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ABSTRACT

In this thesis we consider the development of a general nonlinear input-output theory

which encompasses systems with initial conditions.

Appropriate signal spaces (i.e., interval spaces, extended spaces and ambient spaces)

are introduced with some fundamental assumptions to constitute a framework for the

study of input-output systems with abstract initial conditions. Both systems and closed-

loop systems are defined in a set theoretic manner from input-output pairs on a doubly

infinite time axis, and a general construction of the initial conditions (i.e., a state at time

zero) is given in terms of an equivalence class of trajectories on the negative time axis.

Fundamental properties (such as existence, uniqueness, well-posedness and causality)

of both systems and closed-loop systems are defined and discussed from a very natural

point of view. Input-output operators are then defined for given initial conditions, and a

suitable notion of input-output stability on the positive time axis with initial conditions

is given. This notion of stability is closely related to the ISS/IOS concepts of Sontag.

A fundamental robust stability theorem is derived which represents a generalisation of

the input-output operator robust stability theorem of Georgiou and Smith to include

the case of initial conditions; and can also be viewed as a generalisation of the ISS

approach to enable a realistic treatment of robust stability in the context of perturbations

which fundamentally change the structure of the state space. This includes a suitable

generalisation of the nonlinear gap metric. Generalisations of this robust stability result

are also extended to finite-time reachable systems and to systems with potential for

finite-time escape by extending signals on extended spaces to a wider space (ambient

space). Some linear and nonlinear applications are given to show the effects of the robust

stability results.

We also present a generalised nonlinear ISS-type small-gain result in this input-output

structure set up in this thesis, which is established without extra observability condi-

tions and with complete disconnection between the stability property and the existence,

uniqueness properties of systems.

Connections between Georgiou and Smith’s robust stability type theorems and the non-

linear small-gain theorems are also discussed. An equivalence between a small-gain

theorem and a slight variation on the fundamental robust stability result of Georgiou

and Smith is shown.
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When the answers to a mathematical

problem cannot be found, then the

reason is frequently the fact that we

have not recognized the general idea,

from which the given problem

appears only as a single link in a

chain of related problems.

David Hilbert (1862-1943)

Chapter 1

Introduction

Control theory is an interdisciplinary subject of mathematics and engineering that man-

age the performance of dynamical systems. Precisely what forms a meaningful notion

of good performance is definitely a debatable topic. The problem lies in how to convert

the intuitive idea of a good performance into a exact mathematical definition that can

be applied to given dynamical systems. We later define more precisely what we mean by

‘system’ or ‘dynamical system’, but roughly speaking, it is more like a black box which

produce output signals when applied to input signals (Figure 1.1).

1.1 Feedback Control

Feedback is one of the most important concepts from control and systems theory. There

are many control tasks such as tracking, disturbance rejection and coping with model

uncertainties that require the use of feedback. Today feedback theory has seen a wide

range of applications in diverse fields including mechanical engineering, electronic engi-

neering, bioengineering, chemical engineering, economics, social science and so on.

History

Roots of modern feedback control can be traced to J. C. Maxwell’s early work on the

stability of Watt’s flyball governor (see [Maxwell, 1868]), which is the first rigorous

mathematical analysis of a feedback control system. Maxwell showed that the system

is stable if the roots of certain characteristic equation have negative real parts. E. J.

system -output-input

Figure 1.1: Input-output system

1
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plant

controller

r

u y

w -

�

-
-

Figure 1.2: A classical closed-loop feedback system

Routh proposed in 1877 a test for determining whether all the roots of the characteristic

equation have negative real parts (see [Routh, 1877]). Unaware of the work of Maxwell

and Routh, A. Hurwitz solved independently in 1895 the problem of determining the

stability of the characteristic equation (see [Hurwitz, 1895]). In electrical engineering

and control theory, the idea of feedback was first introduced at the Bell Laboratory by

an electrical engineer named H. S. Black (see [Black, 1934, Kline, 1993]). He proposed

usage of the negative feedback amplifiers to reduce noise and distortion introduced by the

nonlinearities in the problems of telephone transmission, especially of transcontinental

communications. Harold S. Black conceived the idea of feedback in a flash of insight

while he was aboard the Lackawanna Ferry on his way to work on August 2, 1927. The

invention had been submitted to the U. S. Patent Office on August 8, 1928. However,

it took more than nine years for the patent to be issued on December 21, 1937. [Black,

1977] later wrote:

“One reason for the delay was that the concept was so contrary to established

beliefs that the Patent Office initially did not believe it would work.”

A detailed introduction of the history of feedback control theory can be found in e.g.,

[Lewis, 1992, Chapter 1].

Why Feedback?

A classical closed-loop feedback system is shown in Figure 1.2 (see e.g., [Doyle et al.,

1990]). It consists of two components: a plant to be controlled and a controller to be

designed such that some pre-specified properties are satisfied by the whole system. In

this configuration, r represents the exogenous inputs such as references, disturbance and

so on. w are signals we wish to control. The main idea of feedback control is that the

value of the control input u for plant (as output of controller) is based on the observed

output y of plant (as input for controller). This is very different from the point of

open-loop control where one choose u as an explicit function of time.

Jan W. Polderman and Jan C. Willems give an intuitive example about climbing stairs

to indicate that feedback control in general leads to superior performances [Polderman
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and Willems, 1998, Example 9.1.1]. Disturbances and model uncertainties can be taken

into consideration by feedback control, but not by open-loop control. Reducing distor-

tion of amplifier [Black, 1934], rejecting disturbances and handling a variety of model

uncertainties are also very important properties of feedback control.

1.2 Two Different Views of Stability

One of the most important topics in control theory is the stability property of a general

dynamical system. In the literature, there are two main different competing ways to

study nonlinear stability questions: the state space approach in the sense of Lyapunov,

and the input-output theory of which G. Zames and I.W. Sandberg are the most notable

contributors.

State Space Approach

The state space approach is usually associated with the name of the Russian math-

ematician A.M. Lyapunov (1857-1918), who published his famous book The General

Problem of Stability of Motion in Russian in 1892. His work was largely unknown for

many years in the Western world and elsewhere until the Cold War (1953-1962) period,

and almost all the work in Lyapunov stability theory until that time are conducted by

Russian mathematicians. Translations of Lyapunov’s work was first appeared in French

and most recently in English [Lyapunov, 1992]. The Lyapunov theory plays a crucial

role in control and systems theory, which mainly deals with stability of equilibria for

the unforced system (without inputs or controls) described by nonlinear time-varying

ordinary differential equations (see e.g., [Michel, 1996]):

ẋ(t) = f(t, x(t)), x(0) = x0,

where x(t) ∈ ℝn with t ≥ 0 represent states.

In simple forms, Lyapunov stability theory states that if a system of which the initial

state is near an equilibrium remains stay near the equilibrium forever, then the equilib-

rium is called Lyapunov stable. Today the foundations of the theory are well established

and a myriads of publications expanding upon this theory appeared in the control and

systems literature (see e.g., [Khalil, 2002, Sastry, 1999, Vidyasagar, 1993]).

The principal advantage of state space approach or Lyapunov stability theory is that it

is direct and hence one does not need to solve the differential equation explicitly. It is

prepared to the study of systems without inputs. The main limitation for the application

of this method is that it requires finding the so-called Lyapunov function which is usually

very difficult.
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Input-Output Theory

The general nonlinear input-output theory is much more recent in origin than the Lya-

punov stability theory, initiated in the 1960s by [Zames, 1963, 1966b,c] and [Sandberg,

1964, 1965a] using the techniques of functional analysis. It deals with systems described

by operators mapping from input signals to output signals, similar to “black box” rep-

resented graphically as shown in Figure 1.1. The essence of input-output theory is laid

in that only relations between inputs and outputs are relevant. It only considers the

external structures of a system and ignores the internal system description.

The main advantage of the input-output theory is that it appears possible to make useful

assessments of qualitative properties for poorly defined systems, especially meaningful

regarding robustness analysis when analysing nonlinear systems which might contain

more complicated unstructured uncertainties than those of linear systems, or even not

easily represented by state space model. On the other hand, many of the arguments

in input-output theory are conceptually clearer than Lyapunov stability theory, at the

cost of requiring great background in mathematics. In this theory, the concepts of

causality, extended spaces (recently, ambient space for discussions of finite escape times

phenomenon) and truncation operators play a very important role. These are also fre-

quently encountered notions and will be carefully defined for our work in this thesis.

1.3 Bridge the Gap Across Them

State space model and input-output model are two different types of realisations of

looking at the same system (physical devices), both of which gives a different kind of

insight into how the system works. On one hand, the state space approach deals with

equilibrium points for a system governed by unforced ordinary differential equations

describing time evolution of state variables without inputs evolving under the influence

of a nonzero initial state. On the other hand, current input-output approach deals

with forced systems (with inputs) focusing attentions on the influence of inputs upon

outputs without mentioning any concept of state at all, thus no initial conditions can

be considered in detail. Our objective is to give a framework to study purely input-

output systems incorporated with initial conditions in terms of bringing these input-

output approach and state space approach together. Of course, how to define the initial

conditions in a purely input-output system is the first difficult problem we need to solve.

Input-to-State Stability

States and initial conditions have been introduced into input-output reasoning via the

well-known input-to-state stability (ISS) theory introduced by [Sontag, 1989] and its
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many variants (see e.g., [Sontag, 2008, Sontag and Wang, 1995, 1996]). ISS is funda-

mental a state space approach in which systems are assumed to have a known state

space representation:

ẋ(t) = f(x(t), u(t)), y = ℎ(x(t)),

where u(t) ∈ ℝm (t ≥ 0) representing inputs, x(t) ∈ ℝn (t ≥ 0) representing states and

y(t) ∈ ℝp (t ≥ 0) representing outputs. The function f : ℝn × ℝm → ℝn is called the

state evolution function (typical nonlinear) and the map ℎ : ℝn×ℝm → ℝp is called the

read-out map.

The notion of stability of these forced systems combines Lyapunov stability from Lya-

punov theory and bounded-input-bounded-output stability (BIBO) from input-output

theory. Essentially, the method is still a state space approach, and many of investigations

and proofs for ISS are using Lyapunov-like methods (i.e., the so-called ISS-Lyapunov

function for forced systems which is a natural generalisation of classical Lyapunov func-

tion for unforced systems). Generalisations of ISS in this framework to many other

stability notions including input-to-output stability (IOS), integral input-to-state sta-

bility (iISS), input-output-to-state stability (IOSS), etc. can be found in e.g., [Krichman

et al., 2001, Sontag, 2008, Sontag and Wang, 2000].

1.4 Recent Work on Input-Output Theory

In a benchmark paper of [Georgiou and Smith, 1997b], the authors developed an input-

output approach to uncertainty in the gap metric for robustness analysis of nonlinear

feedback systems. We remark that a priori assumption of systems defined on semi-

infinite time axis mapping zero input into zero output implicitly require that the systems

have zero initial conditions. For closed-loop systems with nonzero responses to zero

disturbances, we cannot directly use Georgiou and Smith’s robust stability theory. There

are a number of later extensions which permit consideration of nonzero responses to zero

disturbances, e.g., [French and Bian, 2009, 2012, Georgiou and Smith, 1997a], however,

neither of these approaches are directly aimed at the case of initial conditions, and

cannot directly be used to establish fading memory properties.

Explicit robust stability results are given in [French, 2008] and [French et al., 2009] for a

specific case of a linear plant and a nonlinear controller with initial conditions. A more

general construction for nonlinear plants can be found in [French and Mueller, Section

7], and this forms the basis for this contribution.
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1.5 Our Objectives

Our purpose is in a sense of closing the gap in studying input-output theory by incor-

porating initial conditions into purely input-output systems. We define the initial con-

ditions by equivalent past system input-output trajectories (see Section 3.5.1 on page

53) from an intuitive idea of ‘state’, i.e., the state at any time together with the future

input completely determine the future output. This is the so-called axiom of state (or

property of state) in Willems’s behavioural framework (see e.g., [Willems, 1989, Section

2], [Polderman and Willems, 1998, Chapter 4]). In other words, the state is the memory

of the system; or say, the state is a classifier of input-output pasts (see e.g., [Zames,

1963]). Note that the notion of state is postulated axiomatically in theories like differ-

ential equation theory and difference equation theory. This simplifies the formulation of

certain problems and yields very successful and well-established stability theory such as

Lyapunov stability theory and ISS theory.

However, the state space approach including ISS doesn’t handle certain robustness is-

sues.1 Essentially, robust stability is concerned with perturbations to nominal systems

which induce significant (and potentially unknown) changes to the underlying state

space (e.g., changing its dimension, as occurs with a finite dimensional multiplicative

perturbation, or shifting from a finite dimensional state space for the nominal model to

an infinite dimensional system).

As a concrete example consider the following nominal plant Σ with one dimensional

state space:

Σ : ẋ(t) = �(x(t)) + u(t), y(t) = x(t), (1.1)

and the perturbed plant Σ� with infinite dimensional state space:

Σ� : ẋ(t) = �(x(t)) + u(t− �), y(t) = x(t), 0 < � ≤ �0, (1.2)

where � : ℝ → ℝ is a memoryless nonlinear function satisfying the so-called sector

condition � ∈ Sector (k1, k2) with k1, k2 ∈ ℝ and k1 ≤ k2, i.e., [�(x)−k1x][�(x)−k2x] ≤
0 for all x ∈ ℝ. The nominal plant Σ and the perturbed plant Σ� are also very close in the

sense of gap metric (�(Σ,Σ� ) → 0 as � → 0), but with different dimensional state spaces,

and one would anticipate that a satisfactory feedback controller for Σ will also work for

Σ� for any 0 < � ≤ �0 provided �0 is sufficiently small. In terms of the usual state-space

method, the initial condition in Σ can be taken to be x(0). However, for Σ� the initial

condition is necessarily infinite dimensional, e.g., (x(0), u∣(−�,0]). Intuitively, even when

initial conditions are taken into consideration, the nominal plant Σ when stabilised by

1Robust control is an advanced topic in control theory that explicitly deals with model uncertainty.
The model uncertainty is usually characterised as perturbations of a nominal model. The objective
for robust control is to design, for a given nominal plant, a controller that stabilises all plants in a
neighborhood of the nominal plant in an appropriate sense [Trentelman et al., 2011].
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a controller should remain stabilised when replaced by any of the perturbed plants Σ� ,

0 < � ≤ �0. Clearly to quantify such statements, we need appropriate notions of stability

together with an appropriate quantification of the notion of ‘size’ of initial conditions

which can be consistently applied across Σ and Σ� for any 0 < � ≤ �0. Additionally these

concepts must also be applicable to all other ‘reasonable’ perturbations (multiplicative,

additive etc.) which often change the state space structure.

Detailed discussion of this example will be considered in Example 4.22 on page 99.

Roughly speaking, we identify the nominal (resp., perturbed) plant with the set BΣ

(resp., BΣ� ) which consists of all input-output pairs (u, y) defined in the time domain

(−∞,∞) satisfying Eq. (1.1) (resp., Eq. (1.2)) for some time function x. For any w :=

(u, y) ∈ BΣ� , the restriction of w to the time domain (−∞, 0) will be a representative

of some equivalence class identified with some initial state at time zero. Example 4.22

shows that, under any controller u(t) = −k ⋅ [y(t)+ y0(t)] +u0(t) with any real constant

k > k2 (note that u0 and y0 represent the input and output disturbances of the plant,

respectively), the closed-loop system will always be input to output stable if for any given

" ∈ (0, k − k2) the time delay � < 1/! with ! ≜ (1 + max{∣k1∣ , ∣k2∣})(1 + k + 1+k
k−k2−").

Note that we view the external signals w0 := (u0, y0) (i.e., external disturbances) as the

(closed-loop) input and the internal signal w := (u, y) (i.e., input-output trajectories of

the plant) as the (closed-loop) output.

1.6 Summary of Contents

∙ Chapter 2 (pages 11–36) This chapter contains the mathematical preliminaries

which will be used in the rest of this thesis. We present here some basic concepts

such as sets, (nonlinear) operators, metric spaces, normed vector spaces, equiva-

lence relations, partitions, and classes K, K∞, Kℒ functions. A type of Schauder

fixed-point theorem for nonlinear operators is reviewed due to the requirement of

establishing properties of existence and boundedness simultaneously for a closed-

loop system in Chapters 4 and 6. Nerode equivalence for scalar continuous-time

transfer functions is discussed in Section 2.5 on page 21, which gives a key insight

to the abstract construction of initial conditions in this thesis (see Section 3.5.1

on page 53). Input-to-state stability and input-to-output stability in state space

models are also reviewed. Some of the work in this chapter has been submitted

for publication in [Liu and French, 2014c].

∙ Chapter 3 (pages 37–76) In this chapter we develop a general input/output frame-

work which incorporates a general concept of initial conditions characterised by

a purely input-output formalism drawn from [Willems, 1989]. These allow us to

deal with model perturbations which are often associated with changes in the un-

derling state space structure. In this thesis, both systems and closed-loop systems
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are defined in a set theoretic manner from input-output pairs on a doubly infi-

nite time axis, and the construction of initial conditions is given in terms of an

equivalent class of input-output trajectories on the negative time axis. Compari-

son with classical initial conditions are also given for both systems (Section 3.5.3

on pages 58–64) and closed-loop systems (Section 3.7.2 on page 69). Fundamen-

tal notions of causality, well-posedness (existence and uniqueness) and graph are

discussed for both systems and closed-loop systems in the presenting input/out-

put framework. A specific consideration of the uniqueness property of a system is

given in Section 3.4.3 on page 51, which will be very useful in the proof of The-

orem 4.8 in Chapter 4 on page 81. Relationships between initial conditions, the

well-posedness and casuality of open-loop subsystems and closed-loops systems are

given in Section 3.7.1 on page 66, Section 3.7.4 on page 72, and Section 3.7.5 on

page 73, respectively. A suitable concept of input-output stability on the positive

time axis with initial conditions is given for both systems (Section 3.6 on page 64)

and closed-loops systems (Section 3.8 on page 74), which is closely related to the

ISS/IOS notions initiated by Sontag [1989]. Theorem 3.36 on page 75 summarises

several alterative characterisation of this notion of stability for closed-loop sys-

tems. Some of the work in this chapter appears in [Liu and French, 2014d], [Liu

and French, 2013].

∙ Chapter 4 (pages 77–107) This chapter establishes essentially the main results of

this thesis (Theorems 4.8 and 4.18) based on the general input/output framework

set up in Chapter 3. Theorem 4.8 is a fundamental robust stability result general-

ising the operator based robust stability theorem of [Georgiou and Smith, 1997b]

to include the case of a general initial condition within, in particular, the nonlin-

ear gap formalism of [Georgiou and Smith, 1997b]; this also includes a suitable

generalisation of the nonlinear gap metric. Theorem 4.8 can also be viewed as a

generalisation of the ISS approach to enable a realistic treatment of robust stability

in the context of perturbations which fundamentally change the structure of the

state space. Theorem 4.8 is presented in two different versions: one requires the

well-posedness of the perturbed closed-loop system, which is a typical assumption

in the classical literature; while the other one requires only the uniqueness prop-

erty of the perturbed closed-loop system, which significantly eases the real-time

application of the robust stability result. We remark that in the second case the

existence property of the perturbed closed-loop system is established via a type

of (Schauder) fixed-point theorem, one of the most important existence principles

in mathematics. Several technical assumptions are imposed in order to use the

Schauder fixed-point theorem, such as a compactness requirement for the plant

perturbations and a relative continuity requirement for the nominal closed-loop

system. These stronger technical requirements on the plant perturbations and the

nominal closed-loop system in turn result in substantially weaker requirements on

the perturbed closed-loop system, i.e., the uniqueness property of the perturbed
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closed-loop system, which is often far easier to be verified than the existence prop-

erty. This strategy dealing with the existence issue in robust stability analysis first

appeared in French and Bian [2012] to establish a bias version of robust stability

result. Theorem 4.12 on page 89 in Section 4.3 discusses the relation between The-

orem 4.8 and [Georgiou and Smith, 1997b, Theorem 1]. In Section 4.4, a notion of

finite-time reachability for a system is defined, and a more applicable robust sta-

bility result than Theorem 4.8 in this framework is established (see Theorem 4.18

on page 92). Applications of the main results (Theorems 4.8, 4.18) to linear time-

invariant systems for both finite-time reachable situation and general situation are

given in Section 4.5 on page 93. Application of Theorem 4.8 to general nonlinear

plants with input delay is given in Section 4.6 on page 97. At the end of this

chapter, a generalisation of the results from previous sections is given for systems

with potential for finite escape times. This is done by using a wider signal space

(named ambient space) than the extended space, which is defined in Section 3.2

on page 39 in Chapter 3. Definitions of systems, closed-loop systems, initial condi-

tions, causality, existence and uniqueness properties are all slightly modified in this

setting. A suitable notion of locally input to output stability is given by Definition

4.28 on page 103. Similarly, several equivalent characterisation of this notion of

stability are summarised in Theorem 4.31 on page 104. The main result of this

section is given by Theorem 4.33 on page 105, which are also presented in two

different frameworks: one requires the well-posedness of the perturbed closed-loop

system; while the other one requires only the uniqueness property of the perturbed

closed-loop system. The work in this chapter has been submitted for publication

in [Liu and French, 2014d].

∙ Chapter 5 (pages 109–118) In this chapter we consider the development of a gen-

eral nonlinear ISS-type small-gain theorem based on the input/output framework

set up in Chapter 3. The main result in this chapter is Theorem 5.2 on page 112,

which is established without extra “observability” conditions and with complete

disconnection between the stability property and the existence, uniqueness prop-

erties. The main idea of the proof of Theorem 5.2 is motivated by [Jiang et al.,

1994]. On one hand this small-gain result can be reviewed as a generalisation of

the classical input/output operator type small-gain theorems to incorporate ab-

stract initial conditions, and on the other hand a generalisation of the ISS/IOS

framework type small-gain theorems to incorporate more general system classes.

An illustrative example is given for systems with time delay and nonzero initial

conditions to show the utility of Theorem 5.2 at the end of this chapter (Example

5.3 on page 116). The work in this chapter has been submitted for publication as

[Liu and French, 2013].

∙ Chapter 6 (pages 119–137) In this chapter, we discuss the connections between

Georgiou and Smith’s robust stability type theorems and the nonlinear small-gain
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theorems. Three versions of the nonlinear small-gain theorem are discussed in this

chapter. The first version is the usual one regarding systems as relations (one-to-

many mapping) on signal spaces and using K∞ functions, in which the stability

property is stated without referring to the existence and uniqueness properties of

the corresponding feedback systems. A special case of this result (feedback systems

with parts of zero input disturbances) is shown to be equivalent to a fundamental

robust stability theorem of Georgiou and Smith [Georgiou and Smith, 1997b, The-

orem 6] with a slight modification (Theorem 6.6 (on page 127) and Theorem 6.7

(on page 128) in Section 6.2). The second version of the nonlinear small-gain the-

orem establishes the existence and boundedness properties simultaneously, which

increases greatly its applicability. However, an extra compact condition is imposed

due to the use of Schauder’s fixed point theorem in the proof. A type of Geor-

giou and Smith’s robust stability theorem establishing boundedness and existence

simultaneously is given by applying a special case of the second version of the

nonlinear small-gain theorem (see Section 6.3 on page 129). The third one is a lo-

cal version of the nonlinear small-gain theorem also establishing the existence and

boundedness properties simultaneously by still using the Schauder’s fixed point

theorem, which is used to show a corresponding local version of Georgiou and

Smith’s robust stability theorem (see Section 6.4 on page 134). The work in this

chapter has been submitted for publication in [Liu and French, 2014a].

∙ Chapter 7 (pages 139–141) The last chapter contains conclusions and future

directions of research.



Riemann has shown us that proofs

are better achieved through ideas

than through long calculations.

David Hilbert (1862-1943)Chapter 2

Preliminaries

This chapter is to collect some mathematical preliminaries which will be used in the rest

of this thesis. We present here some basic concepts such as sets, (nonlinear) operators,

metric spaces, normed vector spaces, equivalence relations, partitions, and classes K,

K∞, Kℒ functions. A type of Schauder fixed-point theorem for nonlinear operators is

reviewed due to the requirement of establishing properties of existence and boundedness

simultaneously for a closed-loop system in Chapters 4 and 6. Nerode equivalence for

scalar continuous-time transfer functions is discussed in Section 2.5 on page 21, which

gives a key insight to the abstract construction of initial conditions in this thesis (see

Section 3.5.1 on page 53). Input-to-state stability and input-to-output stability in state

space models are also reviewed.

2.1 Sets, Operators, Metric Spaces, and Vector Spaces

A set is a collection of objects which are called elements or members or points of the set.

Two sets are equal if and only if they have the same elements. If x is an element of a set

A, we write x ∈ A. If every element of set A is also a member of set B, then A is said to

be a subset of B, written A ⊆ B (or B ⊇ A). We denote by ∅ the empty set which has

no elements, and thus the empty set ∅ is a subset of every set. Every set is a subset of

itself. The following are several fundamental operations for constructing new sets from

given sets: (1) The union of set A and set B: A ∪ B ≜
{
x
∣
∣ x ∈ A or x ∈ B

}
; (2) The

intersection of set A and set B: A∩B ≜
{
x
∣
∣ x ∈ A and x ∈ B

}
; (3) The difference set

A−B of set A and set B: A−B ≜
{
x
∣
∣ x ∈ A and x /∈ B

}
; (4) The Cartesian product

of set A and set B: A×B ≜
{
(a, b)

∣
∣ a ∈ A and b ∈ B

}
.

Given two sets X and Y , an operator from X to Y is a set F of ordered pairs in the

Cartesian product X × Y such that the following property is satisfied:

(x, y), (x, z) ∈ F ⇒ y = z. (2.1)

11
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The set of all elements of X that can occur as first items of elements in F is called

the domain of F , denoted by dom(F ). We know from (2.1) that, for any element

x ∈ dom(F ), there exists one and only one element in Y , which we call the image of x

under F , written Fx or F (x). The image of any set A ⊆ dom(F ) under F is denoted

by F (A) ≜ {F (x) : x ∈ A}. The set of all images of elements in dom(F ) is called the

range of F . We often write the operator F as

F : dom(F ) ⊆ X → Y ;

and for ease of notation, if dom(F ) = X, we just write F : X → Y .

An operator is sometimes also called a function, a map, a mapping, or a transformation.

Basic results and properties on (nonlinear) operators defined on (normed) vector spaces

will be reviewed in later sections. We first introduce the concept of metric spaces which

is a natural generalisation of the idea of distance between two locations in the real world.

Definition 2.1. A metric space, denoted by (X, d), is a set X with a metric or distance

function d : X ×X → ℝ such that, for any x, y, z ∈ X the following axioms hold: (1)

d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y; (2) d(x, y) = d(y, x); (3) d(x, z) ≤
d(x, y) + d(y, z) (triangle inequality).

We say that a sequence {yn} in a metric space (X, d) converges to y ∈ X if d(yn, y) → 0

as n → ∞. It can be easily verified that this limit is unique. A sequence {xn} ⊆ X

is called a Cauchy sequence if the Cauchy condition is satisfied, i.e., d(xn, xm) → 0 as

m,n→ ∞. A metric space (X, d) is said to be complete if every Cauchy sequence in X

has a limit in X, i.e., for any sequence {xn} ⊆ X satisfying d(xn, xm) → 0 as m,n→ ∞,

there exists an x ∈ X such that {xn} converges to x.

The concept of vector spaces is also needed in order to provide the space with certain

algebraic structure, e.g., operations of element addition and scalar multiplication.

Definition 2.2. A vector space over the field K (K = ℝ,ℂ) is a set X together with

two operations: the addition operation + : X × X → X and the scalar multiplication

operation ⋅ : K × X → X, such that, for all x, y, z ∈ X and �, � ∈ K we have: (1)

x+ y = y + x (commutativity of addition); (2) x+ (y + z) = (x+ y) + z (associativity

of addition); (3) ∃ 0 ∈ X such that x + 0 = 0 + x = x (existence of additive identity);

(4) ∃ − x ∈ X such that x + (−x) = 0 (existence of additive inverse); (5) ∃ 1 ∈ K

such that 1 ⋅ x = x; (6) � ⋅ (� ⋅ x) = (��) ⋅ x (associativity of scalar multiplication); (7)

� ⋅ (x+ y) = � ⋅x+� ⋅ y (first distributive property); (8) (�+�) ⋅x = � ⋅x+� ⋅x (second

distributive property).

The vector space X is called a real (or complex) vector space if it is over the field ℝ (or

ℂ). Alternative names for vector spaces are linear vector spaces and linear spaces.
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Let X be a vector space. A finite set {x1, . . . , xn} ⊆ X is said to be linearly dependent

if there is a set of scalars {�1, . . . , �n}, not all zero, such that �1x1+ ⋅ ⋅ ⋅+�nxn = 0. On

the other hand, if �1x1+ ⋅ ⋅ ⋅+�nxn = 0 implies that �k = 0 for each k = 1, . . . , n, the set

{x1, . . . , xn} is said to be linearly independent. We say that a set (finite or infinite) of

vectors B ⊆ X is a basis of X if (1) every finite subset B0 ⊆ B is linearly independent;

(2) and every vectors in X is a linear combination of finite elements in B. A vector

space that has a finite basis is called finite-dimensional.

A subset M of a vector space X over the field ℝ (or ℂ)is said to be a (vector) subspace

of X if M satisfies the following two conditions: (1) If x, y ∈ M then x+ y ∈ M ; (2) If

x ∈ M and � ∈ ℝ (or ℂ) then � ⋅ x ∈ M . Loosely speaking, M is a subspace of X if it

is a vector space in its own right. Any vector space is a subspace of itself.

Given sets X, Y , and Z, an operator F : X → Y is called injective if for any x1, x2 ∈ X
with Fx1 = Fx2 we have x1 = x2; and surjective if the range of F is the whole of

Y . It is called bijective if it is both injective and surjective. Let X0 be a subset of

X, then the operator F0 : X0 → Y defined by F0x = Fx for every x ∈ X0 is called

the restriction of F to X0 (often denoted by F ∣X0). On the other hand, an operator

F : X → Y coinciding with F0 on X0 ⊆ X is called an extension of F0. The composition

of operators F2 : Y → Z and F1 : X → Y is the operator F2 ∘ F1 : X → Z defined by

(F2 ∘ F1)(x) = F2(F1(x)) for all x ∈ X.

Let F1 : X → Y and F2 : X → Y be two operators between two real (or complex)

vector spaces X and Y , then the addition F1 + F2 : X → Y is an operator defined by

(F1+F2)(x) = F1(x)+F2(x) for all x ∈ X. Let � be a real (or complex) constant. Then

�F1 : X → Y is an operator defined by (�F1)(x) = � ⋅ F1(x) for all x ∈ X.

Assume that X is a vector space, and G, H and K are three operators from X to X.

Then we know that addition and composition always have the right distributive property

(G+H) ∘K = G ∘K +H ∘K, but not necessarily to have the left distributive property

K ∘ (G+H) = K ∘G+K ∘H unless K is linear.

Note that an operator F : dom(F ) ⊆ X1 → X2 between two vector spaces X1 and X2

over the field ℝ (or ℂ) is said to be linear if dom(F ) is a vector subspace of X1 and

F (�x+ �y) = �(Fx) + �(Fy) for all x, y ∈ X1 and scalars �, � ∈ ℝ (or ℂ).

We next introduce the concepts of normed vector spaces and Banach spaces. The fol-

lowing notion of norm generalises the absolute value of numbers.

Definition 2.3. A normed vector space is a pair (X, ∥⋅∥), where X is a vector space

over the field ℝ (or ℂ) and ∥⋅∥ : X → ℝ≥0 is a real-valued function defined on X such

that: (1) 0 ≤ ∥x∥ < ∞,∀x ∈ X; ∥x∥ = 0 if and only if x = 0; (2) ∥�x∥ = ∣�∣ ∥x∥,
∀x ∈ X,∀� ∈ ℝ (or ℂ); (3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ ,∀x, y ∈ X (triangle inequality).
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Note that every normed vector space (X, ∥⋅∥) can be regarded as as a metric space with

the natural distance defined by d(x, y) = ∥x− y∥ for any x, y in X. A normed vector

space (X, ∥⋅∥) is said to be a Banach space if the corresponding metric space with the

natural distance is complete, i.e., for any Cauchy sequence {xn} ⊆ X, there exist an

x ∈ X such that ∥xn − x∥ → 0 as n→ ∞.

The set ℝn consisting of all n-tuples of real numbers over the field ℝ is a real vector space

if we define addition “+” by component-wise addition, i.e., x + y = (x1 + y1, ⋅ ⋅ ⋅ , xn +

yn)
T , and scalar multiplication “⋅” by component-wise scalar multiplication, i.e., � ⋅ x =

(�x1, ⋅ ⋅ ⋅ , �x2)T for any x = (x1, ⋅ ⋅ ⋅ , xn)T , y = (y1, ⋅ ⋅ ⋅ , yn)T ∈ ℝn and any � ∈ ℝ.

Further, for any q with 1 ≤ q ≤ ∞, the real-valued function ∣⋅∣q known as the q-norm 1 in

ℝn makes this vector space a Banach space, where ∣x∣q ≜ (∣x1∣q + ⋅ ⋅ ⋅+ ∣xn∣q)1/q if

1 ≤ q < ∞; and ∣x∣∞ ≜ max1≤i≤n ∣xi∣ if q = ∞. The 2-norm in ℝn is often called

Euclidean norm;

Let X := C([0, 1],ℝ) be the space of all continuous functions u : [0, 1] → ℝ with norm

∥u∥2 := (
∫ 1
0 ∣x(t)∣2 dt)1/2. It can be verified that (X, ∥⋅∥2) is a normed vector space but

not a Banach space. A Cauchy sequence {un}∞n=1 in X which is not convergent in X

can be found in e.g., [Curtain and Zwart, 1995, Example A.2.19, p. 574]. In fact, the

completion of X with respect to the norm ∥⋅∥2 is the Lebesgue space of 2-integrable

functions L2([0, 1],ℝ).

The following is the concept of isometric isomorphism between two normed vector spaces

(see e.g., [Zeidler, 1986, p. 771], [Adams and Fournier, 2003, p. 5]).

Definition 2.4. Let (X, ∥⋅∥X) and (Y, ∥⋅∥Y ) be two normed vector spaces. An operator

F : X → Y is called an isometric isomorphism between X and Y if F is a bijective

linear operator such that

∥Fx∥Y = ∥x∥X for all x ∈ X.

We say that X and Y are isometrically isomorphic if there exists an isometric isomor-

phism F between X and Y . Isometrically isomorphic normed vector spaces can be

identified with each other, since they have identical structure and only differ in the

nature of their elements.

For example, Fourier transform F is an isometric isomorphism between the time domain

signal space ℒ2(ℝ) to the frequency domain signal space ℒ2(jℝ) (i.e., Paley-Wiener

theorem, see Section 2.5).

If X is a normed vector space over the field K (K = ℝ,ℂ), then there always exists a

Banach space Y over K with X ⊆ Y and ClY (X) = Y , where ClY (X) is the closure of X

in Y ; see Definition 2.6 on page 15. This Y is unique up to isometric isomorphism (see

1We often use the symbol ∣⋅∣q instead of ∥⋅∥q to denote the q-norm in ℝn.
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e.g., [Zeidler, 1986, p. 771]). The standard construction of the completion is through

Cauchy sequences (see e.g., [Kato, 1995, p. 129]).

2.2 Continuity, Boundedness, and Compactness for Non-

linear Operators

Now consider a nonlinear operator F between two Banach spaces. The concepts of

continuity, boundedness, and compactness of F will be used in later sections. Some

of the results are quoted without proof; and usually the detailed proofs of the results

can be found in standard textbooks on nonlinear functional analysis (see e.g., [Zeidler,

1986, Appendix], [Adams and Fournier, 2003, Chapter 1], [Deimling, 1985, Chapter 2]).

Counterexamples in analysis can be found in e.g., [Gelbaum and Olmsted, 2003].

Definition 2.5. Let (X, ∥⋅∥X), (Y, ∥⋅∥Y ) be Banach spaces. An operator (possibly non-

linear) F : dom(F ) ⊆ X → Y is said to be continuous at x0 ∈ dom(F ) if any sequence

{xn}∞n=1 ⊆ dom(F ) with ∥xn − x0∥ → 0 implies ∥Fxn − Fx0∥ → 0 as n→ ∞. The oper-

ator F is said to be continuous if it is continuous everywhere in its domain. The operator

F is said to be Cauchy continuous if, given any Cauchy sequence {xn}∞n=1 ⊆ dom(F )

in X, the sequence {Fxn}∞n=1 is a Cauchy sequence in Y . The operator F is said

to be uniformly continuous if for every pair of sequences {xn}∞n=1 ⊆ dom(F ) and

{yn}∞n=1 ⊆ dom(F ) in X such that ∥xn − yn∥ → 0 as n → ∞, then ∥Fxn − Fyn∥ → 0

as n→ ∞.

That F is continuous at x0 ∈ dom(F ) is equivalent to: for any " > 0 there exists a �(") >

0 such that ∥Fx− Fx0∥ < " for all x ∈ dom(F ) satisfying ∥x− x0∥ < �, see e.g., [Zeidler,

1995, Proposition 1.9.3, p. 27], [Zeidler, 1986, p. 770]. Similarly, that F is uniformly

continuous is equivalent to: for any " > 0 there exists a �(") > 0 such that ∥Fx− Fy∥ <
" for all x, y ∈ dom(F ) satisfying ∥x− y∥ < �. Note that uniformly continuous implies

Cauchy continuous, and Cauchy continuous implies continuous.2 Conversely, if X is

complete and dom(F ) is closed in X, then continuous implies Cauchy continuous too.

Next we give a brief view on some topological notions, including bounded, open, closed,

(relatively) compact, and convex sets, associated with a Banach space.

Definition 2.6. Let M be a subset of a Banach space (X, ∥⋅∥). The set M is called

bounded if and only if there is a number r ≥ 0 such that ∥u∥ ≤ r for all u ∈M . The set

M is called open if and only if, for each x0 ∈M , there exists � > 0 such that all x ∈ X

satisfying ∥x− x0∥ < � will also belong to M . The set M is called closed if and only

if, the difference set X −M is open. (This is equivalent to the condition that for every

sequence {xn}∞n=1 in M and x ∈ X with xn → x as n → ∞, the limit x also belongs

2It suffices to notice that, if ∥xn − x∥ → 0 as n → ∞, then the sequence {x1, x, x2, x, x3, x, ...} is a
Cauchy sequence.
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to M .3) The closure of M in X, denoted by ClX(M), is the smallest closed set in X

containing M (i.e., the intersection of all closed sets in X containing M). The set M

is called relatively compact if every sequence in M contains a convergent subsequence.

If the limit of this subsequence always belongs to M , then M is said to be compact.4

Further, the set M is called convex if and only if, any u, v ∈M and any � ∈ [0, 1] imply

�u+ (1− �)v ∈M .

Suppose that M is a subset of a Banach space (X, ∥⋅∥). The set M is relatively compact

if and only if the closure ClX(M) of M in X is compact. If M is compact, then it is

closed and bounded. If M is relatively compact, then it is bounded. If every closed and

bounded subset of the Banach space X is compact (i.e., the Heine–Borel property), then

X must be finite dimensional (see e.g., [Deimling, 1985, p. 40]).5 If M is compact and

N ⊂ M ⊆ X is closed, then N is also compact. (In other words, a closed subset of a

compact set of a Banach space is compact.)

The well-known Arzelà-Ascoli theorem (see e.g., [Zeidler, 1986, p. 772], [Adams and

Fournier, 2003, p. 11]) states that if M is a bounded6 and equicontinuous7 subset of the

space X := C([a, b],K), (K := ℝ,ℂ) of all continuous functions u : [a, b] → K with norm

∥u∥∞ := maxa≤�≤b ∣u(�)∣, then M is a relatively compact subset of X.

Definition 2.7. Let (X, ∥⋅∥X), (Y, ∥⋅∥Y ) be normed vector spaces. An operator (possibly

nonlinear) F : dom(F ) ⊆ X → Y is said to be bounded if the image of any bounded set

in dom(F ) is a bounded set in Y . (That is to say, for any r1 > 0, there exists an r2 > 0

such that x ∈ dom(F ) and ∥x∥X ≤ r1 imply ∥Fx∥Y ≤ r2.)

The above condition for bounded operator (possibly nonlinear) is equivalent to the

condition that the image of any bounded sequence in dom(F ) is a bounded sequence in

Y . (Firstly, a bounded sequence is a bounded set. Secondly, if there exists a bounded

set M ⊆ dom(F ) such that F (M) is not bounded in Y , then for any natural number

n > 0, there exists some xn ∈ M such that ∥Fxn∥ ≥ n, and therefore, F transforms a

bounded sequence {xn} into an unbounded sequence {Fxn}.)

Definition 2.7 of a bounded nonlinear operator generalises the definition of a bounded

linear operator: A linear operator F : dom(F ) ⊆ X → Y between normed vector spaces

(X, ∥⋅∥X) and (Y, ∥⋅∥Y ) with dom(F ) a subspace of X is said to be bounded if there

exists a nonnegative constant r such that ∥Fx∥Y ≤ r ⋅ ∥x∥X for all x ∈ dom(F ) ⊆ X.

For linear operators, both definitions of boundedness are equivalent to each other.

3i.e., M contains all of its limit points.
4This definition of a compact subset is equivalent in Banach spaces to the definition of compactness

in a general topological space: M is compact if each of its open covers has a finite subcover (see e.g.,
[Adams and Fournier, 2003, p. 7], [Deimling, 1985, p. 40]).

5Note that the classical Heine–Borel theorem states that a subset of Euclidean space ℝn is compact
if and only if it is closed and bounded.

6i.e., ∥u∥∞ ≤ r for all u ∈ M and fixed r ≥ 0.
7i.e., by definition, for each " > 0, there exists a � > 0 such that ∣u(t)− u(� )∣ < " for all u ∈ M and

∣t− � ∣ < �.
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Note that a linear operator is continuous if and only if the linear operator is continuous

at 0 if and only if the linear operator is bounded (see e.g., [Kato, 1995, p. 145]). A

discontinuous and unbounded linear operator can be found in [Gelbaum and Olmsted,

2003, p. 33]. The following nonlinear operator F1 : ℝ → ℝ defined by (see e.g., [Gelbaum

and Olmsted, 2003, p. 22])

F1(x) =

⎧

⎨

⎩

x, if x is rational,

−x, if x is irrational,

is continuous at the point x = 0 only. The nonlinear operator F2 : (0, 1) ⊆ ℝ → ℝ

defined by F2(x) = 1/x is a continuous but unbounded operator. In fact, for any

infinite dimensional Banach space X, there exists a continuous but unbounded nonlinear

operator F3 : X → ℝ defined on the whole domain X (see e.g., [Deimling, 1985, Example

2.8.1, p. 55]). The following nonlinear operator F4 : ℝ → ℝ defined by

F4(x) =

⎧

⎨

⎩

1, if x is rational,

−1, if x is irrational,
(2.2)

is a bounded (even compact) but discontinuous (discontinuous at any point in ℝ) oper-

ator.

An important class of nonlinear operators between Banach spaces is the set of compact

operators which appear in many applications. A compact operator is an operator which

transforms bounded sets in the definition of domain into relatively compact sets. The

notion of a compact operator plays an essential role in the theory of fixed points of a

nonlinear operator (e.g., the Schauder fixed-point theorem in the next section).

