
Heap Hot Spots Visualization in Java
Technical Report No. SOCS-01.8, May 2001

Babak Mahdavi
School of Computer Science

McGill University
bmahda1@cs.mcgill.ca

Karel Driesen
School of Computer Science

McGill University
 karel@cs.mcgill.ca

ABSTRACT
Data memory (heap) management is a particularly important
feature of the Java programming environment. The visualization
of memory location in form of hot spots can help to see how the
data cache is used during the execution of a program. The
behavior of such executed program can be thus speculated.
Through a series of experiments using Load and Store trace files,
some pertinent aspect of data memory accessing, can be
visualized, including the frequency of how often the Java virtual
machine references class variable addresses. A demonstration will
be included showing how object variables are accessed in the
heap by allowing one to visualize (X, Y) graph hot spots.

1. INTRODUCTION
The Effective Addresses (EA) can be defined as the address that
one can load data from or store to. They reveal how many times
one loads from (or stores to) a used location. The behavior of
Effective Addresses is visualized as hot spots throughput the
execution of the seven benchmark utilities (SPECJVM98) and a
ray tracing program called “raytrace”. A program hot spot is a
collection of instructions which are executed repeatedly, typically
in an inner loop of some program phase. The size of a hot spot
indicates the minimum size of an instruction cache that is able to
execute all instructions without encountering cache capacity
misses. Hot spots are also important in other domains than
instruction addresses, such as load/store addresses (Data Cache)
[1]. The purpose of this paper is to demonstrate the results of a
case study (load/store) in which such hot spots can be located in
an easy and practical way, for the execution of a given suite of
programs running on the Java Virtual Machine. In the context of
this case study, Effective Address will be used to denote an
address referenced (or informally “touched”) by a load or store
instruction. It will be of interest to track the frequency of EA
referenced over certain time intervals 1.The behavior of EAs can
be thus visualized as hot spots across the execution of these seven
benchmark utilities and the ray tracing program.

2. METHODOLOGY
Standard Performance Evaluation Corporation (SPEC) [2]
provides SPECJVM98 benchmarks which measure the

1 one reason that such as study would be of value is that it may be

possible to identify certain program code segments from the hot
spots, on which the careful application of a dynamic optimizing
compiler could reduce the (overall) runtime of the given
program.

performance of Java virtual machines2. Table 1. shows a brief
description of SPECJVM98 benchmark suite. The Load/Store
traces files were collected (generated by Kaffe 3 [3]) from
graduate course on Adaptivity in Computational Systems (CS764
2000). The experimental procedure is shown in Figure 1.

 Table 1. The SPECjvm98 benchmark suite

check A program developed by SPEC to check JVM
and Java features. (Not Used)

compress A popular LZW compression program.

jess
A Java version of NASA's popular CLIPS
rule-based expert system, licensed from
Sandia Laboratories.

db Data management benchmarking software
written by IBM.

javac The JDK Java compiler licensed from Sun
Microsystems.

mpegaudio

The core algorithm for software that decodes
an MPEG-3 audio stream; licensed from
Fraunhofer Institut fuer Integrierte
Schaltungen.

mtrt A dual-threaded program that ray traces an
image file.

jack A real parser-generator licensed from Sun
Microsystems.

2 SPECjvm 98 measures the time it takes to load the program,
verify the class files, compile on the fly if JIT compiler is used,
and execute the test. From the software perspective, these tests
measure the efficiency of the JVM, JIT compiler and operating
system implementations on a given hardware platform. From the
hardware perspective, the benchmark measure CPU, cache,
memory and other platform specific hardware performance. A
24MB heap is sufficient to run all the benchmark tests. AWT,
network, database, and graphics performance are not measured by
the benchmark.

3 Kaffe is an open source implementation of a Java virtual

machine and class libraries.

mailto:bmahda1@cs.mcgill.ca
mailto:karel@cs.mcgill.ca

Figure 1. Experimental Procedure

Plumber 3.04

DataToPs

Load/Store trace file
generated by Kaffe

Resulting
Hot Spots data file

post script file

The breakdown of the format of the tracing byte codes files are
summarized in Table 2.

�� Instruction Counter (IC) : Number of instructions since
program start.

�� Class ID: the id of the class.
�� Method ID: the id of the method.
�� Program Counter (PC): address of instruction.
�� Instruction Word (IW): value of byte code.
�� Effective Address (EA): addresses where data are

loaded from or stored to.
�� Effective Value (EV): value that is loaded or stored.

