

Printing piezoelectric materials for energy harvesting applications

K.S.Kaur¹, D.P.Banks¹, J.S.Stewart², M.Feinäugle¹, T.C.May-Smith¹, M.Nagel², R.Torah³, C.L.Sones¹, T.Lippert², N.White³, R.W.Eason¹

¹Optoelectronics Research Centre (ORC), University of Southampton, SO17 1BJ, UK

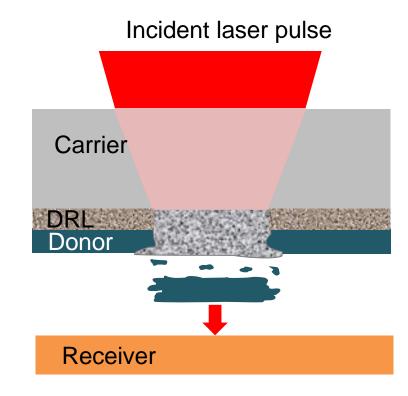
²Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland ³Electronics and Computer Sciences (ECS), University of Southampton, SO17 1BJ, UK

Outline

- Introduction
- ☐ fs-DRL-LIFT printing and characterization of PZT
- ☐ Printing large area pellets using beam shaper
- ☐ ns-DRL-LIFT printing and characterization of PZT
- ☐ Conclusions and Outlook

fs-DRL-LIFT printing characterization of PZT

Printing large area pellets using beam shaper


ns-DRL-LIFT printing and charaterization of PZT

Conclusions and Outlook

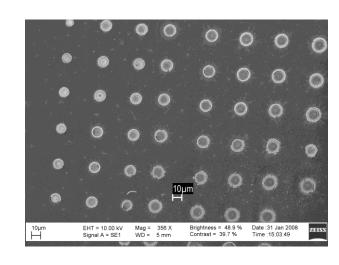
Southampton
ISFOE11

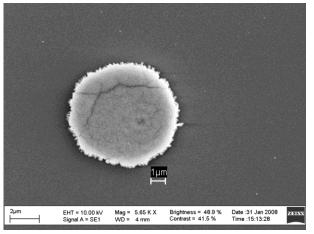
Introduction

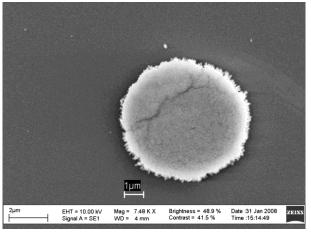
- Piezoelctric energy harvesters as alternative sources of energy
- PZT the most effeicient piezoelectric material
- Screen printing is not suitable for printing micron sized features, on pre-mettalized and on flexible substrates

fs-DRL-LIFT printing characterization of PZT

Printing large area pellets using beam shaper


ns-DRL-LIFT printing and charaterization of PZT


Conclusions and Outlook


Southampton
ISFOE11

Printing of PZT using fs-DRL-LIFT

- PZT film (150 nm) deposited using PLD on top of triazene polymer (TP) (200 nm)
- Ti:sapph (800 nm, 150 fs)
- Fluence ~ 360 mJ/cm²

Charaterization using PFM

Introduction

fs-DRL-LIFT printing characterization of PZT

Printing large area pellets using beam shaper

ns-DRL-LIFT printing and charaterization of PZT

Conclusions and Outlook

- Baking at 100°C at ramp rate of 2°/min for a dwell time of 1 hour
- Voltages of + 100 and 100 were applied for 20 s each

No signal recorded!!!

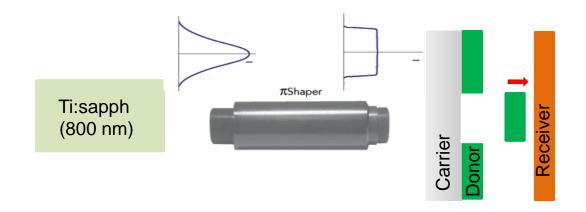
Possible reasons for no mechanical response:

- Small dimensional change to be detected
- Absence of any internal net polarization

Thicker deposits and in-situ heating and poling

Southampton ISFOE11

fs-DRL-LIFT printing characterization of PZT


Printing large area pellets using beam shaper

ns-DRL-LIFT printing and charaterization of PZT

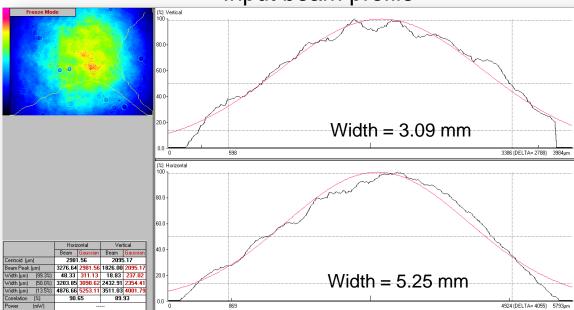
Conclusions and Outlook

Printing large area deposits using fs-DRL-LIFT

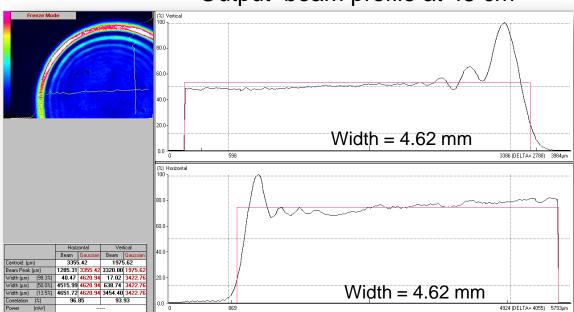
- mm² size deposits for in-situ heating and poling
- Refractive beam shaper (πshaper) for converting Gaussian to flat-top beam