Definition 2.8. Let (X, ∥⋅∥X), (Y, ∥⋅∥Y ) be Banach spaces. An operator (possibly non-

linear) F : dom(F ) ⊆ X → Y is said to be compact if the image F (M) is relatively

compact in Y whenever M ⊆ dom(F ) is bounded.8

Let F : dom(F ) ⊆ X → Y be an operator (possibly nonlinear) between Banach spaces

X and Y . If F is compact, then it is also bounded. Recall that a linear operator is

bounded if and only if it is continuous. Therefore, every compact linear operator F

with dom(F ) a vector subspace of X is also bounded and continuous. However, for a

nonlinear operator, compactness does not in general imply continuity (e.g., the nonlinear

operator F4 : ℝ → ℝ given by (2.2)). Let F be a linear operator with dom(F ) a vector

subspace of X. If F is finite-dimensional,9 then it is automatically compact (see e.g.,

[Deimling, 1985, p. 55]). The identity operator I : X → X on the Banach space X is a

compact operator if and only if X is a finite-dimensional vector space (Riesz’s Lemma),

8This is equivalent to the condition that the image {Fxn} of any bounded sequence {xn} of dom(F )
contains a Cauchy subsequence, see e.g., [Zeidler, 1986, Appendix].

9Note that F is said to be finite-dimensional if the range F (dom(F )) is contained in a finite-
dimensional subspace of Y .
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see e.g., [Rynne and Youngson, 2008, p. 47], [Deimling, 1985, p. 40]. Other properties

for linear compact operators can be found in e.g., [Curtain and Zwart, 1995, Lemma

A.3.22, p. 587].

We conclude this section by reviewing some standard (nonlinear) compact operators in

nonlinear functional analysis.

Example 2.9. [Compact and continuous nonlinear integral operators] Let us

consider the integral operators F1 : u 7→ F1u and F2 : u 7→ F2u defined by

(F1u)(t) :=

∫ b

a
K (t, �, u(�)) d� for all t ∈ [a, b],

(F2u)(t) :=

∫ t

a
K (t, �, u(�)) d� for all t ∈ [a, b],

where −∞ < a < b < ∞. If K(t, �, x) is nonlinear in x, then F1, F2 are usually called

nonlinear Urysohn operators. Suppose that we have a continuous function

K : [a, b]× [a, b]× [−r, r] → ℝ,

where 0 < r <∞. Set X := C([a, b],ℝ) and

M := {u ∈ X : ∥u∥∞ ≤ r} ,

where ∥u∥∞ := maxa≤�≤b ∣u(�)∣ and C([a, b],ℝ) is the space of continuous maps u :

[a, b] → ℝ. Then the integral operators F1 : M ⊆ X → X and F2 : M ⊆ X →
X are continuous and compact.10 Nonlinear Urysohn operators acts on some other

function spaces (e.g., Lq([a, b],ℝ), 1 ≤ q ≤ ∞) under suitable restrictions on the function

K(t, s, x) are also continuous and compact.

A very important class of linear continuous and compact operator is the set of Fredholm

integral operators.

Example 2.10. [Fredholm integral operators] Consider the linear integral operator

(Fu)(t) :=

∫ b

a
K(t, �)u(�) d� for all t ∈ [a, b],

where −∞ < a < b < ∞. Set X1 := C([a, b],ℝ), X2 := L2([a, b],ℝ), and X3 :=

L∞([a, b],ℝ). The linear integral operator F : X1 → X1 is continuous and compact if K

is continuous on [a, b] × [a, b]. The linear integral operator F : X2 → X2 is continuous

10That the integral operators F1 and F2 are indeed compact follows from the well-known Arzelà-Ascoli
theorem (see e.g., [Zeidler, 1986, pp. 54, 772]).
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and compact if K is Lebesgue measurable11 on [a, b]× [a, b] and if

∫ b

a

∫ b

a
∣K(t, �)∣2 dt d� <∞.

The linear integral operator F : X3 → X3 is continuous and compact if K is Lebesgue

measurable on [a, b]× [a, b] and if

ess sup
a≤t,�≤b

∣K(t, �)∣ <∞.

Note that linear systems with strictly proper transfer functions define such linear con-

tinuous and compact operators (see e.g., [Georgiou and Smith, 1997b, Proposition 4]).

The linear integral operator F : Xi → Xi with i = 1, 2, 3 is called a Fredholm integral

operator in Xi (see e.g., [Rynne and Youngson, 2008, Chapter 8]). A special type of

Fredholm integral operator is the so-called Volterra integral operator having the form:

(Fu)(t) :=

∫ t

a
K(t, �)u(�) d� for all t ∈ [a, b],

where −∞ < a < b < ∞, and the upper limit of the integral in the definition of F is

variable.

2.3 The Schauder Fixed-Point Theorem

The following Schauder fixed-point theorem which is a well known result in the literature

will be used in the proof of the main Theorem 4.8 in Chapter 4 on page 81.

Lemma 2.11. (Schauder Fixed-Point Theorem (1930)). Let ℳ be a nonempty, closed,

bounded, convex subset of a Banach space X (i.e., X is a complete normed vector space),

and suppose T : ℳ → ℳ is a continuous and compact operator (possibly nonlinear).

Then T has a fixed point (i.e., there exists x ∈ ℳ such that Tx = x).

Proof. The proof of this theorem can be found in many nonlinear functional analysis

books, see e.g., [Zeidler, 1986, p. 56] or [Zeidler, 1995, p. 61]. Note that the definition

of compactness in these two references already requires the operator being continuous.

We also remark that the completeness of the normed vector space X is also important

here, although any normed vector space Ỹ can be completed (see e.g., [Zeidler, 1986, p.

771], [Kato, 1995, p. 129]) by a Banach space Y which contains Ỹ . Because a set which

is closed in Ỹ is not necessarily closed in Y.

The following well-known facts will be useful for the application of the Schauder fixed-

point theorem in proving Theorem 4.8 on page 81.

11A brief review of the Lebesgue measure theory can be found in e.g., [Adams and Fournier, 2003, pp.
13–19] or [Tao, 2011, Chapter 1]
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Lemma 2.12. Let (X, ∥⋅∥) be a normed vector space, and let x0 ∈ X and 0 ≤ r < ∞
be given. Then the set Br(x0) ≜ {x ∈ X : ∥x− x0∥ ≤ r} is nonempty, bounded, closed

and convex.

Proof. Note that x0 ∈ Br(x0) and ∥x∥ ≤ ∥x0∥ + r for any x ∈ Br(x0). This implies

that the set Br(x0) is nonempty and bounded. We next show that Br(x0) is closed.

To this end, let y0 be an element of the set Bc
r(x0), the complement of Br(x0), i.e.,

y0 ∈ X and ∥y0 − x0∥ > r. Define � ≜ (∥y0 − x0∥ − r)/2, it follows easily from the

triangle inequality of norm that for any y ∈ X with ∥y − y0∥ ≤ � we have ∥y − x0∥ ≥
∥y0 − x0∥−∥y − y0∥ ≥ (∥y0 − x0∥+ r)/2 > r, i.e., y ∈ Bc

r(x0). This implies that Bc
r(x0)

is open, and hence Br(x0) is closed. The convexity of Br(x0) can also be easily shown by

using the triangle inequality of norm and the definition of convexity, 12 see e.g., [Zeidler,

1995, p. 29].

The following lemma shows that the composition of a compact operator and a bounded

operator is compact (thus also bounded).

Lemma 2.13. Let X,Y,Z be Banach spaces and B : dom(B) ⊆ X → Y be a bounded

operator (possibly nonlinear) and C : dom(C) ⊆ Y → Z be a compact operator (pos-

sibly nonlinear) with B(dom(B)) ⊆ dom(C). Then the composition operator C ∘ B :

dom(B) ⊆ X → Z is compact.

Proof. The proof is similar to the proof for linear operators [Kato, 1995, Theorem III-

4.8, p. 158]. Let {xn} be a bounded sequence in dom(B). Then {Bxn} is bounded in

dom(C) and therefore contains a subsequence {Bx′n} such that {C(Bx′n)} is a Cauchy

sequence. This shows that C ∘B : dom(B) ⊆ X → Z is compact.

Recall that a continuous (possibly nonlinear) operator transforms compact (resp., bounded,

relatively compact) sets into compact (resp., bounded, relatively compact) sets (see e.g.,

[Zeidler, 1986, p. 756]). Therefore, if T is a compact operator and S is a continuous

operator, then both T ∘ S and S ∘ T are compact operators. But these results are not

needed in this thesis.

2.4 Equivalence Relations and Partitions

An important notion when defining the ‘state’ of a purely input-output system in this

thesis is that of equivalence relation.

Definition 2.14. Let X be a nonempty set. A binary relation R on X is a subset of

the Cartesian product X ×X (see e.g., [Vidyasagar, 1993]).

12Note that �x+ (1− �)y − x0 = �(x− x0) + (1− �)(y − x0) for any x, y ∈ X and any 0 ≤ � ≤ 1.
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Suppose R is a binary relation on X, then we say that x ∈ X is related to y ∈ X if the

ordered pair (x, y) ∈ R. Suppose f : X → X is a map, then f defines a binary relation

Rf on X, namely Rf ≜ {(x, f(x)) ∣ x ∈ X}.

Definition 2.15. A given binary relation R on a set X is said to be an equivalence

relation if and only if it is reflexive, symmetric and transitive. Equivalently, for all a, b

and c in X: (1) (a, a) ∈ R (reflexivity); (2) if (a, b) ∈ R then (b, a) ∈ R (symmetry); (3)

if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R (transitivity). In this case, we denote by ∼
the equivalence relation R, and (x, y) ∈ R by x ∼ y.

The equivalence class of a ∈ X under∼, denoted by [a], is defined as [a] = {b ∈ X : a ∼ b}.
The set of all possible equivalence classes of X by ∼, denoted by X/ ∼≜ {[a] : a ∈ X},
is the quotient set of X by ∼. Note that, if X is a topological space, then there is a

natural way of transforming X/ ∼ into a topological space. The projection of ∼ in X is

the function � : X → X/ ∼ defined by �(x) = [a] which maps elements of X into their

respective equivalence classes by ∼.

A notion directly related to equivalence relation is that of partition of a set.

Definition 2.16. Given any set X, let N be a collection of subsets of X. Then N is

called a partition of X if, and only if, the empty set ∅ /∈ N and
∪

A∈N{A} = X, and

A ∩B = ∅ if A ∈ N , B ∈ N with A ∕= B.

Note that from any partition N of X we can define an equivalence relation on X by

setting x ∼ y when x and y are in the same part of N . Conversely, for any equivalence

relation on a set X, the set of its equivalence classes is a partition of X. Thus the

notions of equivalence relation and partition are essentially equivalent.

2.5 Nerode Equivalence for Scalar Continuous-Time Trans-

fer Functions

In [Nerode, 1958] the author introduced an abstract approach via Nerode equivalence

(which originated in automata theory) to state space realisation methods. The essence

of Nerode equivalence is that the state space can be identified with a set of equivalent

classes of past input signals. This gives a key insight to the abstract construction of

initial conditions in this thesis (see Section 3.5.1 on page 53). In this section, we shall

show how to formalise this concept. For the construction of state maps in the context of

Willems’ behavioural theory, see e.g., [Fuhrmann et al., 2007, Rapisarda and Willems,

1997]. The concrete method used here is often cast in a more algebraic system theory,

see e.g., [Fuhrmann, 1981, Chapter III], [Kalman et al., 1969, Chapter 10].

Nerode equivalence for the conceptually simpler scalar discrete-time transfer functions

has been fully discussed previously in [Kailath, 1980, Section 5.1, p. 315] (see also Nerode
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construction for two-dimensional (2-D) linear filters defined by formal power series in

two variables [Fornasini and Marchesini, 1976]). Here we consider Nerode equivalence for

scalar continuous-time transfer functions. Consider the case in which the denominator

polynomial of the transfer function associated with multiple repeated roots:

Ĝ(s) =
bn−1s

n−1 + bn−2s
n−2 + . . .+ b1s+ b0

(s+ p1)r1(s+ p2)r2 . . . (s+ pm)rm
(2.3)

for which
∑m

i=1 ri = n with ri ∈ ℕ>0, bj ∈ ℂ, pi ∈ ℂ+
0 ≜ {s ∈ ℂ : Re(s) > 0}13 for any

i = 1, 2, . . . ,m, j = 1, 2, . . . , n− 1, and pl ∕= pk for l ∕= k, and pl (l = 1, 2, . . . ,m) are not

zeros of Ĝ. The above transfer function can be rewritten by partial fraction expansion

(see e.g., [Polderman and Willems, 1998, Theorem B.2.1, p. 417]) as follows:

Ĝ(s) =

m∑

i=1

ri∑

j=1

aij
(s+ pi)j

(2.4)

for which aij ∈ ℂ with airi ∕= 0 for any j = 1, 2, . . . , ri, i = 1, 2, . . . ,m.

We first introduce some notations about the usual time and frequency domain signal

spaces (see e.g., [Francis, 1987, Vinnicombe, 2001]). Let ℒ2(jℝ) (resp., ℒ2(ℝ)) denote

the frequency domain (resp., time domain) space of all complex-valued signals (resp.,

real-valued signals) square integrable on the imaginary axis jℝ (resp., on the whole

time domain ℝ). The time domain space ℒ2(ℝ) is related to the frequency domain

space ℒ2(jℝ) via Fourier transform denoted by F. Indeed, the Fourier transform F is

an isometric isomorphism14 between ℒ2(ℝ) and ℒ2(jℝ) (i.e., Paley-Wiener Theorem),

and so ℒ2(jℝ) ≡ Fℒ2(ℝ). In the time domain, we have the following decomposition

ℒ2(ℝ) = ℒ2(ℝ+)⊕ℒ2(ℝ−), where ℒ2(ℝ+) (resp., ℒ2(ℝ−)) is the space of signals defined

for positive (resp., negative) time and zero for negative (resp., positive) time. Similarly,

we have in the frequency domain the decomposition ℒ2(jℝ) = ℋ2 ⊕ ℋ⊥
2 , where ℋ2

(resp., ℋ⊥
2 ) is the usual Hardy space of all signals in ℒ2(jℝ) which can be continued

analytically into the open right-half (resp., open left-half) of the complex plane. Note

that ℋ2 (resp., ℋ⊥
2 ) can also be regarded as the space of Fourier transforms of signals

in ℒ2(ℝ+) (resp., ℒ2(ℝ−)), i.e., ℋ2 ≡ Fℒ2(ℝ+) and ℋ⊥
2 ≡ Fℒ2(ℝ−). The time domain

signal spaces ℒ2(ℝ), ℒ2(ℝ+), ℒ2(ℝ−) and the frequency domain signal spaces ℒ2(jℝ),

ℋ2, ℋ⊥
2 are all Hilbert spaces endowed with the standard inner products.

Let ℒ∞(jℝ) denote the standard frequency domain Lebesgue space of all complex-valued

functions essentially bounded on the imaginary axis jℝ and let ℋ∞ (resp., ℋ−
∞) denote

the standard Hardy space of all functions in ℒ∞(jℝ) with analytic continuation in the

open right-half (resp., open left-half) of the complex plane. Note that the frequency

domain function spaces ℒ∞(jℝ), ℋ∞ and ℋ−
∞ are all Banach spaces endowed with the

standard norms. For the real rational case, ℛℒ∞(jℝ) denotes the subspace of ℒ∞(jℝ)

13This assumption can be relaxed, see Remark 2.18 below.
14see Definition 2.4 on page 14
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whose elements are real rational functions; and similar for ℛℋ∞ and ℛℋ−
∞. Note that

ℛℒ∞(jℝ) can also be regarded as the space of all continuous-time transfer functions

which are real rational, proper, and without poles on the imaginary axis. Similarly,

ℛℋ∞ (resp., ℛℋ−
∞) is identified with the space of all continuous-time transfer functions

which are real rational, proper, and without poles in the closed right-half (resp., open

left-half) of the complex plane.

If F̂ ∈ ℒ∞(jℝ) and û ∈ ℒ2(jℝ) then F̂ û ∈ ℒ2(jℝ). Similarly, if F̂ ∈ ℋ∞ (resp.,

F̂ ∈ ℋ−
∞) and û ∈ ℋ2 (resp., û ∈ ℋ⊥

2 ) then F̂ û ∈ ℋ2 (resp., F̂ û ∈ ℋ⊥
2 ). In addition,

û1 ∈ ℋ2 (resp., F̂1 ∈ ℋ∞) if and only if û2 ∈ ℋ⊥
2 (resp., F̂2 ∈ ℋ−

∞), where û1(s) = û2(−s)
(resp., F̂1(s) = F̂2(−s)) for s ∈ ℂ (see e.g., [Curtain and Zwart, 1995, Theorems A.6.22

and A.6.26, pp. 645 and 647]).

For the construction of Nerode equivalence for scalar continuous-time transfer functions,

we need the following notion of Hankel operator of the corresponding transfer function.

Definition 2.17. For any continuous-time transfer function F̂ ∈ ℒ∞(jℝ), we define the

Hankel operator with symbol F̂ as the operator HF̂ : ℋ⊥
2 → ℋ2 given by

HF̂ û = Π+MF̂Π−û = Π+MF̂ û, ∀ û ∈ ℋ⊥
2

where Π+ (resp., Π−) is the orthogonal projection operator from ℒ2(jℝ) onto ℋ2 (resp.,

ℋ⊥
2 ); and MF̂ : ℒ2(jℝ) → ℒ2(jℝ) is the multiplication operator with symbol F̂ given by

MF̂ ĝ = F̂ ĝ for any ĝ ∈ ℒ2(jℝ).

Note that the Hankel operator defined here is slightly different from the one given in

some other texts (see e.g., [Curtain and Zwart, 1995, Chapter 8, p. 387], [Nikol’skĭı,

1986, Appendix 4, p. 299], [Partington, 1988]). We summarise some properties of the

Hankel operator with symbol F̂ ∈ ℒ∞(jℝ) relevant to later discussions as follows (see

e.g., [Curtain and Zwart, 1995, Chapter 8, pp. 388–389]):

(a). The Hankel operator HF̂ is a linear bounded operator from ℋ⊥
2 to ℋ2.

(b). If F̂1, F̂2 ∈ ℒ∞(jℝ) and c1, c2 ∈ ℝ (or ℂ), then Hc1F̂1+c2F̂2
= c1HF̂1

+ c2HF̂2
, i.e.,

the Hankel operator is linear with respect to the symbol over the field ℝ (or ℂ).

(c). If F̂ ∈ ℋ−
∞ then HF̂ = 0, here 0 denotes the zero operator.

(d). Consider F̂ (s) = 1/(s+p)r, where the real part of the complex number p is positive

(i.e., Re(p) > 0) and r is a positive integer (i.e., r ∈ ℕ>0). Clearly, F̂ ∈ ℋ∞ ⊆
ℒ∞(jℝ) and any û ∈ ℋ⊥

2 has an expansion

û(s) = û(−p) +
r−1∑

k=1

û(k)(−p)(s+ p)k

k!
+ (s+ p)rv̂(s) (2.5)
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for some v̂ ∈ ℋ⊥
2 and s on the open left-half of the complex plane (i.e., s ∈ ℂ with

Re(s) < 0) and s on the imaginary axis almost everywhere (i.e., s ∈ jℝ a.e.). Thus

we have 15

(HF̂ û)(s) =
û(−p)
(s+ p)r

+

r−1∑

k=1

û(k)(−p)
k!(s + p)r−k

and the dimension of the range of HF̂ is r (i.e., dim(range(HF̂ )) = r). It is easily

verified that HF̂ û = 0 if and only if û(k)(−p) = 0 for all k = 0, 1, 2, . . . , r − 1.

Here and in what follows the notation û(0)(−p) indicates û(−p), and û(k)(−p), k > 0

indicates the k-th derivative of û(s) at the point s = −p.

We are finally in a position to give the construction of Nerode equivalence for scalar

continuous-time transfer function given by (2.4), i.e.,

Ĝ(s) =
m∑

i=1

ri∑

j=1

aij
(s+ pi)j

(2.6)

for which
∑m

i=1 ri = n, and ri ∈ ℕ>0, pi ∈ ℂ+
0 , aij ∈ ℂ with airi ∕= 0 for any j =

1, 2, . . . , ri, i = 1, 2, . . . ,m, and pl ∕= pk for l ∕= k.

Suppose that the function G : ℝ+ → ℝ (i.e., impulse response) denotes the inverse

(unilateral) Laplace transform of Ĝ. Clearly, the function G is Lebesgue integral (i.e.,
∫∞
0 ∣G(t)∣ dt <∞) since Ĝ has all poles on the open left-half of the complex plane; and

G causally associates with each input signal u ∈ ℒ2(ℝ) an output signal y ∈ ℒ2(ℝ) on

the time domain by the following convolution:16

y(t) = (G ∗ u)(t) =
∫ t

−∞
G(t− �)u(�) d�, ∀ t ∈ ℝ.

From [Curtain and Zwart, 1995, Lemma 8.2.3, p. 397] we know that for any u ∈ ℒ2(ℝ)

we have (Ff)(j!) = Ĝ(j!) ⋅ (Fu)(j!) for all ! ∈ ℝ with f := G ∗ u, and that for any

v ∈ ℒ2(ℝ−) we have HĜv̂ = F(g[0,∞)) with g := G ∗ v.

Nerode proposed the following approach for introducing the concept of state: Pick some

reference time, say t = 0, any input signals u1 ∈ ℒ2(ℝ−), u2 ∈ ℒ2(ℝ−), . . . can be said

to leave the system in the same state at time t = 0 if the corresponding output signals

y1 := G ∗ u1 ∈ ℒ2(ℝ), y2 := G ∗u2 ∈ ℒ2(ℝ), . . . are all the same for t ≥ 0 a.e.. (i.e., any

inputs û1 ∈ ℋ⊥
2 , û2 ∈ ℋ⊥

2 , . . . can be said to leave the system in the same state at time

t = 0 if HĜû1 ∈ ℋ2, HĜû2 ∈ ℋ2, . . . are all the same.) Thus, the space ℒ2(ℝ−) can

be broken up into classes such that for all inputs in any class the corresponding output

15see e.g., [Curtain and Zwart, 1995, Example 8.1.5, p. 389]), [Zhu and Stoorvogel, 1989]; and in
discrete time case see e.g., [Nikol’skĭı, 1986, p. 305].

16We assume that the system is causal time-invariant and initially at rest at time t = −∞, and that
the zero input signal gives a zero output signal.



Chapter 2 Preliminaries 25

is the same for t ≥ 0 a.e.. (i.e., the space ℋ⊥
2 can be broken up into classes such that

for all inputs û in any class the value HĜû is the same.) We associate with each class a

state at time t = 0 for the system. This is all done with reference to the states at t = 0,

but we can replace t = 0 by any other time because of time-invariance.

By the linearity of the Hankel operator HĜ we know that the zero class in ℋ⊥
2 (i.e., zero

state at time t = 0) is identified with the kernel of HĜ, denoted by ker(HĜ), which is

the set of all û ∈ ℋ⊥
2 such that HĜû = 0. From properties (b) and (d) of the Hankel

operator, we obtain

(HĜû)(s) =

m∑

i=1

ri∑

j=1

aij

j−1
∑

k=0

û(k)(−pi)
k!(s+ pi)j−k

(2.7)

and thus 17

ker(HĜ) =
{

û ∈ ℋ⊥
2

∣
∣ û(k)(−pi) = 0, ∀ k = 0, 1, . . . , ri − 1 for i = 1, 2, . . . ,m

}

. (2.8)

It can be verified that the set on the right hand side of (2.8) is equal to the following

one: 18

{

q̂v̂
∣
∣ q̂(s) =

m∏

i=1

(s+ pi)
ri

(s− pi)ri
and v̂ ∈ ℋ⊥

2

}

. (2.9)

This is consistent with the fact that ker(HĜ) = Θℋ⊥
2 for some inner function Θ (i.e.,

∣Θ(j!)∣ = 1 for ! ∈ ℝ a.e.) in ℋ−
∞, which is a direct consequence of the Beurling-Helson

theorem (see e.g., [Nikol’skĭı, 1986, p. 10], [Partington, 1988, Corollary 6.5, p. 58]).

For any input û ∈ ℋ⊥
2 , we know that û(k)(−pi), ∀ k = 0, 1, . . . , ri − 1 for i = 1, 2, . . . ,m

are all well-defined. It follows from the interpolation by rational functions theory (see

e.g., [Walsh, 1969, Chapter VIII, p. 184]) that there always exists a unique rational

function f̂ ∈ ℋ⊥
2 of the form

f̂(s) =
cn−1s

n−1 + cn−2s
n−2 + . . .+ c1s+ c0

(s− 1)n
(2.10)

with n = r1 + ⋅ ⋅ ⋅ + rm such that

f̂ (k)(−pi) = û(k)(−pi), ∀ k = 0, 1, . . . , ri − 1 for i = 1, 2, . . . ,m. (2.11)

17Note that by assumption airi ∕= 0 for any i = 1, 2, . . . ,m.
18Sketch of proof: (⊇) Since q̂(s) =

∏m
i=1

(s+pi)
ri

(s−pi)
ri ∈ ℋ−

∞, we have q̂v̂ ∈ ker(HĜ) for any v̂ ∈ ℋ⊥
2 . (⊆)

For any û ∈ ker(HĜ), from the expansion of û similar to (2.5) we obtain û(s) = v̂(s)
∏m

i=1 (s+ pi)
ri

for some v̂ ∈ ℋ⊥
2 , and thus û(s) = q̂(s)ŵ(s) with ŵ(s) := v̂(s)

∏m
i=1 (s− pi)

ri = q̂∼(s)û(s) ∈ ℋ⊥
2 , since

q̂∼(⋅) ∈ ℋ∞ ⊆ ℒ∞(jℝ), û ∈ ℋ⊥
2 ⊆ ℒ2(jℝ) (so ŵ = q̂∼û ∈ ℒ2(jℝ)), v̂ ∈ ℋ⊥

2 and Re(pi) > 0 for

i = 1, 2, . . . ,m. Here F∼(s) :=
(

F (−s)
)T

denotes the para-Hermitian conjugation of F (s).
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Note that the complex numbers c0, c1, . . . , cn−1 in (2.10) are uniquely determined by

the complex values û(k)(−pi), ∀ k = 0, 1, . . . , ri − 1 for i = 1, 2, . . . ,m. By using the

inner-outer factorisation theorem (see e.g., [Partington, 2004, Corollary 1.3.7 (F. Riesz),

p. 11], [Partington, 1988, Theorem 2.12 (F. Riesz), p. 21]), there exists some ĝ ∈ ℋ⊥
2

such that

û = ĝB̂ + f̂ with B̂(s) :=
∏

i: pi=−1

(1 + s)ri

(1− s)ri
⋅
∏

i: pi ∕=−1

∣
∣1− p2i

∣
∣ri

(1− p2i )
ri

(s+ pi)
ri

(s− pi)ri
(2.12)

where B̂(s) is the so-called Blaschke product for Re(s) < 0 formed using the zeros pi

with multiplicity ri for i = 1, 2, . . . ,m of û− f̂ ∈ ℋ⊥
2 (see (2.11)); and we see from (2.8)

and (2.9) that ĝB̂ ∈ ker(HĜ). This means that both û and f̂ belong to the same class

in ℋ⊥
2 and hence define the same state at time t = 0.

The above decomposition of any û ∈ ℋ⊥
2 given by (2.12) is similar to the one obtained

via Euclidean algorithm in discrete-time case (see e.g., [Kailath, 1980, Section 5.1, p.

317]); and we see that the collection of classes (or equivalently the collection of states at

time t = 0) can be represented by a collection of rational functions of the form (2.10);

and each such rational function represents a distinct class. Since c0, c1, . . . , cn−1 in (2.10)

are one-to-one related to û(k)(−pi), ∀ k = 0, 1, . . . , ri − 1 for i = 1, 2, . . . ,m, we can use

the n values û(k)(−pi), ∀ k = 0, 1, . . . , ri − 1 for i = 1, 2, . . . ,m to specify any of these

rational functions and thus any of the states at time t = 0. Therefore, the state space

is n-dimensional with n = r1 + ⋅ ⋅ ⋅+ rm, i.e., the state at time t = 0 can be represented

by an n-vector, say

x(0) = [x1(0), . . . , xr1(0), . . . . . . , xn−rm+1(0), . . . , xn(0)]
T

≜

[

f̂ (r1−1)(−p1)
(r1 − 1)!

, . . . ,
f̂ (0)(−p1)

0!
, . . . . . . ,

f̂ (rm−1)(−pm)
(rm − 1)!

, . . . ,
f̂ (0)(−pm)

0!

]T

=

[

û(r1−1)(−p1)
(r1 − 1)!

, . . . ,
û(0)(−p1)

0!
, . . . . . . ,

û(rm−1)(−pm)
(rm − 1)!

, . . . ,
û(0)(−pm)

0!

]T

. (2.13)

We next show how the state evolves with time as future inputs are applied. Suppose that

û(s) in ℋ⊥
2 is a representative of the Nerode equivalence class identified with the state

x(0) at t = 0 (origin), where x(0) is defined by (2.13). After a future input u restricted

to the time domain [0, �) (resp., û∣[0,�)(s) ≜
∫ �
0− u(t)e

−st dt in the frequency domain) is

applied, we redefine t = � as the new origin (note that the system considered here is

time-invariant), and thus the state x(�) at t = � can be associated with the following

input signal (in the frequency domain):

es�
[

û(s) + û∣[0,�)(s)
]

:= es�
[

û(s) +

∫ �

0−
u(t)e−st dt

]

,



Chapter 2 Preliminaries 27

where the multiplication operator es� in the frequency domain corresponds to the time

shifting by −� in the time domain. Since the system considered here is linear, we can

associate the derivative of the state ẋ(0) ≜ dx(t)
dt ∣t=0 at t = 0 with the following derivative

input signal (in the frequency domain):

ûd(s) ≜ lim
�↓0

1

�

{

es�
[

û(s) + û∣[0,�)(s)
]

− û(s)
}

=

{
d

d�
es�
[

û(s) + û∣[0,�)(s)
]}
∣
∣
∣
∣
�=0

= sû(s) + u(0). (2.14)

It is easily verified that

ûd(−pi) = −piû(−pi) + u(0) and û
(k)
d (−pi) = −piû(k)(−pi) + kû(k−1)(−pi)

for k = 1, . . . , ri − 1 with i = 1, . . . ,m. In matrix notation we get,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

û
(ri−1)

d (−pi)
(ri−1)!

...
û
(1)
d (−pi)

1!
û
(0)
d (−pi)

0!

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−pi 1 0

⋅ ⋅
⋅ ⋅

⋅ 1

0 −pi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Ai ≜ J(−pi, ri)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

û(ri−1)(−pi)
(ri−1)!

...
û(1)(−pi)

1!
û(0)(−pi)

0!

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

0
...

0

1

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Bi

u(0) (2.15)

for i = 1, . . . ,m. Note that J(−pi, ri) is the ri × ri Jordan block with eigenvalues −pi.
We define an n × n matrix Ajo (note that n = r1 + ⋅ ⋅ ⋅ + rm) and an n × 1 matrix Bjo

as follows

Ajo ≜ block diag {Ai, i = 1, . . . ,m} , Bjo ≜
[
BT

1 , ⋅ ⋅ ⋅ , BT
m

]T
. (2.16)

From (2.13)–(2.15) and above discussions, we know that ẋ(0) = Ajox(0) +Bjou(0); and

it follows from (2.7) and the initial value theorem19 that

y(0) =
m∑

i=1

ri∑

j=1

aij
û(j−1)(−pi)
(j − 1)!

= [a1r1 , ⋅ ⋅ ⋅ , a11, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , amrm , ⋅ ⋅ ⋅ , am1]
︸ ︷︷ ︸

Cjo

x(0), (2.17)

where the last equality uses (2.13). Therefore, by time-invariance, we obtain a state space

realisation in the Jordan (modified-diagonal) canonical form [Ogata, 2002, Chapter 11,

19i.e., limt→0 f(t) = lims→∞ sF (s), where F (s) denotes the Laplace transform of f(t) (see e.g., [Can-
non, 2003, Section 17.8, p. 567]).
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p. 755], [Kalman, 1965] as follows:

ẋ(t) = Ajox(t) +Bjou(t), y(t) = Cjox(t), ∀ t ∈ ℝ, (2.18)

with Ajo, Bjo and Cjo defined as in (2.15)–(2.17), respectively.

Remark 2.18. It is tacitly assumed that all poles of the transfer function (2.3) lie

on the open left-half of the complex plane when we began. However, this assump-

tion can be relaxed, and we could obtain the same state space realisation (2.18) by

slightly modifying the definitions of signal spaces, function spaces and Hankel opera-

tors. For example, assume that Re(pi) < �, ∀i = 1, 2, . . . ,m, for some � > 0. We

denote ℒ2,�(ℝ) := {e�v ∣ v ∈ ℒ2(ℝ)} with norm ∥u∥ℒ2,�(ℝ)
:= ∥e−�u∥ℒ2(ℝ)

for any

u ∈ ℒ2,�(ℝ), where e� is an operator defined by (e�v)(t) = e�tv(t), ∀t ∈ ℝ. Simi-

larly, we denote ℒ2,�(ℝ+) := e�ℒ2(ℝ+) and ℒ2,�(ℝ−) := e�ℒ2(ℝ−) (see e.g., [Weiss,

1994]). The modified frequency domain spaces ℋ2,�, ℋ⊥
2,�, ℒ2,�(jℝ), ℋ∞,�, ℋ−

∞,�, and

ℒ∞,�(jℝ) are obtained by replacing the imaginary axis jℝ with the translated imaginary

axis �+ jℝ in the definitions from ℋ2, ℋ⊥
2 , ℒ2(jℝ), ℋ∞, ℋ−

∞, and ℒ∞(jℝ) respectively.

(e.g., ℋ⊥
2,� is the space of all complex-valued functions square integrable on the axis

� + jℝ with analytic continuation in the left open half-plane in ℂ delimited by � (i.e.,

{s ∈ ℂ : Re(s) < �}).) Clearly, the modified frequency domain signal spaces are related

to the corresponding modified time domain signal spaces via bilateral Laplace transform

L, i.e., ℋ2,� ≡ Lℒ2,�(ℝ+), ℋ⊥
2,� ≡ Lℒ2,�(ℝ−) and ℒ2,�(jℝ) ≡ Lℒ2,�(ℝ). In addition,

ℒ2,�(ℝ) = ℒ2,�(ℝ+) ⊕ ℒ2,�(ℝ−) and ℒ2,�(jℝ) = ℋ2,� ⊕ ℋ⊥
2,�. The modified Hankel

operator H̃Ĝ with symbol Ĝ is defined as

H̃Ĝ : ℋ⊥
2,� → ℋ2,�, û 7→ Πℋ2,�

Ĝû,

where Πℋ2,�
is the orthogonal projection operator from ℒ2,�(jℝ) onto ℋ2,�. Thus we

could obtain the same Jordan canonical form (2.18) by using similar arguments as above

only with the Fourier transform F and the imaginary axis jℝ replaced by the bilateral

Laplace transform L and the translated imaginary axis �+ jℝ, respectively.

Thus far we have shown that in the scalar case the notion of Nerode equivalence can be

used to obtain a state space realisation in the Jordan canonical form in a natural way.

The multivariable analog of this results for continuous time transfer function matrices

can also be developed by using the concept of Smith-McMillan form (see [Liu and French,

2014c]).

2.6 Comparison Classes of K, K∞, and Kℒ Functions

In this section, we introduce the concept of comparison functions (i.e., class K, class

K∞, and class Kℒ functions) (see e.g., [Isidori, 1999] or [Vidyasagar, 1993]), which are
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Figure 2.1: Class K∞ function 


used widely in the rest of the thesis.

Definition 2.19. A function 
 : [0, a) → ℝ+ (in most cases we have a = ∞) is said to

be of class K if it is continuous, strictly increasing and satisfies 
(0) = 0; moreover, if

a = ∞ and lims→∞ 
(s) = ∞, then it is said to be of class K∞ (Figure 2.1).

Definition 2.20. A function � : [0, a) × ℝ+ → ℝ+ (in most cases we have a = ∞) is

said to be of class Kℒ if it is such that �(⋅, t) ∈ K for each fixed t ∈ ℝ+, and the function

�(s, ⋅) is decreasing and limt→∞ �(s, t) = 0 for each fixed s ∈ [0, a).

For example, 
(s) = 1 − e−s for any s ∈ ℝ+ is a class K function but not a class K∞
function, and 
(s) = 2s2 for any s ∈ ℝ+ is a class K∞ function, and �(s, t) = 4s3 ⋅ e−2t2

for any s ∈ ℝ+ and t ∈ ℝ+ is a class Kℒ function.

In the following, we will summarise some interesting features about class K, class K∞,

and class Kℒ functions.

1. The composition of two class K∞ (resp., class K) functions 
1(⋅) and 
2(⋅), denoted

1 ∘ 
2(⋅) or 
1(
2(⋅)), is still a class K∞ (resp., class K) function.

2. For any class K function 
 : [0, a) → ℝ+ and lims→a 
(s) = b, there exists a

unique function 
−1 : [0, b) → [0, a) such that 
−1 ∘ 
(s) = s for all s ∈ [0, a) and


 ∘ 
−1(s) = s for all s ∈ [0, b). In addition, 
−1 ∈ K. If 
 belongs to class K∞, so

does also 
−1.

3. For any functions 
1, 
2 ∈ K∞ and function � ∈ Kℒ, the function �̃ : ℝ+ × ℝ+ →
ℝ+ defined by (s, t) 7→ 
1(�(
2(s), t)) is a class Kℒ function.

We know that �(s, t) = 
(s)e−�t with � > 0 and 
 ∈ K∞ is a particular form of

class Kℒ function. To understand class Kℒ function more clearly, we give the following

Lemma 2.21 which says that any class Kℒ function can be estimated in the sense of the

exponential function and of two other class K∞ functions, and Lemma 2.22 which states

that when a function can be dominated by some class Kℒ function.

Lemma 2.21. Suppose that � is a class Kℒ function. Then, there exist two functions


1, 
2 ∈ K∞ such that �(s, t) ≤ 
1(
2(s)e
−t) for all (s, t) ∈ [0, a) × ℝ+.
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Proof. See e.g., [Sontag, 1998a, Proposition 7], [Isidori, 1999, Lemma 10.1.1, p. 2],

[Karafyllis and Jiang, 2011, Theorem 3.1, p. 124].

Lemma 2.22. Let �(s, t) : ℝ+ × ℝ+ → ℝ+ be a function satisfying

∙ for any r > 0 and any " > 0 there exists some T = Tr," > 0 such that �(s, t) < "

for all 0 ≤ s ≤ r, t ≥ T ;

∙ for any " > 0, there exists r > 0 such that �(s, t) < " for all 0 ≤ s ≤ r, t ≥ 0.

Then a Kℒ function � exists such that �(s, t) ≤ �(s, t) for all s ≥ 0, t ≥ 0.

Proof. This lemma is stated in [Albertini and Sontag, 1999, Lemma 15] (see also [Sontag

and Ingalls, 2002, Proposition A.1]). It is proved in [Lin et al., 1996, Section 3] but not

explicitly presented in the above form (see also proofs of [Lin et al., 1993, Proposition

2.5 and Lemma 3.1]).

The following Lemmas 2.23, 2.24 and 2.25 will be frequently used in this thesis.

Lemma 2.23. For any function � : [0, r) → ℝ+ of class K, any function � of class K∞
and any two nonnegative real numbers a and b with a + b < r, we have the following

inequalities:

�(a+ b) ≤ max
{
� ∘ (I + �)(a), � ∘ (I + �−1)(b)

}
(2.19a)

�(a+ b) ≤ � ∘ (I + �)(a) + � ∘ (I + �−1)(b) (2.19b)

Proof. It follows from considering the two cases, b ≤ �(a) and b ≥ �(a), and using the

fact that the function �(s) is nondecreasing with respect to s, that

�(a+ b) ≤ � ∘ (I + �)(a), if b ≤ �(a);

�(a+ b) ≤ � ∘ (I + �−1)(b), if a ≤ �−1(b).

Thus, we have the inequality (2.19).

Lemma 2.24. Let � be a function of class K∞, then we have

(
I − (I + �)−1

)−1
(s) = (I + �−1)(s), ∀s ≥ 0; (2.20)

(
I − (I + �)−1

)
(s) = � ∘ (I + �)−1(s), ∀s ≥ 0. (2.21)

Proof. We define another function Δ(s), s ≥ 0 of class K∞ as follows:

Δ(s) = (I + �)−1(s), ∀s ≥ 0. (2.22)
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In order to prove that (2.20) holds, it suffices to show that the following two equalities

hold

(I −Δ) ∘ (I + �−1)(s) = I(s), ∀s ≥ 0; (2.23)

(I + �−1) ∘ (I −Δ)(s) = I(s), ∀s ≥ 0. (2.24)

By pointwise addition of functions, (2.23) and (2.24) are equivalent to the following

equalities (2.25) and (2.26), respectively

�−1(s) = Δ ∘ (I + �−1)(s), ∀s ≥ 0; (2.25)

�−1 ∘ (I −Δ)(s) = Δ(s), ∀s ≥ 0. (2.26)

It follows from (2.22), the definition of function Δ, and the equality (I + �) ∘ �−1(s) =

(I + �−1)(s),∀s ≥ 0 that (2.25) holds, i.e., (2.23) holds. Note that

� ∘Δ(s) = [(�+ I)− I] ∘Δ(s) = (I −Δ)(s), ∀s ≥ 0. (2.27)

and applying function �−1 on both side of (2.27), we get (2.26), hence (2.24) holds.

Therefore (2.20) follows, and (2.21) can be directly obtained from (2.27). This completes

the proof.

The following technical result is taken from [Jiang et al., 1994, Lemma A.1], which will

be used in the proof of Theorem 4.8 on page 81.

Lemma 2.25. Let � ∈ Kℒ and � ∈ K∞ with I − � ∈ K∞ be given, and let � be any

real number with 0 < � ≤ 1. Then, for any function � with � − I ∈ K∞, there exists a

function �̂ ∈ Kℒ such that, for any nonnegative real numbers s ≥ 0, d ≥ 0, and for any

nonnegative real function z(t) essentially bounded on [0,∞) and satisfying

z(t) ≤ �(s, t) + �(∥z∥[�t,∞)) + d, ∀ t ∈ [0,+∞), (2.28)

we have

z(t) ≤ �̂(s, t) + (I − �)−1 ∘ �(d), ∀ t ∈ [0,+∞).

Proof. See [Jiang et al., 1994, Lemma A.1]. Sketch of proof: Define a new function

z̄(t) := z(t)�
(
∥z∥[�t,∞) − (I − �)−1 ∘ �(d)

)
, where �(x) = 1 if x > 0 and �(x) = 0 if

x ≤ 0. It can be verified that z(t) ≤ z̄(t) + (I − �)−1 ∘ �(d), and that (using (2.28))

z̄(t) ≤ �(s, t) +
(
�+ �−1 ∘ (I − �)

)
(∥z̄∥[�t,∞)). (2.29)

Thus the conclusion follows if we can show that there exists a function �̂(s, t) of class

Kℒ satisfying z̄(t) ≤ �̂(s, t). This is true by combining Lemma 2.22 and the following

two claims (which are the difficult parts of the proof): (1) For any r > 0 and " > 0,
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there exists some T = T (r, ") > 0 such that z̄(t) ≤ ", ∀t ≥ T if z̄(t) satisfies (2.29) with

s ≤ r; (2) For any " > 0, there exists r > 0 such that z̄(t) ≤ ", ∀t ≥ 0 if z̄(t) satisfies

(2.29) with s ≤ r.