Table 2. Architecture of the trace byte codes information
IC 4 Bytes

Class ID 4 Bytes

Method ID 2 Bytes

PC 2 Bytes

IW 1Byte

EA 8 Bytes

EV 4 Bytes

The Effective Addresses are re-numbered using the id-dispenser4
implemented in Plumber 3.04 [4]. The first memory location
referenced is denoted by the number 1, the second 2 , and so on.
Every EA is looked up in a table that maps EA to this number. If
an EA is absent from the table, it receives the next number and is
inserted in the table. This re-numbering scheme has several
benefits for hot spot visualization purposes:

�� space on the Y-axis is better used, since every number
has at least one sample in which it appears (there are no
blank horizontals). In contrast, real memory location
touched leave a wide unused horizontal gaps in the
graphs.

�� Two runs of the same program on different machines
will look different when real addresses are used. Re-
numbering ensures that identical runs have identical
profiles, and therefore renders a platform-independent
visualization [1].

3. VISUALISATION
Only the first 2,000,000 instructions are traces for each
Load/Store byte codes trace file and measurements are reported
over sample of 20,000 instructions (yielding 100 data points per
trace). The X and Y axis are defined as following:

�� X-axis: Time, Byte code execution in sample of 20,000.

�� Y-axis: Location, Re-numbered memory locations
loaded or store in sample.

Table 3. shows the Y maximum values for every executed
program.

Table 3. Max values for Y-axis obtained in each executed byte
code trace

Program Name Y (Max)

raytrace 33209

compress 96089

jess 24396

db 79374

javac 28825

mpegaudio 47405

mtrt 33221

jack 13209

4 It is similar to the apparel that produces tickets with increasing

numbers in waiting rooms. A person can leave the room and
come back with the same number, but a new person entering the
room receives a new ticket, incremented by one [1].

Figure 2 shows hot spots in memory addresses referenced by
loads and stores in the execution of javac program. Hot spots
seem to be small (thin rectangles), but the program seems to
touch large parts of the memory only once. In the second half of
the trace, repeated iterations over the same memory locations
appear as slanted lines [1]. These memory locations touched

within a sample on Y-axis are re-numbered effective values. It is
important to mention that these values are IDs and they can just
reveal which ones of these addresses are accessed first.
However, they do not present the real memory location. For
instance, one can not conclude that a specific part of memory
(e.g. lower part or higher part) is accessed first or second.

Figure 2. JAVAC-Load/Stores: memory locations referenced in first 2M byte codes of javac

Figure 3 shows only the loads hot spots referenced in the same
program. The repeated iterations over the same memory
locations which appear as slanted lines are effectively loads
operations since these iterations do not appear on the store graph
presented in Figure 4. The overlap between these two graphs is
justified: The Instruction Words (value of byte codes in this

case) can write and read from the same Effective Addresses. One
can store (write in) a value (EV) into an EA and later the same
EV can be read (loaded) from the same EA. As it can be seen,
there are effectively less store operation than load in case of
javac.

Figure 3. JAVAC-Loads: memory locations referenced in first 2M byte codes of javac

Figure 4. JAVAC-Stores: memory locations referenced in first 2M byte codes of javac

Data cache touched hot spots in the execution of jess program is
shown in Figure 5. The initiation part is shorter comparing to
javac but there are still repeated iterations over the same
memory location, appears in thinner rectangle this time as it can

be seen in Figure 6, most referenced EA are loads. Stores can be
seen in Figure 7.

Figure 5. JESS-Load/Stores: memory locations referenced in first 2M byte codes of jess

Figure 6. JESS-Loads: memory locations referenced in first 2M byte codes of jess

Figure 7. JESS-Stores: memory locations referenced in first 2M byte codes of jess

In mtrt which is multi-threaded ray tracing program, these
repeated loops are repeated over a long period of time. It is also
possible to see that a particular location of the memory is

constantly accessed (right above and under repeated loops)
during these loops as well as new accessed memory area
progressively increasing during the same time (see Figure 8).

Figure 8. MTRT-Load/Stores: memory locations referenced in first 2M byte codes of mtrt

By comparing Figure 9 and Figure 10 with Figure 8, it can be
observed that those long repeated loops are actually the loads

operations.

Figure 9. MTRT-Loads: memory locations referenced in first 2M byte codes of mtrt

Figure 10. MTRT-Stores: memory locations referenced in first 2M byte codes of mtrt

It is not surprising to see in Figure 11 that the execution of the
raytrace program hot spots looks extremely similar to mtrt
(however not exactly the same). After all, mtrt is the same

raytracing program but mutli-threaded. See Figure 12 and Figure
13 for RAYTRACE-Loads and RAYTRACE-Stores.

