTask =
extends DeleteTask
any
t
where
grdl: t € Task
then
actl: Task:= Task\ {t}
end
Event CreateQueue =

extends CreateQueue

any
q
1
where
grdl: q € Queue_SET \ Queue
grd2: 1 €Ny
then

actl: Queue := Queue U {q}
act2: Length(q) :=1
end
Event DeleteQueue =
extends DeleteQueue
any
a
where
grdl : q € Queue
then
actl: Queue := Queue \ {q}
act2: Length := Length 1> {Length(q)}
end
Event TaskQueueSend =
extends TaskQueueSend
any
c
q
i
where
grd_self : c¢ ¢ TaskQueueSend
grd_xor : ¢ ¢ PlaceOnTaskWaitingToSend
grdl : c € CurrentTask
grd2 : q € Queue
grd3: i € TaskItem '[{c}]
grd4 : Length(q) < card(QueueItem '[{q}])
then
act : TaskQueueSend := TaskQueueSend U {c}
actl: QueueItem := QueueItem U {i > q}
act2: TaskItem:= TaskItem\ {i — c}



Appendix B Queue Event-B Model 181

end
Event NoTaskInTaskWaitingToReceive =
extends NoTaskInTaskWaitingToReceive
any
c
where
grd_self : c ¢ NoTaskInTaskWaitingToReceive
grd_seq: c € TaskQueueSend
grd_xor : ¢ ¢ RemoveFromTaskWaitingToReceive
grdl : TaskWaitingToReceive = &
then
act : NoTaskInTaskWaitingToReceive := NoTaskInTaskWaitingToReceive U {c}
end
Event RemoveFromTaskWaitingToReceivel =
extends RemoveFromTaskWaitingToReceivel
any
c
q
where
grd_self : c ¢ RemoveFromTaskWaitingToReceivel
grd_seq: c € TaskQueueSend
grd_xor : ¢ ¢ NoTaskInTaskWaitingToReceive
grdl : q € Queue
grd2: q+ c € TaskWaitingToReceive
then
act : RemoveFromTaskWaitingToReceivel := RemoveFromTaskWaitingToReceivel U
{c}
actl: TaskWaitingToReceive := TaskWaitingToReceive \ {q— c}
end
Event LockQueue =
any
c
where
grd_self : ¢ ¢ LockQueue
grd_xor : ¢ ¢ TaskQueueSend
then
act : LockQueue := LockQueue U {c}
end
Event PlaceOnTaskWaitingToSend =
refines PlaceOnTaskWaitingToSend
any
c
q
i
where
grd_self : ¢ ¢ PlaceOnTaskW aitingToSend
grd_seq: c¢ € LockQueue
grdl : ¢ € CurrentTask
grd2: q € Queue
grd3: i € Taskltem™*[{c}]
grdd : Length(q) = card(Queueltem™*[{q}])
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then
act : PlaceOnTaskW aitingToSend := PlaceOnTaskW aitingToSend U {c}
actl: TaskWaitingToSend := TaskW aitingToSend U {q — c}
end
Event RemoveFromTaskWaitingToReceive2 =
refines RemoveFromTaskWaitingToReceive2
any
c
q
where
grd_seq: ¢ € PlaceOnTaskW aitingToSend
grdl : q € Queue
grd2: q+— c € TaskWaitingT oReceive
then
actl: RemoveFromTaskW aitingToReceive2 := RemoveFromTaskW aitingT oReceive2U
{c}
act2 : TaskWaitingT oReceive := TaskW aitingToReceive \ {q — c}
end
Event UnlockQueue =
any
c
where
grd_self : ¢ ¢ UnlockQueue
grd_seq: c € RemoveFromTaskW aitingT oReceive2
then
act : UnlockQueue := UnlockQueue U {c}

end

END
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