The following Lemma 2.26 involves convolution integral and comparison functions. For

two functions f : ℝ+ → ℝ and g : ℝ+ → ℝ, the convolution integral function f ∗ g :

ℝ+ → ℝ is defined as follows:

(f ∗ g)(t) ≜
∫ t

0
f(t− �)g(�) d�

It is easy to see that f ∗g = g ∗f . Also notice that for any measurable locally essentially

bounded functions fi : ℝ+ → ℝ with i = 1, 2, 3 we have 20

(
(f1 ∗ f2) ∗ f3

)
(t) =

∫ t

0
(f2 ∗ f1)(t− �)f3(�) d� =

∫ t

0

∫ t−�

0
f2(t− � − �)f1(�)f3(�) d�d�

=

∫ t

0

∫ t−�

0
f2(t− � − �)f1(�)f3(�) d� d� =

∫ t

0

∫ x

0
f2(x− �)f1(t− x)f3(�) d� dx

=

∫ t

0
f1(t− x)

∫ x

0
f2(x− �)f3(�) d� dx =

∫ t

0
f1(t− x)(f2 ∗ f3)(x) dx

=
(
f1 ∗ (f2 ∗ f3)

)
(t), ∀t ≥ 0. (2.30)

Note that the third equality in (2.30) uses the Fubini-Tonelli theorem (see e.g., [Krantz,

2011, p. 54]).

Lemma 2.26. Given any two functions fi : ℝ+ → ℝ with i = 1, 2. If there are four

comparison functions �i ∈ Kℒ and 
i ∈ K∞ with i = 1, 2 such that

∣(fi ∗ u)(t)∣ ≤ �i(∥u∥[0,ℎ] , t− ℎ) + 
i(∥u∥[ℎ,t]), ∀t ≥ ℎ ≥ 0, ∀u ∈ L∞
loc(ℝ+,ℝ), ∀i = 1, 2

for any 0 ≤ a ≤ b, where L∞
loc(ℝ+,ℝ) is the space of all measurable locally essentially

bounded functions x : ℝ → ℝn with ∥u∥[a,b] ≜ ess supt∈[a,b] ∣u(t)∣. Then we have

∣
∣
(
(f1 ∗ f2) ∗ u

)
(t)
∣
∣ ≤ �(∥u∥[0,ℎ] , t− ℎ) + (
1 ∘ 
2)(∥u∥[ℎ,t]), ∀t ≥ ℎ ≥ 0, ∀u ∈ L∞

loc(ℝ+,ℝ)

with � ∈ Kℒ defined by

�(r, t) ≜ �1
(

2(r), t

)
+ �1

(
�2(r, 0), t/2

)
+ 
1

(
�2(r, t/2)

)
, ∀r ≥ 0,∀t ≥ 0. (2.31)

Proof. For any u ∈ L∞
loc(ℝ+,ℝ) and any t ≥ ℎ ≥ 0 we have

(
(f1 ∗ f2) ∗ u

)
(t) =

(
f1 ∗ (f2 ∗ u)

)
(t)

=

∫ t

0
f1(t− �)

∫ �

0
f2(� − �)u(�) d� d� = A+B + C +D

20see e.g., [Desoer and Vidyasagar, 2009, p. 239]
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with A ≜
∫ ℎ
0 f1(t − �)

∫ �
0 f2(� − �)u(�) d� d�, B ≜

∫ t
ℎ f1(t − �)

∫ �
ℎ f2(� − �)u(�) d� d�,

C ≜
∫ t+ℎ

2
ℎ f1(t−�)

∫ ℎ
0 f2(�−�)u(�) d� d�, andD ≜

∫ t
t+ℎ
2
f1(t−�)

∫ ℎ
0 f2(�−�)u(�) d� dX�.

It is easy to see that

∣A∣ ≤�1
(∥
∥
∥
∥

∫ ⋅

0
f2(⋅ − �)u(�) d�

∥
∥
∥
∥
[0,ℎ]

, t− ℎ

)

≤ �1

(


2(∥u∥[0,ℎ]), t− ℎ
)

∣B∣ ≤
1
(∥
∥
∥
∥

∫ ⋅

ℎ
f2(⋅ − �)u(�) d�

∥
∥
∥
∥
[ℎ,t]

)

≤ (
1 ∘ 
2)(∥u∥[ℎ,t])

∣C∣ ≤�1
(∥
∥
∥
∥

∫ ℎ

0
f2(⋅ − �)u(�) d�

∥
∥
∥
∥
[ℎ, t+ℎ

2
]

, t− t+ ℎ

2

)

≤ �1

(

�2(∥u∥[0,ℎ] , 0),
t− ℎ

2

)

∣D∣ ≤
1
(∥
∥
∥
∥

∫ ℎ

0
f2(⋅ − �)u(�) d�

∥
∥
∥
∥
[ t+ℎ

2
,t]

)

≤ 
1

(

�2

(

∥u∥[0,ℎ] , t−
t+ ℎ

2

))

We define a function � : ℝ+ × ℝ+ → ℝ by (2.31), thus we have � ∈ Kℒ and

∣
∣
(
(f1 ∗ f2) ∗ u

)
(t)
∣
∣ ≤ �(∥u∥[0,ℎ] , t− ℎ) + (
1 ∘ 
2)(∥u∥[ℎ,t])

for any t ≥ ℎ ≥ 0 and any u ∈ L∞
loc(ℝ+,ℝ). This completes the proof.

2.7 Input-to-State Stability in State Space Model

The following notion of input-to-state stability in state space model was introduced by

Sontag (see e.g., [Isidori, 1999, Khalil, 2002, Sontag, 1989]).

Consider a nonlinear system

ẋ = f(x, u) (2.32)

with state x ∈ ℝn, input u ∈ ℝm, where f(x, u) is locally Lipschitz on ℝn × ℝm and

f(0, 0) = 0. The input function u : [0,∞) → ℝm of (2.32) can be any measurable locally

essentially bounded functions. The set of all such functions, endowed with the essential

supremum norm ∥u∥∞ = ess sup{∣u(t)∣ , t ≥ 0}, is denoted by L∞(ℝ+,ℝ
m) (where ∣⋅∣

denotes the usual Euclidean norm).

Definition 2.27. The system (2.32) is said to be input-to-state stable if there exist a

class Kℒ function � and a class K∞ function 
, called a gain function, such that, for all

input u ∈ L∞(ℝ+,ℝ
m) and all x0 ∈ ℝn, the response x(t) of (2.32) for the initial state

x(0) = x0 and the input u satisfies

∣x(t)∣ ≤ �(∣x0∣ , t) + 
(∥u∥[0,t)) (2.33)

for all t ≥ 0.
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The following Lyapunov-like theorem gives a sufficient condition for input-to-state sta-

bility in a state space model (see e.g., [Isidori, 1999, Khalil, 2002, Sontag and Wang,

1995]).

Theorem 2.28. Let V : ℝm → ℝ be a continuous differentiable function such that

�(∣x∣) ≤ V (x) ≤ �(∣x∣) for all x ∈ ℝn (2.34)

∣x∣ ≥ �(∥u∥) ⇒ ∂V

∂x
f(x, u) ≤ −�(∣x∣), for all x ∈ ℝn (2.35)

where �, �, � are class K∞ functions and � is a class K function. Then, the system

(2.32) is input-to-state stable, an estimate of the form (2.33) holds with a gain function

given by 
(r) = �−1 ∘ � ∘ �(r).

If (2.35) is replaced by the following condition:

∂V

∂x
f(x, u) ≤ −�(∣x∣) + �(∥u∥), for all x ∈ ℝn and all u ∈ ℝm (2.36)

where � is a class K function. Then, in view of [Isidori, 1999, Lemma 10.4.2], the

system (2.32) is still input-to-state stable and the gain function can be chosen as 
(r) =

�−1 ∘ � ∘ �−1
(
k�(r)

)
, where k is any real number satisfying k > 1.

Example 2.29. Consider a linear time-invariant (LTI) system

ẋ = Ax+Bu

and suppose that A is Hurwitz (i.e., all eigenvalues of the matrix A have negative real

parts, see e.g., [Sontag, 1998b, Def. C.5.2]). For any constant symmetric matrix Q

with Q > 0 (i.e., Q is positive definite, e.g., Q = I), since A is Hurwitz, there exists a

unique 21 P > 0 satisfying the Lyapunov equation PA + ATP = −Q. Observe that the

function V (x) = xTPx satisfies

�P ⋅ ∣x∣2 ≤ V (x) ≤ �P ⋅ ∣x∣2 (2.37)

where �P > 0 and �P > 0 are the smallest and largest eigenvalues of P , respectively.

Note that

∂V

∂x
(Ax+Bu) = −xTQx+ uTBTPx+ xTPBu

≤ −�Q ⋅ ∣x∣2 + 2 ∣x∣ ⋅ ∥P∥ ⋅ ∥B∥ ⋅ ∥u∥

where �Q > 0 is the smallest eigenvalue of Q. Pick any " ∈ (0, 1), then

∣x∣ ≥ 2

" ⋅ �Q
∥P∥ ⋅ ∥B∥ ⋅ ∥u∥ ⇒ ∂V

∂x
(Ax+Bu) ≤ −(1− ")�Q ⋅ ∣x∣2 (2.38)

21In fact, P =
∫∞

0
etA

T

QetA dt.
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ẋ1 = A1x1 +B1u1

ẋ2 = A2x2 +B2y2

u0 u1

u2

y1

y2 y0�� ?

--

6 y1 = C1x1 +D1u1

u2 = C2x2

Figure 2.2: Linear time-invariant closed-loop system in state space model

Thus the linear system is input-to-state stable with a gain function given by


(r) =
2 ⋅ �P

" ⋅ �P ⋅ �Q
∥P∥ ⋅ ∥B∥ ⋅ r

which is a linear function.

2.8 Input-to-Output Stability in State Space Model

Consider a nonlinear system with outputs of the general form:

ẋ = f(x, u), y = ℎ(x) (2.39)

with state x ∈ ℝn, input u ∈ ℝm, where f : ℝn × ℝm → ℝn and ℎ : ℝn → ℝp are

both locally Lipschitz continuous with f(0, 0) = 0 and ℎ(0) = 0. The input function

u : [0,∞) → ℝm of (2.39) can be any measurable locally essentially bounded functions.

[Sontag and Wang, 1999] introduced the following notion of input-to-output stability in

a state space model.

Definition 2.30. The system (2.39) is said to be input-to-output stable if there exist

a class Kℒ function � and a class K∞ function 
, called a gain function, such that, for

all input u ∈ L∞(ℝ+,ℝ
m) and all x0 ∈ ℝn, the corresponding output y(t) of (2.39) for

the initial state x(0) = x0 and the input u satisfies

∣y(t)∣ ≤ �(∣x0∣ , t) + 
(∥u∥[0,t)) (2.40)

for all t ≥ 0.

A Lyapunov-like theorem in [Sontag and Wang, 2000, Theorem 1.2] gives a sufficient and

necessary condition for input-to-output stability in a state space model. The following is

a simple example concerning input-to-output stability of a linear time-invariant closed-

loop system with a state-space representation.
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Example 2.31. Consider the closed-loop system shown in Figure 2.2, in which both the

plant and controller are (LTI) subsystems. The plant is described by

ẋ1(t) = A1x1(t) +B1u1(t), y1(t) = C1x1(t) +D1u1(t) (2.41)

while the controller is described by

ẋ2(t) = A2x2(t) +B2y2(t), u2(t) = C2x2(t) (2.42)

and the feedback interconnection is described by

u0(t) = u1(t) + u2(t), y0(t) = y1(t) + y2(t) (2.43)

In the above, it is assumed that x1(t) ∈ ℝn1, x2(t) ∈ ℝn2 and ui(t) ∈ ℝm, yi(t) ∈ ℝp

with i = 0, 1, 2. The matrices Ai, Bi, Ci with i = 1, 2 and D1 are of appropriate

dimensions. A simple calculation shows that the expression of closed-loop system with

product state x = (xT1 , x
T
2 )
T ∈ ℝn1 × ℝn2, input w0 = (uT0 , y

T
0 )

T ∈ ℝm × ℝp and output

w1 = (uT1 , y
T
1 )

T ∈ ℝm × ℝp is the following

ẋ = Ax+Bw0, w1 = Cx+Dw0 (2.44)

where the matrices A,B,C,D are defined by

A =

(

A1 −B1C2

−B2C1 A2 +B2D1C2

)

; B =

(

B1 0

−B2D1 B2

)

;

C =

(

0 −C2

C1 −D1C2

)

; D =

(

I 0

D1 0

)

.

In view of Example 2.29, if the matrix A is Hurwitz. Then the closed-loop system (2.44)

is input-to-state stable with (x1, x2) as states and (u0, y0) as inputs. Since ∥C1∥, ∥C2∥
and ∥D1∥ are bounded, we also obtain that the closed-loop system (2.44) is input-to-

output stable with (u0, y0) as inputs and (u1, y1) as outputs.
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Bertrand Russell (1872-1970)
Chapter 3

Framework for General

Input-Output Theory with Initial

Conditions

The general nonlinear input-output theory initiated in the 1960s by [Zames, 1963,

1966b,c] and [Sandberg, 1964, 1965a] using the techniques of functional analysis. In

this approach, systems were represented by operators mapping from inputs to outputs.

A central issue in the input-output theory is robustness. For linear systems, robustness

in the gap and graph metrics is initiated by Zames and El-Sakkary in [Zames and El-

Sakkary, 1980] (see also [Georgiou and Smith, 1990], [Foias et al., 1993], [Vidyasagar,

2011], etc.). In a seminal work by [Georgiou and Smith, 1997b], the authors developed

an input-output approach to uncertainty in the gap metric for robustness analysis of

nonlinear feedback systems. A notable limitation of this work is that it implicitly re-

quire that the systems have zero initial conditions. The main part of this thesis is to

undertake the substantial generalisation of Georgiou and Smith’s input-output theory

to the case of systems with initial conditions.

This chapter serves to provide a unified framework for general input-output theory with

initial conditions which will underlie the future work. Both systems and closed-loop

systems are defined in a set theoretic manner from input-output pairs on a doubly infinite

time axis, and the construction of initial conditions is given in terms of an equivalent class

of input-output trajectories on the negative time axis. Comparison with classical initial

conditions are given for both systems and closed-loop systems. Fundamental notions of

causality, well-posedness, i.e., existence and uniqueness, and graph are discussed in the

presenting input-output framework. After that, a specific consideration of the uniqueness

property of a system is given, which will be necessary for the proof of Theorem 4.8 in

Chapter 4 on page 81. Relationships between initial conditions, the well-posedness and

casuality of open-loop subsystems and closed-loops systems are discussed in subsequent

37



38 Chapter 3 Framework for General Input-Output Theory with Initial Conditions

P

C

u0 u1

u2

y1

y2 y0�� ?

--
6

Figure 3.1: Closed-loop system [P,C]

sections. A suitable concept of input-output stability on the positive time axis with

initial conditions is defined, which is closely related to the ISS/IOS notions initiated by

Sontag [1989]. The chapter ends by summarising several alterative characterisation of

this notion of input-output stability for closed-loop systems.

3.1 Standard Feedback Configuration and General Time

Function Spaces

The standard feedback configuration considered throughout this thesis is shown in Fig-

ure 3.1 with the following equations

[P,C] :
wi = (ui, yi) for i = 0, 1, 2,

w1 ∈ BP , w2 ∈ BC , w0 = w1 + w2,
(3.1)

where we choose U ,Y, W ≜ U ×Y to be appropriate signal spaces, and w1 ∈ BP ⊆ We

(or Wa), w2 ∈ BC ⊆ We (or Wa), w0 ∈ We (or Wa) (These symbols undefined for the

moment will be explained more carefully below). (u0, y0) denote external “disturbance”

signals; (u1, y1) are the input-output signals pair of the plant P to be controlled; and

(u2, y2) are the output-input signals pair of the controller C. Both plant P and controller

C are systems of the closed-loop system [P,C], the precise definition of system and

closed-loop system will be defined in the future sections.

We next introduce the concept of general time function spaces ℱJ(X). The signal spaces

given on the next section including interval, extended, and ambient signal spaces are

defined as some suitable time function subspaces of
∪

J⊆ℝℱJ (X).

Let J be any time interval which is subinterval of ℝ (possibly finite, semi-infinite, and

doubly-infinite interval), and X be any normed linear space with norm ∥⋅∥X (typically,

X = ℝn, ℂn or L2
(
[0, 1],ℝm

)
), and f : J → X be any time function which is a X-valued

function defined on time interval J , and ℱJ(X) be the set of all time functions from J

into X. It is easy to see that ℱJ(X) is a natural vector space (see Section 2.1) over ℝ

(or ℂ) under pointwise addition and scalar multiplication defined by

(f + g)(t) = f(t) + g(t), (�f)(t) = �f(t), ∀f, g ∈ ℱJ(X),∀t ∈ J,∀� ∈ ℝ (or ℂ).
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Given any subintervals I and J of ℝ with J ⊆ I, we define a truncation operator TJ

from ℱI(X) into ℱℝ(X) as follows:

TJ : ℱI(X) → ℱℝ(X), u 7→ TJu ≜

(

t 7→
{

u(t), t ∈ J

0, otherwise

)

and a restriction operator RJ from ℱI(X) into ℱJ(X) as follows:

RJ : ℱI(X) → ℱJ(X), u 7→ uJ ≜

(

t 7→ u(t), t ∈ J
)

.

3.2 Interval, Extended, and Ambient Signal Spaces

Within the classical approach to input-output analysis, all signals are considered to lie

within the extended spaces (V+
e below). This forces signals to be defined only on the

semi-infinite time domain and hence precludes finite time escape analysis of systems and

detailed analysis of systems with nonzero initial conditions. By thinking of a system as

defined on a doubly infinite time domain, the past input-output signals corresponding

to the system before initial time, say t = 0, can be used to characterise its initial state

at t = 0. This gives a unified framework for the study of initial conditions in a purely

input-output theory. Generalisation of the input-output operator based robust stability

theorem of [Georgiou and Smith, 1997b] to include the case of initial conditions is the

core part of this thesis (see Theorem 4.8 in Chapter 4). Thus the extended space Ve
defined on doubly infinite time axis is necessary in this framework.

At the end of Chapter 4, we also wish to generalise Theorem 4.8 to provide a robust

stability theory for nonlinear systems including finite escape times phenomenon. In this

case, the ambient space Va defined below is more appropriate than the extended space

Ve to capture the behaviour of systems with signals only defined on finite intervals. For

example, if V = Lp(ℝ,ℝ) with p = 2,∞, the time function

x(t) =

⎧

⎨

⎩

tan(t), if t ∈ (−�/2, �/2),
0, otherwise,

does not belong to Lp(J1,ℝ) = V(J1) ⊆ Ve with J1 = (−�1, �1) for any �1 ≥ �/2, but x ∈
Lp(J2,ℝ) = V(J2) with J2 = (−�2, �2) for all �2 ∈ (0, �/2), hence x ∈ V(−�/2,�/2) ⊆ Va
corresponding to the definition given below.1 Note that the ambient space Va consists

of all signals defined on time intervals of both finite and infinite lengths, which is more

wider than the extended space Ve.

Formally, let V ⊆ ℱℝ(X) be a normed vector space with norm ∥⋅∥. For any open

subinterval J = (t1, t2) of ℝ with −∞ ≤ t1 < t2 ≤ +∞, we associate with the normed

1
∫

tan2(t) dt = −t+ tan(t) + c
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vector space V the following interval spaces, extended spaces, and ambient space (for

these signal spaces defined only on positive time domain see [French and Bian, 2012]):

∙ V(J) ≜ {v ∈ ℱJ (X) ∣ ∃w ∈ V such that v = RJw} = RJ(V): the interval space

with respect to J ;

∙ VJ ≜

{

v ∈ ℱJ(X) ∣ ∀J ′ ≜ (�1, �2), t1 < �1 < �2 < t2 : RJ ′v ∈ V(J ′)
}

: the extended

space with respect to J ;

∙ Ve ≜
{

v ∈ ℱℝ(X) ∣ ∀J ′ ≜ (�1, �2),−∞ < �1 < �2 < +∞ : RJ ′v ∈ V(J ′)
}

: the ex-

tended space with respect to the doubly infinite time domain;

∙ Va ≜
∪

{J ′} VJ ′ : the ambient space
(
where the set {J ′} consists of all open subin-

tervals J ′ ⊆ ℝ (possibly semi-infinite or infinite)
)
.

Let R+ ≜ R[0,∞) and R− ≜ R(−∞,0], with the normed vector space V we also associate

the following interval spaces, extended spaces, and ambient spaces on the right semi-time

domain from time t = 0 and on the left semi-time domain up to time t = 0:

∙ V+ ≜ R+V (resp., V− ≜ R−V): the restriction of the normed vector space V to

the positive (resp., negative) time domain;

∙ V+
e ≜ R+Ve (resp., V−

e ≜ R−Ve): the extended space with respect to the positive

(resp., negative) time domain;

∙ V[0, !) ≜ R+V(−∞, !)
(
resp., V(−!, 0] ≜ R−V(−!,∞)

)
for any ! ∈ (0,∞]: the

interval space with respect to [0, !) on the positive time domain (resp., (−!, 0] on
the negative time domain);

∙ V[0,!) ≜ R+V(−∞,!)(resp., V(−!,0] ≜ R−V(−!,∞)) for any ! ∈ (0,∞]: the extended

space with respect to [0, !) on the positive time domain (resp., (−!, 0] on the

negative time domain);

∙ V+
a ≜

∪

0<t≤∞ V[0,t) (resp., V−
a ≜

∪

−∞≤t<0 V(t,0]): the ambient space on the posi-

tive (resp., negative) time domain.

According to above definitions of signal spaces it is easily verified that

⎧

⎨

⎩

V(ℝ) ≡ V ⊆ Vℝ ≡ Ve ⊆ Va ⊆ ℱℝ(X),

V(ℝ+) ≡ V+ ⊆ Vℝ+ ≡ V+
e ⊆ V+

a ⊆ ℱℝ+(X),

V(ℝ−) ≡ V+ ⊆ Vℝ− ≡ V+
e ⊆ V+

a ⊆ ℱℝ−(X).

Suppose that for any time interval J ⊆ ℝ, a corresponding (extended) norm,2 denoted

by ∥⋅∥J , is also defined on the extended space VJ , with the following basic assumptions

made concerning Vℝ ≡ Ve and all other VJ with J ⊆ ℝ:

2It is possible that the norm of some element in VJ equals +∞.
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Assumption 3.1. It is assumed throughout that for any time intervals J1 and J2 with

J1 ⊆ J2 ⊆ ℝ (possibly J2 = ℝ):

(1) For any x ∈ V ⊆ Vℝ ≡ Ve, we have ∥x∥ ≡ ∥x∥ℝ. In order to simplify notation, we

will abbreviate ∥⋅∥ℝ by ∥⋅∥ for the extended norm defined on Vℝ ≡ Ve.

(2) If x ∈ VJ1 then ∥x∥J1 = ∥TJ1x∥ ≤ ∞.

(3) If x ∈ VJ2 then ∥RJ1x∥J1 = ∥TJ1x∥ ≤ ∥x∥J2 ≤ ∞. (monotonicity condition)

By using Assumption 3.1, we can obtain the following results:

For any xi ∈ VIi , i = 1, 2 with I1 ⊆ I2 ⊆ ℝ, we have yi ≜ TI1xi = TI2(TI1)xi ∈ Vℝ,

i = 1, 2, and thus

∥RI2TI1x1∥I2 = ∥RI2y1∥I2
(3)
= ∥TI2y1∥ (3.2)

= ∥TI2(TI1x1)∥ = ∥TI1x1∥
(2)
= ∥x1∥I1 (3.3)

and

∥RI2TI1x2∥I2 = ∥RI2y2∥I2
(3)
= ∥TI2y2∥ = ∥TI2(TI1x2)∥ (3.4)

= ∥TI1x2∥
(2)
= ∥RI1x2∥I1

(2)

≤ ∥x2∥I2 , (3.5)

where the second equalities in (3.2) and (3.4) use assumption (3) with J1 ≜ I2 ⊆ J2 ≜ ℝ,

the last equality in (3.3) follows directly from assumption (2) with J1 ≜ I1 ⊆ J2 ≜ ℝ,

and the last two equalities in (3.5) also follow from assumption (3) with J1 ≜ I1 ⊆ J2 ≜

I2 ⊆ ℝ.

We denote by dom(x) the domain of x ∈ Va. For (x, y) ∈ Va×Va, the domains of x and

y may be different. In this case, we adopt the convention dom(x, y) ≜ dom(x)∩dom(y).

It can be easily seen that V−
a ⊕ V+

a ≜ {v ∈ Va ∣ 0 ∈ dom(v)} ⊆ Va.

For general interval J ⊂ ℝ, the relation between V(J) and VJ is closely analogous to

that between V and Ve; and the space VJ has the feature that allows consideration of

finite escape times and of initial conditions.

In addition, for any u ∈ VJ (where J ⊆ ℝ is an open subinterval) and any finite

subinterval J ′ ⊆ J , if J ′ ⊆ J , then TJ ′u is bounded (J ′ is the closure of J ′ in ℝ).

However, for general J ′, TJ ′u does not necessarily have the property. For example,

choose an unbounded u ∈ VJ and choose J ′ = J , then the restriction of TJ ′u to J equals

to u (i.e., RJTJ ′u = u) and thus TJ ′u is also unbounded. The restriction operator RJ ′

has a similar property.

From the definition of VJ we know that there always exists a map EJ : VJ → V (not

necessarily continuous) satisfying RJx = RJ(EJx) for any x ∈ VJ . From the definition
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of Ve we know that it is possible that for some x ∈ Ve with ∥x∥ <∞ we still have x ∕∈ V
(see e.g., Section 3.3.4 on page 45 when V ≡ BUC(ℝ,ℝn)).

Extended spaces appeared first in the context of input-output theory in the works of

[Zames, 1966b,c] and [Sandberg, 1965b], in which only those functions whose truncations

lie in the normed vector space belong to its corresponding extended space; and this

implicitly imposes a truncation closedness condition (for a definition see Proposition

4.2 below) on the normed vector space (e.g., not if V = BC(ℝ+,ℝ) of all bounded

continuous functions on the positive time domain). Here, the extended space is defined

via restriction operators rather than usual truncation operators. It bears a certain

similarity to the locally normed vector space used in the theory of differential equations

(see e.g., [Delfour and Mitter, 1972]) but with a fundamental difference. In terms of

notations in this thesis, the interval space V(t1, t2) used to define the extended space

V(t1,t2) is directly induced from the basic normed vector space V; while the interval space
V(t1, t2) used to define the locally normed vector space Vloc(t1, t2) is usually assigned

according to experiences at the same time when assigning the normed vector space V.
(See Section 3.3.3 with V ≡ BC(ℝ,ℝn) and Section 3.3.4 with V ≡ BUC(ℝ,ℝn).)

3.3 Some Special Signal Spaces

It is very useful at this stage to present some special signal spaces and their corresponding

properties. Lebesgue integral functions spaces, continuous functions spaces and Sobolev

spaces are all discussed in this section.

3.3.1 Spaces of Lebesgue Integrable Functions: Lq(ℝ,ℝn), 1 ≤ q < ∞

For any positive real number q with 1 ≤ q <∞, we let V ≡ Lq(ℝ,ℝn) denote the space

of all measurable functions x : ℝ → ℝn for which
∫

ℝ ∣x(t)∣q dt < ∞ and with norm

x 7→ ∥x∥ ≜
(∫

ℝ ∣x(t)∣q dt
)1/q

.

For any −∞ ≤ t1 < t2 ≤ +∞ the interval space V(t1, t2) ≡ Lq
(
(t1, t2),ℝ

n
)
consists of

all those measurable functions x : (t1, t2) → ℝn for which
∫ t2
t1

∣x(t)∣q dt < ∞ with norm

given by ∥x∥(t1,t2) =
(∫ t2

t1
∣x(t)∣q dt

)1/q
; and the extended space V(t1,t2) ≡ Lqe

(
(t1, t2),ℝ

n
)

consists of all those measurable functions x : (t1, t2) → ℝn with the property that

R(�1,�2)x ∈ Lq
(
(�1, �2),ℝ

n
)
for all −∞ ≤ t1 < �1 < �2 < t2 ≤ ∞. The extended space

Ve ≡ Lqe(ℝ,ℝn). The ambient space Va ≡
∪

{(�1,�2)∣−∞≤�1<�2≤∞} L
q
e

(
(�1, �2),ℝ

n
)
.

For the positive time domain ℝ+ ≡ [0,∞), we have V+ ≡ Lq(ℝ+,ℝ
n), V+

e ≡ Lqe(ℝ+,ℝ
n)

and V+
a ≡ ∪{[0,�)∣0<�≤∞} L

q
e

(
[0, �),ℝn

)
.
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Note that V ≡ Lq(ℝ,ℝn), V+ ≡ Lq(ℝ+,ℝ
n) and V(t1, t2) ≡ Lq

(
(t1, t2),ℝ

n
)
are all

complete normed vector spaces, i.e., Banach spaces. Define x(t) ≜ et, ∀t ∈ ℝ, it can be

easily verified that x ∈ Lqe(ℝ,ℝ) with ∥x∥ = ∞.

For any −∞ < t1 < t2 < ∞ and any x ∈ V ≡ Lq(ℝ,ℝn), we have T(t1,t2)x ∈ V ≡
Lq(ℝ,ℝn). The normed vector spaces V ≡ Lq(ℝ,ℝn) and V+ ≡ Lq(ℝ+,ℝn) are trun-

cation complete. For any x ∈ Ve ≡ Lqe(ℝ,ℝn), if ∥x∥ < ∞, then x ∈ V ≡ Lq(ℝ,ℝn);

and in this case, we have
∥
∥R(t1,t2)x

∥
∥
(t1,t2)

→ ∥x∥ as t1 → −∞ and t2 → ∞. For any

−∞ < t1 < t2 < ∞, there exists a linear uniformly continuous map (zero extensions)

E(t1,t2) ≜ T(t1,t2) : Lq
(
(t1, t2),ℝ

n
)
→ Lq(ℝ,ℝn) such that R(t1,t2)x = R(t1,t2)(E(t1,t2)x)

for any x ∈ Lq
(
(t1, t2),ℝ

n
)
.

3.3.2 Spaces of Essentially Bounded Functions: L∞(ℝ,ℝn)

We denote by V ≡ L∞(ℝ,ℝn) the space of all essentially bounded 3 measurable func-

tions x : ℝ → ℝn with norm ∥x∥ ≜ ess supt∈ℝ ∣x(t)∣. Then for any −∞ ≤ t1 <

t2 ≤ +∞ the interval space V(t1, t2) ≡ L∞((t1, t2),ℝn
)
consists of all those measur-

able functions x : (t1, t2) → ℝn for which ess supt∈(t1,t2) ∣x(t)∣ < ∞ with norm given

by ∥x∥(t1,t2) = ess supt∈(t1,t2) ∣x(t)∣; and the extended space V(t1,t2) ≡ L∞
e

(
(t1, t2),ℝ

n
)

consists of all those measurable functions x : (t1, t2) → ℝn with the property that

R(�1,�2)x ∈ L∞((�1, �2),ℝn
)
for all −∞ ≤ t1 < �1 < �2 < t2 ≤ ∞. The extended space

Ve ≡ L∞
e (ℝ,ℝn). The ambient space Va ≡

∪

{(�1,�2)∣−∞≤�1<�2≤∞} L
∞
e

(
(�1, �2),ℝ

n
)
.

For the positive time domain ℝ+ ≡ [0,∞), we have V+ ≡ L∞(ℝ+,ℝ
n), V+

e ≡ L∞
e (ℝ+,ℝ

n)

and V+
a ≡ ∪{[0,�)∣0<�≤∞} L

∞
e

(
[0, �),ℝn

)
.

Note that V ≡ L∞(ℝ,ℝn), V+ ≡ L∞(ℝ+,ℝ
n) and V(t1, t2) ≡ L∞((t1, t2),ℝn

)
are all

Banach spaces. Define x(t) ≜ t, ∀t ∈ ℝ, it can be easily seen that x ∈ L∞
e (ℝ,ℝ) with

∥x∥ = ∞.

For any −∞ < t1 < t2 < ∞ and any x ∈ V ≡ L∞(ℝ,ℝn), we have T(t1,t2)x ∈ V ≡
L∞(ℝ,ℝn). The normed vector spaces V ≡ L∞(ℝ,ℝn) and V+ ≡ L∞(ℝ+,ℝ

n) are

truncation complete. For any x ∈ Ve ≡ L∞
e (ℝ,ℝn), if ∥x∥ < ∞, then x ∈ V ≡

L∞(ℝ,ℝn); and in this case, we have
∥
∥R(t1,t2)x

∥
∥
(t1,t2)

→ ∥x∥ as t1 → −∞ and t2 → ∞.

For any −∞ < t1 < t2 < ∞, there exists a linear uniformly continuous map (zero

extensions) E(t1,t2) ≜ T(t1,t2) : L∞((t1, t2),ℝn
)

→ L∞(ℝ,ℝn) such that R(t1,t2)x =

R(t1,t2)(E(t1,t2)x) for any x ∈ L∞((t1, t2),ℝn
)
.

3A measurable function x defined on Ω is said to be essentially bounded on Ω if there exists a constant
K such that ∣x(t)∣ ≤ K a.e. on Ω.
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3.3.3 Spaces of Bounded, Continuous Functions: BC(ℝ,ℝn)

Let V ≡ BC(ℝ,ℝn) denote the space of all continuous functions x : ℝ → ℝn for which

supt∈ℝ ∣x(t)∣ <∞ and with norm ∥x∥ ≜ supt∈ℝ ∣x(t)∣.

For any −∞ < t1 < t2 < ∞, the interval space V(t1, t2) ≡ BC(ℝ,ℝn)∣(t1,t2) ≡
BUC

(
(t1, t2),ℝ

n
)
consists of all those uniformly continuous functions x : (t1, t2) → ℝn

for which supt∈(t1,t2) ∣x(t)∣ < ∞ with norm given by ∥x∥(t1,t2) = supt∈(t1,t2) ∣x(t)∣. For

any −∞ < t < ∞, the interval space V(−∞, t) ≡ BC(ℝ,ℝn)∣(−∞,t); and the interval

space V(t,∞) ≡ BC(ℝ,ℝn)∣(t,∞).
4

For any −∞ ≤ t1 < t2 ≤ ∞, the extended space V(t1,t2) ≡ BCe
(
(t1, t2),ℝ

n
)
consists

of all those continuous functions x : (t1, t2) → ℝn with the property that R(�1,�2)x ∈
BC

(
(�1, �2),ℝ

n
)
for all −∞ ≤ t1 < �1 < �2 < t2 ≤ ∞. It is easily verified that V(t1,t2) ≡

BCe
(
(t1, t2),ℝ

n
)
is the same as the space C

(
(t1, t2),ℝ

n
)
of all continuous function

(not necessarily bounded) defined on (t1, t2). The extended space Ve ≡ BCe(ℝ,ℝ
n) ≡

C(ℝ,ℝn). The ambient space Va ≡
∪

{(�1,�2)∣−∞≤�1<�2≤∞}C
(
(�1, �2),ℝ

n
)
.

For the positive time domain ℝ+, we have V+ ≡ BC(ℝ+,ℝ
n), V+

e ≡ BCe(ℝ+,ℝ
n) ≡

C(ℝ+,ℝ
n) and V+

a ≡ ∪{[0,�)∣0<�≤∞}C
(
[0, �),ℝn

)
.

Note that V ≡ BC(ℝ,ℝn), V+ ≡ BC(ℝ+,ℝ
n) and V(t1, t2) ≡ BC(ℝ,ℝn)∣(t1,t2) are all

Banach spaces (see e.g., [Adams and Fournier, 2003, p. 10]). Define x(t) ≜ tan �(2t−t2−t1)
2(t2−t1) ,

−∞ < t1 < t < t2 < ∞, it can be shown that x belongs to BCe
(
(t1, t2),ℝ

)
but

with supt∈(t1,t2) ∣x(t)∣ = ∞; and y(t) ≜ t, (t ∈ ℝ) belongs to BCe(ℝ,ℝ) but with

supt∈ℝ ∣x(t)∣ = ∞.

Define x(t) ≜ e−∣t∣ for any t ∈ ℝ, it can be easily verified that x ∈ V ≡ BC(ℝ,ℝn)

but T(−1,1)x ∕∈ V ≡ BC(ℝ,ℝn) since T(−1,1)x is not continuous on ℝ. The normed

vector spaces V ≡ BC(ℝ,ℝn) and V+ ≡ BC(ℝ+,ℝ
n) are truncation complete. For any

x ∈ Ve ≡ BCe(ℝ,ℝ
n) ≡ C(ℝ,ℝn), if ∥x∥ < ∞, then x ∈ V ≡ BC(ℝ,ℝn); and in this

case, we have
∥
∥R(t1,t2)x

∥
∥
(t1,t2)

→ ∥x∥ as t1 → −∞ and t2 → ∞.

For any −∞ < t1 < t2 <∞ and any "1 > 0, "2 > 0, define a linear uniformly continuous

map E"1,"2(t1,t2)
from V(t1, t2) ≡ BUC

(
(t1, t2),ℝ

n
)
into BUC(ℝ,ℝn) ⊂ V ≡ BC(ℝ,ℝn) as

4Note that V(t1, t2) is not the same as the space BC
(

(t1, t2),ℝ
n
)

of all bounded continuous functions

on (t1, t2) when (t1, t2) ∕= ℝ. For example, the function x(t) ≜ sin(1/t), (0 < t < 1) belongs to
BC

(

(0, 1),ℝ
)

, but x is not continuous extendable to the domain (−∞,∞).
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follows: 5

(E"1,"2(t1,t2)
x)(t) =

⎧

⎨

⎩

x(t), if t ∈ (t1, t2)

(t− t1) ⋅ x(t+1 )/"1 + x(t+1 ), if t ∈ [t1 − "1, t1]

(t− t2) ⋅ x(t−2 )/"2 + x(t−2 ), if t ∈ [t2, t2 + "2]

0, if t ∈ (−∞, t1 − "1) ∪ (t2 + "2, ∞)

(3.6)

for all x ∈ BUC
(
(t1, t2),ℝ

n
)
; it is easily verified that R(t1,t2)x = R(t1,t2)(E

"1,"2
(t1,t2)

x) for

any x ∈ BUC
(
(t1, t2),ℝ

n
)
.

3.3.4 Spaces of Bounded, Uniformly Continuous Functions: BUC(ℝ,ℝn)

We define the space V ≡ BUC(ℝ,ℝn) to consist of all those uniformly continuous

functions x : ℝ → ℝn for which supt∈ℝ ∣x(t)∣ <∞ and with norm ∥x∥ ≜ supt∈ℝ ∣x(t)∣.

For any −∞ ≤ t1 < t2 ≤ +∞ the interval space V(t1, t2) ≡ BUC
(
(t1, t2),ℝ

n
)
consists of

all those uniformly continuous functions x : (t1, t2) → ℝn for which supt∈(t1,t2) ∣x(t)∣ <∞
with norm given by ∥x∥(t1,t2) = supt∈(t1,t2) ∣x(t)∣; and the extended space V(t1,t2) ≡
BUCe

(
(t1, t2),ℝ

n
)
consists of all those uniformly continuous functions x : (t1, t2) → ℝn

with the property that R(�1,�2)x ∈ BUC
(
(�1, �2),ℝ

n
)
for all −∞ ≤ t1 < �1 < �2 < t2 ≤

∞. It is easily verified that V(t1,t2) ≡ BUCe
(
(t1, t2),ℝ

n
)
≡ C

(
(t1, t2),ℝ

n
)
. The extended

space Ve ≡ C(ℝ,ℝn). The ambient space Va ≡
∪

{(�1,�2)∣−∞≤�1<�2≤∞}C
(
(�1, �2),ℝ

n
)
.

For the positive time domain ℝ+, we have V+ ≡ BUC(ℝ+,ℝ
n), V+

e ≡ BUCe(ℝ+,ℝ
n) ≡

C(ℝ+,ℝ
n) and V+

a ≡ ∪{[0,�)∣0<�≤∞}C
(
[0, �),ℝn

)
.

Note that V ≡ BUC(ℝ,ℝn), V+ ≡ BUC(ℝ+,ℝ
n) and V(t1, t2) ≡ BUC

(
(t1, t2),ℝ

n
)
are

closed subspaces of BC(ℝ,ℝn), BC(ℝ+,ℝ
n) and BC

(
(t1, t2),ℝ

n
)
, respectively; and thus

also Banach spaces (see e.g., [Adams and Fournier, 2003, p. 10]). Note that x(t) ≜ 1/t,

(0 < t < 1) belongs to BUCe
(
(0, 1),ℝ

)
but with supt∈(t1,t2) ∣x(t)∣ = ∞; and y(t) ≜ t2,

(t ∈ ℝ) belongs to BUCe(ℝ,ℝ) but with supt∈ℝ ∣x(t)∣ = ∞.)

Define x(t) ≜ sin(t) for any t ∈ ℝ, it can be easily verified that x ∈ V ≡ BUC(ℝ,ℝn) but

T(−1,1)x ∕∈ V ≡ BUC(ℝ,ℝn) since T(−1,1)x is not even continuous on ℝ. The normed

vector spaces V ≡ BUC(ℝ,ℝn) and V+ ≡ BUC(ℝ+,ℝ
n) are truncation complete.

Define y(t) ≜ sin(t2) for any t ∈ ℝ, it is easily verified that y ∈ Ve ≡ BUCe(ℝ,ℝ
n) ≡

C(ℝ,ℝn) with ∥y∥ = supt∈ℝ
∣
∣sin(t2)

∣
∣ < ∞ but y ∕∈ V ≡ BUC(ℝ,ℝn), since y is not

uniformly continuous on ℝ. For any −∞ < t1 < t2 < ∞ and any "1 > 0, "2 > 0,

there exists a linear uniformly continuous map E"1,"2(t1,t2)
defined by (3.6) from V(t1, t2) ≡

5We define x(t+1 ) ≜ lim
t→t+1

x(t) for any x ∈ BUC
(

(t1, t2),ℝ
n
)

. Note that this is possible, since every

bounded and uniformly continuous function on a open interval Ω posses a unique, bounded continuous
extension to the closure Ω̄ of Ω (see e.g., [Adams and Fournier, 2003, p. 10]).
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BUC
(
(t1, t2),ℝ

n
)
into V ≡ BUC(ℝ,ℝn) such that R(t1,t2)x = R(t1,t2)(E

"1,"2
(t1,t2)

x) for any

x ∈ V(t1, t2) ≡ BUC
(
(t1, t2),ℝ

n
)
.

3.3.5 Sobolev Spaces: W r,q(ℝ,ℝn), 1 ≤ q < ∞

For any positive integer r and any positive real number q with 1 ≤ q < ∞, we let

V ≡ W r,q(ℝ,ℝn) denote the Sobolev space of all those r-times weakly (or distribu-

tionally) differentiable functions x : ℝ → ℝn for which Dix ∈ Lq(ℝ,ℝn), ∀ 0 ≤ i ≤ r

with the Sobolev norm ∥x∥r,q ≜

(
∑

0≤i≤r
∥
∥Dix

∥
∥q

q

)1/q
, where Dix is the i-th weak (or

distributional) derivative 6 of x and ∥⋅∥q is the norm in Lq(ℝ,ℝn) (see e.g., [Adams

and Fournier, 2003, p. 59]). Note that the Sobolev space V ≡ W r,q(ℝ,ℝn) coincides

with the space Hr,q(ℝ,ℝn) which denotes the completion of the space CW r,q(ℝ,ℝn) ≜

{x ∈ Cr(ℝ,ℝn) : ∥x∥r,q < ∞} with respect to the norm ∥⋅∥r,q (see e.g., [Adams and

Fournier, 2003, Theorem 3.17, p. 59]), where Cr(ℝ,ℝn) denotes the space of all those r-

times differentiable (in the classical sense) functions x : ℝ → ℝn for which the (classical)

derivative x(r) is continuous.

