Heap Hot Spots Visualization in Java

Technical Report No. SOCS-01.8, May 2001

Babak Mahdavi
School of Computer Science
McGill University

bmahdal@cs.mcqill.cal

ABSTRACT

Data memory (heap) management is a particularly important
feature of the Java programming environment. The visualization
of memory location in form of hot spots can help to see how the
data cache is used during the execution of a program. The
behavior of such executed program can be thus speculated.
Through a series of experiments using Load and Store trace files,
some pertinent aspect of data memory accessing, can be
visualized, including the frequency of how often the Java virtual
machine references class variable addresses. A demonstration will
be included showing how object variables are accessed in the
heap by allowing one to visualize (X, Y) graph hot spots.

1. INTRODUCTION

The Effective Addresses (EA) can be defined as the address that
one can load data from or store to. They revea how many times
one loads from (or stores to) a used location. The behavior of
Effective Addresses is visualized as hot spots throughput the
execution of the seven benchmark utilities (SPECIVM98) and a
ray tracing program caled “raytrace”. A program hot spot is a
collection of instructions which are executed repeatedly, typically
in an inner loop of some program phase. The size of a hot spot
indicates the minimum size of an instruction cache that is able to
execute all instructions without encountering cache capacity
misses. Hot spots are also important in other domains than
instruction addresses, such as load/store addresses (Data Cache)
[1]. The purpose of this paper is to demonstrate the results of a
case study (load/store) in which such hot spots can be located in
an easy and practical way, for the execution of a given suite of
programs running on the Java Virtual Machine. In the context of
this case study, Effective Address will be used to denote an
address referenced (or informally “touched”) by a load or store
instruction. It will be of interest to k the frequency of EA
referenced over certain time intervals = The behavior of EAs can
be thus visualized as hot spots across the execution of these seven
benchmark utilities and the ray tracing program.

2. METHODOLOGY
Standard Performance Evauation Corporation (SPEC) [2]
provides SPECIVM98 benchmarks which measure the

! one reason that such as study would be of valueisthat it may be
possible to identify certain program code segments from the hot
spots, on which the careful application of a dynamic optimizing
compiler could reduce the (overadl) runtime of the given
program.

Karel Driesen
School of Computer Science
McGill University

karel@cs.mcqill.cal

performance of Java virtual machin&sE! Table 1. shows a brief
description of SPECIVM98 benchmark suite. The Load/Store
traces files were collected (generated by Kaffe ® [3]) from
graduate course on Adaptivity in Computational Systems (CS764
2000). The experimental procedureis shown in Figure 1.

Table 1. The SPECjvm98 benchmark suite

A program developed by SPEC to check VM

check and Java features. (Not Used)
compress A popular LZW compression program.

A Java version of NASA's popular CLIPS
jess rule-based expert system, licensed from
Sandia Laboratories.

db Data management benchmarking software

written by IBM.
. The JDK Java compiler licensed from Sun
javac .
Microsystems.
The core agorithm for software that decodes
moeoaudio an MPEG-3 audio stream; licensed from
Peg Fraunhofer Institut fuer Integrierte
Schaltungen.
mirt A dual-threaded program that ray traces an
image file.
jack A rea parser-generator licensed from Sun

Microsystems.

2 SPECjvm 98 measures the time it takes to load the program,
verify the class files, compile on the fly if JT compiler is used,
and execute the test. From the software perspective, these tests
measure the efficiency of the VM, JT compiler and operating
system implementations on a given hardware platform. From the
hardware perspective, the benchmark measure CPU, cache,
memory and other platform specific hardware performance. A
24MB heap is sufficient to run al the benchmark tests. AWT,
network, database, and graphics performance are not measured by
the benchmark.

3 Kaffe is an open source implementation of a Java virtual
machine and classlibraries.

mailto:bmahda1@cs.mcgill.ca
mailto:karel@cs.mcgill.ca

Figure 1. Experimental Procedure

Load/Store trace file
generated by Kaffe

Plumber 3.04

Resulting
Hot Spots data file

DataToPs

y

post script file

The breakdown of the format of the tracing byte codes files are
summarized in Table 2.

= Instruction Counter (IC) : Number of instructions since
program start.

= Class|D: theid of the class.