Southampton
ISFOE11

fs-DRL-LIFT printing characterization of PZT


Printing large area pellets using beam shaper

ns-DRL-LIFT printing and charaterization of PZT

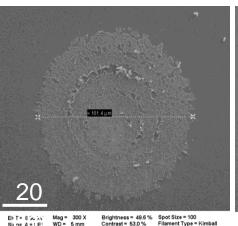

Conclusions and Outlook

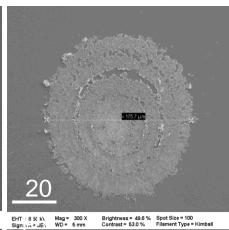
Southampton ISFOE11

Input beam profile

Output beam profile at 45 cm

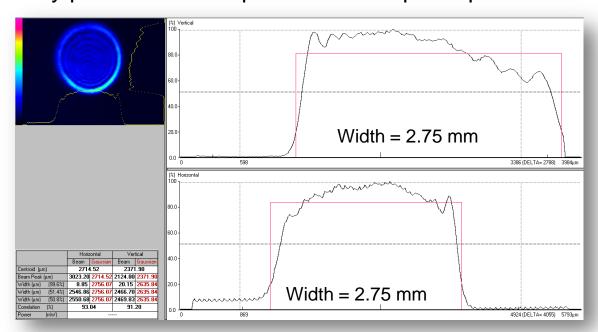
fs-DRL-LIFT printing characterization of PZT


Printing large area pellets using beam shaper


ns-DRL-LIFT printing and charaterization of PZT

Conclusions and Outlook

Southampton ISFOE11

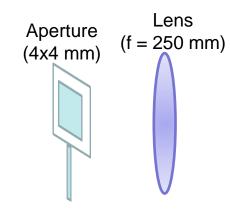

Deposits printed uing pi-shaper

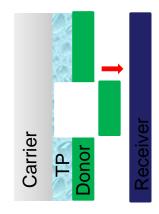
- Ti donor film (~ 150 nm thick)
- Ring patterns visible in the deposits

Intensity profile of the output beam from pi-shaper at ~ 150 cm

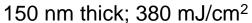
fs-DRL-LIFT printing characterization of PZT

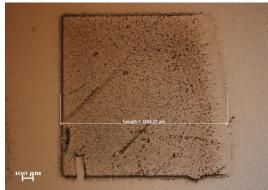
Printing large area pellets using beam shaper


ns-DRL-LIFT printing and charaterization of PZT


Conclusions and Outlook

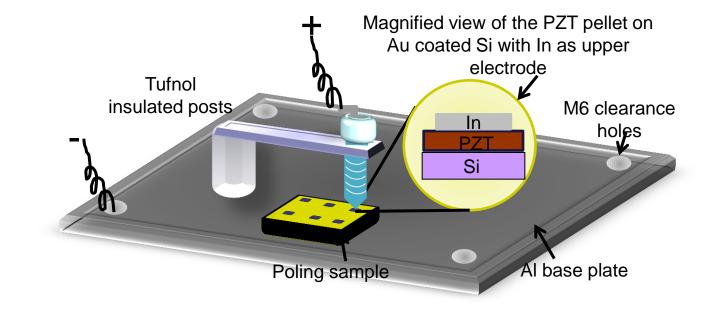
Southampton ISFOE11


Printing mm² pads of PZT using ns-DRL-LIFT


XeCl (308 nm, 30 ns)

1 µm thick; 1.5 J/cm²

fs-DRL-LIFT printing characterization of PZT


Printing large area pellets using beam shaper

ns-DRL-LIFT printing and charaterization of PZT

Conclusions and Outlook

Southampton ISFOE11

Characterization employing in-situ heating and poling

Commercial piezometer

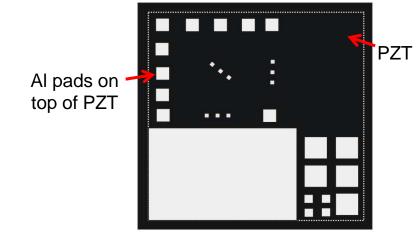
Longitudinal d₃₃ piezoelectric coefficients ~ 20 pC/N were recorded for 1 µm thick pellets

fs-DRL-LIFT printing characterization of PZT

Printing large area pellets using beam shaper

ns-DRL-LIFT printing and charaterization of PZT

Conclusions and Outlook


Southampton ISFOE11

Problems

- ➤ Difficult to place the metal foil on top of the deposits not an optimum method
- > Pellets get damaged during measurements leading to short-circuiting
- Difficult to repeat the measurements

Printing multilayers

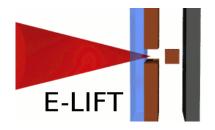
- ✓ Metal (AI) pads underneath PZT films
- ✓ Metal fim serves dual purpose- acts as a DRL and upper electrode

fs-DRL-LIFT printing characterization of PZT

Printing large area pellets using beam shaper

ns-DRL-LIFT printing and charaterization of PZT

Conclusions and Outlook


Conclusions and Outlook

- > PZT pellets were printed using the fs/ns-DRL-LIFT techniques
- > Post printing characterization using PFM and in-situ heating and poling
- ➤ Longitudinal d₃₃ piezoelectric ~ 20 pC/N were measured
- ➤ Printing of multilayers (PZT + metal) can be employed to avoid damage to the deposits during measurements

Thanks

Southampton
ISFOE11