For any −∞ ≤ t1 < t2 ≤ +∞ the interval space V(t1, t2) ≡ W r,q
(
(t1, t2),ℝ

n
)
con-

sists of all those r-times weakly differentiable functions x : (t1, t2) → ℝn for which

Dix ∈ Lq
(
(t1, t2),ℝ

n
)
with norm given by ∥x∥r,q,(t1,t2) =

(
∑

0≤i≤r
∥
∥Dix

∥
∥q

q,(t1,t2)

)1/q
; and

the extended space V(t1,t2) ≡W r,q
e

(
(t1, t2),ℝ

n
)
consists of all those r-times weakly differ-

entiable functions x : (t1, t2) → ℝn with the property that R(�1,�2)x ∈W r,q
(
(�1, �2),ℝ

n
)

for all −∞ ≤ t1 < �1 < �2 < t2 ≤ ∞. The extended space Ve ≡ W r,q
e (ℝ,ℝn). The

ambient space Va ≡
∪

{(�1,�2)∣−∞≤�1<�2≤∞}W
r,q
e

(
(�1, �2),ℝ

n
)
.

Note that V ≡W r,q(ℝ,ℝn) and V(t1, t2) ≡W r,q
(
(t1, t2),ℝ

n
)
are all Banach spaces (see

e.g., [Adams and Fournier, 2003, p. 60]).7 Note that x(t) ≜ et, ∀t ∈ ℝ belongs to

W r,q
e (ℝ,ℝ) but with ∥x∥r,q = ∞).

For any −∞ < t1 < t2 < ∞ and any x ∈ V ≡ W r,q(ℝ,ℝn), we have T(t1,t2)x ∈ V ≡
W r,q(ℝ,ℝn). The normed vector spaces V ≡ W r,q(ℝ,ℝn) and V+ ≡ W r,q(ℝ+,ℝ

n) are

truncation complete. For any x ∈ Ve ≡ W r,q
e (ℝ,ℝn), if ∥x∥ < ∞, then x ∈ V ≡

W r,q(ℝ,ℝn); and in this case, we have
∥
∥R(t1,t2)x

∥
∥
(t1,t2)

→ ∥x∥ as t1 → −∞ and t2 → ∞.

From [Adams and Fournier, 2003, p. 146], we know that for any −∞ < t1 < t2 < ∞,

there always exists a linear continuous map E(t1,t2) : W
r,q
(
(t1, t2),ℝ

n
)
→ W r,q(ℝ,ℝn)

such that R(t1,t2)x = R(t1,t2)(E(t1,t2)x) for any x ∈ W r,q
(
(t1, t2),ℝ

n
)
. It is useful to

remark that the truncation (or zero extensions) operator T(t1,t2) only defines a continuous

map from W r,q
0

(
(t1, t2),ℝ

n
)
⊊ W r,q

(
(t1, t2),ℝ

n
)
to W r,q(ℝ,ℝn) ≡ W r,q

0 (ℝ,ℝn); in fact,

6Note that the weak derivative Dix coincides with the classical derivative x(i) when x ∈ Ci(ℝ,ℝn).
7Note that both CW r,q(ℝ,ℝn) and CW r,q

(

(t1, t2),ℝ
n
)

, (1 ≤ q < ∞) are normed vector spaces (but
not complete) with respect to the norms ∥⋅∥r,q and ∥⋅∥r,q,(t1,t2), respectively.
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a function x defined on (t1, t2) belongs toW
r,q
0

(
(t1, t2),ℝ

n
)
if and only of T(t1,t2)x belongs

to W r,q(ℝ,ℝn) (see e.g., [Adams and Fournier, 2003, pp. 70, 71, 159]).8

3.3.6 Additional Consideration of Special Signal Spaces

For any open subinterval J ≜ (t1, t2) with −∞ ≤ t1 < t2 ≤ ∞ and any positive

integer r, we define the space W r,∞(J,ℝn) to consist of all those r-times weakly dif-

ferentiable functions x : J → ℝn for which Dix ∈ L∞(J,ℝn), ∀ 0 ≤ i ≤ r with norm

∥x∥r,∞,J ≜ max0≤i≤r
(
ess supt∈J

∣
∣(Dix)(t)

∣
∣
)
. Define a space CW r,∞(J,ℝn) ≜ {x ∈

Cr(J,ℝn) : ∥x∥r,∞,J <∞}; and let Hr,∞(J,ℝn) denote the completion of CW r,∞(J,ℝn)

with respect to the norm ∥⋅∥r,∞,J . ThenW
r,∞(J,ℝn) and Hr,∞(J,ℝn) = CW r,∞(J,ℝn)

are Banach spaces; and Hr,∞(J,ℝn) ⊊ W r,∞(J,ℝn) (see e.g., [Adams and Fournier,

2003, pp. 10, 61, 67]).9 We can similarly define the interval spaces, extended spaces and

ambient spaces for above discussed normed vector spaces. Other useful normed vector

spaces such as absolutely continuous functions spaces, Lipschitz continuous functions

spaces and Hölder continuous functions spaces can be found in the same book [Adams

and Fournier, 2003].

3.4 Systems

A system in the control sense is an input-output relation, which is viewed as a “black

box” mapping inputs to outputs [Zames, 1963]. The essence is that only the relationship

between inputs and outputs is a-priori relevant. In this sense, notions of a system and

of stability should be made without the axiomatical postulation of state.

We are now in a position to introduce a precise definition of a system, which is defined

in a set theoretic manner from input-output pairs on a doubly infinite time axis,10 i.e.,

a set of all possible input-output trajectories on the time domain (−∞,∞) compatible

with the description of the system.

Definition 3.2. Given normed signal spaces U ,Y and W ≜ U×Y, a system Q is defined

via the specification of a subset BQ ⊆ We.

Note that here we did not exactly give a mathematical definition for the input and the

output; (u, y) ∈ We is called an input-output pair. At this stage, we do not impose any

further requirements on the input/output partition. If we consider a system as a black

8Note that W r,q
0

(

(t1, t2),ℝ
n
)

denotes the closure of C∞
c

(

(t1, t2),ℝ
n
)

in the Banach space
W r,q

(

(t1, t2),ℝ
n
)

, where C∞
c

(

(t1, t2),ℝ
n
)

consists of all those smooth (or infinitely differentiable) func-
tions with compact support in (t1, t2). The space W r,q

0

(

(t1, t2),ℝ
n
)

is a Banach space itself, since it is
closed in W r,q

(

(t1, t2),ℝ
n
)

.
9For instance, x(t) ≜ ∣t∣, (−1 < t < 1) belongs to W 1,∞

(

(−1, 1),ℝ
)

; but x ∕∈ H1,∞
(

(−1, 1),ℝ
)

.
10This will be slightly modified for systems with potential for finite-time escape (see Section 4.7 on

page 100).
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Q -signals produced-signals implied

Figure 3.2: A black box

box shown in Figure 3.2, which produces some signal when implying each signal, then

it is intuitive to label the signal implied as an input and the one produced as an output.

We call u and Ue an input variable and the input signal space ofQ, respectively; similarly,

y and Ye an output variable and the output signal space of Q, respectively.

Example 3.3. Let Q be an input-output operator from L2
e(ℝ,ℝ

m) to L2
e(ℝ,ℝ

p), and

define Ue ≜ L2
e(ℝ,ℝ

m) and Ye ≜ L2
e(ℝ,ℝ

p). Then the system Q is represented by the

set BQ = {(u, y) ∈ Ue × Ye ∣ y = Qu}.

Example 3.4. Let Q be an input-output operator from L2
e(ℝ+,ℝ

m) to L2
e(ℝ+,ℝ

p), and

define Ue ≜ L2
e(ℝ,ℝ

m) and Ye ≜ L2
e(ℝ,ℝ

m). Then the system Q is represented by the

set

BQ = {(u, y) ∈ Ue × Ye ∣ R−y = R−u = 0, R+y = Q(R+u)}

Note that the above definition of a system is slightly different from both Zames’s repre-

sentation of input-output systems by operators [Zames, 1960] and Willems’s structure

of input-output systems by behaviours with input/output partition [Polderman and

Willems, 1998, Definition 3.3.1, p. 84], [Willems, 1991].11 Here, we allow both (u, y1)

and (u, y2) with y1 ∕= y2 belong to the same set BQ. And it does not require that for

any u ∈ Ue there exists a y ∈ Ye such that (u, y) ∈ BQ.

Example 3.5. Let U = Y ≜ L2(ℝ;ℝ) and consider the system Q represented by the

set BQ =
{
(u, y) ∈ Ue × Ye ∣ y2 = u

}
. It is easy to verify that for u(t) = e−2∣t∣, t ∈ ℝ

and y(t) = e−∣t∣, t ∈ ℝ we have both (u, y) and (u,−y) belong to BQ, and that for

u(t) = −e−2∣t∣, t ∈ ℝ (so u ∈ Ue), there is no y ∈ Ye such that (u, y) ∈ BQ.

We will see in the subsequent sections that this definition of systems allows us to define

initial conditions for systems appropriately and to treat in a unified manner systems

with initial conditions of a structurally different type (e.g., both time delay distributed

parameter and ODE systems) and to make it compatible with the definition of closed-

loop systems.

11In Willems’s behavioural framework, a system Σ is defined as a triple Σ ≜ (T,W,B) with T ⊆ ℝ
the time axis, W the values-space of time signals, and B ⊆ WT the behaviour (WT represents the set
of all time functions from T to W). The behaviour B is simply a set of time trajectories compatible
with the laws that govern the system. Willems’s input-output system ΣI/O is defined as a quadruple

ΣI/O ≜ (T,U,Y,B) with T ⊆ ℝ the time axis, U the values-space of input time signals, Y the values-
space of output time signals, and B ⊆ (U,Y)T the behaviour, such that the following axioms are satisfied:
(1) u ∈ UT is free; i.e., for all u ∈ UT, there exists a y ∈ YT such that (u, y) ∈ B; (2) Output (y ∈ YT)
processes input (u ∈ UT), i.e., for any t0 ∈ T, {(u, y), (u, y′) ∈ B, y(t) = y′(t) for t < t0 (t ∈ T)} ⇒
{y = y′}.



Chapter 3 Framework for General Input-Output Theory with Initial Conditions 49

-
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u

v
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Φu

Φv

t t0 0

Figure 3.3: Causal operator Φ

The following is the definition of a linear time-invariant system.

Definition 3.6. A system Q (see Definition 3.2) is said to be linear if the set BQ is a

vector space, i.e., �1w1+�2w2 ∈ BQ for any w1, w2 ∈ BQ and any �1, �2 ∈ ℝ. It is said

to be time-invariant if w ∈ BQ implies w(⋅+ �) ∈ BQ for all � ∈ ℝ.

3.4.1 Causality of Systems

The notion of causality is a fundamental property of dynamical systems. We start from

the definition of a causal operator and then generalise it to the concept of a causal

system in the presenting framework.

Given normed signal spaces U and Y, an operator Φ : U+
e → Y+

e is said to be causal if,

∀u, v ∈ U+
e ,∀t > 0 :

[
u∣[0,t] = v∣[0,t] ⇒ (Φu)∣[0,t] = (Φv)∣[0,t]

]
.

The definition of causality for an operator captures the essence of the idea that the

current outputs depend only the past and current inputs and not on future ones. For a

clear understanding of the causality condition of an operator, see Figure 3.3 or [Marquez,

2003, Chapter 6].

The following definition of a causal system [Bian et al., 2008] is a generalisation of the

concept of a casual operator.

Definition 3.7. A system Q (see Definition 3.2) is said to be causal if

∀(u, yu), (v, yv) ∈ BQ,∀t ∈ ℝ :
[
u∣(−∞,t] = v∣(−∞,t] ⇒ Bu

Q∣(−∞,t] = Bv
Q∣(−∞,t]

]
,

where Bu
Q ≜ {(u, y) ∈ We ∣ ∃ y such that (u, y) ∈ BQ}.

Here the definition of causality is equivalent to the definition of non-anticipation in

[Willems, 1991, Definition VIII.4]. Note that any operator Φ : U+
e → Y+

e with Φ(0) = 0

can be represented by a system BΦ = {w = (u, y) ∈ Ue × Ye ∣ R−y = R−u = 0, R+y =

Φ(R+u)}. According to both above definitions, the operator Φ is causal if and only if

the system BΦ is causal.
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3.4.2 Existence, Uniqueness and Well-Posedness of Systems

We will be interested to define system properties using trajectories defined on the positive

direction time line [t,∞). In order to define the well-posedness of a system, we first

introduce the two properties of existence and uniqueness of a system.

In the following, we fix the initial time t = 0 if not otherwise specified and use the

notation B−
Q defined as follows to denote the system Q’s past trajectories:

B−
Q ≜ R−BQ =

{
w− ∈ W−

e ∣ ∃w+ ∈ W+
e , s.t.w−∧w+ ∈ BQ

}
, (3.7)

where the concatenation ∧ is defined as follows (see e.g., [Chen et al., 2007, Willems,

1991]):

(u ∧� v)(t) ≜
{

u(t), for t < �,

v(t), for t ≥ �,
(3.8)

for any � ∈ ℝ, and we abbreviate u ∧ v ≜ u ∧0 v.

Definition 3.8. A system Q (see Definition 3.2) is said to have the existence property if

for any w− ∈ B−
Q and any u+ ∈ U+

e there exists a y+ ∈ Y+
e such that w−∧(u+, y+) ∈ BQ;

and the uniqueness property if for any w− ∈ B−
Q and any w+ ≜ (u+, y+) ∈ W+

e ,

w̃+ ≜ (ũ+, ỹ+) ∈ W+
e , we have

w−∧w+, w−∧w̃+ ∈ BQ with u+ = ũ+ ⇒ y+ = ỹ+,

and is well-posed if it has both the existence and uniqueness properties.

Well-posedness means that the future output y+ can be deduced from the set BQ (repre-

senting system properties) and the past input-output pair (u−, y−) and the future input

u+. Uniqueness property is equivalent to the concept of output processes input (see e.g.,

[Willems, 1991]) defined as

(u, y), (u, y′) ∈ BQ, y(t) = y′(t) for t < 0 ⇒ y = y′.

In [Willems, 1991], the property of output processes input together with some other

properties are postulated as axioms that need to be satisfied when defining input-output

dynamical systems. We remark that this is not appropriate in the context of feedback

theory, since properties such as existence and uniqueness are not automatically satisfied

by the closed-loop system (see e.g., Section 3.7.4 on page 72).

Note that if we replace the initial time 0 with any time t0 ∈ ℝ, then the definitions of

a system’s existence, uniqueness and well-posedness property also need to be slightly

changed by letting separating time 0 to be time t0.
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3.4.3 Additional Consideration of Causality and Uniqueness

Thus far, we have defined the properties of causality and uniqueness separately for a

system. These two properties are closely related to each other as can be seen from the

following proposition.

Proposition 3.9. For any system Q (see Definition 3.2), suppose that Q is causal (see

Definition 3.7), and that Q has the uniqueness property (see Definition 3.8). Then for

any w− ≜ (u−, y−) ∈ B−
Q, any w+ ≜ (u+, y+) ∈ W+

e , w̃+ ≜ (ũ+, ỹ+) ∈ W+
e , and any

� ∈ (0,∞), we have

w−∧w+, w−∧w̃+ ∈ BQ with u+∣[0,�) = ũ+∣[0,�) ⇒ y+∣[0,�) = ỹ+∣[0,�).

Proof. Define w ≜ (u, y) ≜ (u−∧u+, y−∧ y+) and w̃ ≜ (ũ, ỹ) ≜ (u−∧ ũ+, y−∧ ỹ+); thus
w = w−∧w+ and w̃ = w−∧ w̃+. Since the system Q is causal and u∣(−∞,�) = ũ∣(−∞,�)

(note that u+∣[0,�) = ũ+∣[0,�)), we obtain that Bu
Q∣(−∞,�) = Bũ

Q∣(−∞,�) with Bu
Q defined

as in Definition 3.7. It follows from the fact (u, y)∣(−∞,�) ∈ Bu
Q∣(−∞,�) = Bũ

Q∣(−∞,�)

that there exists a ŷ ≜ ŷ−∧ ŷ+ ∈ Ye satisfying (ũ, ŷ) ∈ Bũ
Q ⊆ We and (ũ, ŷ)∣(−∞,�) =

(u, y)∣(−∞,�) = w∣(−∞,�). Hence, we have ŷ− = y− and ŷ+∣[0,�) = y+∣[0,�). To conclude

the proof, we only have to show that ŷ+∣[0,�) = ỹ+∣[0,�). This follows directly from the

uniqueness property of the system Q and the fact that w−∧ (ũ+, ỹ+) = w̃ ∈ BQ and

w−∧ (ũ+, ŷ+) = (ũ, ŷ) ∈ Bũ
Q ⊆ BQ (in fact, we have ŷ+ = ỹ+).

The following result concerning properties of causality and uniqueness of a system will

be used in the proof of Theorem 4.8 in Chapter 4 on page 81.

Corollary 3.10. For any system Q (see Definition 3.2), suppose that Q is causal (see

Definition 3.7), and that Q has the uniqueness property (see Definition 3.8). If for

any w− ∈ B
−
Q, any u+ ∈ U+

e , and any � ∈ (0,∞), there exists a y�+ ∈ Y+
e such that

[w−∧(u+, y�+)]
∣
∣
(−∞,�)

∈ BQ∣(−∞,�). Then the system Q is well-posed.

Proof. We only need to show that the system Q has the existence property. To this

end, fix any w− ∈ B
−
Q and any u+ ∈ U+

e , define a time function y+(t) on the positive

infinite interval, 0 ≤ t <∞ as follows: for any t ≥ 0, choose some � ∈ (0,∞) with � > t,

let y+(t) ≜ y�+(t). This function y+ is well-defined.12 It follows from the definition

of Y+
e that y+ ∈ Y+

e , since y+∣[0,�) = y�+∣[0,�) with y�+ ∈ Y+
e for all 0 < � < ∞.

To conclude the proof, we need to show w−∧(u+, y+) ∈ BQ. This is obvious since

[w−∧(u+, y+)]
∣
∣
(−∞,�)

= [w−∧(u+, y�+)]
∣
∣
(−∞,�)

∈ BQ∣(−∞,�) for all 0 < � <∞.

12To see this, it suffices to show that y�1
+ ∣[0,�1) = y�2

+ ∣[0,�1) for any 0 < �1 < �2 < ∞. This follows
directly from Proposition 3.9, since the system Q is causal and has the uniqueness property.
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3.4.4 Graph of Systems

The notion of graph of a system plays an important role in the nonlinear input-output

robust control theory, which is very useful in the characterisation of model uncertainties

via gap metric [Georgiou and Smith, 1997b]. The graph of a system is just the set of all

bounded input-output pairs which are compatible with the system. The following is a

generalisation of the notion of graph for systems with initial conditions.

The graph Gw−

Q of a system Q (see Definition 3.2) for a given past trajectory w− ∈ B−
Q

is defined by

Gw−

Q ≜
{
w+ ∈ W+ ∣ w−∧w+ ∈ BQ

}
⊆ W+. (3.9)

This generalises the definition of graph for a system represented by an input-output

operator defined on positive time domain, i.e., the graph of an input-output operator P

from U+
e to Y+

e (e.g., from L2
e(ℝ+,ℝ

m) to L2
e(ℝ+,ℝ

p)) with P0 = 0 is defined as

G0
P ≜

{
(u+, y+) ∈ W+ ∣ y+ = Pu+ with u+ ∈ U+, y+ ∈ Y+

}
⊆ W+ ≜ U+ × Y+.

In [Doyle et al., 1993, Proposition 4], we know that the feedback interconnection [P,C]

depicted in Figure 3.1 with two input-output operators P : U+
e → Y+

e and C : Y+
e → U+

e

is well-posed and stable13 if and only if W+ can be written as a direct sum W+ =

G0
P ⊕ G0

C , i.e., for any w0 ∈ W+, there exist unique w1 ∈ G0
P and w2 ∈ G0

C such

that w0 = w1 + w2. In this case, the inverse graph of C is understood as G0
C ≜

{(u+, y+) ∈ W+ ∣ Cy+ = u+ with u+ ∈ U+, y+ ∈ Y+}.

3.5 Initial Conditions of Systems

The concepts of states and of initial conditions have an obvious significance in Lyapunov

theory, which deals with equilibrium points of unforced systems with nonzero initial

conditions, while the classical input-output theory considers forced systems with zero

initial conditions. Although the notion of a system in Definition 3.2 is made without

recourse to state, the concept of state is very useful in input-output theory when dealing

with general nonlinear systems with nonzero initial conditions. In subsequent sections,

we shall explore some appropriate notions of states and of initial conditions using past

inputs and past outputs. In this sense, the state is a characterisation of input-output

pasts, which captures the idea that the state at any time together with the future input

completely determine the future output. Thus the initial conditions are defined as the

13mapping bounded inputs into bounded outputs
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initial state spaces for given initial time t = 0, and the sizes of which are also defined

below.

As discussed in intuitive terms in the control literature, see e.g., [Kalman et al., 1969,

Zadeh and Desoer, 1963, Zames, 1963], the state is a classifier of input-output pasts

and the state should contain all the information of past history of the system which at

any time together with the future input completely determine the future output. The

state at time 0 thus determines the initial conditions. In the following, we will give a

precise way to define the state of an arbitrary input/output system. It is fundamental

that the construction does not require a system representation, but we do show how the

construction relates to the standard concepts of state for significant classes of system

representations. The genesis of this approach lies in [French and Mueller, Section 7].

From the viewpoint of observability, for any observable nonlinear system represented

by a state space model, the initial state can be reconstructed from observed output

signals given some known input signals (see e.g., [Besançon, 2007, Gauthier and Kupka,

2001]). In [van der Schaft and Rapisarda, 2011] a canonical state construction for linear

time-invariant systems described by higher-order ordinary differential equations is in-

troduced based on integration by parts; and generalisation to infinite dimensional linear

time-invariant systems (i.e., systems described by high-order linear partial differential

equations) can be found in [Rapisarda and van der Schaft, 2012].

3.5.1 Definition of Initial Conditions

Given normed signal spaces U ,Y and W ≜ U × Y, and consider the system Q (see

Definition 3.2). We will now introduce an equivalence relation on B−
Q ≜ R−BQ (see

(3.7)) and show how this yields the state. Let Qw−(u+) denote the set (possibly empty)

of all future output trajectories generated by the system past input-output trajectories

w− ∈ B−
Q and future input u+ ∈ U+

e , i.e.,

Qw−(u+) ≜
{
y+ ∈ Y+

e ∣ w−∧(u+, y+) ∈ BQ

}
. (3.10)

where the concatenation ∧ at time 0 is defined by (3.8).

Note that the set Qw−(u+) is possibly empty for some u+ ∈ U+
e . However, if the system

Q is well-posed, then there is a unique element in Qw−(u+) for every w− ∈ B
−
Q and every

u+ ∈ U+
e . In this case, Qw−(⋅) defines an input-output operator from future inputs to

future outputs.

Next we define an equivalence relation ∼ on B−
Q ≜ R−BQ (see (3.7)) by using (3.10) as

follows: for any w−, w̃− ∈ B−
Q, we say

w− ∼ w̃− ⇔ Qw−(u+) = Qw̃−(u+),∀u+ ∈ U+
e . (3.11)
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That ∼ is an equivalence relation on B−
Q follows from the binary relation ‘=’ being a

reflexive, transitive and symmetric relation on Y+
e (see Definition 2.15 on page 21).

Note that the definition of equivalence relation ∼ on B
−
Q doesn’t require the system

Q to be well-posed; if so then Qw−(⋅) defines an operator from U+
e to Y+

e . Given this

equivalence relation ∼ on B−
Q, the equivalence class of an element w− in B−

Q is the subset

of all elements in B−
Q which are equivalent to w− denoted by [w−], defined as:

[w−] ≜
{

w̃− ∈ B
−
Q

∣
∣ w̃− ∼ w−

}

. (3.12)

Definition 3.11. We define SQ the initial state space of Q at initial time 0 as the quo-

tient set B−
Q/ ∼ which contains all equivalence classes in B−

Q related to the equivalence

relation ∼, i.e.,

SQ ≜ B−
Q/ ∼ ≜

{

[w−]
∣
∣ w− ∈ B−

Q

}

. (3.13)

From the equivalence relation ∼, for any x0 ∈ SQ, we can define the set Qx0(u+) by:

Qx0(u+) ≜ Qw−(u+), ∀u+ ∈ U+
e ,∀w− ∈ x0. (3.14)

Remark 3.12. If we choose the separating time between past and future (or say initial

time) as t0 ∈ ℝ not 0, we can similarly define the initial state space denoted by S
t0
Q of

a system Q at initial time t0 by the same procedure.

Remark 3.13. Note that the above definition of initial state space doesn’t require the

system to be well-posed; however, if so, then, there is a unique element in Qw−(u+)

for every w− ∈ B−
Q and every u+ ∈ U+

e ; and in this case, Qw−(⋅) can be regarded as

an operator from U+
e to Y+

e for every w− ∈ B−
Q. In turn, this implies that for every

x0 ∈ SQ, Q
x0(⋅) is an operator from U+

e to Y+
e .

The initial state of a system defined above contains information about the past history

of the system which suffices to predict the effect of the past upon the future. It is a

classifier of system pasts. This is the property of usual state in a state space model.

This equivalence class construction of the initial state space is not new; it is closely

related to the construction of states in automata (or machine) theory and control theory

via Nerode equivalence appearing in slightly different manner. This technique was intro-

duced by [Nerode, 1958] when defining a state-equivalence relation in linear automata

theory. The formal definition of Nerode equivalence can be found in [Sakarovitch, 2009,

p. 114] in the general setting of automata theory including the nonlinear case; in [Arbib

and Zeiger, 1969, Kailath, 1980] for discrete-time systems from an abstract algebraic

point of view; in [Kalman et al., 1969, Chapters 7 and 10] including a discussion of

connection between automata and control theory; and in [Sontag, 1998b, p. 309] for any
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time-invariant input/output behaviours including both discrete-time and continuous-

time cases. A concrete approach to the Nerode equivalence construction for discrete

time transfer functions was studied in [Kailath, 1980, Sections 5.1 and 6.6, pp. 315 and

470], as well as for continuous-time transfer functions in Section 2.5 on page 21. The

equivalence relation considered in this work is slightly different from the one considered

in standard texts (see e.g., [Sontag, 1998b, p. 309]), where equivalence classes only relate

to input sequences, since we do not restrict ourself to input/output behaviours which

can be associated with an input/output map, hence the equivalence class is constructed

from both input and output pairs.

Within the behavioural approach, Willems constructs three canonical state represen-

tations by introducing three equivalence relations for a given system represented by a

behaviour [Willems, 1989]. The construction of state in this work is similar to the past-

induced canonical state representation in [Willems, 1989, Section 2]. Note that here we

do not impose any requirements on the input/output partition for a system (see Defini-

tion 3.2). This construction of state enables us to define the well-posedness of a system

and a closed-loop system in a unified way (see below). Notice that this is different from

giving a definition of well-posedness for a system with Willems’ input/output partition

[Polderman and Willems, 1998, Definition 3.3.1]; since any systems with Willems’ in-

put/output partition already guarantee the existence property which is a very important

property of a closed-loop system. Hence we relax the requirement that the input is free

in [Polderman and Willems, 1998, Definition 3.3.1] in order to study closed-loop systems.

A functional � assigns a notion of size to elements in the initial state space SQ of the

system Q:

� : SQ → [0,∞], x0 7→ �(x0) ≜ inf
w−∈x0

∥w−∥ . (3.15)

The norm on W ≜ U × Y is defined in the usual way, ∥(u, y)∥W = (∥u∥qU + ∥y∥qY)
1
q ,

q ≥ 1. Also note that lim
q→∞

(
∥u∥qU + ∥y∥qY

) 1
q = max

{
∥u∥U , ∥y∥Y

}
.

This notion of size defined above related to finite energy reachability may be interpreted

as the minimisation of energy of the past system trajectories that ‘explain’ the corre-

sponding initial state. Notice that in Section 4.4 on page 90 we will give a detailed

discussion about the concept of finite-time reachability which roughly means that any

state can be reached from zero state by finite time. The notion of size defined above

may also be interpreted as the required supply in the context of dissipative dynamical

systems, see e.g., [Willems, 1972].
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3.5.2 Additional Consideration of the Size of Initial Conditions

The determination of � is a standard problem in optimal control theory, see e.g., [Ander-

son and Moore, 1971]. The following results Theorems 3.14 and 3.16 are from [Scherpen,

1993, 1994, Scherpen and Van der Schaft, 1994, Willems, 1971b].

Theorem 3.14. Consider a smooth, i.e., C∞, nonlinear system of the form

ẋ = F (x) +G(x)u, y = H(x) (3.16)

where u = (u1, ⋅ ⋅ ⋅ , um)T ∈ ℝm, y = (y1, ⋅ ⋅ ⋅ , yp)T ∈ ℝp and x = (x1, ⋅ ⋅ ⋅ , xn)T are local

coordinates for a smooth state space manifold denoted byM . Functions F (x), G(x),H(x)

are smooth functions with F (0) = 0 and H(0) = 0. Assume that the system is zero-state

observable (i.e., for any trajectories, u(t) ≡ 0, y(t) ≡ 0 implies x(t) ≡ 0). Define the

past energy function by

E−(x0) = inf
u∈L2(−∞,0]

x(−∞)=0, x(0)=x0

1

2

∫ 0

−∞
(∣u(t)∣2 + ∣y(t)∣2) dt (3.17)

Then E− (if exist, i.e., is finite) is the smooth non-negative solution to the following

Hamilton-Jacobi-Bellman equation:

∂E−

∂x
(x)F (x) +

1

2

∂E−

∂x
(x)G(x)GT (x)

∂TE−

∂x
(x)− 1

2
H(x)TH(x) = 0, E(0) = 0

(3.18)

satisfying −(F (x) +G(x)G(x)T ∂
TE−

∂x (x)) is asymptotically stable and E− is minimised

by an input u = G(x)T ∂
TE−

∂x (x).

Remark 3.15. If we assume that there is a smooth solution E of (3.18) such that

−(F (x) + G(x)G(x)T ∂
TE
∂x (x)) is asymptotically stable, then the past energy function

E− in (3.17) exists [Scherpen and Van der Schaft, 1994].

For a linear-time-invariant system, above infimum (3.17) is simplified to the traditional

linear quadratic optimal control problem and we have the following result:

Theorem 3.16. Consider a linear-time-invariant system

ẋ = Ax+Bu, y = Cx (3.19)

where u ∈ ℝm, y ∈ ℝp and x ∈ ℝn. We assume that the system is minimum (i.e., (A,B)

is controllable and (A,C) is observable). The past energy function E−(x0) is defined as

(3.17). Then E−(x0) =
1
2x

T
0 P

−1x0, where P is the stabilising solutions (i.e., A−PCTC
is asymptotically stable) of the following Algebraic Riccati equation:

AP + PAT +BBT − PCTCP = 0 (3.20)
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We conclude this section by showing that for any system Q if it is linear (see Definition

3.6) then the corresponding initial state space SQ is a normed vector space equipped

with the norm � given by (3.15).

Proposition 3.17. If the system Q is linear, then the corresponding initial state space

SQ is a vector space. Moreover, the real-valued function � given by (3.15) defines a

norm on SQ.

Proof. Since the set BQ is a vector space, we have 0∣(−∞,+∞) ∈ BQ which is the

additive identity of BQ (where 0∣(−∞,+∞) is the zero function defined on ℝ). And it

is not hard to see that B−
Q = R−BQ is also a vector space with the additive identity

0∣(−∞,0]. We now need to show that SQ = B
−
Q/ ∼ is also a vector space. To this end,

we only need to prove the following claims:

∀w−, w̃− ∈ B−
Q, ∀� ∈ ℝ : [w− ∼ w̃− ⇒ � ⋅ w− ∼ � ⋅ w̃−] ; (3.21a)

∀w−, w̃−, w1− ∈ B−
Q : [w− ∼ w̃− ⇒ (w− + w1−) ∼ (w̃− + w1−)] . (3.21b)

Claim (3.21) follows from the definition of corresponding equivalence relation ∼ (see

(3.11)) defined on B
−
Q and the linear property of B−

Q and BQ. The equivalence class
[
(0∣(−∞,0]

]
(simply denoted by 0) is the additive identity of SQ, and from the definition

of � (see (3.15)) we have �(0) = 0.

From claim (3.21) and (3.12)–(3.13), we can define addition “+” and scalar multiplica-

tion “⋅” on SQ as follows, for any x0, y0 ∈ SQ and any � ∈ ℝ:

� ⋅ x0 = [� ⋅ w−], ∀w− ∈ x0, (3.22a)

x0 + y0 = [w1− +w2−], ∀w1− ∈ x0, ∀w2− ∈ y0. (3.22b)

Thus from the definition of vector space and claim (3.21) we obtain that SQ equipped

with above addition “+” and scalar multiplication “⋅” is a vector space.

We have shown that the initial state space SQ is a vector space with 0 =
[
0∣(−∞,0]

]
as

its additive identity and satisfies �(0) = 0. From the definition of � (see (3.15)), it is

easy to see that �(x0) ≥ 0 for any x0 ∈ SQ and that if �(x0) = 0, then we must have

0∣(−∞,0] ∈ x0 (i.e., x0 = 0). From (3.15) and (3.22) we obtain

�(� ⋅ x0) = �([� ⋅ w−]) = ∣�∣�([w−]) = ∣�∣�(x0), ∀x0 = [w−] ∈ SQ, ∀� ∈ ℝ.

For any w1−, w2− ∈ B−
Q we have ∥w1− + w2−∥ ≤ ∥w1−∥+ ∥w2−∥. Thus from (3.15) and

(3.22) we get

�(x0 + y0) ≤ �(x0) + �(y0), ∀x0, y0 ∈ SQ.
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This shows that �(⋅) (see (3.15)) defines a norm on the corresponding initial state space

SQ for any linear set BQ.

3.5.3 Comparison with Classical Initial Condition Concepts

An interesting issue is the comparison of our notion of initial conditions with the classical

ones. In this section, several examples are given to compare the initial conditions defined

above with the classical initial condition concepts. The first example is a concrete

delay line model borrowed from [Weiss, 1994] modelled as an abstract linear system

there, which is a very interesting but simple example. The second example is about

the classical finite dimensional nonlinear state-space models which directly use state

variables to describe systems by some first-order differential equations. This is the

framework used by Sontag to introduce the notions of input-to-state stability/input-

to-output stability (ISS/IOS) (see e.g., [Sontag, 2008, Sontag and Wang, 1995, 1996,

2000])). The last example is about a class of delay-differential systems with pseudo-

state space descriptions borrowed from [Rocha and Willems, 1997].

A Concrete Delay Line Model

We consider a time � -delay line model (� > 0) which produces every output signal by

time � -delay from every input signal. Define input and output signal spaces U = Y =

L∞(ℝ,ℝ) and W ≜ U×Y. Then the input-output system of the time � -delay line model

is:

B� ≜ {(u, y) ∈ We ∣ y(t) = u(t− �),∀t ∈ ℝ} . (3.23)

According to (3.7), the set of past trajectories B−
� is defined by

B−
� =

{
(u−, y−) ∈ W−

e ∣ y−(t) = u−(t− �),∀t ≤ 0
}
. (3.24)

According to Definition 3.11, the initial state space of B� is the quotient set B−
� / ∼

with the equivalence relation ∼ on B−
� defined by

w− ∼ w̃− ⇔ u−(t) = ũ−(t),∀ t ∈ [−�, 0), (3.25)

where w− = (u−, y−) ∈ B−
� and w̃− = (ũ−, ỹ−) ∈ B−

� . And the equivalent class [w−] of

any element w− = (u−, y−) ∈ B−
� is

[w−] =
{
(ũ−, ỹ−) ∈ B−

� : ũ−∣[−�,0) = u−∣[−�,0)
}
. (3.26)



Chapter 3 Framework for General Input-Output Theory with Initial Conditions 59

The real-valued function � on B−
� / ∼ is defined by

[w−] 7→ �([w−]) ≜ inf {∥w̃−∥ : w̃− ∈ [w−]} .

According to (3.14) and (3.10), let s0 ∈ B−
� / ∼ be any initial state of B� , and let

u+ ∈ U+
e denote the future input signal of B� , and let y+ ∈ Y+

e denote the future

output signal of B� , then we have

y+(t) = (Qs0� (u+))(t) ≜

{

u−(t− �), for t ∈ [0, �),

u+(t− �), for t ≥ �,
(3.27)

where w− = (u−, y−) ∈ B−
� is any element in s0.

We know that the time � -delay line model is an abstract linear system, i.e., a quadruple

(T,Φ,Ψ,F) defined in Weiss [Weiss, 1994, p. 831]. Let the classical state space be

X = L∞([−�, 0),ℝ), and let T = (Tt)t≥0 be a family of bounded linear operators from

X to X defined by, for any t ≥ 0 and � ∈ [−�, 0)

(Ttx)(�) =

{

x(� + t), for � + t < 0;

0, for � + t ≥ 0.

Let Φ = (Φt)t≥0 be a family of bounded linear operators from U+ to X defined by, for

any t ≥ 0 and � ∈ [−�, 0)

(Φtu+)(�) =

{

u+(� + t), for � + t ≥ 0;

0, for � + t < 0.

Let Ψ = (Ψt)t≥0 be a family of bounded linear operators from X to Y+ defined by, for

any t ≥ 0 and � ∈ [0, t)

(Ψtx)(�) =

{

x(� − �), for � − � < 0;

0, for � − � ≥ 0.

For � ≥ t we put (Ψtx)(�) = 0. Finally, let F = (Ft)t≥0 be a family of bounded linear

operators from U+ to Y+ defined by, for any t ≥ 0 and � ∈ [0, t)

(Ftu+)(�) =

{

u+(� − �), for � − � ≥ 0;

0, for � − � < 0.

For � ≥ t we put (Ftu+)(�) = 0. Then (T,Φ,Ψ,F) is an abstract linear system, i.e., if

xt ∈ X denotes the state at time t ≥ 0, and u+ ∈ U+
e (note that T[0,t)u+ ∈ U+ in this

example) and y+ ∈ Y+
e are the future input and output signals respectively, then

(

xt

T[0,t)y+

)

=

(

Tt Φt

Ψt Ft

)

⋅
(

x0

T[0,t)u+

)
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Thus, we obtain

y+(t) =

{

x0(t− �), for t ∈ [0, �);

u+(t− �), for t ≥ �.
(3.28)

We know by comparing (3.27) and (3.28) that the initial state space B−
� / ∼ is actually

equivalent to X = L∞([−�, 0),ℝ).

Classical Finite Dimensional Nonlinear State-Space Models

Before going into the next example, we introduce the notions of forward (resp., back-

ward) completeness and (strongly) forward (resp., backward) observability. These no-

tions will also be used in later Section 3.7.2 for the comparison with classical initial

conditions for closed-loop systems.

Consider a system Σ described by the following finite dimensional state-space model:

ẋ = f(x, u), y = ℎ(x, u), (3.29)

where u(t) ∈ ℝm (t ∈ ℝ) is the input variable, and x(t) ∈ M ⊆ ℝl (t ∈ ℝ) denotes the

state variable (M is an open set), and y(t) ∈ ℝp (t ∈ ℝ) represents the output variable,

and both f : M × ℝm → M and g : M × ℝm → ℝp are continuous functions. Define

signal spaces U ≜ Lq(ℝ,ℝm) (1 ≤ q ≤ ∞), Y ≜ Lq(ℝ,ℝp) (1 ≤ q ≤ ∞) and W ≜ U ×Y.

Definition 3.18. The state space model (3.29) is said to be forward complete [Angeli

and Sontag, 1999], if for any u+ ∈ U+
e and any initial state x0 ∈ M , there exists a

unique x(t) ∈ M (for all t ≥ 0) satisfying (3.29). It is said to be backward complete, if

for every u− ∈ U−
e and every initial state x0, there exists a unique x(t) ∈ M (for all

t ≤ 0) satisfying (3.29). It is said to be complete if it is both forward complete and

backward complete.

Suppose that the state space model (3.29) is a complete representation. If the trajectories

of (3.29) are required to satisfy the initial condition x(0) = x0 (x0 ∈M), then the state

space model defines a forward operator Σx0+ from U+
e to Y+

e as follows: each input u+ ∈
U+
e gives rise to a solution x(t) ∈M (t ≥ 0) of ẋ = f(x, u) satisfying the initial condition

x(0) = x0. This in turn defines an output y+ ∈ Y+
e by y+(t) = ℎ(x(t), u+(t)) (t ≥ 0),

i.e.,

Σx0+ : U+
e → Y+

e , u+ 7→ y+. (3.30)

Similarly, a backward operator Σx0− can be defined by

Σx0− : U−
e → Y−

e , u− 7→ y−. (3.31)
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Definition 3.19. Suppose that the state space model (3.29) is complete. It is said to

be forward observable if (see e.g., [Hermann and Krener, 1977]), for any initial states

x0, x
′
0 ∈M with x0 ∕= x′0, there exists some u+ ∈ U+

e such that Σx0+ (u+) ∕= Σ
x′0
+ (u+). It is

said to be strongly forward observable if, for any initial states x0, x
′
0 ∈M with x0 ∕= x′0,

for any u+ ∈ U+
e , we have Σx0+ (u+) ∕= Σ

x′0
+ (u+). It is said to be backward observable if,

for any initial states x0, x
′
0 ∈ M with x0 ∕= x′0, there exist some u− ∈ U−

e such that

Σx0− (u−) ∕= Σ
x′0
− (u−). It is said to be strongly backward observable if, for any initial states

x0, x
′
0 ∈M with x0 ∕= x′0, for any u− ∈ U−

e , we have Σx0− (u−) ∕= Σ
x′0
− (u−).

Consider the system Σ described by the state-space model (3.29) with classical state

space M ⊆ ℝl. We next discuss our notion of initial conditions for Σ. According to

Definition 3.2, the system Σ is defined by the set:

BΣ = {w ∈ We ∣ w = (u, y) and (3.29) satisfies for some x(t) ∈M(t ∈ ℝ)} . (3.32)

In BΣ we regard u ∈ Ue as the input and y ∈ Ye as the output. By using Definition

3.11, we can define the initial state space SΣ for the set BΣ at initial time 0.

We use the notation B
−
Σ(x0) defined as follows to denote the set of all past input-output

trajectories generated by initial state x0 at initial time 0 (x0 ∈M):

B−
Σ(x0) ≜

{(
u−
y−

) ∣
∣
∣

u− ∈ U−
e , y− ∈ Y−

e and (3.29) satisfies

for some x(t) ∈M(t ≤ 0) with x(0) = x0

}

. (3.33)

It is easy to see that if the state space model (3.29) is complete and strongly backward

observable, then we have

B−
Σ(x0) ∩B−

Σ(x
′
0) = ∅, ∀x0, x′0 ∈M with x0 ∕= x′0.

We now state the result concerning the relationship between the classical initial condi-

tions and our notion of initial conditions.

Proposition 3.20. Suppose that the state space model (3.29) is complete, forward ob-

servable and strongly backward observable. Then F : x0 7→ B−
Σ(x0) defines a bijection

from M to SΣ.

Proof. From Definition 3.11, the initial state space at time 0 ofBΣ (see (3.32)) is defined

by SΣ ≜ B−
Σ/ ∼ with B−

Σ ≜ R−BΣ (see (3.7)), and the corresponding equivalence

relation ∼ on B−
Σ is defined as follows (see (3.10) and (3.11)): for any w−, w̃− ∈ B−

Σ ,

w− ∼ w̃− ⇔ Σw−(u+) = Σw̃−(u+), ∀u+ ∈ U+
e . (3.34)
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We obtain from (3.32) and (3.33) that B−
Σ =

∪

x0∈M
{
B−

Σ(x0)
}
. Since the state space

model (3.29) is complete and strongly backward observable, we have

B−
Σ(x0) ∩B−

Σ(x
′
0) = ∅, ∀x0, x′0 ∈M with x0 ∕= x′0.