= Method ID: theid of the method.

= Program Counter (PC): address of instruction.
= Instruction Word (IW): value of byte code.

= Effective Address (EA): addresses where data are
loaded from or stored to.

= Effective Value (EV): value that is loaded or stored.

Table 2. Architecture of the trace byte codes infor mation

The Effective Addresses are re-numbered using the id-dispenserEI
implemented in Plumber 3.04 [4]. The first memory location
referenced is denoted by the number 1, the second 2 , and so on.
Every EA islooked up in atable that maps EA to this number. If
an EA is absent from the table, it receives the next number and is
inserted in the table. This re-numbering scheme has severa
benefits for hot spot visualization purposes:

= gpace on the Y-axis is better used, since every number
has at least one sample in which it appears (there are no
blank horizontals). In contrast, real memory location
touched leave a wide unused horizontal gaps in the
graphs.

= Two runs of the same program on different machines
will look different when real addresses are used. Re-
numbering ensures that identical runs have identical
profiles, and therefore renders a platform-independent
visualization [1].

3. VISUALISATION

Only the first 2,000,000 instructions are traces for each
Load/Store byte codes trace file and measurements are reported
over sample of 20,000 instructions (yielding 100 data points per
trace). The X and Y axis are defined as following:

= X-axis: Time, Byte code execution in sample of 20,000.

= Y-axis. Location, Re-numbered memory locations
loaded or store in sample.

Table 3. shows the Y maximum values for every executed
program.

Table 3. Max valuesfor Y-axisobtained in each executed byte

codetrace

Program Name Y (Max)
raytrace 33209
compress 96089
jess 24396
db 79374
javac 28825
mpegaudio 47405
mtrt 33221
jack 13209

IC 4 Bytes
ClassID 4 Bytes
Method ID 2 Bytes
PC 2 Bytes

W 1Byte
EA 8 Bytes

EV 4 Bytes

4 It is similar to the apparel that produces tickets with increasing
numbers in waiting rooms. A person can leave the room and
come back with the same number, but a new person entering the
room receives a new ticket, incremented by one[1].

Figure 2 shows hot spots in memory addresses referenced by
loads and stores in the execution of javac program. Hot spots
seem to be small (thin rectangles), but the program seems to
touch large parts of the memory only once. In the second half of
the trace, repeated iterations over the same memory locations
appear as danted lines [1]. These memory locations touched

Mem oy bcaties refereted pabi 2 mmpk (re-tumbered)

within a sample on Y -axis are re-numbered effective values. It is
important to mention that these values are IDs and they can just
reveal which ones of these addresses are accessed first.
However, they do not present the real memory location. For
instance, one can not conclude that a specific part of memory
(e.g. lower part or higher part) is accessed first or second.

-

BEreotedbae codes i 100 smples of 20000 exenbim each
Figure 2. JAVAC-Load/Stores: memory locations referenced in first 2M byte codes of javac

Figure 3 shows only the loads hot spots referenced in the same
program. The repeated iterations over the same memory
locations which appear as danted lines are effectively loads
operations since these iterations do not appear on the store graph
presented in Figure 4. The overlap between these two graphsis
justified: The Instruction Words (value of byte codesin this

case) can write and read from the same Effective Addresses. One
can store (writein) avaue (EV) into an EA and later the same
EV can beread (loaded) from the same EA. Asit can be seen,
there are effectively less store operation than load in case of
javac.

Memary ooaties refererced pabih o smpk (Te-rumbered)

Memary ooaties refererced pabih o smpk (Te-rumbered)

Brentedbrte codes i 100 smpl s of 2000 eeotizeach
Figure 3. JAVAC-Loads: memory locations referenced in first 2M byte codes of javac

BEreotedbae codes i 100 smples of 20000 exenbim each
Figure 4. JAVAC-Stores: memory locations referenced in first 2M byte codes of javac

Data cache touched hot spots in the execution of jess program is be seen in Figure 6, most referenced EA are loads. Stores can be
shown in Figure 5. Theinitiation part is shorter comparing to seenin Figure 7.

javac but there are still repeated iterations over the same

memory location, appearsin thinner rectangle thistime asit can

>

Mem oy bcaties refereted pabi 2 mmpk (re-tumbered)