Figure 11. RAYTRACE-Load/Stores: memory locations referenced in first 2M byte codes of raytrace

Figure 12. RAYTRACE-Loads: memory locations referenced in first 2M byte codes of raytrace

Figure 13. RAYTRACE-Stores: memory locations referenced in first 2M byte codes of raytrace

In the last phase of the mpegaudio program (Figure 14), two
different parts of the memory location are touched almost
identically for their respective period time. By looking at Figure

14 and Figure 16, it appears that these locations have been
referenced by Loads.

Figure 14. MPEGAUDIO-Load/Stores: memory locations referenced in first 2M byte codes of mpegaudio

Figure 15. MPEGAUDIO-Loads: memory locations referenced in first 2M byte codes of mpegaudio

Figure 16. MPEGAUDIO-Stores: memory locations referenced in first 2M byte codes of mpegaudio

In second half of the execution of db program (Figure 17), the
hot spots trace shows how memory is referenced continually
over the time and never accessed for a second time. A quick

look at Loads and Stores (Figure 18 and Figure 19 respectively),
would be enough to realize that these Effective Addresses have
been referenced by both read and write operations.

Figure 17. DB-Load/Stores: memory locations referenced in first 2M byte codes of db

Figure 18. DB-Loads: memory locations referenced in first 2M byte codes of db

Figure 19. DB-Stores: memory locations referenced in first 2M byte codes of db

However as for jack (Figure 20), there are also some memory
locations that are touched constantly during the second half of
the trace. These are mostly loads but also stores. For instance,
the combination of the forth dashed line (above x-axis) in

JACK-Loads (Figure 21) and JACK-Stores (Figure 22) can be
seen as a thick line appears in Figure 20 (JACK-Load/Stores)
on the fifth line. Using some transparencies can help to see more
clearly this mapping once they are superimposed.

Figure 20. JACK-Load/Stores: memory locations referenced in first 2M byte codes of jack

Figure 21. JACK-Loads: memory locations referenced in first 2M byte codes of jack

Figure 22. JACK-Stores: memory locations referenced in first 2M byte codes of jack

Finally, during the third part of the execution of the compress
program shown in Figure 23, a huge part of memory location are
referenced particularly on the upper part of the trace. This is
because of the result of reading Effective Addresses as it can be

clearly seen in COMPRESS-Loads (Figure 24). COMPRESS-
Stores (Figure 25) shows that compress program is probably the
one that is dominated by the stores operations

Figure 23. COMPRESS-Load/Stores: memory locations referenced in first 2M byte codes of compress

Figure 24. COMPRESS-Loads: memory locations referenced in first 2M byte codes of compress

Figure 25. COMPRESS-Stores: memory locations referenced in first 2M byte codes of compress

4. CONCLUSION AND FUTURE WORK
A visualization technique for detecting hot spots in Java heap
(data cache) using Loads/Stores instruction in different programs
was traced and demonstrated. The Loads and Stores have been
also showed separately in order to see which hot spots present
actually reading from EAs (loads) and which ones writing to EAs
(stores). In most cases, loads seem to be dominant except for db
for which there are as much as stores than loads and also
compress which has more store operations. For better
visualization of these hot spots and also having an independent
platform encoding values, re-numbering scheme was used. These
hot spots do not reveal the actual physical location in memory but
rather the order in which they have been loaded from or stored to.
As a result of this study, it could be suggested that some of the
most commonly used areas in the heap, are better suited to be
cached for faster accessibility thus better performance. A use of
color is planned for the future work.

5. ACKNOWLEDGMENTS
Thanks to Nagi Basha for his contribution to this project.

6. REFERENCES
[1] Karel Driesen, Nagi Basha, David Eng, Matt Holly, John

Jorgensen, Georges Kanaan, Babak Mahdavi, Qin Wang.
Visualizing Hot Spots in Various Domains. Software
Visualization Workshop at ICSE (Toronto, ONT, May
2001)

[2] The Standard Performance Evaluation Corporation,
http://www.spec.org/

[3] Kaffe, http://www.kaffe.org/
[4] Plumber, http://www.CS.McGill.CA/ACL/plumber/.

http://www.spec.org/
http://www.kaffe.org/
http://www.cs.mcgill.ca/ACL/plumber/

	INTRODUCTION
	METHODOLOGY
	VISUALISATION
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