In addition, for any w− ∈ B−
Σ(x0) and any u+ ∈ U+

e , we have Σw−(u+) = Σx0+ (u+) with

Σx0+ (u+) defined by (3.30). Thus, for any x0 ∈ M , the set B−
Σ(x0) is a subset of some

equivalence class related to the equivalence relation ∼.

Since the state space model (3.29) is also forward observable, (i.e., Σx0+ ∕= Σ
x′0
+ ∀x0, x′0 ∈

M with x0 ∕= x′0), we get that B−
Σ(x0) and B−

Σ(x
′
0) must be contained in two different

equivalence classes related to the equivalence relation ∼. This, in turn, implies that
{
B−

Σ(x0) ∣ x0 ∈M
}
is the exact partition of B−

Σ related to the equivalence relation ∼.

Therefore, we have SΣ =
{
B−

Σ(x0)
∣
∣ x0 ∈M

}
and the map F : x0 7→ B−

Σ(x0) is a

bijection from M to SΣ. This completes the proof.

It is well-known that the state space model (3.29) is complete if f is continuous in t and

u and Lipschitz continuous in x (see e.g., [Desoer and Chen, 1967]).

Corollary 3.21. Consider the state space model (3.29). Suppose that f is continuous

in t and u and Lipschitz continuous in x, and that Σ is forward observable and strongly

backward observable, then there exists a bijective map from M to SΣ.

Proof. The assumption of f implies the completeness of (3.29). The rest of the proof

follows from Proposition 3.20.

For a linear time invariant (LTI) system we have the following result:

Corollary 3.22. If the system Σ defined by (3.29) is a LTI system, i.e., ẋ = f(x, u) =

Ax + Bu and y = ℎ(x, u) = Cx + Du, where x(t) ∈ M = ℝn, u(t) ∈ ℝm and

y(t) ∈ ℝp for any t ∈ ℝ, and A,B,C,D are appropriate dimensional matrixes. Sup-

pose that (A,C) is observable [Zhou et al., 1995], i.e., the np × n observability matrix

[CT , (CA)T , ⋅ ⋅ ⋅ , (CAn−1)T ]T are of full column rank n. Then there exists a bijective

map from M = ℝn to SΣ.

Proof. Since f(x, u) = Ax+Bu is continuous in u and Lipschitz continuous in x, this

implies that Σ is complete. While for linear time-invariant (LTI) system the observability

matrix [CT , (CA)T , ⋅ ⋅ ⋅ , (CAn−1)T ]T has full column rank n implies that the system is

forward observable and strongly backward observable. Thus from Corollary 3.21 there

exists a bijective map from M = ℝn to SΣ.
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A Class of Delay-Differential Systems

To give a further insight about our initial conditions for dynamical systems, consider

the following class of delay-differential systems Σ which admit a pseudo-state description

[Rocha and Willems, 1997] of the form

ẋ = A(△ℎ)x+B(△ℎ)u, y = C(△ℎ)x+D(△ℎ)u (3.35)

where x(t) ∈ ℝn (t ∈ ℝ) is the n-dimensional pseudo-state, u(t) ∈ ℝm (t ∈ ℝ) is

the input, y(t) ∈ ℝp (t ∈ ℝ) is the output, and A(�) ∈ ℝn×n[�], B(�) ∈ ℝn×m[�],

C[�] ∈ ℝp×n[�], D(�) ∈ ℝp×m[�] are polynomial matrixes in �, and △ℎ with ℎ ∈ (0,∞)

denotes the ℎ-time delay operator: (△ℎ f)(t) ≜ f(t− ℎ).

For the pseudo-state space model (3.35), the classical state at time t is defined [Rocha

and Willems, 1997] as being z(t) = (x(t), xt), where xt ∈ L2([−ℎ, 0),ℝn) is given by

xt(�) = x(t + �) for all � ∈ [−ℎ, 0). This produces the infinite-dimensional state space

Z ≜ ℝn × L2([−ℎ, 0),ℝn).

We will now define the input signal space U ≜ Lq(ℝ,ℝm) (1 ≤ q ≤ ∞), the output

signal space Y ≜ Lq(ℝ,ℝp) (1 ≤ q ≤ ∞) and W ≜ U × Y. According to Definition 3.2,

the system Σ is defined by the following set:

BΣ ≜ {(u, y) ∈ We ∣ Eq. (3.35) satisfies for some x(t) ∈ ℝn(t ∈ ℝ)} (3.36)

In BΣ we regard u ∈ Ue as the input and y ∈ Ye as the output. By using the same

procedure in Section 3.5.1, we can define the initial state space SΣ (see (3.13)) for the

above set BΣ at initial time 0.

It has been asserted in [Delfour and Mitter, 1975] that for any initial state (classical)

z0 ∈ Z at initial time 0 and any u+ ∈ U+
e there exists a unique solution x(⋅, z0, u+) ∈

W 1,q
e (ℝ+,ℝ

n) to (3.37) (note that W 1,q(ℝ+,ℝ
n) denotes the standard Sobolev space of

all functions f in Lq(ℝ+,ℝ
n) such that ḟ ∈ Lq(ℝ+,ℝ

n)). Therefore, for any z0 ∈ Z, the

system Σ (see (3.35)) defines an operator denoted by Σz0+ from future inputs to future

outputs as follows:

Σz0+ : U+
e → Y+

e , u+(⋅) 7→ y+ = C(△ℎ)x(⋅, z0, u+) +D(△ℎ)u+ (3.37)

In the following we give a definition for the pseudo-state space model (3.35) to be

forward observable and strongly backward observable, which is a generalisation of the

corresponding notions for the finite dimensional nonlinear state space model (3.29).

Definition 3.23. The pseudo-state space model (3.35) is said to be forward observable

if, for any initial states (classical) z0, z
′
0 ∈ Z with z0 ∕= z′0, we have Σz0+ ∕= Σ

z′0
+ , i.e., there

exists some u+ ∈ U+
e such that Σz0+ (u+) ∕= Σ

z′0
+ (u+).
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Definition 3.24. The state space model (3.35) is said to be strongly backward observ-

able, if

B−
Σ(z0) ∩B−

Σ(z
′
0) = ∅, ∀z0, z′0 ∈ Z with z0 ∕= z′0

where the notation B−
Σ(z0) defined as follows to denote the set of all past input-output

trajectories generated by initial state (classical) z0 at fixed initial time 0(z0 ∈ Z), i.e.,

B−
Σ(z0) ≜

{(
u−
y−

) ∣
∣
∣

u− ∈ U−
e , y− ∈ Y−

e and (3.35) satisfies for

some x(t) ∈ ℝn(t ≤ 0) with (x(0), x0(⋅)) = z0

}

(3.38)

Similar to Proposition 3.20, we have the following result for a class of delay-differential

systems:

Proposition 3.25. Suppose that the pseudo-state space model (3.35) is forward observ-

able and strongly backward observable, then the map F : z0 7→ B
−
Σ(z0) is a bijection from

Z to SΣ.

Proof. Similar to the proof of Proposition 3.20.

3.6 Notions of Stability with Initial Conditions

The concept of stability concerned with both initial conditions and input in state space

model was first systematically studied in Sontag’s works via the well-known input-to-

state stability/input-to-output stability (ISS/IOS) theory introduced in [Sontag, 1989]

and its many variants [Angeli et al., 2000, Sontag, 1998a, 2008, Sontag and Wang, 1997,

1999] etc. In this section, we give a notion of stability in our framework which is closely

related to the ISS/IOS concepts of Sontag.

Given normed signal spaces U ,Y and W ≜ U × Y, consider a system Q represented by

the setBQ (see Definition 3.2) with initial state space SQ at initial time 0 (see Definition

3.11). Suppose that the system Q is well-posed. Then, from Remark 3.13, we know that

Qx0 is an operator from U+
e to Y+

e for any x0 ∈ SQ. It is easy to see that

BQ =
∪

x0∈SQ

{
w−∧(u+, Qx0u+) ∣ w− ∈ x0, u+ ∈ U+

e

}
.

Thus we can regard the system Q as a family of operators {Qx0 : x0 ∈ SQ} indexed by

initial states. For a well-posed system Q, if Q is causal, then we have Qx0 is a causal

operator from U+
e to Y+

e .

Definition 3.26. The system Q is said to be input to output stable if and only if it

is well-posed and causal, and there exist functions � ∈ Kℒ and 
 ∈ K∞ such that,
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∀x0 ∈ SQ, ∀t > 0, ∀u0+ ∈ U+,

∣(Qx0u0+)(t)∣ ≤ � (�(x0), t) + 
(∥u0+∥[0,t)),

where the real-valued function �(⋅) is defined by (3.15).

The above ISS-like definition represents a generalisation of ISS for the system ẋ =

f(x, u), y = x wherein the term � (�(x0), t) is replaced by � (∥x0∥, t) in Sontag’s defi-

nition, and where x0 is the initial state x0 = x(0) ∈ ℝn rather than the abstract initial

condition developed here, which is appropriate for the more general system classes under

consideration. More generally, the concept of input-to-output stability (IOS) [Sontag

and Wang, 1999] permits the more general output map y = ℎ(x). The reason to adopt

this ISS-like notion of stability is that we want to complement the successful robust

stability theory of [Georgiou and Smith, 1997b] for purely input/output systems by

introducing the abstract initial conditions in this work.

3.7 Closed-Loop Systems and their Initial Conditions

We recall the standard feedback configuration depicted in Figure 3.1 with equations

(3.1) on page 38, i.e.,

[P,C] :
wi = (ui, yi) for i = 0, 1, 2,

w1 ∈ BP , w2 ∈ BC , w0 = w1 + w2,

where (u0, y0) denote external disturbance; (u1, y1) are the input-output pairs of the

plant P to be controlled; and (u2, y2) are the output-input pairs of the controller C.

Definition 3.27. Given normed signal spaces U ,Y, W ≜ U × Y. Let the plant P and

the controller C be represented by the sets BP and BC , respectively
14. We define the

closed-loop system [P,C] by the following set BP//C which is the interconnection of the

plant P and controller C shown in Figure 3.1 that satisfies (3.1),

BP//C ≜ {(w0, w1) ∈ We ×We ∣ w1 ∈ BP , w2 ≜ w0 − w1 ∈ BC}. (3.39)

In BP//C we view the external input w0 as the (closed-loop) input and the internal

signal w1 as the (closed-loop) output. For the set BP//C , we can define the initial state

space at initial time 0 of BP//C in terms of Definition 3.11, i.e., let B−
P//C ≜ R−BP//C ,

we similarly define an equivalence relation ∼ on B−
P//C as (3.11), and the set of all

equivalence classes B−
P//C/ ∼ is denoted as SP//C which we call initial state space of

BP//C at initial time 0. The size of any initial state in SP//C is similarly defined as in

14Note that when considering the controller C, we need interchange the role of Ue and Ye and think
of y2 ∈ Ye as the input and u2 ∈ Ue as the output.
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(3.15). In order to study robustness of feedback stability for a closed-loop system with

initial conditions as our setting, one of the key points is to understand the relationship

between initial conditions of the interconnected system and that of the two subsystems.

3.7.1 Relationship between Initial Conditions of Open-Loop and Closed-

Loop Systems

According to Definition 3.11 (see Section 3.5.1 on page 54), let SP and SC be the

corresponding initial state spaces at initial time 0 of the plant P and the controller C,

respectively. The size of any initial state is similarly defined by (3.15). For the classical

state space model, it’s very natural to define the initial state of the closed-loop system

by combination of the initial states of corresponding subsystems. In this section, we will

give some answer about the relation between SP//C and SP ×SC .

Suppose that the size of any x0 = (x10, x20) ∈ SP ×SC is defined in the usual way, e.g.,

for any given q ∈ [1,∞],

�(x0) ≜ (�(x10)
q + �(x20)

q)
1
q

= inf
{

(∥w1−∥q + ∥w2−∥q)
1
q
∣
∣ w1− ∈ x10, w2− ∈ x20

}

(3.40)

= inf
{

∥(w1−, w2−)∥
∣
∣ w1− ∈ x10, w2− ∈ x20

}

Note that for any s0 ∈ SP//C and any w0+ ∈ W+
e , we have defined a set Πs0P//C(w0+)

according to (3.14) and (3.10) (let BQ := BP//C and Πs0P//C(w0+) := Qs0(w0+)), i.e.,

Πs0P//C(w0+) ≜

{

w1+ ∈ W+
e

∣
∣
∣
(w0−, w1−)∧(w0+, w1+) ∈ BP//C ,

∀(w0−, w1−) ∈ s0

}

. (3.41)

To understand the relation between SP//C and SP × SC , we need to define another

set which is related to the product state in SP ×SC , denoted by Πx0P//C(w0+), for any

x0 = (x10, x20) ∈ SP ×SC and any w0+ ∈ W+
e , as follows:

Πx0P//C(w0+) ≜

{

w1+ ∈ W+
e

∣
∣
∣
(w1− + w2−, w1−)∧(w0+, w1+) ∈ BP//C ,

∀ (w1−, w2−) ∈ x0

}

. (3.42)

The result is the following:

Theorem 3.28. There exists a surjective and bounded 15 map � : SP × SC → SP//C

such that for all x0 ∈ SP ×SC and all w0+ ∈ W+
e ,

Πx0P//C(w0+) = Π
�(x0)
P//C(w0+)

15Here bounded means that there exists a positive number r ≥ 0 such that �(�(x0)) ≤ r ⋅ �(x0) for
any x0 ∈ SP ×SC with function � defined by (3.15).



Chapter 3 Framework for General Input-Output Theory with Initial Conditions 67

Moreover, if we define an equivalence relation on SP ×SC as follows

x0
�∼ y0 ⇔ �(x0) = �(y0),

and the equivalence class [x0] ≜ { y0 ∈ SP×SC ∣ y0 �∼ x0}, and the size of the equivalence

class [x0],

�([x0]) ≜ inf
y0∈[x0]

{�(y0)}, (3.43)

and we define another map �̄ induced by � as follows

�̄ : (SP ×SC)
/

�∼ → SP//C , �̄([x0]) = �(x0). (3.44)

Then �̄ is a bijective and bounded map, and the inverse �̄−1 is also bounded.

Proof. For any x0 = (x10, x20) ∈ SP × SC , choose any w1− ∈ x10, w2− ∈ x20 and

define w0− ≜ w1−+w2−. According to the definition of initial conditions (see Definition

3.11 on page 54) and the definition of closed-loop systems (see Definition 3.27), we have

s0 ≜ [(w0−, w1−)] ∈ SP//C . In the following, we show that s0 is independent of the

choice of w1− ∈ x10 and w2− ∈ x20.

Choose any other w′
1− ∈ x10 and any other w′

2− ∈ x20 and define w′
0− = w′

1− + w′
2−,

thus we have s′0 ≜ [(w′
0−, w

′
1−)] ∈ SP//C . We need to show s′0 = s0, according to (3.11)

and (3.12) (or see Section 3.5.1), this is equivalent to say

Π
(w0−,w1−)
P//C (w0+) = Π

(w′
0−,w

′
1−)

P//C (w0+), ∀w0+ ∈ W+
e . (3.45)

In order to prove (3.45), by symmetry, we only need to show that

Π
(w0−,w1−)
P//C (w0+) ⊆ Π

(w′
0−,w

′
1−)

P//C (w0+), ∀w0+ ∈ W+
e .

To this end, for any w1+ ∈ Π
(w0−,w1−)
P//C (w0+), we define w2+ = w0+ − w1+. Thus, from

the definition of closed-loop systems (see Definition 3.27), we have

w1−∧w1+ ∈ BP and w2−∧w2+ ∈ BC . (3.46)

Since both w1− and w′
1− belong to x10, from the definition of initial conditions for P ,

we have

Pw1−(u1+) = Pw
′
1−(u1+), ∀u1+ ∈ U+

e . (3.47)

From (3.46) and (3.47), this implies that w′
1−∧w1+ ∈ BP . By similar argument, we also

have w′
2−∧w2+ ∈ BC . Thus, from the definition of closed-loop systems (see Definition
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3.27), we obtain

(w′
0−∧w0+, w

′
1−∧w1+) ∈ BP//C .

This, in turn, implies that w1+ ∈ Π
(w′

0−,w
′
1−)

P//C (w0+) and thus (3.45) holds. Therefore, s0

is independent of the choosing w1− ∈ x10 and w2− ∈ x20. We also have Πx0P//C(w0+) =

Πs0
P//C

(w0+) for any w0+ ∈ W+
e .

A natural map � from SP ×SC to SP//C can be defined as follows

� : SP ×SC → SP//C , x0 7→ s0

From (3.15) and s0 = [(w0−, w1−)], we have

�(�(x0)) = �(s0) ≤ ∥(w0−, w1−)∥ = ∥(w1− + w2−, w1−)∥ (3.48)

Since w1− and w2− are arbitrarily chosen from x10 and x20, respectively. We get from

(3.48) and the inequality (a+ b)n ≤ 2n ⋅max {an, bn} (with a ≥ 0, b ≥ 0) that

�(�(x0)) ≤ inf
w1−∈x10
w2−∈x20

{∥(w1− +w2−, w1−)∥}

= inf
w1−∈x10
w2−∈x20

{

(∥w1− + w2−∥q + ∥w1−∥q)1/q
}

≤ inf
w1−∈x10
w2−∈x20

{

(2q ⋅max {∥w1−∥q , ∥w2−∥q}+ ∥w1−∥q)1/q
}

(3.49)

≤ (2q + 1)1/q ⋅ inf
w1−∈x10
w2−∈x20

{

(∥w1−∥q + ∥w2−∥q)1/q
}

= (2q + 1)1/q ⋅ �(x0), ∀q ≥ 1.

This implies that the map � is bounded. Next we show that � is also a surjective map. To

this end, for any s′′0 ∈ SP//C , choose any (w′′
0−, w

′′
1−) ∈ s′′0 and define w′′

2− ≜ w′′
0− −w′′

1−,

thus, from (3.39) and (3.7), we have

w′′
1− ∈ B−

P , w′′
2− ∈ B−

C (3.50)

We then define x′′10 ≜ [w′′
1−], x

′′
20 ≜ [w′′

2−] and x
′′
0 ≜ (x′′10, x

′′
20), thus we have

x′′0 ∈ SP ×SC (3.51)

and �(x′′0) = s′′0. This implies that the map � is surjective.

Define a map �̄ by (3.44). Since � is surjective, we obtain that �̄ is a bijective map. It

follows from �(�̄([x0])) = �(�(x0)) ≤ (2q + 1)1/q ⋅ �(x0) for any q ≥ 1 that the map �̄ is

also bounded.
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ẋp = fp(xp, u1)

ẋc = fc(xc, y2)

u0 u1

u2

y1

y2 y0�� ?

--

6 y1 = ℎp(xp, u1)

u2 = ℎc(xc, y2)

Figure 3.4: Classical state space model for closed-loop system

Finally, we show that the inverse map �̄−1 : SP//C → (SP ×SC)
/

�∼ is also bounded. To

this end, for any s′′0 ∈ SP//C , from the proof of map � being surjective (see (3.50) and

(3.51)), we have �̄−1(s′′0) = [x′′0]. Thus by applying (3.43) and (3.40), we get �(�̄−1(s′′0)) =

�([x′′0 ]) ≤ �(x′′0) ≤ (∥w′′
1−∥q + ∥w′′

2−∥q)1/q = (∥w′′
1−∥q + ∥w′′

0− − w′′
1−∥q)1/q ≤ (2q + 1)1/q ⋅

(∥w′′
0−∥q + ∥w′′

1−∥q)1/q. Since (w′′
0−, w

′′
1−) is arbitrarily chosen from s′′0, we have

�(�̄−1(s′′0)) ≤ (2q + 1)1/q ⋅ inf
(w′′

0−,w
′′
1−)∈s′′0

{

(
∥
∥w′′

0−
∥
∥q +

∥
∥w′′

1−
∥
∥q)1/q

}

= (2q + 1)1/q ⋅ inf
(w′′

0−,w
′′
1−)∈s′′0

{
(
∥
∥(w′′

0−, w
′′
1−
∥
∥
}

(3.52)

= (2q + 1)1/q ⋅ �(s′′0).

This implies the inverse map �̄−1 is also bounded.

Note that, in (3.49) and (3.52), we can get tighter bounds than previous ones for some

particular choices of q. (e.g., when q = 2, the bound constant can be chosen as
√
3 by

using the inequality (a + b)2 ≤ 2(a2 + b2), while (22 + 1)1/2 >
√
3. When q = 1, by

using the inequality ∣a+ b∣ ≤ ∣a∣+ ∣b∣, we can choose 2 not (21 +1)1/1 = 3 as the bound

constant.)

3.7.2 Comparison with Classical Initial Conditions for Closed-Loop

Systems

Consider the closed-loop system shown in Figure 3.4. The forward and feedback loop

represent the plant P and controller C, respectively. Both P and C with classical initial

state spaces Xp and Xc, respectively, are defined like (3.29), i.e., ẋp = fp(xp, u1), y1 =

ℎp(xp, u1) and ẋc = fc(xc, y2), u2 = ℎc(xc, y2). It is natural to consider the following

closed-loop equations:

ẋp = fp(xp, u1), ẋc = fc(xc, y0 − y1), (3.53a)

u1 = u0 − ℎc(xc, y0 − y1), y1 = ℎp(xp, u1), (3.53b)

with product state space Xp ×Xc and (u0, y0) as inputs, and (u1, y1) as outputs.
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The following notions of complete, forward observable and strongly backward observable

in Theorems 3.29 and 3.30 are defined in Definitions 3.18 and 3.19 (see pages 60, 61).

Theorem 3.29. Suppose that P , C, and the closed-loop (3.53) are complete. If both P

and C are forward observable (resp., strongly backward observable), then the closed-loop

(3.53) is forward observable (resp., strongly backward observable).

Proof. We establish forward observability of the closed-loop (3.53) by contradiction.

It is thus assumed that there exist (xp0, xc0) ∈ Xp × Xc, (x
′
p0, x

′
c0) ∈ Xp × Xc with

(xp0, xc0) ∕= (x′p0, x
′
c0) such that

(u1, y1)∣t≥0 = (u′1, y
′
1)∣t≥0 for all (u0, y0)∣t≥0 = (u′0, y

′
0)∣t≥0. (3.54)

This implies that

(y1, u2)∣t≥0 ≜ (ℎp(xp, u1), ℎc(xc, y2))∣t≥0 = (ℎp(x
′
p, u

′
1), ℎc(x

′
c, y

′
2))∣t≥0 ≜ (y′1, u

′
2)∣t≥0

for any (u1, y2)∣t≥0 = (u′1, y
′
2)∣t≥0 which satisfy,

ẋp = fp(xp, u1), ẋc = fc(xc, y2), (xp(0), xc(0)) = (xp0, xc0); (3.55a)

ẋ′p = fp(x
′
p, u

′
1), ẋ′c = fc(x

′
c, y

′
2), (x′p(0), x

′
c(0)) = (x′p0, x

′
c0). (3.55b)

To this end, let u0 = u1+u2, u
′
0 = u′1+u

′
2, y0 = y1+y2, and y

′
0 = y′1+y

′
2. It follows from

the completeness of P that u0 (resp., u′0) is uniquely determined by u1 and xp0 (resp.,

u′1 and x′p0). Similarly, y0 (resp., y′0) is uniquely determined by y2 and xc0 (resp., y′2
and x′c0) by using the completeness of C. Since the closed-loop (3.53) is also complete,

we know that for (u′′0, y
′′
0 ) = (u0, y0) and (x′′p(0), x

′′
c (0)) = (x′p0, x

′
c0) there exist unique

x′′p, x
′′
c , u

′′
1 , y

′′
1 , u

′′
2 , y

′′
2 satisfying

ẋ′′p = fp(x
′′
p, u

′′
1), y′′1 = ℎp(x

′′
p, u

′′
1), u′′0 = u′′1 + u′′2;

ẋ′′c = fc(x
′′
c , y

′′
2 ), u′′2 = ℎc(x

′′
c , y

′′
2 ), y′′0 = y′′1 + y′′2 .

From (3.54), we must have (u′′i , y
′′
i )∣t≥0 = (ui, yi)∣t≥0 for i = 0, 1, 2; and thus (u′′1, y

′′
2 )∣t≥0 =

(u1, y2)∣t≥0 = (u′1, y
′
2)∣t≥0. Since (u

′
0, y

′
0) are uniquely determined by (u′1, y

′
2) and (x′p0, x

′
c0)

(see above), we have (u′′0, y
′′
0 )∣t≥0 = (u′0, y

′
0)∣t≥0; and thus (u′′i , y

′′
i )∣t≥0 = (u′i, y

′
i)∣t≥0 for

i = 0, 1, 2. This in turn implies that (u′i, y
′
i)∣t≥0 = (u′′i , y

′′
i )∣t≥0 = (ui, yi)∣t≥0 for i = 0, 1, 2;

and the required result (y1, u2)∣t≥0 = (y′1, u
′
2)∣t≥0 follows.

Since (u1, y2)∣t≥0 = (u′1, y
′
2)∣t≥0 in (3.55) can thus be taken as any element by choosing

u0 = u1 + ℎc(xc, y2) and y0 = y2 + ℎp(xp, u1) with ẋp = fp(xp, u1), ẋc = fc(xc, y2) and

(xp(0), xx(0)) = (xp0, xc0), we obtain that for the above given (xp0, xc0) ∕= (x′p0, x
′
c0)

we have (y1, u2)∣t≥0 = (y′1, u
′
2)∣t≥0 for any (u1, y2)∣t≥0 = (u′1, y

′
2)∣t≥0. This contradicts

forward observability of P and C. Thus the closed-loop (3.53) is forward observable.
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We also show strongly backward observability of the closed-loop (3.53) by contradiction.

Assume therefore that there exist (xp0, xc0) ∈ Xp × Xc, (x′p0, x
′
c0) ∈ Xp × Xc with

(xp0, xc0) ∕= (x′p0, x
′
c0) and (u0, y0)∣t≤0 = (u′0, y

′
0)∣t≤0 such that (u1, y1)∣t≤0 = (u′1, y

′
1)∣t≤0,

and thus (u2, y2)∣t≤0 = (u′2, y
′
2)∣t≤0. This implies that there exist u1∣t≤0 = u′1∣t≤0 and

y2∣t≤0 = y′2∣t≤0 such that y1∣t≤0 = y′1∣t≤0 and u2∣t≤0 = u′2∣t≤0. This is a contradiction

to that both P and C are strongly backward observable. Thus the closed-loop (3.53) is

strongly backward observable. This completes the proof.

We consider the set BP//C which consists of all input-output pairs ((u0, y0), (u1, y1))

satisfying (3.53). Using the same procedure in Section 3.5.1, the initial state space

SP//C (see (3.13)) for the set BP//C at initial time 0 is defined.

Theorem 3.30. Suppose that P , C, and the closed-loop (3.53) are complete. If both

P and C are forward observable and strongly backward observable. Then there exists a

bijective map from Xp ×Xc to SP//C .

Proof. This follows directly from Theorem 3.29 and Proposition 3.20 on page 61.

3.7.3 Causality, Well-Posedness of Closed-Loop Systems

Since the closed-loop system [P,C] represented by BP//C is still a system in terms of

Definition 3.2, we can similarly define notions of causality, existence, uniqueness, well-

posedness of BP//C according to Definitions 3.7, 3.8 on page 49.

Definition 3.31. The closed-loop system [P,C] is said to be causal if, ∀(w0, w1), (w̄0, w̄1) ∈
BP//C ,∀t ∈ ℝ:

[

w0∣(−∞,t] = w̄0∣(−∞,t] ⇒ B
w0

P//C ∣(−∞,t] = B
w̄0

P//C ∣(−∞,t]

]

,

where B
w0

P//C ≜
{
(w0, w̃1) ∈ We ×We ∣ ∃ w̃1 such that (w0, w̃1) ∈ BP//C

}
.

Definition 3.32. The closed-loop system [P,C] is said to have the existence prop-

erty if for all (w0−, w1−) ∈ B−
P//C and all w0+ ∈ W+

e there exists a w1+ ∈ W+
e

such that (w0−, w1−)∧(w0+, w1+) ∈ BP//C ; and the uniqueness property if for all

w01− ≜ (w0−, w1−) ∈ B−
P//C and all w0+ ∈ W+

e ,

w01−∧(w0+, w1+), w01−∧(w0+, w̃1+) ∈ BP//C with w1+, w̃1+ ∈ W+
e ⇒ w1+ = w̃1+

and is well-posed if it has both the existence and uniqueness properties.

The following result follows directly from Definitions 3.11 and 3.32 and Theorem 3.28

(see pages 54, 71, and 66, respectively).
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Figure 3.5: Closed-loop system [P, 0]

Theorem 3.33. The closed-loop system [P,C] has the existence property if for any

s0 ∈ SP//C and any w0+ ∈ W+
e there exists a w1+ ∈ W+

e such that w1+ ∈ Πs0P//C(w0+)

with Πs0P//C(w0+) defined by (3.41); and the uniqueness property if for all s0 ∈ SP//C

and all w0+ ∈ W+
e ,

w1+, w̃1+ ∈ Πs0P//C(w0+) ⇒ w1+ = w̃1+

and is well-posed if it has both the existence and uniqueness properties.

By Theorem 3.28, we also know that s0 ∈ SP//C and Πs0P//C can be replaced throughout

in the above theorem by s0 ∈ SP ×SC and Πs0P//C , respectively.

Note that from Theorem 3.33 if [P,C] is well-posed then Πs0P//C in (3.41) (resp., (3.42))

actually defines an operator from W+
e to W+

e for any initial state s0 ∈ SP//C (resp.,

SP ×SC). Moreover, we have a natural surjective map � : SP ×SC → SP//C defined

in Theorem 3.28 such that Π
�(x0)
P//C = Πx0P//C for any x0 ∈ SP ×SC .

3.7.4 Relationship between theWell-Posedness of Open-Loop and Closed-

Loop Systems

By considering the zero controller in closed loop with a plant (Figure 3.5), it is possible

to relate well-posedness of the closed-loop system with well-posedness of the plant. This

property is presented in the following theorem. Note that a zero controller is defined by

the set {w2 ∈ We ∣ w2 ≜ (u2, y2) ∈ Ue ×Ye, u2 = 0}.

Theorem 3.34. The plant P is well-posed if and only if the closed-loop system [P, 0] is

well-posed.

Proof. Since the controller C = 0 (i.e., BC = {w2 ∈ We ∣ w2 ≜ (u2, y2) ∈ Ue×Ye, u2 =
0}), by using (3.39), we have

BP//0 = {(w0, w1) ∈ We ×We ∣ w0 = (u0, y0) is input, w1 = (u1, y1) ∈ BP , u1 = u0}

According to Definition 3.32, the closed-loop system [P, 0] is well-posed if and only if

for any (w0−, w1−) ∈ B−
P//0 and any w0+ ∈ W+

e , there exists a unique w1+ ∈ W+
e such
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Figure 3.6: Ill-posed feedback system with well-posed plant and well posed
controller

that (w0−, w1−)∧(w0+, w1+) ∈ BP//0. Thus [P, 0] is well-posed if and only if for any

w1− ∈ B−
P and any w0− ∈ W−

e with u0− = u1− (note that u2− = 0 since C = 0),

and any w0+ ∈ W+
e , there exists a unique w1+ ∈ W+

e such that (w1−∧w1+) ∈ BP and

u1+ = u0+ (note that u2+ = 0 since C = 0).

(well-posedness of [P, 0] ⇒ well-posedness of P :) For any w1− ∈ B−
P and any u1+ ∈ U+

e ,

choose w0− ≜ (u0−, y0−) = (u1−, 0) and w0+ ≜ (u0+, y0+) = (u1+, 0), by well-posedness

of BP//0, there exists a unique y1+ ∈ Y+
e such that (w1−∧w1+) ∈ BP with w1+ =

(u1+, y1+). This implies that P is well-posed.

(well-posedness of P ⇒ well-posedness of [P, 0]:) For any w1− ∈ B
−
P and any w0− ∈ W−

e

with u0− = u1−, and any w0+ ∈ W+
e (note that if choose u1+ = u0+, then by well-

posedness of BP , there exists a unique y1+ ∈ Y+
e such that (w1−∧w1+) ∈ BP ). Thus

there exists a unique w1+ ∈ W+
e such that (w1−∧w1+) ∈ BP and u1+ = u0+. This

implies that [P, 0] is well-posed.

Similarly, the controller C is well-posed if and only if the closed-loop system [0, C] is

well-posed. Note that two well-posed open subsystems (plant and controller) does not

necessarily result in a well-posed closed-loop system, see e.g., Figure 3.6. A simple

calculation shows that the feedback interconnection of Figure 3.6 implicitly requires

u0 = y0. This means that for any closed-loop input w0 = (u0, y0) with u0 ∕= y0 there

exist no solutions wi = (ui, yi), i = 1, 2 with y1 = u1 and u2 = y2 for the closed-loop

system depicted in Figure 3.6. This is a very simple example of ill-posed closed-loop

systems given in [Willems, 1971a, Section 4.3.2].

3.7.5 Relationship between the Causality of Open and Closed-Loop

Systems

The following counterexample is similar to the one given in [Willems, 1969], [Willems,

1971a, Section 4.3.2], which indicates that the causality of a closed-loop system doesn’t

follow from the causality of open-loop subsystems. Consider the feedback loop system

shown in Figure 3.7. The plant P is simply a unit gain minus a time delay, and the

controller C is simply a unit gain.
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Figure 3.7: A predictor

More precisely, let U = Y = L∞(ℝ,ℝ). The plant P and the controller C are defined

by y1(t) = (Pu1)(t) = u1(t) − u1(t − �), � > 0 and u2(t) = (Cy2)(t) = y2(t). Clearly,

P and C are causal. A simple calculation shows that a unique solution exists for any

disturbance u0, y0, and

u1(t) = u0(t+ �)− y0(t+ �)

y1(t) = u0(t+ �)− y0(t+ �)− u0(t) + y0(t)

The closed-loop system thus acts as a predictor which is not causal.

The above mathematic model of the closed-loop system does not represent a physical

realisable system. The introduction of an infinitesimal time delay in the controller part,

i.e., u2(t) = (Cy2)(t) = y2(t− "), will yield a causal closed-loop system.

3.8 Notion of Stability for Closed-Loop Systems with Ini-

tial Conditions

Given normed signal spaces U ,Y and W ≜ U ×Y, consider the closed-loop system [P,C]

with the plant P and the controller C (Definition 3.27 on page 65). Let SP , SC , and

SP//C defined according to Definition 3.11 on page 54 be the corresponding initial state

spaces of P , C, and [P,C] at initial time 0, respectively. According to (3.26) on page 64,

we can similarly define the input to output stability for the closed-loop system [P,C].

Definition 3.35. The closed-loop system [P,C] with initial state space SP//C is said

to be input to output stable if and only if it is well-posed and causal, and there exist

functions � ∈ Kℒ and 
 ∈ K∞ such that, ∀s0 ∈ SP//C , ∀t > 0, ∀w0+ ∈ W+,

∣
∣
∣(Πs0P//Cw0+)(t)

∣
∣
∣ ≤ � (�(s0), t) + 
(∥w0+∥[0,t)).

where the function � is defined by (3.15) on page 55; and the set Πs0P//Cw0+ consists

of one element only because of well-posedness (see the discussion given below Theorem

3.33).
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It is useful to remark that two well-posed open subsystems (plant and controller) does

not necessarily result in a well-posed closed-loop system, and that the causality of a

closed-loop system doesn’t follow from the causality of open-loop subsystems (planter

and controller), see previous Sections 3.7.4 and 3.7.5, or [Willems, 1971a, Section 4.3.2].

The following result gives an alternative characterisation of the property of input to

output stable for a closed-loop system.

Theorem 3.36. Suppose that the closed-loop system [P,C] is well-posed and causal.

The following four statements are equivalent:

I. The closed-loop system [P,C] is input to output stable.

II. There exist functions �1 ∈ Kℒ and 
1 ∈ K∞ such that, ∀s0 ∈ SP//C , ∀t >
0, ∀w0+ ∈ W+,

∣(Πs0P//Cw0+)(t)∣ ≤ �1 (�(s0), t) + 
1(∥w0+∥[0,t)). (3.56)

III. There exist functions �2 ∈ Kℒ and 
2 ∈ K∞ such that, ∀x0 ∈ SP × SC , ∀t >
0, ∀w0+ ∈ W+,

∣(Πx0P//Cw0+)(t)∣ ≤ �2 (�(x0), t) + 
2(∥w0+∥[0,t)). (3.57)

IV. There exist functions �3 ∈ Kℒ and 
3 ∈ K∞ such that, ∀x0 = (x10, x20) ∈ SP ×
SC , ∀t > 0, ∀w0+ ∈ W+, ∀w1− ∈ x10, ∀w2− ∈ x20,

∣(Πx0P//Cw0+)(t)∣ ≤ �3 (∥(w1−, w2−)∥ , t) + 
3(∥w0+∥[0,t)). (3.58)

Moreover, we have 
1 = 
2 = 
3 and �2 = �3.

Proof. I ⇔ II: This follows from Definition 3.35.

II ⇒ III: Suppose that (3.56) holds with given functions �1 ∈ Kℒ and 
1 ∈ K∞. For

any x0 ∈ SP ×SC , by Theorem 3.28, we have �(x0) ∈ SP//C and Πx0P//C = Π
�(x0)
P//C , and

�(�(x0)) ≤ ∥�∥ ⋅ �(x0) (note that � is a bounded map). Define a function �2 of class

Kℒ by �2(r, t) ≜ �1(∥�∥ r, t) for all r ≥ 0 and t ≥ 0. We have (3.57) holds with 
2 = 
1.

III ⇒ II: Suppose that (3.57) holds with given functions �2 ∈ Kℒ and 
2 ∈ K∞. For

any s0 ∈ SP//C , by Theorem 3.28, we have �̄−1(s0) ∈ (SP ×SC)
/

�∼ and �(�̄−1(s0)) ≤
∥�̄−1∥�(s0) (note that �̄−1 is a bounded bijective map). For any " > 0, from (3.43),

there exists an x0 ∈ SP × SC such that x0 ∈ �̄−1(s0) and �(x0) ≤ �(�̄−1(s0)) + ".

Thus we have ∣(Πs0P//Cw0+)(t)∣ = ∣(Πx0P//Cw0+)(t)∣ ≤ �2 (�(x0), t) + 
2(∥w0+∥[0,t)) ≤
�2
(
∥�̄−1∥ ⋅ �(s0) + ", t

)
+ 
2(∥w0+∥[0,t)) for any t > 0 and any w0+ ∈ W+. Since " is
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an arbitrarily chosen positive number, we have (3.56) holds with 
1 = 
2 and �1(r, t) =

�2(∥�̄−1∥ ⋅ r, t) for all r ≥ 0 and t ≥ 0.

III ⇒ IV: Suppose that (3.57) holds with given functions �2 ∈ Kℒ and 
2 ∈ K∞. From

(3.40), we know that �(x0) ≤ ∥(w1−, w2−)∥ for any w1− ∈ x10 and any w2− ∈ x20. Thus,

we have (3.58) holds with �3 = �2 and 
3 = 
2.

IV ⇒ III: Suppose that (3.58) holds with given functions �3 ∈ Kℒ and 
3 ∈ K∞.

For any x0 = (x10, x20) ∈ SP × SC , for any " > 0, from (3.40), we know that there

exist w1− ∈ x10 and w2− ∈ x20 such that ∥(w1−, w2−)∥ ≤ �(x0) + ". Thus we have

∣(Πx0P//Cw0+)(t)∣ ≤ �3(∥(w1−, w2−)∥ , t)+
3(∥w0+∥[0,t)) ≤ �3(�(x0)+", t)+
3(∥w0+∥[0,t))
for all t ≥ 0 and all w0+ ∈ W+. Since " is an arbitrarily chosen positive number, we

have (3.57) holds with �2 = �3 and 
2 = 
3.

Thus we have I ⇔ II ⇔ III ⇔ IV. This completes the proof.

3.9 Summary

In this chapter, a unified framework for the study of input-output systems with abstract

initial conditions is introduced. We define a system by the set of all possible input-output

pairs on a doubly infinite time axis corresponding to its description, such as a set of first-

order differential equations. Properties of causality, existence, uniqueness for a system

are defined and discussed in detail in this abstract framework. A general construction

of the initial conditions is given in terms of an equivalence class of trajectories on the

negative time axis. Comparison with classical initial concepts are addressed for several

examples including a concrete delay line model, the classical finite dimensional nonlinear

state space model, and a class of delay-differential systems. An ISS-like notion of input-

to-output stability on the positive time axis with initial conditions is given. The chapter

ends by several alternative characterisation of this notion of stability for a closed-loop

system.
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Eric Temple Bell (1883-1960)Chapter 4

Robust Stability Analysis of

Feedback Systems with Initial

Conditions

In Chapter 3 we have developed a general input/output framework which incorporates

a general concept of initial conditions characterised by a purely input-output formalism

drawn from [Willems, 1989]. The central result of the current chapter is to obtaine a

generalisation of the robust stability results of [Georgiou and Smith, 1997b] whereby

the initial conditions are reflected within the stability concept in an ISS-like manner

(cf. [Sontag, 1989, Sontag and Ingalls, 2002, Sontag and Wang, 1995, 1996]) in this

framework. The main result of this chapter is Theorem 4.8 which can also be viewed as

a generalisation of the ISS approach to enable an explicit treatment of robust stability

issues.

Two different versions of Theorem 4.8 are presented: one requires the well-posedness of

the perturbed closed-loop system that is a typical assumption in the classical literature;

while the other one requires only the uniqueness property of the perturbed closed-loop

system which significantly eases the real-world application of the robust stability result.

In the second case the existence property of the perturbed closed-loop system is estab-

lished via the well-known Schauder fixed-point theorem. Several technical assumptions

are imposed in order to use this fixed-point theorem, such as a compactness requirement

for the plant perturbations and a relative continuity requirement for the nominal closed-

loop system. These stronger technical requirements on the plant perturbations and the

nominal closed-loop system in turn result in substantially weaker requirements on the

perturbed closed-loop system, i.e., the uniqueness property of the perturbed closed-loop

system, which is often far easier to be verified than the existence property. This strategy

dealing with the existence issue in robust stability analysis first appeared in French and

Bian [2012] to establish a bias version of robust stability result.

77
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Theorem 4.8 can be regarded as a generalisation of the input-output operator robust

stability theorem of Georgiou and Smith, to include the case of initial conditions. This

is discussed in detail in Section 4.3 and summarised as Theorem 4.12. A notion of

finite-time reachability for a system is defined in Section 4.4, and a more applicable

robust stability result Theorem 4.18 than Theorem 4.8 in this framework is established.

Applications of the main results of this chapter to linear time-invariant systems and

a general nonlinear plants with input delay are given in Section 4.5 and Section 4.6,

respectively. The chapter ends by a generalisation of this robust stability results to

systems with potential for finite escape times.