Breotedbrte codes i 100 amples of 20000 expendim each
Figure5. JESS-Load/Stores. memory locations referenced in first 2M byte codes of jess

Memory beativre refererced pifih o mmple (Te-tombered)

l
|
|
4

BEreotedbae codes i 100 smples of 20000 exenbim each
Figure 6. JESS-Loads: memory locations referenced in first 2M byte codes of jess

4

Mem oy bcaties refereted pabi 2 mmpk (re-tumbered)

Breotedbrte codes i 100 amples of 20000 expendim each
Figure 7. JESS-Stores: memory locations referenced in first 2M byte codes of jess

In mtrt which is multi-threaded ray tracing program, these constantly accessed (right above and under repeated |oops)
repeated loops are repeated over along period of time. It is also during these loops as well as new accessed memory area
possible to see that a particular location of the memory is progressively increasing during the same time (see Figure 8).

»

Mem oy bcaties refereted pabi 2 mmpk (re-tumbered)

Breotedbrte codes i 100 amples of 20000 expendim each
Figure 8. MTRT-Load/Stores: memory locations referenced in first 2M byte codes of mtrt

By comparing Figure 9 and Figure 10 with Figure 8, it can be operations.
observed that those long repeated loops are actualy the loads

>

Memary ooaties refererced pabih o smpk (Te-rumbered)

BEreotedbae codes i 100 smples of 20000 exenbim each
Figure9. MTRT-Loads: memory locations referenced in first 2M byte codes of mtrt

>

Memary ooaties refererced pabih o smpk (Te-rumbered)

BEreotedbae codes i 100 smples of 20000 exenbim each
Figure 10. MTRT-Stores: memory locations referenced in first 2M byte codes of mtrt

It isnot surprising to see in Figure 11 that the execution of the raytracing program but mutli-threaded. See Figure 12 and Figure
raytrace program hot spots looks extremely similar to mtrt 13 for RAY TRACE-Loads and RAY TRACE-Stores.
(however not exactly the same). After all, mtrt is the same

4

Memary ooaties refererced pabih o smpk (Te-rumbered)

BEreotedbae codes i 100 smples of 20000 exenbim each
Figure 11. RAYTRACE-Load/Stores: memory locations referenced in first 2M byte codes of raytrace

»

Memory beativre refererced pifih o mmple (Te-tombered)

BEreotedbae codes i 100 smples of 20000 exenbim each
Figure 12. RAYTRACE-Loads: memory locations referenced in first 2M byte codes of raytrace

MMem ary kocatios mefererced pibd 3 ample (e-niambered)

)

Brentedbrte codes i 100 smpl s of 2000 eeotizeach
Figure 13. RAYTRACE-Stores: memory locations referenced in first 2M byte codes of raytrace

In the last phase of the mpegaudio program (Figure 14), two 14 and Figure 16, it appears that these |ocations have been
different parts of the memory location are touched almost referenced by Loads.
identically for their respective period time. By looking at Figure

Mem oy bcaties refereted pabi 2 mmpk (re-tumbered)

4

Breotedbrte codes i 100 amples of 20000 expendim each
Figure 14. MPEGAUDIO-Load/Stores: memory locations referenced in first 2M byte codes of mpegaudio

y

Mmooy kcatiore Tefersrced w2 @mple (re-rmbered)

Breotedbrte codes i 100 amples of 20000 expendim each
Figure 15. MPEGAUDIO-Loads: memory locations referenced in first 2M byte codes of mpegaudio

e

=

- _ ————

BEreotedbae codes i 100 smples of 20000 exenbim each
Figure 16. MPEGAUDIO-Stores: memory locations referenced in first 2M byte codes of mpegaudio

Memory beativre refererced pifih o mmple (Te-tombered)

In second half of the execution of db program (Figure 17), the look at Loads and Stores (Figure 18 and Figure 19 respectively),
hot spots trace shows how memory is referenced continually would be enough to realize that these Effective Addresses have
over the time and never accessed for a second time. A quick been referenced by both read and write operations.