4.1 Setting of the Problem

Given normed signal spaces U ,Y and W ≜ U ×Y (such as W = L∞(ℝ,ℝm+p)), consider

the closed-loop system [P,C] with the plant P and the controller C (Definition 3.27). Let

the perturbed plant P̃ and the perturbed closed-loop system [P̃ , C] be represented by the

sets BP̃ ⊆ Ue × Ye and BP̃ //C ⊆ We ×We, respectively. Let SP , SP̃ , SC , SP//C , and

SP̃ //C , defined according to Definition 3.11, be the corresponding initial state spaces of

BP , BP̃ , BC , BP//C , and BP̃ //C at initial time 0, respectively. Notice that, according

to (3.9) on page 52, the graph Gw1−

P of system P for a given past trajectory w1− ∈ B
−
P

is defined by

Gw1−

P ≜
{
w1+ ∈ W+ ∣ w1−∧w1+ ∈ BP

}

and Gw̃1−

P̃
for w̃1− ∈ B−

P̃
and Gw2−

C for w2− ∈ B−
C are similarly defined.

Before we come to our main result, we introduce the notions of truncation complete

normed vector spaces and relatively continuous operators.

4.1.1 Truncation Complete Normed Vector Space

We first introduce the notion of truncation complete for a normed vector space:

Definition 4.1. A normed vector space V (not necessarily complete) is said to be

truncation complete if V(J) is complete for all open subinterval J ⊆ ℝ with finite

length, i.e., V(t1, t2) is 1 complete for any −∞ < t1 < t2 < ∞. Similarly, the normed

vector space V+ (not necessarily complete) is said to be truncation complete if V[0, �) is
complete for any 0 < � <∞.

Note that the completeness is not specified for the normed vector space V (or V+). In

fact we have the following results:

1To simplify notation we identify V(t1, t2) with V
(

(t1, t2)
)

here and in what follows.
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Proposition 4.2. Let V be a complete normed vector space. Assume that TJx ∈ V for

any J ≜ (t1, t2) with −∞ < t1 < t2 < ∞ and any x ∈ V (i.e., V is truncation closed).

Then V is truncation complete.

Proof. For any J ≜ (t1, t2) with −∞ < t1 < t2 < ∞ and any Cauchy sequence

{xn}∞n=1 ⊆ V(J), i.e., ∥xn − xm∥J → 0 as n, m→ ∞, we have to show that there exists

an x ∈ V(t1, t2) such that ∥xn − x∥J → 0 as n→ ∞. From Assumption 3.1.(2) on page

41 we get ∥TJ(xn − xm)∥ = ∥xn − xm∥J for any n and m, and hence ∥TJxn − TJxm)∥ →
0 as n, m→ ∞. Since TJxn ∈ V for 2 all n and V is complete, there exists a y ∈ V such

that ∥TJxn − y∥ → 0 as n → ∞. Define x = RJy, then we have x ∈ V(J) since y ∈ V.
To conclude the proof we only need to show that ∥xn − x∥J → 0 as n→ 0. This is true

since ∥xn − x∥J = ∥TJ(xn − x)∥ = ∥TJxn − TJRJy∥ = ∥TJTJxn − TJy)∥ ≤ ∥TJxn − y∥
and ∥TJxn − y∥ → 0 as n→ ∞.

It can be easily seen from the above proof that the assertion of Proposition 4.2 remains

true if the assumption of truncation closedness of V is replaced by the following: for

any J ≜ (t1, t2) with −∞ < t1 < t2 < ∞, there exists a uniformly continuous (or more

general: Cauchy continuous) map EJ : VJ → V satisfying RJx = RJ(EJx) for any

x ∈ VJ .

Proposition 4.3. Let V (not necessarily complete) be a truncation complete normed

vector space and let {xn}∞n=1 be any Cauchy sequence of V. Then there exists an x ∈ Ve
such that for any J ≜ (t1, t2) with −∞ < t1 < t2 <∞ we have ∥RJxn −RJx∥J → 0 as

n→ ∞.

Proof. Since {xn}∞n=1 ⊆ V is a Cauchy sequence, {RJxn}∞n=1 is also a Cauchy sequence

of V(J) for any J ≜ (t1, t2) with −∞ < t1 < t2 < ∞. From the completeness of

V(J), we obtain that there is a yJ ∈ V(J) such that
∥
∥RJxn − yJ

∥
∥
J
→ 0 as n → ∞

for all J . Define a time function x(t) on the infinite interval, −∞ < t < ∞ as follows:

for any t ∈ ℝ, choose some open subinterval J of ℝ with finite length and t ∈ J , let

x(t) ≜ yJ(t). This function x is well-defined.3 It follows from the definition of Ve
that x ∈ Ve, since RJx = RJy

J with yJ ∈ V(J) for all J . To conclude the proof, we

need to show ∥RJxn −RJx∥J → 0 as n → ∞. This is obvious since RJy
J = yJ and

∥
∥RJxn − yJ

∥
∥
J
→ 0 as n→ ∞ for all J .

2Note that for any xn ∈ V(J) there always exists a zn ∈ V such that xn = RJzn. Moreover,
TJxn = TJRJzn = TJzn.

3To see this, it suffices to show that yJ1 = RJ1y
J2 for any two open subintervals J1, J2 of ℝ

with finite length and J1 ⊆ J2. Since RJ1xn = RJ1RJ2xn for all n, we get
∥

∥yJ1 −RJ1y
J2
∥

∥

J1
=

∥

∥(yJ1 −RJ1xn) + (RJ1RJ2xn −RJ1y
J2)

∥

∥

J1
≤

∥

∥yJ1 −RJ1xn

∥

∥

J1
+

∥

∥RJ2xn − yJ2
∥

∥

J2
→ 0 as n → ∞.

This implies that yJ1 = RJ1y
J2 .
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4.1.2 Relatively Continuous Operators

The following definition of relative continuous is from [French and Bian, 2012, p. 1229].

Definition 4.4. An operator (possibly nonlinear) Ψ : W+ → W+ is said to be relatively

continuous if, for all operators (possibly nonlinear) Φ : W+ → W+ with R[0,�)Φ compact

for any 0 < � <∞, the operator R[0,�)Φ ∘Ψ : W+ → R[0,�)W+ is continuous.

If we are only concerned with linear operators in the above Definition 4.4, (i.e., a linear

operator Ψ is relatively continuous if the linear operator R[0,�)Φ ∘ Ψ is continuous for

any operator Φ with R[0,�)Φ compact for any 0 < � <∞.) then every linear continuous

operator in this case is also relatively continuous.4

Note that no compactness is specified for the operator Φ in the above Definition 4.4. In

fact, we have the following result:

Proposition 4.5. If the operator (possibly nonlinear) Φ : W+ → W+ is compact, then

for any 0 < � <∞ the operator R[0,�)Φ : W+ → R[0,�)W+ is also compact.

Proof. Let {xn}∞n=1 be any bounded sequence of W+. We have to show that for

any 0 < � < ∞ the sequence {R[0,�)Φxn}∞n=1 contains a Cauchy subsequence. Since

the operator Φ is compact, there is a Cauchy subsequence {Φxnk
}∞k=1 of {Φxn}∞n=1,

i.e.,
∥
∥Φxni − �xnj

∥
∥ → 0 as i, j → ∞. From Assumption 3.1.(3) on page 41 we get

∥
∥R[0,�)(Φxni − Φxnj)

∥
∥ ≤

∥
∥Φxni − Φxnj

∥
∥ for any i, j, and hence {R[0,�)Φxnk

}∞k=1 is a

Cauchy subsequence of {R[0,�)Φxn}∞n=1. This implies the compactness of the operator

R[0,�)Φ for any 0 < � <∞.

The converse of above Proposition 4.5 is not necessarily true, since
∥
∥R[0,�)xn

∥
∥ → 0 as

n → ∞ for any 0 < � < ∞ does not necessarily implies that ∥xn∥ → 0 as n → ∞, for

example:

Example 4.6. For any n = 1, 2, 3, . . ., define a function xn(t) of time t on the positive

infinite interval [0,∞) as follows:

xn(t) =

⎧

⎨

⎩

0 , if t < n;

tn

n! , if n ≤ t ≤ n+ 1;

0 , if t > n+ 1.

It can be easily verified that for any 0 < � < ∞ we have (R[0,�)xn)(t) = 0 if t < � ≤ n,

and hence
∥
∥R[0,�)xn

∥
∥
L∞
(
[0,�),ℝ

) → 0 as n → ∞. However, ∥xn∥L∞
(
[0,∞),ℝ

) = (n+1)n

n! →
∞ as n→ ∞.

4Note that a linear operator is continuous if and only if it is bounded, and that every linear compact
operator is also bounded and thus continuous (see Section 2.2 on page 15). In addition, from Lemma
2.13 on page 20, we know that the composition operator C ∘ B is always compact provided that C is
compact and B is bounded.
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4.2 General Systems: Theorem 4.8

We are finally in a position to state our main result in this chapter. The theorem be-

low generalises Georgiou and Smith’s input-output operator robust stability theorem

to accommodate the initial conditions, including an appropriate generalisation of the

nonlinear gap metric [Georgiou and Smith, 1997b]. The idea of looking at the abstract

framework for studying the stability of interconnected systems is not new. In the pa-

per [Sontag and Ingalls, 2002], the authors established an abstract small-gain theorem

in an ISS sense including applications to purely input/output systems represented by

input/output operators defined on the following kind of signal spaces:

L∞
0 (ℝ, S) ≜ {u ∈ L∞(ℝ, S) ∣ u(t) = 0,∀t < t0 for some t0 ∈ ℝ}

with S being any normed linear space and L∞(ℝ, S) consisting of all measurable locally

essentially bounded maps from ℝ to S. The IOS concept is still a doubly infinite time

axis definition; but it precludes for example the uncontrollable stable linear case, since

exponential functions do not lie in L∞
0 (ℝ, S). Note that the special representation of

systems allows the authors to identify the ‘state’ only with the past input without using

the past output; moreover, the well-posedness part of the small-gain theorem was not

considered or just as a standing assumption, see [Sontag and Ingalls, 2002, Section 4.5.2]

or [Ingalls et al., 1999].

The following assumptions on the normed vector space W+ are only required in the

proof of Theorem 4.8 with condition II:

Assumption 4.7. (1) For any x ∈ W+
e , if ∥x∥ < ∞, then x ∈ W+; (2) The normed

vector space W+ (not necessarily complete) is truncation complete, i.e., W[0, �) is com-

plete for any 0 < � < ∞; (3) For any time interval J ≜ [0, �) with 0 < � < ∞,

there exists a continuous map EJ : W(J) → W+ such that RJx = RJ(EJx) for any

x ∈ W(J).

Theorem 4.8. Assume that P , P̃ , and C are well-posed and causal systems, and that

[P,C] is time-invariant, well-posed and causal, and that [P̃ , C] is causal. Let [P,C]

be input to output stable, i.e., there exist functions � ∈ Kℒ and 
 ∈ K∞ such that,

∀x0 = (x10, x20) ∈ SP ×SC , ∀w0+ ∈ W+, ∀t > 0,

∣(Πx0P//Cw0+)(t)∣ ≤ � (�(x0), t) + 
(∥w0+∥[0,t)). (4.1)

If there exist functions �0, � ∈ K∞ and �0 ∈ Kℒ such that for any w̃1− ∈ W− ∩ B−
P̃

there exists a w1− ∈ W− ∩B−
P with

∥w1−∥ ≤ �0(∥w̃1−∥) (4.2)
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and a causal surjective operator Φ : dom(Φ) ⊆ Gw1−

P → Gw̃1−

P̃
satisfying, ∀t > ℎ ≥

0, ∀w1+ ∈ dom(Φ),

∣((Φ − I)w1+)(t)∣ ≤ �0(∥w1−∧w1+∥(−∞,ℎ] , t− ℎ) + �(∥w1+∥[ℎ,t)). (4.3)

In addition, if there exist two functions �, " of class K∞ such that, ∀s ≥ 0,

� ∘ (I + �) ∘ 
(s) ≤ (I + ")−1(s); (4.4)

and either of the following conditions is satisfied:

I. [P̃ , C] is well-posed and Πx̃0
P̃ //C

(W+) ⊆ W+ for any x̃0 ∈ SP̃ ×SC ;

II. Assumption 4.7 holds for W+, and [P̃ , C] has the uniqueness property, and Πx0P//C
is relatively continuous for any x0 ∈ SP × SC , and R[0,�)(Φ − I) is compact for

any 0 < � <∞.

Then the closed-loop system [P̃ , C] is also input to output stable. More specifically,

for any function � of class K∞, there exists a function �̃ ∈ Kℒ such that, ∀x̃0 ∈
SP̃ ×SC , ∀w̃0+ ∈ W+, ∀t > 0,

∣(Πx̃0
P̃ //C

w̃0+)(t)∣ ≤ �̃ (�(x̃0), t) + (�+ 
̃)(∥w̃0+∥[0,t)), (4.5)

where 
̃ ∈ K∞ is defined by


̃(r) ≜ (� + I) ∘ (I + �) ∘ 
 ∘ (I + "−1)3(r), ∀r ≥ 0. (4.6)

Remark 4.9. if both � and 
 are linear functions, e.g., �(s) = r1 ⋅ s an 
(s) = r2 ⋅ s for
some r1 ≥ 0, r2 ≥ 0, then condition (4.4) is equivalent to r1 ⋅ r2 < 1.

Note that the inequality (4.4) is equal to the following inequality


 ∘ (I + ") ∘ �(r) ≤ (I + �)−1(r), ∀r ≥ 0. (4.7)

This is easily to be seen by letting s = (I + ") ∘ �(r) for any r ≥ 0 in (4.4). In fact, we

have � ∘ (I + �) ∘ 
 ∘ (I + ") ∘ �(r) ≤ (I + ")−1 ∘ (I + ") ∘ �(r), and then by applying

(I + �)−1 ∘ �−1(⋅) on both sides, we obtain (4.7).

Theorem 4.8 still holds when replacing the product state space SP ×SC by SP//C by

using Theorem 3.36.

The proof of Theorem 4.8 with Conditions I and II is organised into Section 4.2.1 and

Section 4.2.2, repectively.
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4.2.1 Proof of Theorem 4.8 with Condition I (well-posedness)

The proof of this part of Theorem 4.8 will make use a technical result borrowed from

[Jiang et al., 1994] (see Lemma 2.25 on page 31).

Proof. For any w̃0+ ∈ W+ and any x̃0 ∈ SP̃ ×SC , choose any bounded (w̃1−, w2−) ∈ x̃0

and let w̃0− = w̃1− + w2−. Since [P̃ , C] is well-posed, causal and Πx̃0
P̃ //C

(W+) ⊆ W+,

there exists a unique (w̃1+, w2+) ∈ W+ ×W+ such that w̃1+ ∈ Gw̃1−

P̃
, w2+ ∈ Gw2−

C and

w̃0+ = w̃1++w2+, i.e., the operator Π
x̃0
P̃ //C

: W+ → W+, w̃0+ 7→ w̃1+ is well defined and

causal.

Under conditions in Theorem 4.8, there exists a w1− ∈ W− ∩ B−
P for w̃1− such that

∥w1−∥ ≤ �0(∥w̃1−∥) (see (4.2)), and thus

∥(w1−, w2−)∥ ≤ (�0 + I)(∥(w̃1−, w2−)∥). (4.8)

In addition, there exists a causal surjective operator Φ : dom(Φ) ⊆ Gw1−

P → Gw̃1−

P̃
. It

follows from the surjection of Φ that there exists w1+ ∈ Gw1−

P satisfying Φ(w1+) = w̃1+.

We choose x0 := ([w1−], [w2−]) ∈ SP×SC and let w0− = w1−+w2− and w0+ ≜ w1++w2+.

It follows from the well-posedness of [P,C] that Πx0P//C(w0+) = w1+; and thus the

following equations hold:

Πx̃0
P̃ //C

(w̃0+) = w̃1+ = Φ ∘ Πx0P//C(w0+), (4.9)

w̃0+ =
(

I + (Φ− I) ∘ Πx0P//C
)

(w0+). (4.10)

For ease of notation, we define

wi ≜ (wi−∧wi+) (i = 0, 1, 2), w̃j ≜ (w̃j−∧w̃j+) (j = 0, 1).

We have, from (4.1) and Theorem 3.36, using time-invariance and causality of [P,C],

∣w1(t)∣ ≤ �(∥(w1, w2)∥(−∞,ℎ] , t− ℎ) + 
(∥w0∥[ℎ,t]), ∀t ≥ ℎ ≥ 0. (4.11)

Next, we estimate the upper bound of ∥(w1, w2)∥ by first giving the upper bound of

∥w0+∥. It follows from (4.10) that

∥w0+∥ ≤ ∥w̃0+∥+ ∥(I − Φ)(Πx0P//Cw0+)∥ (4.12)

≤ ∥w̃0+∥+ �0(∥w1−∥ , 0) + �(∥Πx0P//Cw0+∥), [by (4.3)]

≤ ∥w̃0+∥+ �0(∥w1−∥ , 0) + � (�(∥(w1−, w2−)∥ , 0) + 
(∥w0+∥)) , [by (4.11)]

≤ ∥w̃0+∥+ �0((�0 + I)(∥(w̃1−, w2−)∥), 0) + � ∘ (I + �) ∘ 
(∥w0+∥)
+ � ∘ (I + �−1) ∘ �((�0 + I)(∥(w̃1−, w2−)∥), 0), [by (4.8) and (2.19)]
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Since � ∘ (I + �) ∘ 
(⋅) < (I + ")−1(⋅) (see (4.4)) and (I − (I + ")−1)−1 = (I + "−1) (see

(2.20)), we obtain from (4.12) that

∥w0+∥ ≤ (I + "−1) (∥w̃0+∥+Δ(∥(w̃1−, w2−)∥)) , (4.13)

where function Δ ∈ K is defined by,

Δ(r) ≜ �0((�0 + I)(r), 0) + � ∘ (I + �−1) ∘ �((�0 + I)(r), 0), ∀r ≥ 0. (4.14)

Define three functions �i ∈ K∞, (i = 1, 2, 3) by

�1(s) ≜ (�0 + I)(s) + 2�
(
(�0 + I)(s), 0

)
, ∀s ≥ 0;

�2(s) ≜ �1(s) + (2
 + I) ∘ (I + "−1) ∘ (I + ") ∘Δ(s), ∀s ≥ 0;

�3(s) ≜ (2
 + I) ∘ (I + "−1) ∘ (I + "−1)(s), ∀s ≥ 0.

Thus, we have

∥(w1, w2)∥ ≤ ∥(w1−, w2−)∥+ 2 ∥w1+∥+ ∥w0+∥
≤ (�0 + I)(∥(w̃1−, w2−)∥) + 2�((�0 + I)(∥(w̃1−, w2−)∥), 0)
+ 2
(∥w0+∥) + ∥w0+∥ [by (4.8) and (4.11)]

(4.15)
≤ �1(∥(w̃1−, w2−)∥) [by (4.13)]

+ (2
 + I) ∘ (I + "−1) (∥w̃0+∥+Δ(∥(w̃1−, w2−)∥))
≤ �2(∥(w̃1−, w2−)∥) + �3(∥w̃0+∥) ≜ s∞ [by (2.19)]

By using the equation (4.10), for any t > 0, we have

∣w0+(t)∣ ≤ ∣w̃0+(t)∣+ ∣
(
(Φ− I) ∘ Πx0P//C(w0+)

)
(t)∣

≤ ∥w̃0∥[0,t) + �0(∥w1∥(−∞,t/2] , t− t/2) + �(∥w1+∥[t/2,t]), [by (4.3)]

≤ ∥w̃0∥[0,t) + �0(s∞, t/2) + �
(

�(s∞, t/4) + 
(∥w0∥[t/4,t))
)

, [by (4.11)]

≤ ∥w̃0∥[0,t) + �0(s∞, t/2) + � ∘ (I + �−1) ∘ �(s∞, t/4)
+ � ∘ (I + �) ∘ 
(∥w0∥[t/4,t)), [by (2.19)]

≤ ∥w̃0∥[0,t) + �1(s∞, t) + (I + ")−1(∥w0+∥[t/4,t)), (4.16)

where s∞ is defined by (4.15) and �1 ∈ Kℒ is defined by:

�1(r, s) ≜ �0(r, s/2) + � ∘ (I + �−1) ∘ �(r, s/4), ∀r ≥ 0, ∀s ≥ 0. (4.17)
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By applying Lemma 2.25 to (4.16) with � = 1
4 and � = (I + ")−1 and � = I + "−1, it

follows that a function �2 of class Kℒ exists such that, for all t > 0,

∣w0+(t)∣ ≤ �2(s∞, t) + (I − �)−1 ∘ �(∥w̃0+∥[0,t))
(4.18)

≤ �2(s∞, t) + (I + "−1)2(∥w̃0∥[0,t)), [by (2.20)]

Define functions �3 ∈ Kℒ, �̂ ∈ Kℒ and �4 ∈ K (without loss of generality, we could

regard �4 as a function of class K∞) as follows, for all r ≥ 0 and all s ≥ 0,

�3(r, s) ≜ �0(r, s/2) + (� + I) ∘ (I + �−1) ∘ �(r, s/4);
�4(r, s) ≜ �3(r, s) + (� + I) ∘ (I + �) ∘ 
 ∘ (I + ") ∘ �2(r, s/4);
�4(r) ≜ �3((�0 + I)(r), 0) + (� + I) ∘ (I + �) ∘ 
 ∘ (I + "−1) ∘ (I + ") ∘Δ(r).

Hence, by using the equation (4.9), for any t > 0, we have

∣
(
Πx̃0
P̃ //C

(w̃0+)
)
(t)∣ ≤ ∥(Φ − I) ∘ Πx0P//C(w0+)∥

[0,t]
+ ∥Πx0P//C(w0+)∥

[0,t]

≤ �0(∥w1−∥ , 0) + (� + I)(∥w1+∥[0,t]), [by (4.3)]

≤ �0(∥w1−∥ , 0) + (� + I)

∘
(

�(∥(w1−, w2−)∥ , 0) + 
(∥w0∥[0,t])
)

, [by (4.11)]

≤ �3((�0 + I)(∥(w̃1−, w2−)∥), 0) + (� + I) ∘ (I + �) ∘ 

∘ (I + "−1) (∥w̃0+∥+Δ(∥(w̃1−, w2−)∥)) , [by (4.8) and (4.13)]

≤ �4(∥(w̃1−, w2−)∥) + 
̃(∥w̃0+∥[0,t)) (4.19)

with function 
̃ ∈ K∞ defined by (4.6) (note that (I+"−1)2(⋅) ≤ (I+"−1)3(⋅)). Moreover,

∣
(
Πx̃0
P̃ //C

(w̃0+)
)
(t)∣ ≤ ∣

(
(Φ− I) ∘Πx0P//C(w0+)

)
(t)∣+ ∣

(
Πx0P//C(w0+)

)
(t)∣

≤ �0(∥w1∥(−∞, t
2
] , t− t/2) + (� + I)(∥w1+∥[ t

2
,t]), [by (4.3)]

≤ �0(s∞, t/2) + (� + I)
(

�(s∞, t/4) + 
(∥w0∥[ t
4
,t))
)

, [by (4.11)]

≤ �3(s∞, t) + (� + I) ∘ (I + �) ∘ 
(∥w0∥[ t
4
,t)) [by (2.19)]

≤ �3(s∞, t) + (� + I) ∘ (I + �) ∘ 


∘
(

�2(s∞, t/4) + (I + "−1)2(∥w̃0+∥[0,t))
)

, [by (4.18)]

≤ �̂(s∞, t) + 
̃(∥w̃0+∥[0,t)) (4.20)

with function 
̃ ∈ K∞ defined by (4.6). Since s∞ = �2(∥(w̃1−, w2−)∥) + �3(∥w̃0+∥) (see
(4.15)), from (4.19) and (4.20), we have for any t ≥ 0,

∣
(
Πx̃0
P̃ //C

(w̃0+)
)
(t)∣ ≤ 
̃(∥w̃0+∥) + min

{

�4(∥(w̃1−, w2−)∥),

�̂
(
�2(∥(w̃1−, w2−)∥) + �3(∥w̃0+∥), t

)}

. (4.21)
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Given any function � of K∞, there are only two cases ∥(w̃1−, w2−)∥ ≤ �−1
4 ∘ �(∥w̃0+∥)

or ∥w̃0+∥ ≤ �−1 ∘ �4(∥(w̃1−, w2−)∥), thus from (4.21) and by considering the fact that

for any fixed t > 0 the function �̂(⋅, t) ∈ K, we have for any t ≥ 0,

∣
(
Πx̃0
P̃ //C

(w̃0+)
)
(t)∣ ≤ 
̃(∥w̃0+∥) + �4 ∘ �−1

4 ∘ �(∥w̃0+∥)

+ �̂
(
�2(∥(w̃1−, w2−)∥) + �3 ∘ �−1 ∘ �4(∥(w̃1−, w2−)∥), t

)
.

Since [P̃ , C] is causal, we have, for any t > 0,

∣(Πx̃0
P̃ //C

w̃0+)(t)∣ ≤ �̃ (∥(w̃1−, w2−)∥ , t) + (�+ 
̃)(∥w̃0+∥[0,t)), (4.22)

where the function 
̃ ∈ K∞ is defined by (4.6) and �̃ ∈ Kℒ is defined as follows

�̃(r, t) = �̂(�2(r) + �3 ∘ �−1 ∘ �4(r), t), ∀r ≥ 0,∀t ≥ 0. (4.23)

Since x̃0 and w̃0+ are arbitrarily chosen from SP̃ ×SC and W+, respectively, we obtain

that [P̃ , C] is input to output stable. Moreover, by Theorem 3.36, for any given function

� ∈ K∞, from (4.22), we have (4.5) holds with �̃ ∈ Kℒ defined by (4.23).

4.2.2 Proof of Theorem 4.8 with Condition II (only uniqueness)

The proof of this part of Theorem 4.8 will make use of the Schauder fixed-point theorem

(see Lemma 2.11 on page 19).

Proof. For any w̃0+ ∈ W+ and any x̃0 ∈ SP̃ ×SC , choose any bounded (w̃1−, w2−) ∈ x̃0

and let w̃0− = w̃1− + w2−. Under conditions in Theorem 4.8, there exists a w1− ∈
W− ∩B−

P for w̃1− such that ∥w1−∥ ≤ �0(∥w̃1−∥) (see (4.2)), and thus

∥(w1−, w2−)∥ ≤ (�0 + I)(∥(w̃1−, w2−)∥). (4.24)

In addition, there exists a causal surjective operator Φ : dom(Φ) ⊆ Gw1−

P → Gw̃1−

P̃

such that RJ(Φ − I) is compact with J ≜ [0, �) for any 0 < � < ∞. We choose

x0 := ([w1−], [w2−]) ∈ SP × SC and let w0− = w1− +w2−. Consider the equation

RJ w̃0+ = RJ

(

I + (Φ − I) ∘ Πx0
P//C

)

(z0+)
(4.25)

= RJ(I −Πx0P//C)(z0+) +RJΦ ∘ Πx0P//C(z0+)

and define a set M as follows,

M =
{

z̄0+ ∈ W(J)
∣
∣
∣ ∥z̄0+∥J ≤ (I + "−1)

(
∥w̃0+∥+Δ(∥(w̃1−, w2−)∥)

)}

(4.26)
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with Δ ∈ K defined by

Δ(r) ≜ �0((�0 + I)(r), 0) + � ∘ (I + �−1) ∘ �((�0 + I)(r), 0), ∀r ≥ 0, (4.27)

and consider the operator

Q :M → W(J), z̄0+ 7→ RJ w̃0+ +RJ(I − Φ) ∘ Πx0P//C(EJ z̄0+). (4.28)

Theorem 3.36 tells us that (4.1) is equivalent to the following expression, for any z0+ ∈
W+:

∣Πx0P//C(z0+)(t)∣ ≤ �(∥(w1−, w2−)∥ , t) + 
(∥z0+∥[0,t)), ∀t > 0. (4.29)

From (4.28), for any z̄0+ ∈M , define z0+ ≜ EJ z̄0+, we have

∥Q(z̄0+)∥J ≤ ∥RJ w̃0+∥J + ∥RJ (I − Φ) ∘ Πx0
P//C

(EJ z̄0+)∥J
≤ ∥w̃0+∥+ �0(∥w1−∥ , 0) + �(∥Πx0P//Cz0+∥), [by (4.3)]

≤ ∥w̃0+∥+ �0(∥w1−∥ , 0) + � ∘
(
�(∥(w1−, w2−)∥ , 0) + 
(∥z0+∥)

)
, [by (4.29)]

≤ ∥w̃0+∥+ �0((�0 + I)(∥(w̃1−, w2−)∥), 0) + � ∘ (I + �) ∘ 
(∥z0+∥)
+ � ∘ (I + �−1) ∘ �

(
(�0 + I)(∥(w̃1−, w2−)∥), 0

)
, [by (4.8) and (2.19)]

≤ ∥w̃0+∥+Δ(∥(w̃1−, w2−)∥) + (I + ")−1(∥z0+∥), [by (4.14) and (4.4)]

≤
(
I + (I + ")−1 ∘ (I + "−1)

)(
∥w̃0+∥+Δ(∥(w̃1−, w2−)∥)

)
, [by (4.26)]

= (I + "−1) (∥w̃0+∥+Δ(∥(w̃1−, w2−)∥)) , [by (2.21) and (2.20)].

Therefore Q(M) ⊆ M ⊆ W(J) with W(J) being a Banach space (note that W+ is

truncation complete). Since RJ(Φ − I) is compact and Πx0P//C is bounded, it follows

from Lemma 2.13 that Q in (4.28) is also compact. From the relatively continuity of

Πx0P//C , we know that Q is continuous. The set M is nonempty, closed, bounded and

convex follows from Lemma 2.12. Thus by applying the Schauder fixed-point theorem

(see Lemma 2.11) to the operator Q :M → W(J), there exists some w̄0+ ∈M ⊆ W(J)

such that w̄0+ = Q(w̄0+) ∈ W(J). Hence equation (4.25) has a solution z0+ = EJ w̄0+.

Since w̃J1+ ≜ Φ ∘ Πx0P//C(EJ w̄0+) ∈ Gw̃1−

P̃
and wJ2+ ≜ (I − Πx0P//C)(EJ w̄0+) ∈ Gw2−

C , it

follows from (4.25) that RJ w̃
J
1+ + RJw

J
2+ = RJ w̃0+ and that w̃J1+, w̃

J
2+ are bounded

independent of J . This in turn shows that [P̃ , C] has the existence property up to time

� (note that J ≜ [0, �)). Since this holds for all 0 < � <∞, and [P̃ , C] is causal and has

the uniqueness property, it follows from Corollary 3.10 on page 51 that [P̃ , C] is well-

posed. Since both x̃0 and w̃0+ are arbitrarily chosen fromSP̃×SC andW+, respectively,

we obtain that Πx̃0
P̃ //C

(W+) ⊆ W+ for any x̃0 ∈ SP̃ ×SC . The rest of the proof follows

as per the proof of Theorem 4.8 with extra condition I (see Section 4.2.1).
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It is useful to remark that if the operator Φ used to define the operator Q is locally

Lipschitz continuous (see e.g., [Willems, 1971a, p. 89]), i.e.,

sup
R[0,�)x ∕=R[0,�)y

∥
∥R[0,�)(Φx− Φy)

∥
∥
[0,�)

∥
∥R[0,�)(x− y)

∥
∥
[0,�)

<∞ for all � ∈ (0,∞),

or more general locally continuous, i.e., R[0,�)Φ is continuous for any � ∈ (0,∞), then the

relative continuity requirement for the map Πx0P//C can be replaced by the requirement

that Πx0P//C is continuous.

4.3 Relationship between [Georgiou and Smith, 1997b, The-

orem 1] and Theorem 4.8

In this section, we show to some extent that our robust stability theorem represents

a generalisation of the input-output operator robust stability theorem of Georgiou and

Smith, to include the case of initial conditions. In terms of notations in this thesis,

[Georgiou and Smith, 1997b, Theorem 1] can be expressed as follows:

Theorem 4.10. Consider the feedback configuration in Figure 3.1 on page 38. Assume

that P , P̃ , C, [P,C], and [P̃ , C] are well-posed and causal systems with B−
P = {0},

B−
P̃

= {0}, and B−
C = {0}. Let [P,C] be stable, i.e., ∥Π0

P//C∥ < ∞. If there exists a

casual bijective map Φ0 from G0
P to G0

P̃
with Φ(0) = 0 such that

∥(Φ0 − I)∣G0
P
∥ < ∥Π0

P//C∥
−1
, (4.30)

then [P̃ , C] is stable and ∥Π0
P̃ //C

∥ ≤ ∥Π0
P//C∥

1+∥(Φ0−I)∣G0
P
∥

1−∥Π0
P//C

∥⋅∥(Φ0−I)∣G0
P
∥ .

In Georgiou and Smith [1997b], the plant and controller are assumed to be casual map-

pings from signal spaces to signal spaces which are only defined on positive time axis.

The properties of mapping zero input to zero output for the plant and controller im-

plicity require that they have zero initial conditions. Thus we assume that P , P̃ , C are

well-posed and causal systems with B−
P = {0}, B−

P̃
= {0}, and B−

C = {0} in terms of

notations of this thesis for above theorem. That the nominal and perturbed closed-loop

systems are casual and well-posed are also standing assumptions in Georgiou and Smith

[1997b]. Also, notice that the condition (4.30) is equivalent to [Georgiou and Smith,

1997b, Theorem 1, Condition (2)].

Lemma 4.11. Consider the following LTI system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), x(0) = x0,
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where x(t) ∈ ℝn, u(t) ∈ ℝm, y(t) ∈ ℝp for all t ≥ 0 and the matrices A,B,C,D are

of appropriate dimensions. Suppose that (A,B) is stabilisable and (A,C) is detectable.

Then the following three statements are equivalent:

I. the matrix A is stable;

II. the system with zero initial conditions is stable with L∞-linear gain;5

III. the system with initial conditions is input-to-output stable with L∞-linear gain.6

Moreover, the linear gain in III can be chosen as the same one in II.

Proof. For I ⇔ II, see [Vidyasagar, 1993, Section 6.3, Theorem 4]. For I ⇒ III, see

Example 2.29. For III ⇒ II, we get II by setting initial conditions to be zero in III.

Thus we have I ⇔ II ⇔ III. That the linear gain in III can be chosen as the same one

in II follows from the linearity of the system. This completes the proof.

The relationship between Theorem 4.8 and [Georgiou and Smith, 1997b, Theorem 1] is

now given as follows:

Theorem 4.12. Under the conditions that P , P̃ , C, [P,C], and [P̃ , C] are LTI sys-

tems, and that P and P̃ are controllable and observable, and that [P,C] and [P̃ , C] are

stabilisable and detectable. The first part of Theorem 4.8 (i.e., with extra condition I) is

equivalent to Theorem 4.10 (i.e., [Georgiou and Smith, 1997b, Theorem 1]).

Remark 4.13. If the premises of the first part of Theorem 4.8 and Theorem 4.10 are

A1 and A2, and the conclusions of the first part of Theorem 4.8 and Theorem 4.10 are

B1 and B2, respectively. Then equivalence means that (A1 ⇒ B1) ⇔ (A2 ⇒ B2).

Proof. Under the conditions in Theorem 4.12. From Lemma 4.11, we know that the LTI

nominal closed-loop system [P,C] with zero initial conditions is stable with L∞-linear

gain if and only if [P,C] with initial conditions is input-to-output stable with the same

L∞-linear gain, i.e., gain function 
 in (4.1) in Theorem 4.8 is a linear function such

that 
(s) = ∥Π0
P//C∥ ⋅ s for s ≥ 0. From Section 4.5.2 (especially (4.55) in Proposition

4.21), the gap function � in (4.3) in Theorem 4.8 is a linear function such that �(s) =

∥(Φ−I)∣G0
P
∥⋅s for s ≥ 0. From Remark 4.9, we know that condition (4.4) in Theorem 4.8

is equivalent to the condition (4.30) in Theorem 4.10. By using the notation in Remark

4.13, this implies

A1 ⇔ A2 (4.31)

5i.e., sup
{

∥y∥L∞([0,t],ℝ)

∥u∥L∞([0,t],ℝ)
: t > 0, ∥u∥L∞([0,t],ℝ) ∕= 0, x(0) = 0

}

< ∞.
6i.e., ∣y(t)∣ ≤ �(∣x0∣ , t) + 
(∥u∥L∞([0,t],ℝ)) for all t ≥ 0 with � ∈ Kℒ and a linear function 
 ∈ K∞.
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By using Lemma 4.11 for the LTI perturbed closed-loop system [P̃ , C]. we know that

[P̃ , C] with zero initial conditions is stable with L∞-linear gain if and only if [P̃ , C] with

initial conditions is input-to-output stable with the same L∞-linear gain. By using the

notation in Remark 4.13 again, this implies

B1 ⇔ B2 (4.32)

From (4.31) and (4.32), we get (A1 ⇒ B1) ⇔ (A2 ⇒ B2). By Remark 4.13, we know

that the first part of Theorem 4.8 (i.e., with extra condition I) is equivalent to Theorem

4.10 (i.e., [Georgiou and Smith, 1997b, Theorem 1]).

4.4 Finite-Time Reachable Systems: Theorem 4.18

We first introduce the notion of a finite-time reachable system:

Definition 4.14. Given normed signal spaces U ,Y and W ≜ U × Y. Consider the

system Q represented by the set BQ (see Definition 3.2) and the initial state space SQ

of Q at initial time 0 defined by Definition 3.11. Let � ∈ (0,∞), then the system Q

is called finite-time �-reachable if for any x0 ∈ SQ there exists a w− ∈ x0 such that

w−(t) = 0 for all t ∈ (−∞,−�). The system Q is called finite-time reachable if there

exist a � ∈ (0,∞) such that Q is finite-time �-reachable.

We will now let t0 > 0 be the given initial time and S
t0
Q (see Remark 3.12) be the initial

state space of Q at time t0. Suppose that the system Q is finite-time t0-reachable (i.e.,

for any x0 ∈ S
t0
Q there exists a w− ∈ x0 such that w−(t) = 0 for all t < 0). Let us define

a map � as follows:

� : x0 7→
{
w ∈ W[0, t0] ∣ 0(−∞,0)∧w ∈ x0

}
, ∀x0 ∈ S

t0
Q . (4.33)

Since Q is finite-time t0-reachable, we know that �(x0) ∕= ∅ for any x0 ∈ S
t0
Q .

4.4.1 Preliminary Results

Denote by �(St0
Q) the image of above map �. The following Theorem 4.15 shows that

� : St0
Q → �(St0

Q) is a bijective map.

Theorem 4.15. The map � : St0
Q → �(St0

Q) is a bijection.

Proof. We only need to prove � is an injection. To this end, we have to show x1 = x2

for any x1, x2 ∈ S
t0
Q satisfying �(x1) = �(x2). Choose any w ∈ �(x1) = �(x2), from (4.33)

we know 0(−∞,0)∧w belongs to both x1 and x2. Thus from the definition of initial state

space S
t0
Q we get x1 = x2. This completes the proof.
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Recalling the definition of graph of a system for particular past trajectory 0 (see (3.9)),

i.e.,

G0
Q ≜

{
w+ ∈ W+ ∣ 0(−∞,0)∧w+ ∈ BQ

}
.

The following Theorem 4.16 shows that the image of the map � produces a partition for

the restriction of graph G0
Q to [0, t0].

Theorem 4.16. The image �(St0
Q) of the map � is a partition of G0

Q

∣
∣
[0,t0]

.

Proof. Since Q is finite-time t0-reachable, we have �(x0) ∕= ∅ for any x0 ∈ S
t0
Q and

thus ∅ /∈ �(St0
Q). For any w[0,t0] ∈ G0

Q

∣
∣
[0,t0]

, there must exist a x0 ∈ S
t0
Q such that

0(−∞,0)∧w[0,t0] ∈ x0, and therefore w[0,t0] ∈ �(x0). This together with �(St0
Q) ⊆ G0

Q

∣
∣
[0,t0]

shows that
∪
�(St0

Q) = G0
Q

∣
∣
[0,t0]

. For any x1, x2 ∈ S
t0
Q with �(x1) ∕= �(x2) (i.e., x1 ∕= x2

by Theorem 4.15), we have �(x1)∩ �(x2) = ∅ since any common element belongs to both

�(x1) and �(x2) will imply x1 = x2. According to Definition 2.16, above claims show

that �(St0
Q) is a partition of G0

Q

∣
∣
[0,t0]

.

By definition of the map � (see (4.33)) and Theorem 4.15, we know that, given initial

time t0 > 0, for finite-time t0-reachable system, we can actually only use trajectories

with zero past up to time 0 to define all our state at initial time t0 > 0. In this case,

we can slightly change the definition of the size of any state xt0 ∈ S
t0
Q (i.e., �(xt0) see

(3.15)) by another real-valued function �̃:

�̃ : St0
Q → ℝ+, xt0 7→ �̃(xt0) ≜ inf

w∈xt0 ,w(t)=0(∀t<0)

{

∥w∥(−∞, t0]

}

. (4.34)

It is easy to see that �̃(xt0) = infw∈�(xt0)
{

∥w∥[0,t0]
}

≥ �(xt0) for any xt0 ∈ S
t0
Q .

According to above discussions for finite-time reachable systems, by using a new size

function (4.34) for initial states and the same procedure of proof for the main Theorem

4.8, we can obtain the following friendly applicable robust stability Theorem 4.18.

4.4.2 Theorem 4.18

The following assumptions on the normed vector space W[t0,∞) are only required in

the proof of Theorem 4.18 with condition II:

Assumption 4.17. (1) For any x ∈ We[t0,∞), if ∥x∥ < ∞, then x ∈ W[t0,∞); (2)

The normed vector space W[t0,∞) (not necessarily complete) is truncation complete,

i.e., W[t0, �) is complete for any t0 < � <∞; (3) For any time interval J ≜ [t0, �) with

t0 < � <∞, there exists a continuous map EJ : W(J) → W+ such that RJx = RJ(EJx)

for any x ∈ W(J).
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Theorem 4.18. Give initial time t0 > 0, and assume that P , P̃ , and C are well-posed,

finite-time t0-reachable and causal systems, and that [P,C] is time-invariant, well-posed

and causal, and that [P̃ , C] is causal. Let [P,C] be input to output stable, i.e., there

exist functions � ∈ Kℒ and 
 ∈ K∞ such that, ∀xt0 = (x1t0 , x2t0) ∈ S
t0
P ×S

t0
C , ∀w0+ ∈

W[t0,∞), ∀t > t0,

∣(Πxt0P//Cw0+)(t)∣ ≤ � (�̃(xt0), t− t0) + 
(∥w0+∥[t0,t)). (4.35)

If there exists a causal surjective mapping Φ : dom(Φ) ⊆ G0
P → G0

P̃
and functions

�0 ∈ Kℒ, � ∈ K∞, �0 ∈ K∞, such that, ∀w ∈ dom(Φ) ⊆ G0
P ,

∥w∥[0,t0] ≤ �0(∥Φw∥[0,t0]), (4.36)

∣((Φ− I)w)(t)∣ ≤ �0(∥w∥[0,ℎ] , t− ℎ) + �(∥w∥[ℎ,t)), ∀t > ℎ ≥ 0. (4.37)

In addition, if there exist two functions �, " of class K∞ such that, ∀s ≥ 0,

� ∘ (I + �) ∘ 
(s) ≤ (I + ")−1(s). (4.38)

And either of the following conditions is satisfied:

I. [P̃ , C] is well-posed and Π
x̃t0
P̃ //C

(W[t0,∞)) ⊆ W[t0,∞) for any x̃t0 ∈ S
t0
P̃
×S

t0
C ;

II. Assumption 4.17 holds for W[t0,∞), and [P̃ , C] has the uniqueness property, and

Π
xt0
P//C is relatively continuous for any xt0 ∈ S

t0
P ×S

t0
C , and R[t0,�)(Φ−I) is compact

for any t0 < � <∞.

Then the closed-loop system [P̃ , C] is also input to output stable. More specifically,

for any function � of class K∞, there exists a function �̃ ∈ Kℒ such that, ∀x̃t0 ∈
S
t0
P̃
×S

t0
C , ∀w̃0+ ∈ W[t0,∞), ∀t > t0,

∣(Πx̃t0
P̃ //C

w̃0+)(t)∣ ≤ �̃ (�̃(x̃t0), t) + (�+ 
̃)(∥w̃0+∥[t0,t)), (4.39)

where 
̃ ∈ K∞ is defined by


̃(r) ≜ (� + I) ∘ (I + �) ∘ 
 ∘ (I + "−1)3(r), ∀r ≥ 0. (4.40)

Proof. It follows directly from Theorems 4.8, 4.15 and 4.16.

The assertion of Theorem 4.18 remains valid if the product state space S
t0
P × S

t0
C is

replaced with S
t0
P//C by using Theorem 3.36.
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4.5 Application to Linear Time-Invariant Systems

Let U ≜ L∞(ℝ,ℝm), Y ≜ L∞(ℝ,ℝp), and W ≜ U ×Y. Suppose that A,B,C,D are real

matrices of dimensions n×n, n×m, n× p, m× p, respectively, with (A,B) controllable

and (A,C) observable. The nominal plant P is defined by the set BP ≜ BA,B,C,D with

BA,B,C,D ≜

{

(u, y) ∈ We

∣
∣
∣

ẋ = Ax+Bu, y = Cx+Du

satisfies for some x ∈ L∞
e (ℝ,ℝn)

}

.

Similarly, suppose that Ã, B̃, C̃, D̃ are real matrices of dimensions ñ× ñ, ñ×m, ñ× p,

m × p, respectively, with (Ã, B̃) controllable and (Ã, C̃) observable. We define the

perturbed plant P̃ by the set BP̃ ≜ BÃ,B̃,C̃,D̃.

4.5.1 Finite-Time t0-Reachable Situation

Consider the nominal and perturbed plants P and P̃ defined in Section 4.5. Let t0 > 0 be

the initial time. Since (A,B) is controllable, any initial state value x(t0) at time t0 can

be generated from state value x(0) ≡ 0 at time 0 by some input u on time domain [0, t0].

Therefore, the nominal plant P is finite-time t0-reachable and so is also the perturbed

plant P̃ .

For the nominal plant P , from the controllability of (A,B) and the observability of

(A,C), we can choose real matrices F and H such that both A+BF and A+HC are

stable (all eigenvalues in Re s < 0). Now we define two operators as follows:

(

M+

ℕ+

)

: U+ → W+, v 7→
(

t 7→
∫ t

0

(

M

N

)

(t− �)v(�)d�, t ≥ 0

)

,

(4.41)

L+ : W+ → U+, w 7→
(

t 7→
∫ t

0
L(t− �)w(�)d�, t ≥ 0

)

,

where the following � denotes the unit delta distribution [Vidyasagar, 1993, Section

6.4.1] and for any t ≥ 0,

(
M
N

)
(t) ≜

(
F exp{t(A+BF )}B+�(t)Im×m

(C+DF ) exp{t(A+BF )}B+�(t)D

)

,
(4.42)

L(t) ≜ ( F F ) exp
{
t
(
A+HC 0

0 A+HC

)} (
H 0
0 −B−HD

)
+ �(t) ( 0m×m Im×p ) .

We have

G0
P ≜

{
w+ ∈ W+ ∣ 0(−∞,0)∧w+ ∈ BP

}
=
{(

M+

ℕ+

)

v
∣
∣ v ∈ U+

}

,
(4.43)

v = L+ ∘
(

M+

ℕ+

)

v, ∀v ∈ U+,

where G0
P is the graph of P for the particular past trajectory 0 (see (3.9)).
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Similarly, for the perturbed plant P̃ , we can choose real matrices F̃ and H̃ such that

Ã+ B̃F̃ and Ã+ H̃C̃ are stable, and then define operators (
M̃+

ℕ̃+
), L̃+ with (M̃Ñ ), L̃ and

the graph G0
P̃
like (4.41) and (4.43), respectively.

Proposition 4.19. A map Φ0 from G0
P to G0

P̃
can be defined as follows

Φ0 : G0
P → G0

P̃
,
(

M+

ℕ+

)

v 7→
(

M̃+

ℕ̃+

)

v, ∀v ∈ U+. (4.44)

Then Φ0 is causal, surjective and time-invariant, and for all w ∈ G0
P , t > ℎ ≥ 0,

∥w∥[0,ℎ] ≤ ∥
(
M
N

)
∥
A
⋅ ∥L̃∥A ⋅ ∥Φ0w∥[0,ℎ] , (4.45)

∣((Φ0 − I)w)(t)∣ ≤ �0(∥w∥[0,ℎ] , t− ℎ) + ∥(Φ0 − I)∥ ⋅ ∥w∥[ℎ,t) , (4.46)

where function �0 ∈ Kℒ and ∥⋅∥A is the norm for distribution [Vidyasagar, 1993, Section

6.4.1].

Proof. It is easy to see that Φ0 is causal, surjective, and time-invariant. For any w ∈ G0
P

there exists a v ∈ U+ such that w = (M+

ℕ+
)v. Since v = L̃+ ∘ ( M̃+

ℕ̃+
)v and Φ0w = (

M̃+

ℕ̃+
)v,

we get w = (M+

ℕ+
) ∘ L̃+(Φ0w) and thus this implies (4.45). Since v = L+ ∘ (M+

ℕ+
)v, we

have

(Φ0 − I)w =
(

M̃+−M+

ℕ̃+−ℕ+

)

L+w =
(

M̃+−M+

ℕ̃+−ℕ+

)

L+wℎ +
(

M̃+−M+

ℕ̃+−ℕ+

)

L+w
ℎ

with wℎ(�) ≜
{
w(�), ∀�∈[0,ℎ),
0, ∀�≥ℎ and wℎ(�) ≜

{
0, ∀�∈[0,ℎ),

w(�), ∀�≥ℎ . Thus we can find a function

�0 ∈ Kℒ (for SISO system see Lemma 2.26) such that

∣
∣
∣

((
M̃+−M+

ℕ̃+−ℕ+

)

L+wℎ

)

(t)
∣
∣
∣ ≤ �0(∥w∥[0,ℎ] , t− ℎ), ∀t > ℎ ≥ 0;

∣
∣
∣

((
M̃+−M+

ℕ̃+−ℕ+

)

L+w
ℎ
)

(t)
∣
∣
∣ ≤ ∥(Φ0 − I)∥ ⋅ ∥w∥[ℎ,t) , ∀t > ℎ ≥ 0.

This implies (4.46) and completes the proof.

4.5.2 General Situation

Consider the nominal and perturbed plants P and P̃ defined in Section 4.5. Let t = 0

be the initial time. In this section, we define operators

(
M
ℕ

)
: U → W and L : W → W

for the nominal plant P corresponding to operators (M+

ℕ+
) and L+ defined in Section

4.5.1 by replacing
∫ t
0 with

∫ t
−∞ in (4.41). Note that operators ( M̃ℕ̃ ) and L̃ are similarly

defined for the perturbed plant P̃ .
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Proposition 4.20. For the perturbed plant P̃ , define a functional �1 as follows

�1 : U− → W− ∩B−
P̃
, u 7→

(
M̃(u∧0)
ℕ̃(u∧0)

) ∣
∣
(−∞,0]

. (4.47)

Then, there exists a functional �2 : W−∩B
−
P̃
→ (U−)0 and a nonnegative number �̃ ≥ 0

such that for any w̃− ∈ W− ∩B
−
P̃
,

�1 ∘ �2(w̃−) =
(

M̃(�2(w̃−)∧0)
ℕ̃(�2(w̃−)∧0)

) ∣
∣
(−∞,0]

, ∥�1 ∘ �2(w̃−)∥ ≤ �̃ ⋅ ∥w̃−∥ , (4.48)

and for any w̃− ∈ W− ∩B−
P̃
, the graph Gw̃−

P̃
defined by (3.9) satisfies

Gw̃−

P̃
=
{(

M̃(�2(w̃−)∧v)
ℕ̃(�2(w̃−)∧v)

) ∣
∣
[0,∞)

∈ W+
∣
∣
∣ v ∈ U+

}

= G�1∘�2(w̃−)

P̃
, (4.49)

where (U−)0 ≜ {u ∈ U− ∣ ∃Tu ∈ [0,∞), such that u(t) ≡ 0,∀t ≤ −Tu}.

Proof. Since (Ã, C̃) is observable, we have that, for any w̃− ∈ W− ∩B
−
P̃
, there exists

a unique x̃0 ∈ ℝñ such that the equations ˙̃x = Ãx̃ + B̃u and y = C̃x̃ + D̃u hold

with (u(t), y(t)) = w̃−(t) for t ≤ 0 and x̃(0) = x̃0. In addition, ∣x̃0∣ ≤ r1 ∥w̃−∥ with

r1 ≥ 0 independent of w̃−. Since (Ã, B̃) is controllable, we obtain that (Ã + B̃F̃ , B̃) is

controllable, and thus, for this x̃0 ∈ ℝñ, there exists a vx̃0 ∈ (U−)0 such that

x̃0 =

∫ 0

−∞
exp

{

(0− �)(Ã+ B̃F̃ )
}

B̃vx̃0(�)d�. (4.50)

Moreover, ∥vx̃0∥ ≤ r2 ∣x̃0∣ with r2 ≥ 0 independent of x̃0. Thus a functional �2 can be

defined by

�2 : W− ∩B−
P̃
→ (U−)0, w̃− 7→ vx̃0 , (4.51)

and we have ∥�2(w̃−)∥ ≤ r2r1 ∥w̃−∥. From similar techniques in [French et al., 2009,

Section 4.4], we know that the graph Gw̃−

P̃
defined by (3.9) can be expressed as

Gw̃−

P̃
=

{(

M̃+v+F̃ exp{⋅ÃF̃ }x̃0
ℕ̃+v+C̃F̃ exp{⋅ÃF̃ }x̃0

)
∣
∣
[0,∞)

∈ W+
∣
∣
∣ v ∈ U+

}

. (4.52)

By using (4.50) and (4.51), we know that the right hand side of (4.52) equals to

{(
M̃(�2(w̃−)∧v)
ℕ̃(�2(w̃−)∧v)

) ∣
∣
[0,∞)

∈ W+
∣
∣
∣ v ∈ U+

}

. (4.53)

From (4.47) and (4.51), we have (4.48) holds with �̃ ≜ ∥(M̃Ñ )∥
A
⋅ r2 ⋅ r1 ≥ 0, and thus

G�1∘�2(w̃−)

P̃
equals (4.53); this implies (4.49).
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Proposition 4.21. For any w̃− ∈ W− ∩B−
P̃
, there exists a w− ∈ W− ∩B−

P with

∥w−∥ ≤ �̃ ⋅ ∥
(
M
N

)
∥
A
⋅ ∥L̃∥A ⋅ ∥w̃−∥ , (4.54)

and a causal surjective map Φw̃− : Gw−

P → Gw̃−

P̃
satisfying, ∀t > ℎ ≥ 0, ∀w+ ∈ Gw−

P ,

∣
∣((Φw̃− − I)w+)(t)

∣
∣ ≤ �0(∥w−∧w+∥(−∞,ℎ] , t− ℎ) + ∥(Φ0 − I)∥ ⋅ ∥w+∥[ℎ,t) , (4.55)

where function �0 ∈ Kℒ and ∥⋅∥A and ∥(Φ0 − I)∥ are defined in Proposition 4.19 and

�̃ ≥ 0 is the same as in Proposition 4.20.

Proof. Let the functional �1, �2 be defined as in Proposition 4.20. For any w̃− ∈ W−∩
B−
P̃
, we have (4.48) and (4.49) hold. It is easy to see that w− ≜

(
M(�2(w̃−)∧0)
ℕ(�2(w̃−)∧0)

) ∣
∣
(−∞,0]

∈
W− ∩B

−
P and that the graph Gw−

P of the nominal plant P is

Gw−

P =
{(

M(�2(w̃−)∧v)
ℕ(�2(w̃−)∧v)

) ∣
∣
[0,∞)

∈ W+
∣
∣
∣ v ∈ U+

}

.

Thus, a natural causal surjective map Φw̃− : Gw−

P → Gw̃−

P̃
can be defined as follows

(
M(�2(w̃−)∧v)
ℕ(�2(w̃−)∧v)

) ∣
∣
[0,∞)

7→
(

M̃(�2(w̃−)∧v)
ℕ̃(�2(w̃−)∧v)

) ∣
∣
[0,∞)

, ∀v ∈ U+. (4.56)

Since �2(w̃−) ∈ (U−)0, there exists a Tw̃− ∈ [0,∞) such that �2(w̃−)(t) ≡ 0 for all

t ≤ −Tw̃− . It follows from the time-invariance of Φ0 in (4.44) and (4.45) that

∥w−∥ =
∥
∥
∥

(
M(�2(w̃−)∧0)
ℕ(�2(w̃−)∧0)

)∥
∥
∥
(−Tw̃−

,0]
≤
∥
∥
(
M
N

)∥
∥
A
⋅ ∥L̃∥A ⋅

∥
∥
∥

(
M̃(�2(w̃−)∧0)
ℕ̃(�2(w̃−)∧0)

)∥
∥
∥
[−Tw̃−

,0]
,

and thus from (4.48), we have (4.54) holds.

For any w+ ∈ Gw−

P , there exists a v ∈ U+ such that w+ =
(
M(�2(w̃−)∧v)
ℕ(�2(w̃−)∧v)

)

∣[0,∞). From

(4.56) we get ((Φw̃− − I)w+)(t) =
(

M̃−M
ℕ̃−ℕ

)

(�2(w̃−) ∧ v)(t),∀t ≥ 0, and thus from the

time-invariance of Φ0 in (4.44) and (4.46) we have for any t ≥ ℎ > 0 that

∣
∣((Φw̃− − I)w+)(t)

∣
∣ ≤ �0(

∥
∥
(
M
ℕ

)
(�2(w̃−) ∧ v)

∥
∥
[−Tw̃−

,ℎ]
, t− ℎ)

+ ∥(Φ0 − I)∥ ⋅
∥
∥
(
M
ℕ

)
(�2(w̃−) ∧ v)

∥
∥
[ℎ,t−ℎ) ,

where �0 ∈ Kℒ and ∥(Φ0 − I)∥ are the same as in Proposition 4.19. Therefore, from

w− ∧ w+ = (�2(w̃−) ∧ v), we obtain that (4.55) holds.
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u0 u1

u2

y1

y2 y0�� ?

--

6

u2 = −�(y2)

-� -delay
ẋ = f(x, u)

y1 = −x
u

Figure 4.1: Nonlinear plant with input delay in closed-loop system

4.6 Application to General Nonlinear Plants with Input

Delay

Consider the following closed-loop system which consists of a nonlinear plant with input

delay and a nonlinear controller shown in Figure 4.1. Assume that both functions f and

� are continuous with f(0, 0) = �(0) = 0, and that the system ẋ = f(x, u) is forward

complete [Angeli and Sontag, 1999] 7, and that the system ẋ = f(x, u0+�(x+ y0)) with

input w0 = (u0, y0) and state x is input-to-state stable (in state space model) [Sontag,

1989].

Since both � and f are continuous, there exist �1 ∈ K∞ and �2 ∈ K∞ such that

�(x) ≤ �1(∣x∣), ∣f(x, u)∣ ≤ �2(max{∣x∣ , ∣u∣}).

Therefore, the nominal closed-loop system (i.e., closed-loop system shown in Figure 4.1

for nonlinear plant without input delay)

ẋ = f(x, u0 + �(x+ y0)), (4.57a)

u1 = u0 + �(x+ y0), y1 = −x, (4.57b)

is input-to-output stable (in state space model) [Sontag and Wang, 1999], i.e.,

∣w1(t)∣ ≤ �(∣x0∣ , t) + 
(∥w0∥[0,t]), ∀t ≥ 0,∀w0,∀x(0) = x0, (4.58)

for some functions � ∈ Kℒ and 
 ∈ K∞ with wi ≜ (ui, yi) for i = 0, 1.

The problem which follows is how much input delay can be tolerated in order to preserve

the input-to-output stability of the closed-loop system shown in Figure 4.1. According

to results in this chapter, we need to measure the distance between the nominal plant

and the perturbed plant with input delay.

7The system ẋ = f(x, u), x(0) = x0 is said to be forward complete if, for any initial condition x0 and
any locally measurable essentially bounded input u, the corresponding state trajectory is defined for all
t ≥ 0.
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For the convenience of notation, let the nominal plant P be defined by the set:

BP = {w1 ∈ We ∣ w1 = (u1, y1) satisfies (4.60) for some x} , (4.59)

ẋ = f(x, u1), y1 = −x, (4.60)

and let the perturbed plant P̃ be described by the set:

BP̃ = {w̃1 ∈ We ∣ w̃1 = (ũ1, ỹ1) satisfies (4.62) for some x} , (4.61)

ẋ(t) = f(x(t), ũ1(t− �)), ỹ1 = −x, � ∈ (0, �0]. (4.62)

For any w̃1− = (ũ1−, ỹ1−) ∈ W− ∩ B−
P̃
, choose w1− = (u1−, y1−) ∈ W− ∩ B−

P with

u1− = ũ1− and y1−(t− �) = ỹ1−(t) for t ≤ 0, we get

∥w1−∥ ≤ max
{

∥w̃1−∥(−∞,−� ] , ∥(ũ1−, y1−)∥[−�,0]
}

≤ max
{

2 ∥w̃1−∥ , ∥y1−∥[−�,0]
}

.

Since ẋ = f(x, u) with f(0, 0) = 0 is forward complete, we have by using [Karafyllis, 2004,

Lemma 3.5] that ∥y1−∥[−�,0] ≤ �(�)�(∥w1−∥(−∞,−� ] + ∥u1−∥[−�,0]) ≤ �(�0)�(2 ∥w̃1−∥),
and thus we obtain

∥w1−∥ ≤ 2 ∥w̃1−∥+ �(�0)�(2 ∥w̃1−∥), (4.63)

where � is a positive-valued continuous nondecreasing function and � ∈ K∞.

Define a map Φ : Gw1−

P → Gw̃1−

P̃
by

w1+ ≜ (u1+, y1+) 7→ w̃1+ ≜ (ũ1+, ỹ1+) = (u1+, ỹ1+),

and thus ỹ1+(t) = (y1− ∧ y1+)(t− �) for all t ≥ 0.

For any t > ℎ ≥ 0, we have that

sup{∣ẏ1+(s)∣ : s ∈ [ℎ, t]} ≤ sup{∣f(−y1+(s), u1+(s))∣ : s ∈ [ℎ, t]} ≤ �2(∥w1+∥[ℎ,t]),

and that if t− � ≥ ℎ then

∣(ỹ1+ − y1+)(t)∣ = ∣y1+(t− �)− y1+(t)∣ ≤ � ⋅ sup{∣ẏ1+(s)∣ : s ∈ [ℎ, t]},

and that if t− � < ℎ then

∣(ỹ1+ − y1+)(t)∣ ≤ ∣(y1−∧y1+)(t− �)− y1+(ℎ)∣ + ∣y1+(ℎ)− y1+(t)∣
≤ 2 ∥w1−∧w1+∥[−∞,ℎ] + � ⋅ sup{∣ẏ1+(s)∣ : s ∈ [ℎ, t]}.

Hence, for any t > ℎ ≥ 0 and any w1+ ∈ Gw1−

P , we have

∣((Φ − I)w1+)(t)∣ ≤ �0(∥w1−∧w1+∥(−∞,ℎ] , t− ℎ) + � ⋅ �2(∥w1+∥[ℎ,t]) (4.64)
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with �0 ∈ Kℒ defined by

�0(r, �) =

{

2r + r
1+� , for r ≥ 0, � ∈ [0, �);

r
1+� , for r ≥ 0, � ≥ �.

Theorem 4.8 now asserts that, by using (4.58) and (4.64), the perturbed closed-loop

system shown in Figure 4.1 will remain input to output stable if the time delay �

satisfies:

� ⋅ �2 ∘ (I + �) ∘ 
(s) ≤ (I + ")−1(s), ∀s ≥ 0, (4.65)

for some functions �, " of class K∞.

In the following, we give a concrete nonlinear example to show that the closed-loop

system remains input to output stable under the perturbation of sufficiently small time

delay in the plant.

Example 4.22. Consider the feedback configuration in Figure 4.1. Let U = Y =

L∞(ℝ,ℝ) and W ≜ U × Y, and let

f(x, u) = �(x) + u; �(y) = −ky.

where k ∈ ℝ and � : ℝ → ℝ is a memoryless nonlinear function satisfying the so-called

sector condition � ∈ Sector (k1, k2) with k1, k2 ∈ ℝ and k1 ≤ k2 < k, i.e.,

[�(x)− k1x][�(x)− k2x] ≤ 0, ∀x ∈ ℝ. (4.66)

This is equivalent to the following statement [Desoer and Vidyasagar, 1975]:

�(0) = 0 and k1x
2 ≤ x�(x) ≤ k2x

2, ∀x ∈ ℝ. (4.67)

Thus, the nominal closed-loop equations in (4.57) is expressed as

ẋ = −(kx− �(x)) + u0 − ky0, (4.68a)

u1 = −kx+ u0 − ky0, y1 = −x. (4.68b)

Consider the Lyapunov function candidate V (x) = x2/2, the derivative of V along the

trajectories of this system (4.68) is given by

V̇ = −x(kx− �(x)) + x(u0 − ky0) ≤ −(k − k2)x
2 + x(u0 − ky0),

thus we get that for any " ∈ (0, k − k2),

V̇ ≤ −2"V, ∀ ∣x∣ ≥ ∥u0 − ky0∥ /(k − k2 − ").
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Then, by using Theorem 2.28, we obtain that, for any " ∈ (0, k − k2), there exists a

�1 ∈ Kℒ such that

∣x(t)∣ ≤ �1(∣x(0)∣ , t) +
1

k − k2 − "
∥u0 − ky0∥[0,t) , ∀t ≥ 0. (4.69)

From (4.68)–(4.69), for any " ∈ (0, k − k2) we have (4.58) satisfies with gain function


(r) = (1 + k +
1 + k

k − k2 − "
) ⋅ r, ∀r ≥ 0, (4.70)

where function � ∈ Kℒ in (4.58) also depends on " ∈ (0, k − k2).

Consider again V (x) = x2/2, the derivative of V along the trajectories of the system

ẋ = f(x, u) = �(x) + u is given by

V̇ = x�(x) + xu ≤ k2x
2 + (x2 + u2)/2 ≤ (2k2 + 1)V + u2/2.

Thus, from [Angeli and Sontag, 1999, Corollary 2.11], we know that the system ẋ =

f(x, u) = �(x) + u is forward complete. Therefore, (4.63) satisfies. Since ∣f(x, u)∣ ≤
(1 + max{∣k1∣ , ∣k2∣}) ⋅ max{∣x∣ , ∣u∣}, we have (4.64) satisfies with function �2 ∈ K∞
defined by

�2(r) = (1 + max{∣k1∣ , ∣k2∣}) ⋅ r, ∀r ≥ 0. (4.71)

From (4.65), (4.70) and (4.71), and Remark 4.9, we obtain that the perturbed closed-loop

system [P̃ , C] will remain input to output stable if for any given " ∈ (0, k − k2) the time

delay � < 1/! with ! ≜ (1 + max{∣k1∣ , ∣k2∣})(1 + k + 1+k
k−k2−").

4.7 Generalisation of Systems with Potential for Finite Es-

cape Times

At the end of this chapter, we consider the generalisation of results given in previous

sections to systems with potential for finite escape times. This is done by using a

wider signal space (named ambient space) than the extended space, which is defined in

Section 3.2 on page 39 in Chapter 3.

Consider the following state-space model

ẋ(t) = x2(t) + u(t); y(t) = x(t); t ∈ ℝ.

It is easy to verify that u(t) = k > 0 and y(t) =
√
k tan(

√
k ⋅ t) for t ∈ (−

√
k⋅�
2k ,

√
k⋅�
2k )

satisfy above equations. And the output escapes to infinity at time t = −
√
k⋅�
2k and

t =
√
k⋅�
2k . Clearly, this kind of input-output pairs cannot be considered in the definition
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of systems in previous sections as e.g., y ∕∈ We for W = L∞(ℝ,ℝ). In this section, we

slightly modify the definition of systems in Chapter 3 by defining them on the ambient

spaces to provide a robust stability theory for nonlinear systems including finite escape

times phenomenon, and in particular to establish a generalisation of Theorem 4.8 in this

context.

4.7.1 Systems, Closed-Loop Systems, and Initial Conditions

Definitions of systems, closed-loop systems, initial conditions, causality, existence and

uniqueness properties are all slightly modified in this setting. For the definition and

discussion of ambient spaces see Section 3.2 on page 39 in Chapter 3.

Definition 4.23. Given normed signal spaces U ,Y and W ≜ U × Y, a system Q is

defined to be the set:

BQ ≜
{
w ∈ W−

a ⊕W+
a ∣ w = (u, y) is an input-output pair of Q

}
(4.72)

which satisfies the assumption that any input-output pair w ∈ BQ is defined over a

maximal interval (−T1, T2) with both T1 and T2 belong to (0,∞], and that if T1 (resp.,

T2) is finite, then ∥w∥(�,0] → ∞ (resp., ∥w∥[0,�) → ∞) as � tends to −T1 (resp., T2) from

up (resp., below).

A system Q represented by the set BQ (see (4.72)) is said to be time-invariant if w ∈ BQ

implies ��w ∈ BQ for all � ∈ ℝ with 0 ∈ (a − �, b − �) (where dom(w) = (a, b) and

�� is the shift operator defined by (��w)(⋅) = w(⋅ + �). Otherwise, Q is said to be

time-variant.

The following is the definition of causality for a system defined in the ambient space:

Definition 4.24. A system Q represented by the set BQ (see (4.72)) is said to be causal

if, ∀(u, yu), (v, yv) ∈ BQ,∀t ∈ dom(u, v),

u∣(−∞,t]∩dom(u,v) = v∣(−∞,t]∩dom(u,v) ⇒ Bu
Q∣(−∞,t]∩dom(u,v) = Bv

Q∣(−∞,t]∩dom(u,v)

where Bu
Q = {w ∈ Wa ∣ ∃y ∈ Ya s.t. w = (u, y) ∈ BQ}.

Note that any operator Φ : U+
a → Y+

a can be regarded as a special system in the sense

of Definition 4.23, i.e., BΦ = {w = (u, y) ∈ W−
a ⊕W+

a ∣ y∣(−∞,0] = u∣(−∞,0] = 0, R+y =

Φ(R+u)}. We say the operator Φ is causal if and only if the corresponding system BΦ

is causal. For convenience, the special definition of a causal operator is stated below.

Given normed signal spaces U and Y, an operator Φ : U+
a → Y+

a is said to be causal if,

{

∀ u, v ∈ U+
a ,

∀t ∈ dom(u, v) ∩ dom(Φu,Φv),
:

[

u∣[0,t] = v∣[0,t]
⇒ (Φu)∣[0,t] = (Φv)∣[0,t]

]



102 Chapter 4 Robust Stability Analysis of Feedback Systems with Initial Conditions

Definition 4.25. Given a system Q represented by the set BQ (see (4.72)), its past

trajectories is defined by

B−
Q ≜ R−BQ =

{
w− ∈ W−

a ∣ ∃ w+ ∈ W+
a , s.t. w−∧w+ ∈ BQ

}
. (4.73)

Here ∧ denotes concatenation at time 0 (see (3.8) on page 50). The system Q is said to

have the existence property if ∀w− ∈ B−
Q,∀u+ ∈ U+

a , ∃y+ ∈ Y+
a such that

∃ŵ+ ∈ W+
a , w−∧ŵ+ ∈ BQ, (u+, y+)(t) = ŵ+(t),∀t ∈ dom(u+, y+, ŵ+)

and the uniqueness property if ∀w− ∈ B−
Q,∀w+ = (u+, y+) ∈ W+

a ,∀w̃+ = (ũ+, ỹ+) ∈
W+
a ,

w−∧w+ ∈ BQ, w−∧w̃+ ∈ BQ, u+ = ũ+ ⇒ y+ = ỹ+

and is well-posed if it has both the existence and uniqueness properties.

Definition 4.26. Given a system Q represented by the set BQ (see (4.72)), the graph

Gw−

Q for any given past trajectory w− ∈ B−
Q is a subset of W+

a , which contains all of

w+ ∈ W+
a defined over a maximal interval [0, T ) with 0 < T ≤ ∞ such that w−∧w+ ∈

BQ, and if T = ∞ then w+ ∈ W+, and if T is finite then ∥w+∥[0,�) → ∞ as � tends to

T from below.

Definition 4.27. Given a system Q represented by the set BQ (see (4.72)), we define

SQ the initial state space of Q at initial time 0 as the quotient set B−
Q/ ∼ (i.e., SQ ≜

B
−
Q/ ∼). While the equivalence relation ∼ on B

−
Q (see (4.73)) is defined by

w− ∼ w̃− if and only if Qw−(u+) = Qw̃−(u+), ∀u+ ∈ U+
a

where w−, w̃− ∈ B−
Q and Qw−(u+) ≜

{
y+ ∈ Y+

a

∣
∣ w−∧(u+, y+) ∈ BQ

}
and the set

Qw̃−(u+) is similarly defined.

The equivalence class of w− ∈ B−
Q is [w−] ≜

{

w̃− ∈ B−
Q ∣ w̃− ∼ w−

}

∈ SQ. The size of

[w−] ∈ SQ is defined by �([w−]) ≜ inf
w̃−∈[w−]

{∥w̃−∥}. (thus defined �(⋅) is a real-valued

function on SQ.)

From the equivalence relation ∼, for any initial state x0 ∈ SQ, we can define the set

Qx0(u+) by:

Qx0(u+) ≜ Qw−(u+), ∀u+ ∈ U+
a . (4.74)

where w− ∈ B
−
Q is any element in x0.

If the system Q is well-posed, then, for every w− ∈ B−
Q, Q

w−(⋅) is an operator from U+
a

to Y+
a . This in turn implies that, for every x0 ∈ SQ, Q

x0(⋅) is an operator from U+
a to

Y+
a .
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For a well-posed system Q, if Q is causal, then we have Qx0 is a causal operator from

U+
a to Y+

a .

The notion of locally input to output stability is defined as follows.

Definition 4.28. The system Q is said to be locally input to output stable if, and only

if, it is well-posed and causal, and there exist d > 0 and functions � ∈ Kℒ and 
 ∈ K∞
such that, ∀x0 ∈ SQ, ∀u0+ ∈ U+, ∀t ≥ 0

max{�(x0), ∥u0+∥} ≤ d ⇒ ∣(Qx0u0+)(t)∣ ≤ � (�(x0), t) + 
(∥u0+∥[0,t))

where the real-valued function �(⋅) is defined in Definition 4.27.

Note that a potentially weaker definition might merely require that the above condition

hold only for all t ∈ [0, Tx0,u0+), (where [0, Tx0,u0+) is the maximal interval over which

Qx0u0+ is defined). However, this definition turns out to be equivalent to the one given

above. Indeed, by standard facts from differential equations (see e.g., [Sontag, 1998a],

[Sontag, 1998b, Proposition C.3.6, p. 481]), since the right-hand side is bounded on

a maximal interval, we have that the left-hand side is also bounded on the maximal

interval and therefore that the maximal interval should be [0,∞).

The following is the definition of a closed-loop system:

Definition 4.29. Given normed signal spaces U ,Y and W ≜ U × Y (such as W =

L∞(ℝ,ℝm+p)). Let the sets BP and BC represent the subsystems P (plant) and C

(controller), respectively. Consider the standard feedback configuration shown in Fig-

ure 3.1 on page 38 that satisfies equations (3.1). Then the closed-loop system [P,C]

represented by the set BP//C is defined by

BP//C ≜
{
(w0, w1) ∈ W2

a ∣ w0 is input, w1 ∈ BP is output, w0 − w1 ∈ BC

}
(4.75)

which satisfies the assumption that any input-output pair (w0, w1) ∈ BP//C is defined

over a maximal interval (−T1, T2) with both T1 and T2 belong to (0,∞], and that if T1

(resp., T2) is finite, then ∥(w0, w1)∥(�,0] → ∞ (resp., ∥(w0, w1)∥[0,�) → ∞) as � tends to

−T1 (resp., T2) from up (resp., below).

For the closed-loop system [P,C] represented by the set BP//C , we can similarly define

the initial state space SP//C at initial time 0 in terms of Definition 4.27. And the closed-

loop system [P,C] has the existence property, the uniqueness property, and the well-

posedness property if and only if the setBP//C has the existence property, the uniqueness

property, and the well-posedness property, respectively, according to Definition 4.25.

Note that for any s0 ∈ SP//C and w0+ ∈ W+
a , we have defined a set Πs0P//C(w0+)

according to (4.74) and Definition 4.27 (let BQ = BP//C and Πs0
P//C

(w0+) = Qs0(w0+)),
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i.e.,

Πs0P//C(w0+) =
{
w1+ ∈ W+

a ∣ (w0−, w1−)∧(w0+, w1+) ∈ BP//C ,∀(w0−, w1−) ∈ s0
}

If the closed-loop system [P,C] is well-posed, then Πs0P//C(⋅) defines an operator from

W+
a to W+

a .

In the following we give the notion of stability for closed-loop system which is derived

from the notion of stability for system in Definition 4.28.

Definition 4.30. The closed-loop system [P,C] represented by the set BP//C with

initial state space SP//C is said to be locally input to output stable if, and only if, it is

well-posed and causal, and there exist d > 0 and functions � ∈ Kℒ and 
 ∈ K∞ such

that, ∀s0 ∈ SP//C , ∀w0+ ∈ W+, ∀t ≥ 0,

max{�(s0), ∥w0+∥} ≤ d ⇒ ∣(Πs0P//Cw0+)(t)∣ ≤ � (�(s0), t) + 
(∥w0+∥[0,t))

where the real-valued function �(⋅) is defined in Definition 4.27.

Define another set which is related to the product state in SP × SC , denoted by

Πx0P//C(w0+), for any x0 = (x10, x20) ∈ SP ×SC and any w0+ ∈ W+
a , as follows:

Πx0P//C(w0+) ≜

{

w1+ ∈ W+
a

∣
∣
∣
(w0−, w1−)∧(w0+, w1+) ∈ BP//C ,

∀ (w1−, w0− − w1−) ∈ x0

}

(4.76)

If the closed-loop system [P,C] is well-posed, then Πx0P//C(⋅) defines an operator from

W+
a to W+

a .

We next present several equivalent characterisation of this notion of stability as follows.

Theorem 4.31. Suppose that the closed-loop system BP//C is well-posed and causal.

The following four statements are equivalent:

I. The closed-loop system BP//C is locally input to output stable.

II. There exist d1 > 0 and functions �1 ∈ Kℒ and 
1 ∈ K∞ such that, ∀s0 ∈
SP//C , ∀t > 0, ∀w0+ ∈ W+,

max{�(s0), ∥w0+∥} ≤ d1 ⇒ ∣(Πs0P//Cw0+)(t)∣ ≤ �1 (�(s0), t) + 
1(∥w0+∥[0,t))

III. There exist d2 > 0 and functions �2 ∈ Kℒ and 
2 ∈ K∞ such that, ∀x0 ∈ SP ×
SC , ∀t > 0, ∀w0+ ∈ W+,

max{�(x0), ∥w0+∥} ≤ d2 ⇒ ∣(Πx0P//Cw0+)(t)∣ ≤ �2 (�(x0), t) + 
2(∥w0+∥[0,t))
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IV. There exist d3 > 0 and functions �3 ∈ Kℒ and 
3 ∈ K∞ such that, ∀x0 =

(x10, x20) ∈ SP ×SC , ∀t > 0, ∀w0+ ∈ W+, ∀w1− ∈ x10, ∀w2− ∈ x20,

max{�(x0), ∥w0+∥} ≤ d3 ⇒ ∣(Πx0P//Cw0+)(t)∣ ≤ �3 (∥(w1−, w2−)∥ , t) + 
3(∥w0+∥[0,t))

Moreover, we have 
1 = 
2 = 
3, d2 = d3 and �2 = �3.

Proof. Similar to the proof of Theorem 3.36 on page 75.

4.7.2 Robust Stability Theorem

The main result of this section is given by Theorem 4.33, which is also presented in

two different frameworks: one requires the well-posedness of the perturbed closed-loop

system; while the other one requires only the uniqueness property of the perturbed

closed-loop system.

The following assumptions on the normed vector space W+ are only required in the

proof of Theorem 4.33 with condition II:

Assumption 4.32. (1) For any x ∈ W+
e , if ∥x∥ < ∞, then x ∈ W+; (2) The normed

vector space W+ (not necessarily complete) is truncation complete, i.e., W[0, �) is com-

plete for any 0 < � < ∞; (3) For any time interval J ≜ [0, �) with 0 < � < ∞,

there exists a continuous map EJ : W(J) → W+ such that RJx = RJ(EJx) for any

x ∈ W(J).

Theorem 4.33. Assume that P , P̃ , and C are well-posed and causal systems, and that

[P,C] is time-invariant, well-posed and causal, and that [P̃ , C] is causal. Let [P,C] be

locally input to output stable, i.e., there exist d > 0 and functions � ∈ Kℒ and 
 ∈ K∞
such that, ∀x0 = (x10, x20) ∈ SP ×SC , ∀w0+ ∈ W+, ∀t ≥ 0,

max{�(x0), ∥w0+∥} ≤ d ⇒ ∣(Πx0P//Cw0+)(t)∣ ≤ � (�(x0), t) + 
(∥w0+∥[0,t)), (4.77)

If there exist functions �0, � ∈ K∞ and �0 ∈ Kℒ such that for any w̃1− ∈ W− ∩ B−
P̃

there exists a w1− ∈ W− ∩B−
P with

∥w1−∥ ≤ �0(∥w̃1−∥), (4.78)

and a causal surjective operator Φ : dom(Φ) ⊆ Gw1−

P → Gw̃1−

P̃
satisfying, ∀t > ℎ ≥

0, ∀w1+ ∈ dom(Φ) with ∥w1+∥ ≤ �(d, 0) + 
(d),

∣((Φ − I)w1+)(t)∣ ≤ �0(∥w1−∧w1+∥(−∞,ℎ] , t− ℎ) + �(∥w1+∥[ℎ,t)). (4.79)
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In addition, if there exist two functions �, " of class K∞ such that, ∀s ≥ 0,

� ∘ (I + �) ∘ 
(s) ≤ (I + ")−1(s). (4.80)

And either of the following conditions is satisfied:

I. [P̃ , C] is well-posed and Πx̃0
P̃ //C

(W+) ⊆ W+ for any x̃0 ∈ SP̃ ×SC ;

II. Assumption 4.32 holds for W+, and [P̃ , C] has the uniqueness property, and Πx0P//C
is relatively continuous for any x0 ∈ SP × SC , and R[0,�)(Φ − I) is compact for

any 0 < � <∞.

Then the closed-loop system [P̃ , C] is also locally input to output stable. More specifically,

there exist d̃ > 0, for any function � of class K∞, there exists a function �̃ ∈ Kℒ such

that, ∀x̃0 ∈ SP̃ ×SC , ∀w̃0+ ∈ W+, ∀t > 0,

max{�(x̃0), ∥w̃0+∥} ≤ d̃⇒ ∣(Πx̃0
P̃ //C

w̃0+)(t)∣ ≤ �̃ (�(x̃0), t) + (�+ 
̃)(∥w̃0+∥[0,t)) (4.81)

where d̃ = min{(I + Δ)−1 ∘ (I + "−1)−1(d), (�0 + I)−1(d)} with functions Δ ∈ K and


̃ ∈ K∞ defined by

Δ(r) ≜ �0((�0 + I)(r), 0) + � ∘ (I + �−1) ∘ �((�0 + I)(r), 0), ∀r ≥ 0, (4.82a)


̃(r) ≜ (� + I) ∘ (I + �) ∘ 
 ∘ (I + "−1)3(r), ∀r ≥ 0. (4.82b)

Proof. To prove above theorem we need to change slightly the proof of Theorem 4.8 in

Chapter 4. Choose d̃ = min{(I +Δ)−1 ∘ (I + "−1)−1(d), (�0 + I)−1(d)}. Note that the

function Δ defined in (4.82) is the same as (4.14) (or (4.27)) in the proof of Theorem

4.8. For any max{�(x̃0), ∥w̃0+∥} ≤ d̃, from (4.8) (or (4.24)) and d̃ ≤ (�0 + I)−1(d) we

have �(x0) ≤ d; and from d̃ ≤ (I+Δ)−1 ∘ (I+ "−1)−1(d) and (4.13) we have ∥w0+∥ ≤ d.

The rest of proof follows from the proof of Theorem 4.8 on page 81.

4.8 Summary

In Chapter 3 we have developed a unified construction of an underlying abstract state

space applicable to input-output systems defined over a doubly infinite time axis. The

current chapter is the main part of this thesis, which provides an input-output theory

with an integrated treatment of initial conditions, culminating in a statement and proof

of a robust stability result. The resulting gap distances take into account both the effect

of the perturbation on the state space structure (and hence the initial condition) as well

as the input-output response. This complements the robust stability theory of Georgiou

and Smith [Georgiou and Smith, 1997b] by introducing initial conditions and applies the
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ideas of the ISS framework in a situation whereby the conventional state-space formalism

of ISS is not directly applicable due to variation in the structure of the state space

between the nominal and perturbed systems which arise naturally in a robust stability

setting. Two different versions of the main results are presented. One requires the well-

posedness, while the other one requires only the uniqueness property of the perturbed

closed-loop system. In real-world applications, both well-posedness (i.e., existence and

uniqueness) and stability are required to be verified for a feedback system. In general

uniqueness conclusions are more easily obtained than existence conclusions. Establishing

existence and stability simultaneously by only using uniqueness greatly eases the real-

time application of the robust stability result (see also the discussions given in [French

and Bian, 2012]). Generalisation of this robust stability result to systems with potential

for finite escape times is discussed at the end of this chapter.





I think that only daring speculation

can lead us further and not

accumulation of facts.

Albert Einstein (1879-1955)Chapter 5

Generalised Small-Gain Theorem

for Systems with Initial

Conditions

5.1 Introduction

The use of the small-gain theorem in control theory dates back to the 1960’s by [Zames,

1966b,c] and [Sandberg, 1964]. The original version of the small-gain theorem involves

systems with finite linear gains from input to output with or without a bias term (see e.g.,

[Desoer and Vidyasagar, 1975]). Extensions of the small-gain theorem to nonlinear gains

have been studied by many researchers. The work on the small-gain theory involving

nonlinear gain began with [Hill, 1991, Mareels and Hill, 1992], where the monotone

gain was proposed for a nonlinear generalisation of the classical small-gain theorem.

In [Jiang et al., 1994], the authors developed a nonlinear ISS-type small-gain theorem

in the sense of [Sontag, 1989] for interconnection of nonlinear systems in state space

representations, which led an extensive follow-up literature (e.g., [Chen and Huang,

2005, Jiang and Marcels, 1997, Jiang et al., 1996]). Several interesting extensions of

the small-gain theorem were also obtained for systems with special structures such as

Volterra systems [Zheng and Zafiriou, 1999], general networks [Dashkovskiy et al., 2007],

large-scale complex systems [Jiang and Wang, 2008], stochastic systems [Lu and Skelton,

2002], hybrid systems [Liberzon and Nešić, 2006, Nešić and Teel, 2008], etc. In the

present chapter, we present a nonlinear small-gain theorem on input to output stability

for nonlinear feedback systems from an input-output point of view.