>

Memary ooaties refererced pabih o smpk (Te-rumbered)

BEreotedbae codes i 100 smples of 20000 exenbim each
Figure 17. DB-Load/Stores: memory locations referenced in first 2M byte codes of db

»

Mmooy kcatiore Tefersrced w2 @mple (re-rmbered)

Breotedbrte codes i 100 amples of 20000 expendim each
Figure 18. DB-Loads: memory locations referenced in first 2M byte codes of db

Memary ooaties refererced pabih o smpk (Te-rumbered)

Brentedbrte codes i 100 smpl s of 2000 eeotizeach
Figure 19. DB-Stores: memory locations referenced in first 2M byte codes of db

However as for jack (Figure 20), there are also some memory
locations that are touched constantly during the second half of
the trace. These are mostly loads but also stores. For instance,
the combination of the forth dashed line (above x-axis) in

il

JACK-Loads (Figure 21) and JACK-Stores (Figure 22) can be
seen as a thick line appears in Figure 20 (JACK-Load/Stores)
on the fifth line. Using some transparencies can help to see more
clearly this mapping once they are superimposed.

Mem oy bcaties refereted pabi 2 mmpk (re-tumbered)

Breotedbrte codes i 100 amples of 20000 expendim each
Figure 20. JACK-Load/Stores. memory locations referenced in first 2M byte codes of jack

Memary ooaties refererced pabih o smpk (Te-rumbered)

Brentedbrte codes i 100 smpl s of 2000 eeotizeach
Figure 21. JACK-Loads: memory locations referenced in first 2M byte codes of jack

Mem oy bcaties refereted pabi 2 mmpk (re-tumbered)

Breotedbrte codes i 100 amples of 20000 expendim each
Figure 22. JACK-Stores: memory locations referenced in first 2M byte codes of jack

Finally, during the third part of the execution of the compress clearly seen in COMPRESS-Loads (Figure 24). COMPRESS-

program shown in Figure 23, a huge part of memory location are Stores (Figure 25) shows that compress program is probably the
referenced particularly on the upper part of the trace. This is one that is dominated by the stores operations
because of the result of reading Effective Addresses as it can be

o

F 3

Memary ocatioe refererced it & smpk (Te-tambers

BEreotedbae codes i 100 smples of 20000 exenbim each
Figure 23. COMPRESS-L oad/Stores: memory locations referenced in first 2M byte codes of compress

>

Memory beativre refererced pifih o mmple (Te-tombered)

BEreotedbae codes i 100 smples of 20000 exenbim each
Figure 24. COMPRESS-Loads: memory locations referenced in first 2M byte codes of compress

>

Mem oy bcaties refereted pabi 2 mmpk (re-tumbered)

-

Breotedbrte codes i 100 amples of 20000 expendim each
Figure 25. COMPRESS-Stores: memory locations referenced in first 2M byte codes of compress

4. CONCLUSION AND FUTURE WORK

A visualization technique for detecting hot spots in Java heap
(data cache) using Loads/Stores instruction in different programs
was traced and demonstrated. The Loads and Stores have been
also showed separately in order to see which hot spots present
actually reading from EAs (loads) and which ones writing to EAs
(stores). In most cases, loads seem to be dominant except for db
for which there are as much as stores than loads and aso
compress which has more store operations. For better
visualization of these hot spots and also having an independent
platform encoding values, re-numbering scheme was used. These
hot spots do not reveal the actua physical location in memory but
rather the order in which they have been loaded from or stored to.
As a result of this study, it could be suggested that some of the
most commonly used areas in the heap, are better suited to be
cached for faster accessibility thus better performance. A use of
color is planned for the future work.

5. ACKNOWLEDGMENTS
Thanks to Nagi Basha for his contribution to this project.

6. REFERENCES

[1] Karel Driesen, Nagi Basha, David Eng, Matt Holly, John
Jorgensen, Georges Kanaan, Babak Mahdavi, Qin Wang.
Visualizing Hot Spots in Various Domains. Software
Visualization Workshop at ICSE (Toronto, ONT, May
2001)

[2] The Standard Performance Evaluation Corporation,
http://www.spec.org/|

[3] Kaffe, pttp://www.kaffe.org/|
[4] Plumber, http://www.CS.McGill.CA/ACL/plumber/|

http://www.spec.org/
http://www.kaffe.org/
http://www.cs.mcgill.ca/ACL/plumber/

	INTRODUCTION
	METHODOLOGY
	VISUALISATION
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