Note that the classical small-gain theorem obtained in the input-output framework has

the benefit that the stability property is completely disconnected from the existence,

uniqueness property, etc.; see e.g., [Desoer and Vidyasagar, 1975]. Most of the results

of the ISS-type nonlinear small-gain theorem were obtained for nonlinear state space

109
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G
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Figure 5.1: Nonlinear feedback configuration [G,H]

models, and a priori requirements of existence and uniqueness property of systems are

imposed (e.g., requiring smoothness or Lipschitz continuity of dynamical functions), and

extra “observability” conditions are imposed to guarantee that the state trajectories are

bounded when the input and output are bounded. In [Ingalls et al., 1999, Sontag and

Ingalls, 2002], the authors presented an abstract ISS-type small-gain theorem including

applications to purely input/output systems represented by i/o operators defined on

spaces of signals beginning at some finite time in the past. The special representation

of systems allows the authors to identify the ‘state’ only with the past input without

using the past output; but it precludes for example the uncontrollable stable linear case

(see also the discussion related to Theorem 4.8 on page 81).

5.2 Setting of the Problem

Given normed signal spaces U ,Y and W ≜ U×Y (such asW = L∞(ℝ,ℝm+p)). Consider

the form of feedback configuration shown in Figure 5.1. The signals ui and yi (i = 0, 1, 2)

belong to the extended signal spaces Ue and Ye, respectively. Define wi = (ui, yi) for

i = 0, 1, 2, thus wi for i = 0, 1, 2 belong to We. The symbols G and H represent two

subsystems which consist of all the input-output signal pairs w1 = (u1, y1) ∈ We related

by G and all the output-input signal pairs w2 = (u2, y2) ∈ We related by H, respectively,

when the switches are open. (Here G, H are relations (i.e., “multivalued functions”).)

When the switches are closed from some given initial time (say 0), the interconnection

equation w0 = w1 + w2 also holds.

The subsystems G and H are determined by the sets BG and BH (Definition 3.2 on

page 47), respectively; and the corresponding initial state spaces SG and SH at given

initial time are defined according to Definition 3.11 on page 54. Note that the definitions

of corresponding initial state spaces are not related to the well-posedness of the systems

(see Remark 3.13 on page 54). We define the interconnected system [G,H] shown in

Figure 5.1 by the following set B[G,H],

B[G,H] ≜

{

(w0, w1, w2) ∈ We ×We ×We

∣
∣

w0 is input, (w1, w2) is output,

w1 ∈ BG, w2 ∈ BH , w0 = w1 + w2

}

. (5.1)
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In B[G,H] we view the external input w0 as the (closed-loop) input and the internal

signals (w1, w2) as the (closed-loop) output.

We make the following notations to let the statement of the main result in this Chapter

more concise. For any x0 ∈ SG and any u1+ ∈ U+
e , we let Gx0u1+ denote any of

y1+ ∈ Y+
e (if exists) such that w1− ∧ (u1+, y1+) (for any w1− ∈ x0) is an input-output

signal pair of G, where y1+ is often called an “image” of Gx0 with respect to u1+.

Similarly, for any z0 ∈ SH and any y2+ ∈ Y+
e , we let Hz0y2+ denote any of u2+ ∈ U+

e

(if exists) such that w2− ∧ (u2+, y2+) (for any w2− ∈ z0) is an output-input signal pair

of H. Note that both Gx0 and Hz0 are “multivalued functions”. Denote by [Gx0 ,Hz0 ]

the closed-loop relation which consists of all positive time input-output signal pairs

(w0+, w1+, w2+) with w0+ ∈ W+
e denoting inputs and (w1+, w2+) ∈ W+

e ×W+
e denoting

outputs of [Gx0 ,Hz0 ] such that

w0+ = w1+ + w2+, w1+ ≜ (u1+, Gx0u1+), w2+ ≜ (Hz0y2+, y2+). (5.2)

5.3 Generalised Small-Gain Theorem

Before giving the main result of this chapter we establish the following lemma:

Lemma 5.1. Consider the feedback configuration shown in Figure 5.1 (i.e., with the

switches closed). Let G,H be two causal time-invariant systems with above notations

and [G,H] be causal. Suppose that there are functions �1, �2 ∈ Kℒ and 
1, 
2 ∈ K∞
such that for any x0 ∈ SG, z0 ∈ SH and any t > 0, u1+ ∈ U+

e , y2+ ∈ Y+
e ,

∣(Gx0u1+)(t)∣ ≤ �1(�(x0), t) + 
1(∥u1+∥[0,t)),
(5.3)

∣(Hz0y2+)(t)∣ ≤ �2(�(z0), t) + 
2(∥y2+∥[0,t)),

where (5.3) holds for all the “images” Gx0u1+ and Hz0y2+ of each u1+ ∈ U+
e and

y2+ ∈ Y+
e , and the real-valued function � is defined in (3.15). Then there are class

K∞ functions �i, �i, (i = 1, 2) independent of x0, z0, u1+, y2+ such that for any t ≥ 0,

�(x(t)) ≤ �1(�(x0)) + �1(∥(u1+, Gx0u1+)∥[0,t)),
(5.4)

�(z(t)) ≤ �2(�(z0)) + �2(∥(Hz0y2+, y2+)∥[0,t)),

where x(t) ∈ St
G and z(t) ∈ St

H are the corresponding states of G and H related to

initial states x0 and z0 at time t ≥ 0 with x(0) = x0 and z(0) = z0, respectively.
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Proof. According to the definition of state in Definition 3.11, the inequalities (5.4) are

immediately obtained by letting

�i(s) = �i(s, 0) + s, �i(s) = 
i(s) + s,

for any i = 1, 2 and any s ≥ 0.

The main result of this chapter is a small-gain theorem incorporating initial conditions

given as follows:

Theorem 5.2. Under the same conditions and notations in Lemma 5.1. If there exist

two functions � ∈ K∞ and " ∈ K∞ such that


1 ∘ (I + �) ∘ 
2(s) ≤ (I + ")−1(s), ∀s ≥ 0, (5.5)

Then, for any function � ∈ K∞, there exists a function � ∈ Kℒ such that for any i = 1, 2

and all t > 0, and all w0+ ∈ U+
e × Y+

e ,

∣wi+(t)∣ ≤ �(�(x0, z0), t) + (�+ 
)(∥w0+∥[0,t)), (5.6)

where the real-valued function � is defined in (3.15) and 
 ∈ K∞ is defined as follows,

for any r ≥ 0,

⎧

⎨

⎩


(r) =
(
I + (I + �−1)2 ∘ 
3 + (I + "−1)2 ∘ 
4

)
(r),


3(r) =
(
I + 
2 ∘ (I + "−1)2

)
(r),


4(r) =
(
I + 
1 ∘ (I + �−1)2

)
(r).

(5.7)

Proof. Choose s = (I+")∘
1(ŝ), (ŝ ≥ 0) in (5.5), we have 
1∘(I+�)∘
2∘(I+")∘
1(ŝ) ≤

1(ŝ), (ŝ ≥ 0). Hence, we get


2 ∘ (I + ") ∘ 
1(ŝ) ≤ (I + �)−1(ŝ), ∀ŝ ≥ 0, (5.8)

For any initial states x0 ∈ SG and z0 ∈ SH and any w0+ = (u0+, y0+) ∈ U+ × Y+, we

define two nonnegative constants b10 = �1(�(x0), 0) and b20 = �2(�(z0), 0). Then, from

(5.2) and (5.3), we obtain that

∥u1+∥[0,t) ≤ ∥u0+∥[0,t) + ∥Hz0y2+∥[0,t)
≤ ∥u0+∥[0,t) + b20 + 
2(∥y2+∥[0,t)), ∀t > 0.

Similarly, we have

∥y2+∥[0,t) ≤ ∥y0+∥[0,t) + ∥Gx0u1+∥[0,t)
≤ ∥y0+∥[0,t) + b10 + 
1(∥u1+∥[0,t)), ∀t > 0.
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Hence, we get

∥u1+∥[0,t) ≤ ∥u0+∥[0,t) + b20

+ 
2 ∘ (I + ") ∘ 
1(∥u1+∥[0,t))
+ 
2 ∘ (I + "−1)(∥y0+∥[0,t) + b10). (5.9)

Since 
2 ∘ (I + ") ∘ 
1(s) ≤ (I + �)−1(s) ,∀s ≥ 0 (see (5.8)), and (I − (I + �)−1)−1(⋅) =
(I + �−1)(⋅) (see (2.20)), we have, for all t ≥ 0,

∥u1+∥[0,t) ≤ (I + �−1)
(

∥u0+∥[0,t) + b20

+
2 ∘ (I + "−1)(∥y0+∥[0,t) + b10)
)

. (5.10)

Similarly, we have, for all t > 0,

∥y2+∥[0,t) ≤ (I + "−1)
(

∥y0+∥[0,t) + b10

+
1 ∘ (I + �−1)(∥u0+∥[0,t) + b20)
)

. (5.11)

Note that, for all t > 0, ∥u2+∥[0,t) ≤ ∥u0+∥[0,t) + ∥u1+∥[0,t) and ∥y1+∥[0,t) ≤ ∥y0+∥[0,t) +
∥y2+∥[0,t). Hence, by applying Lemma 2.23 to (5.10) and (5.11), we obtain that there

exists a class K∞ function � such that, for any i = 1, 2 and all t > 0,

∥wi+∥[0,t) ≤ 
(∥w0+∥[0,t)) + �(�(x0, z0)), (5.12)

where 
 ∈ K∞ is defined in (5.7).

From (5.4) in Lemma 5.1 and (5.12), and by using Lemma 2.23, we know that, for any

t > 0,

�(x(t), z(t)) ≤ (�1 + �2)(�(x0, z0))

+ (�1 + �2)(max{∥w1+∥[0,t) , ∥w2+∥[0,t)})
≤ �1(�(x0, z0)) + �2(∥w0+∥[0,∞))

≜ s∞, ∀t > 0, (5.13)

where x(t) and z(t) are the corresponding states at time t > 0 of G and H related to

initial states x0 and z0, respectively; and �1(s) = (�1+�2)(s)+(�1+�2)∘ (I+�−1)∘�(s)
and �2(s) = (�1 + �2) ∘ (I + �) ∘ 
(s), ∀s ≥ 0.

It’s easy to see that both �1 and �2 are class K∞ functions. Next we estimate the bound

of ∣wi(t)∣ , i = 1, 2 for any t > 0. Since both G and H are causal and time-invariant, by
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using (5.3) and (5.13), we have for any t > 0 and any u1+ ∈ U+
e , and any y2+ ∈ Y+

e ,

∣(Gx0u1+)(t)∣ ≤ �1(�(x(t/2)), t/2) + 
1(∥u1+∥[ t
2
,t))

≤ �1(s∞, t/2) + 
1(∥u1+∥[ t
2
,t)),

(5.14)
∣(Hz0y2+)(t)∣ ≤ �2(�(z(t/2)), t/2) + 
2(∥y2+∥[ t

2
,t))

≤ �2(s∞, t/2) + 
2(∥y2+∥[ t
2
,t)).

Thus, by applying (5.2) and (5.14), we have, for all t > 0,

∣u1+(t)∣ ≤ ∣u0+(t)∣+ ∣(Hz0y2+)(t)∣
≤ ∥u0+∥[0,t) + �2(s∞, t/2) + 
2(∥y2+∥[ t

2
,t));

∣y2+(t)∣ ≤ ∣y0+(t)∣+ ∥(Gx0u1+)(t)∥
≤ ∥y0+∥[0,t) + �1(s∞, t/2) + 
1(∥u1+∥[ t

2
,t)).

Hence, we get, for all t > 0,

∣u1+(t)∣ ≤ ∥u0+∥[0,t) + �2(s∞, t/2)

+ 
2 ∘ (I + ") ∘ 
1(∥u1+∥[ t
2
,t))

+ 
2 ∘ (I + "−1)(∥y0+∥[0,t) + �1(s∞, t/2))

≤ ∥u0+∥[0,t) + �2(s∞, t/2)

+ (I + �)−1(∥u1+∥[ t
2
,t))

+ 
2 ∘ (I + "−1)(∥y0+∥[0,t) + �1(s∞, t/2))

≤ �3(s∞, t) + (I + �)−1(∥u1+∥[ t
2
,t))

+ 
3(∥w0+∥[0,t)) (5.15)

with 
3 ∈ K∞ defined in (5.7) and �3 ∈ Kℒ defined by

�3(r, s) ≜ �2(r, s/2) + 
2 ∘ (I + "−1)

∘ (I + ") ∘ �1(r, s/2)), ∀r ≥ 0, ∀s ≥ 0.

Next we apply Lemma 2.25 to (5.15) (with � := 1
2), it follows that a function �4 of class

Kℒ exists such that, for all t > 0,

∣u1+(t)∣ ≤ �4(s∞, t) + (I − (I + �)−1)−1

∘ (I + �−1) ∘ 
3(∥w0+∥[0,∞))

= �4(s∞, t) + (I + �−1)2 ∘ 
3(∥w0+∥[0,∞)), (5.16)

where we use the fact that (I − (I + �)−1)−1(s) = (I + �−1)(s) for any s ≥ 0.
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Similarly, there exist a function �5 ∈ Kℒ such that, for all t > 0,

∣y2+(t)∣ ≤ �5(s∞, t)

+ (I + "−1)2 ∘ 
4(∥w0+∥[0,∞)) (5.17)

with 
4 ∈ K∞ defined in (5.7).

Note that, for all t > 0, ∣u2+(t)∣ ≤ ∣u0+(t)∣ + ∣u1+(t)∣ and ∣y1+(t)∣ ≤ ∣y0+(t)∣ + ∣y2+(t)∣.
Hence, we have, for all t > 0,

∣wi+(t)∣ ≤ �6(s∞, t) + 
(∥w0+∥[0,∞)), i = 1, 2, (5.18)

with �6(r, s) ≜ max{�4(r, s), �5(r, s)}, ∀r ≥ 0,∀s ≥ 0, and 
 ∈ K∞ defined in (5.7).

Since s∞ = �1(�(x0, z0)) + �2(∥w0+∥[0,∞)) (see (5.13)), from (5.12) and (5.18), we have

for any t ≥ 0,

∣wi+(t)∣ ≤ 
(∥w0+∥[0,∞)) + min

{

�(�(x0, z0)),

�6

(

�1
(
�(x0, z0)

)
+ �2

(
∥w0+∥[0,∞)

)
, t
)}

. (5.19)

Given any function � of K∞, there are only two cases �(x0, z0) ≤ �−1 ∘ �(∥w0+∥[0,∞))

or ∥w0+∥[0,∞) ≤ �−1 ∘�(�(x0, z0)), thus from (5.19) and by considering the fact that for

any fixed t > 0 the function �6(⋅, t) ∈ K, we have for any t ≥ 0,

∣wi+(t)∣ ≤ 
(∥w0+∥[0,∞)) + � ∘ �−1 ∘ �(∥w0+∥[0,∞))

+ �6(�1(�(x0, z0)) + �2 ∘ �−1 ∘ �(�(x0, z0)), t).

Thus, by the causality of [G,H] and the definition of extended space, for any � ∈ K∞
and any i = 1, 2 and all t > 0, and all w0+ ∈ U+

e × Y+
e , we have,

∣wi+(t)∣ ≤ �(�(x0, z0), t) + (�+ 
)(∥w0+∥[0,t)),

with �(r, s) ≜ �6((�1 + �2 ∘ �−1 ∘ �)(r), s), ∀r ≥ 0,∀s ≥ 0, and 
 ∈ K∞ defined in

(5.7).

5.4 An Illustrative Example of Theorem 5.2

We next illustrate Theorem 5.2 by considering the following example for systems with

time delay and nonzero initial conditions.
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Example 5.3. The subsystem G is defined by the set

BG = {w1 ∈ We ∣ w1 = (u1, y1) satisfies (5.21)} , (5.20)

ẏ1(t) = −ay1(t− �1) + "(eu1(t) − 1), (5.21)

and the subsystem H is defined by the set

BH = {w2 ∈ We ∣ w2 = (u2, y2) satisfies (5.23)} , (5.22)

u̇2(t) = sat{−bu2(t− �2) + sat[y2(t)]}, (5.23)

with the interconnection conditions u0 = u1+u2 and y0 = y1+y2, where a > 0, b > 0 are

fixed real numbers, and " ∈ ℝ, �1 > 0, �2 > 0 are small parameters, and the saturation

function sat : ℝ → ℝ satisfying sat(s) = s when ∣s∣ ≤ 1 and sat(s) = 1 when s > 1 and

sat(s) = −1 when s < −1.

The corresponding initial state spaces SG and SH at given initial time 0 are defined

according to Definition 3.11. The interconnected system [G,H] is defined as (5.1). Both

G and H are causal and time-invariant, and [G,H] is causal.

Note that, for any �1 > 0 and any "1 ∈ (0, a), when ẋ(t) = −ax(t − �1) + f(t), the

following inequality

∣x(t)∣ ≥ max

{
(1 + �1)a

2�1
a− "1

∥x∥[t−2�1,t]
,

(1 + 1/�1)(a�1 + 1)

a− "1
∥f∥[t−�1,t]

}

implies 1 that d
dtx

2(t) ≤ −2"1 ∣x(t)∣2. Also note that, for any �2 > 0 and any "2 ∈ (0, b),

when ż(t) = sat[−bz(t− �2) + g(t)], the following inequality

∣z(t)∣ ≥ max

{
(1 + �2)b

2�2
b− "2

∥z∥[t−2�2,t]
,

(1 + 1/�2)(b�2 + 1)

b− "2
∥g∥[t−�2,t]

}

implies 2 that ddtz
2(t) ≤ −2 ∣z(t)∣ sat("2 ∣z(t)∣).

So, for the subsystems G and H, by applying the Razumikhin-type theorem (see [Teel,

1998, Theorem 2]), we have that, for any �1 > 0, �2 > 0 and any "1 ∈ (0, a), "2 ∈ (0, b),

1This follows from ẋ(t) = −ax(t) + ax(t) − ax(t − �1) + f(t) = −ax(t) + a�1ẋ(�1) + f(t) for some
�1 ∈ (t − �1, t) that ∣ẋ(t) + ax(t)∣ ≤ a2�1 ∥x∥[t−2�1,t]

+ (a�1 + 1) ∥f∥[t−�1,t]
. By using the fact that

A+ B ≤ max{(1 + �1)A, (1 + 1/�1)B} for any A ≥ 0, B ≥ 0 and �1 > 0 in the previous inequality, we
have ∣ẋ(t) + ax(t)∣ ≤ max{(1 + �1)a

2�1 ∥x∥[t−2�1,t]
, (1 + 1/�1)(a�1 + 1) ∥f∥[t−�1,t]

} ≤ (a− "1) ∣x(t)∣ and

thus x(t)ẋ(t) ≤ −"1 ∣x(t)∣
2.

2Similarly, this follows from ż(t) = sat
(

− bz(t) + b�2ż(�2) + g(t)
)

for some �2 ∈ (t− �2, t) and from
∣b�2ż(�2) + g(t)∣ ≤ b2�2 ∥z∥[t−2�2,t]

+(b�2+1) ∥g∥[t−�2,t]
≤ max{(1+�2)b

2�2 ∥z∥[t−2�2,t]
, (1+1/�2)(b�2+

1) ∥g∥[t−�2,t]
} ≤ (b− "2) ∣z(t)∣ that z(t)ż(t) ≤ z(t) sat

(

− bz(t) + (b− "2)z(t)
)

= − ∣z(t)∣ sat("2 ∣z(t)∣).
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if (1+�1)a2�1
a−"1 < 1 and (1+�2)b2�2

b−"2 < 1, then there exist ��1,"1 ∈ Kℒ, ��2,"2 ∈ Kℒ such that,

for any x0 ≜ [(u1−, y1−)] ∈ SG, z0 ≜ [(u2−, y2−)] ∈ SH , and any u1+ ∈ U+
e , y2+ ∈ Y+

e ,

and any t > 0,

∣y1+(t)∣ ≤ ��1,"1(∥y1−∥[−2�1,0]
, t) + 
1(∥u1+∥[0,t))

≤ ��1,"1(�(x0), t) + 
1(∥u1+∥[0,t)),
∣u2+(t)∣ ≤ ��2,"2(∥u2−∥[−2�2,0]

, t) + 
2(∥y2+∥[0,t))
≤ ��2,"2(�(z0), t) + 
2(∥y2+∥[0,t)),

with the real-valued function � defined in (3.15) and two nonlinear gain function 
1 and


2 defined as follows


1(s) =
(1 + 1/�1)(a�1 + 1)

a− "1
∣"∣ (es − 1), ∀s ≥ 0,


2(s) =
(1 + 1/�2)(b�2 + 1)

b− "2
sat(s), ∀s ≥ 0.

Theorem 5.2 now asserts that, for the interconnected system [G,H], the inequalities (5.6)

will hold if there exist two functions �1(s), �2(s), s ≥ 0 of class K∞ such that


1 ∘ (I + �1) ∘ 
2(s) ≤ (I + �2)
−1(s), ∀s ≥ 0. (5.24)

Graphically, the above inequality (5.24) is equivalent to say that the distance between the

curves (x, 
2(x)) and (
1(y), y) grows without bound in the first quadrant of Cartesian

coordinate system (x, y). So, if 
1 ∘ 
2(1) < 1, then (5.24) will be satisfied for some

functions �1, �2 of class K∞.

Hence, for the interconnected system [G,H], the inequalities (5.6) will hold if the pa-

rameters " ∈ ℝ, �1 > 0, �2 > 0 satisfying

⎧

⎨

⎩

�1 < �∗1 ≜
a− "1

(1 + �1)a2
, �2 < �∗2 ≜

b− "2
(1 + �2)b2

,

∣"∣ < a− "1

(1 + 1
�1
)(a�1 + 1){exp[ (1+1/�2)(b�2+1)

b−"2 ]− 1}
,

for any �1 > 0, �2 > 0 and any "1 ∈ (0, a), "2 ∈ (0, b). Note that for any �∗1 < 1/a and

any �∗2 < 1/b, we can always choose �1, �2 and "1, "2 so that the above inequalities are

satisfied.
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5.5 Summary

In this chapter we consider the development of a general nonlinear ISS-type small-gain

theorem based on the input/output framework set up in Chapter 3. One major contri-

bution of contribution of this chapter is that we present a nonlinear ISS-type small-gain

theorem without the extra “observability” conditions and with complete disconnection

between the stability property and the existence, uniqueness properties. The main idea

of the proof is motivated by [Jiang et al., 1994]. On one hand this small-gain result can

be reviewed as a generalisation of the classical input/output operator type small-gain

theorems to incorporate abstract initial conditions, and on the other hand a generali-

sation of the ISS/IOS framework type small-gain theorems to incorporate more general

system classes. An illustrative example is given for systems with time delay and nonzero

initial conditions to show the utility of Theorem 5.2 at the end of this chapter.
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Montesquieu (1689-1755)
Chapter 6

Connections between Georgiou

and Smith’s Robust Stability

Type Theorems and the

Nonlinear Small-Gain Theorems

The small-gain theorem was introduced into the control theory literature for studying the

stability of general interconnected systems. It treats the stability problem of feedback

systems from a functional analysis point of view, and has been well investigated due to

the simplicity of the result that if the loop gain defined in an appropriate sense is less

than unity, then the closed-loop system is stable in a suitable sense (see e.g., [Zames,

1966a], [Sandberg, 1964], [Desoer and Vidyasagar, 2009], [Mareels and Hill, 1992], [Hill,

1991]). For linear systems, the small-gain theorem has been used as a basis to derive the

robust stability criteria for feedback systems under perturbations (see e.g., [Zhou and

Doyle, 1998]).

The robust stability theorem is to the effect that a stabilising controller of the nominal

plant provides stability for any plant close to the nominal one in an appropriate sense.

For nonlinear systems, Georgiou and Smith [Georgiou and Smith, 1997b] developed an

input-output approach using gap metric as an analysis tool for studying the robustness

of stability of feedback systems under perturbations; but the derivation of Georgiou and

Smith’s robust stability theorem for nonlinear feedback systems does not make use of

the nonlinear small-gain theorem.

Being inspired by the linear results, we discuss the connections between Georgiou and

Smith’s robust stability type theorems and the nonlinear small-gain theorems in this

chapter. Three versions of the nonlinear small-gain theorems in this chapter are pre-

sented.

119
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Theorems and the Nonlinear Small-Gain Theorems

The first version is the usual one regarding systems as relations (one-to-many mapping)

on signal spaces and using K∞ functions, in which the stability property is stated with-

out referring to the existence and uniqueness properties of the corresponding feedback

systems. A special case of this result is shown to be equivalent to a fundamental robust

stability theorem of Georgiou and Smith [Georgiou and Smith, 1997b, Theorem 6] with

a slight modification. Note that Teel also developed an independent robust stability

result similar to Georgiou and Smith’s theorem by incorporating a nonlinear small-gain

idea in [Teel, 1996].

The second version of the nonlinear small-gain theorem establishes the existence and

boundedness properties simultaneously based on the Schauder’s fixed point theorem

which requires an extra compactness condition. Existence property is often the first

requirement of a feedback system and is in general difficult to be obtained than the

uniqueness property [Zeidler, 1986, p. 4]. Thus it is very useful to establish the existence

and boundedness properties simultaneously by only using the uniqueness property. This

technique has its origin in the classical ordinary differential equations (ODEs) theory

with linkage of boundedness and existence to get global solutions (see e.g., [Hirsch et al.,

2004, Chapter 7]). In [Willems, 1969, p. 655], the author also indicated the close relation

between the questions of existence and boundedness for feedback systems. A type of

Georgiou and Smith’s robust stability theorem establishing boundedness and existence

simultaneously is given by applying a special case of the second version of the nonlinear

small-gain theorem. Such consideration can also be found in the paper [French and

Bian, 2012] where an affine gain with bias property was adopted.

The local form of the nonlinear small-gain theorem was considered in the paper [Zheng

and Zafiriou, 1999] by using the contracting mapping theorem. In this chapter, we give

a different local version of the nonlinear small-gain theorem by still using the Schauder’s

fixed point theorem, and use a special case of the result to show a local version of

Georgiou and Smith’s robust stability theorem.

6.1 Mathematical Preliminaries

In this section we introduce some further notations used in the sequel. Signal spaces

defined on doubly infinite time domain have been discussed in detain in Chapter 3 (see

Section 3.2). In this chapter we restrict ourself to signal spaces defined on positive time

domain; and for simplicity the superscript ‘+′ in V (resp., Ve) is dropped.

Let S! (∀! ∈ (0,∞]) denote the set of all measurable maps from [0, !) to some normed

vector spaceX (e.g., X = ℝn). For any � ∈ (0, !), the truncation operator T� : S! → S∞
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and the restriction operator R� : S! → S� are defined as follows:

T� : S! → S∞, v 7→ T�v ≜

(

t 7→
{

v(t), t ∈ [0, � ]

0, otherwise

)

.

R� : S! → S� , v 7→ R�v ≜

(

t 7→ v(t), t ∈ [0, � ]
)

.

For ease of notation we use v� ≜ T�v. Suppose that V ⊆ S∞ is a normed vector space

with norm ∥⋅∥ = ∥⋅∥V ; we can define a norm ∥⋅∥� on S� by ∥v∥� = ∥v�∥ for v ∈ S� (define
∥v∥� ≜ ∞ if T�v ∈ S∞ ∖ V). A signal space Ve is an extended vector space defined by

Ve ≜ {v ∈ S∞ ∣ ∀� ∈ (0,∞) : v� ∈ V} .

We call the elements of V bounded signals and those of Ve finite time bounded signals.

To find the relationships between variations of small-gain theorem and Georgiou &

Smith’s robust stability theorem, it is necessary to define systems as relations rather

than operators. A relation R between two nonempty sets S1 and S2 is a subset of the

Cartesian product S1 × S2; and we simply say that the relation is on S1 if S1 = S2.

Suppose that R is a relation between S1 and S2. Then we say that x ∈ S1 is related to

y ∈ S2 if the ordered pair (x, y) ∈ R. The subset DR of S1 defined below

DR ≜ {x ∈ S1 ∣ ∃ y ∈ S2 s.t. (x, y) ∈ R}

is called the domain of R. The image R(x) of an element x ∈ S1 under R is defined by

R(x) ≜ {y ∈ S2 ∣ (x, y) ∈ R}.

Similarly, the image R(A) of a subset A ⊆ S1 under R is defined by

R(A) ≜ {y ∈ S2 ∣ (x, y) ∈ R for some x ∈ A}.

Thus we have R(x) = R({x}) for any x ∈ S1. The inverse relation R−1 of R is defined

by

R−1 ≜ {(y, x) ∣ (x, y) ∈ R}.

Assume that f : S1 → S2 is a map. Then f defines a relation Rf between S1 and S2,

i.e.,

Rf = {(x, f(x)) ∣ x ∈ S1}

with domain S1, and we have f(x) = Rf (x),∀x ∈ S1 and f(A) = Rf (A),∀A ⊆ S1. Note

that not all relations are of the above form for maps. Consider a relation R between S1

and S2, then the image R(x) might be an empty or a multivalued set for some x ∈ S1.

Thus relations can be viewed as a generalisation of maps defined in Section 2.1 to include

multivalued maps, and whose domain need not be the whole of S1.
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d1 +
R1

e1

R2

f1

+
e2f2

−

d2+

Figure 6.1: Feedback configuration of general small-gain theorem

We next introduce the notion of causal relations, which generalises the notion of causal

operators and gives a key insight for the definition of causal systems defined on doubly

infinite time domain in Chapter 3 (see Section 3.4.1). A relation R between two signal

spaces V1e and V2e is said to be causal if

∀(xi, yi) ∈ R, i = 1, 2,∀� > 0 : [T�x1 = T�x2 ⇒ T� (R(x1)) = T� (R(x2))] .

Note that an operator Φ : V1e → V2e is said to be causal if and only if

∀u, v ∈ V1e,∀� > 0 : [u� = v� ⇒ (Φu)� = (Φv)� ] .

The following notion of stability is considered throughout this chapter, which is a gen-

eralisation initiated in [Mareels and Hill, 1992] of the classical finite-gain stability (i.e.,

linear gain [Zames, 1966b]).

A causal relation R between two signal spaces V1e and V2e is said to be stable if there

exists a function 
 ∈ K∞ such that ∥y∥� ≤ 
(∥x∥� ),∀(x, y) ∈ R,∀� > 0. Specifically, a

causal operator Φ : V1e → V2e is said to be stable if there exists a function 
 ∈ K∞ such

that ∥Φu∥� ≤ 
(∥u∥� ),∀u ∈ V1e,∀� > 0.

We call 
 a gain function of the stable relation R. We remark that gain stability with

bias (see [Desoer and Vidyasagar, 2009, Chapter III] or [Vidyasagar, 1993, Chapter 6])

can also be considered with slight modifications. This is a special case of the ISS-like

notion of stability given in Section 3.6.

We next introduce some basic properties of feedback systems shown in Figure 6.1, which

gives a key insight for their generalisations to input-output systems defined over a doubly

infinite time axis in previous Chapter 3.

Consider the basic feedback system shown in Figure 6.1 with two signal spaces V1e and

V2e. Let R1 ⊆ V1e × V2e and R2 ⊆ V2e × V1e be two causal relations representing the

two subsystems. Signals e1, e2 are inputs to the subsystems R1, R2 and f1, f2 are the

corresponding output signals. The scheme of Figure 6.1 is just a symbolic description

of the functional equations

{

e1 = d1 − f2, e2 = d2 + f1,

and (ei, fi) ∈ Ri for i = 1, 2,
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where d1, d2 are the inputs and e1, e2, f1, f2 are the outputs with respect to the feedback

system.

For Ω ⊆ Ve ≜ V1e × V2e the feedback system shown in Figure 6.1 is said to

∙ have the existence property on Ω if for any (d1, d2) ∈ Ω, there exists a (e1, e2) ∈ Ve
such that (e1, e2 − d2) ∈ R1 and (e2, d1 − e1) ∈ R2.

∙ have the uniqueness property on Ω if for any (d1, d2) ∈ Ω and any (e1, e2) ∈
Ve, (ẽ1, ẽ2) ∈ Ve with (e1, e2 − d2) ∈ R1, (e2, d1 − e1) ∈ R2 and (ẽ1, ẽ2 − d2) ∈
R1, (ẽ2, d1 − ẽ1) ∈ R2, we have (e1, e2) = (ẽ1, ẽ2).

∙ be causal on Ω if the defined (feedback) relation Rf between Ω and Ve is causal,

where Rf ≜ {((d1, d2), (e1, e2)) ∈ Ω× Ve ∣ (e1, e2 − d2) ∈ R1, (e2, d1 − e1) ∈ R2}.

∙ be stable on Ω if it is causal on Ω and the corresponding (feedback) relation Rf

between Ω and Ve is stable.

∙ be well-posed on Ω if it is locally causal on Ω and has both the existence and

uniqueness properties on Ω.

6.2 Small-Gain Theorem and Georgiou & Smith’s Robust

Stability Theorem

This section contains variations of small-gain theorem (see e.g., [Desoer and Vidyasagar,

2009]) and Georgiou & Smith’s robust stability theorem [Georgiou and Smith, 1997b].

6.2.1 Small-Gain Theorem

The small-gain theorem is a very general theorem, which gives an analysis tool for

studying the stability of feedback systems. The following is a variation of the small-gain

result from [Desoer and Vidyasagar, 2009, Chapter 3].

Theorem 6.1 (Small-Gain Theorem). Consider the feedback system shown in Figure 6.1

with two signal spaces V1e, V2e. Suppose that the two causal relations R1 ⊆ V1e × V2e,

R2 ⊆ V2e × V1e are stable with gains 
1, 
2 ∈ K∞ respectively, and that the feedback

system is causal on V1e × V2e. Let (ei, fi) ∈ Ri, i = 1, 2 and define d1 = e1 + f2,

d2 = e2 − f1. Suppose that there exist two functions �, " ∈ K∞ such that


2 ∘ (I + �) ∘ 
1(s) ≤ (I + ")−1(s), ∀s ≥ 0. (6.1)
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Then the feedback system is stable on V1e × V2e and for any � > 0,

∥e1∥� ≤ (I + "−1)
(
∥d1∥� + 
2 ∘ (I + �−1)(∥d2∥� )

)
, (6.2)

∥e2∥� ≤ (I + �−1)
(
∥d2∥� + 
1 ∘ (I + "−1)(∥d1∥� )

)
. (6.3)

Proof. The proof of this result is slightly modified from that of [Desoer and Vidyasagar,

2009, Chapter 3].

Since relations R1, R2 are stable with gains 
1, 
2 ∈ K∞, respectively, it follows from

(ei, fi) ∈ Ri, i = 1, 2 that ∥fi∥� ≤ 
i(∥ei∥� ), ∀� > 0. Since d1 = e1+f2 and d2 = e2−f1,
we have

∥e1∥� ≤ 
2 (
1(∥e1∥� ) + ∥d2∥� ) + ∥d1∥� , ∀� > 0. (6.4)

By using inequalities (2.19) on page 30, we get

∥e1∥� ≤ 
2 ∘ (I + �) ∘ 
1(∥e1∥� ) + 
2 ∘ (I + �−1)(∥d2∥� ) + ∥d1∥� , ∀� > 0. (6.5)

From (6.1) and (6.5), we have

∥e1∥� ≤
(
I − (I + ")−1

)−1 (

2 ∘ (I + �−1)(∥d2∥� ) + ∥d1∥�

)
, ∀� > 0.

This in turn implies (6.2). Similarly, we also obtain (6.3).

Note that the inequality (6.1) is equivalent to the following inequality


1 ∘ (I + ") ∘ 
2(r) ≤ (I + �)−1(r), ∀r ≥ 0. (6.6)

This is readily to be seen by letting s = (I + ") ∘ 
2(r) for any r ≥ 0 in (6.1). In fact, we

have 
2 ∘ (I + �) ∘ 
1 ∘ (I + ") ∘ 
2(r) ≤ 
2(r), and then by applying (I + �)−1 ∘ 
−1
2 (⋅)

on both sides, we obtain (6.6).

Weaker stability conditions can be formulated for feedback systems shown in Figure 6.1

with d2 ≡ 0.

Theorem 6.2 (Small-Gain Theorem with d2 ≡ 0). Consider the feedback structure of

Figure 6.1 with d2 ≡ 0. Let V1e, V2e be two signal spaces. Suppose that the two causal

relations R1 ⊆ V1e × V2e, R2 ⊆ V2e × V1e are stable with gains 
1, 
2 ∈ K∞ respectively,

and that the feedback system is causal on V1e × {0}. Let (ei, fi) ∈ Ri, i = 1, 2 and let

d1 = e1 + f2, e2 = f1. Suppose that there exists a function " ∈ K∞ such that


2 ∘ 
1(s) ≤ (I + ")−1(s), ∀s ≥ 0. (6.7)

Then the feedback system is stable on V1e × {0}, and ∥e1∥� ≤ (I + "−1)(∥d1∥� ) and

∥e2∥� ≤ 
1 ∘ (I + "−1)(∥d1∥� ) for any � > 0.
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−
y2u2

−

y0+

Figure 6.2: Closed-loop systems of Georgiou and Smith’s theorem

Proof. Condition (6.4) simplifies to ∥e1∥� ≤ 
2 ∘
1(∥e1∥� )+ ∥d1∥� , ∀� > 0. Thus from

(6.7) we obtain the conclusion.

Although the condition (6.7) of Theorem 6.2 is weaker than the condition (6.1) of Theo-

rem 6.1, Theorem 6.2 can be implied by Theorem 6.1 due to the extra condition d2 ≡ 0.

Theorem 6.3. If Theorem 6.1 is true, then Theorem 6.2 is true.

The task is as follows: under the premise of Theorem 6.2, we need to use Theorem 6.1

to establish the conclusion of Theorem 6.2.

Proof. Given (ei, fi) ∈ Ri with i = 1, 2 and d1 = e1 + f2 and 0 = d2 = e2 − f1. For any

positive real number � > 0, there exist a function "� ∈ K∞ such that

(I + ")−1(s) < (I + "�)
−1(s) ≤ (I + ")−1(s) + �, ∀s ≥ 0.

From the condition (6.7), we have


2 ∘ 
1(s) < (I + "�)
−1(s), ∀s ≥ 0.

Thus there exists a function �� ∈ K∞ such that


2 ∘ (I + ��) ∘ 
1(s) ≤ (I + "�)
−1(s), ∀s ≥ 0.

By using Theorem 6.1, we have

∥e1∥� ≤ (I + "−1
� )

(
∥d1∥� + 
2 ∘ (I + �−1

� )(∥d2∥� )
)
, ∀� > 0.

It follows from d2 = 0 that ∥e1∥� ≤ (I+"−1
� ) (∥d1∥� ) ≤ (I+")−1 (∥d1∥� )+� for any � > 0.

Since � can be chosen to be any positive real number, we have ∥e1∥� ≤ (I+ ")−1 (∥d1∥� )
and thus ∥e2∥� = ∥f1∥� ≤ 
1 (∥e1∥� ) ≤ 
1 ∘ (I + ")−1 (∥d1∥� ) for any � > 0. This

completes the proof of Theorem 6.2.
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6.2.2 Georgiou & Smith’s Robust Stability Theorem

Consider the closed-loop system shown in Figure 6.2 with input (u0, y0) and output

(u1, y1). Signals u1, y2 are inputs to the plant P and controller C, and y1, u2 are the

corresponding output signals.

Assumption 6.4. Consider the feedback configuration of Figure 6.2 with two signal

spaces Ue and Ye. The plant and controller are causal operators P : Ue → Ye and

C : Ye → Ue which satisfy P0 = 0 and C0 = 0. The closed-loop system is well-posed on

Ue × Ye.

Note that by Assumption 6.4 the closed-loop system of Figure 6.2 is well-posed on

Ue × Ye, that is to say that for any input (u0, y0) ∈ We ≜ Ue × Ye there exist unique

signals u1, u2 ∈ Ue and y1, y2 ∈ Ye such that w0 = w1+w2 with wi ≜ (ui, yi), i = 0, 1, 2,

and y1 = Pu1, u2 = Cy2; moreover, if we define a closed-loop operator ΠP//C : We → We

by w0 7→ w1, then ΠP//C is causal.

The graph of P is defined by

GP ≜

{( u

Pu

)

: u ∈ Ue, Pu ∈ Ye
}

⊆ We ≜ Ue × Ye

and the graph (or called the inverse graph) of C is defined by

GC ≜

{(
Cy

y

)

: Cy ∈ Ue, y ∈ Ye
}

⊆ We.

Theorem 6.5 (Georgiou & Smith’s Robust Stability Theorem). Consider the feedback

configuration of Figure 6.2 under Assumption 6.4. Suppose that ΠP//C is stable with

gain 
1 ∈ K∞. Assume that the plant P is perturbed to be another plant P̃ , and that

Assumption 6.4 also holds for the interconnection of P̃ and C. If there exist a map

 : GP̃ → GP and a function 
2 ∈ K∞ such that the inverse relation R−1
 of the relation

R deduced from the map  satisfy

∥w̃1 − w1∥� ≤ 
2(∥w1∥� ), ∀(w1, w̃1) ∈ R−1
 , ∀� > 0, (6.8)

then ΠP̃ //C is stable on We and for any w̃0 ∈ We, � > 0,

∥
∥
∥ ∘ ΠP̃ //Cw̃0

∥
∥
∥
�
≤ 
1 ∘ (I + "−1)(∥w̃0∥� ), (6.9)

∥
∥
∥ΠP̃ //Cw̃0

∥
∥
∥
�
≤ (I + 
2) ∘ 
1 ∘ (I + "−1)(∥w̃0∥� ), (6.10)

provided: the inequality 
2∘
1(s) ≤ (I+")−1(s), ∀s ≥ 0 holds for some function " ∈ K∞.

We remark that Theorem 6.5 is based on Georgiou and Smith’s robust stability theorem

([Georgiou and Smith, 1997b, Theorem 6]). The relation R−1
 has a simpler form R−1

 =
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R1 ≜ RΠP//C

R−1

 

RI

R2

d1 + e1 f1

+

d2 ≡ 0+e2+

−
f2

−

Figure 6.3: Deduction of Theorem 6.5 from Theorem 6.2

R� which is deduced from an onto map � : D ⊆ GP → GP̃ in ([Georgiou and Smith,

1997b, Theorem 6]); and the condition (6.8) in this case is equivalent to � − I being

stable (on D ⊆ GP ) with gain 
2. Here � is allowed to be a multivalued map. In the

following we give an alternative proof for Theorem 6.5 by using small-gain theorem.

The essential idea lies in Figure 6.3 (Note that RI represents a relation deduced from

an identity map I).

6.2.3 Equivalence of the Small-Gain Theorem and the Georgiou &

Smith’s Robust Stability Theorem

We first argue that the small-gain Theorem 6.2 implies the Georgiou & Smith’s robust

stability Theorem 6.5.

Theorem 6.6. If Theorem 6.2 is true, then Theorem 6.5 is true.

Proof. The task is as follows: under the premises of Theorem 6.5, we need to establish

the conclusions of Theorem 6.5 by using the small-gain Theorem 6.2. The main idea lies

in Figure 6.3.

Since ΠP//C is stable with gain 
1 ∈ K∞, it follows that the relation R1 ≜ RΠP//C
is

stable with gain 
1. Define a relation R2 on We by

R2 ≜ {(w1, w̃1 − w1) ∈ We ×We ∣ (w1, w̃1) ∈ R−1
 }.

It follows from (6.8) that the above relation R2 is stable with gain 
2 ∈ K∞.

For any w̃0 ∈ We, from Assumption 6.4 for the interconnection of P̃ and C, we have

ΠP̃ //Cw̃0 ∈ GP̃ , and thus w̃0 −ΠP̃ //Cw̃0 ∈ GC and  ∘ΠP̃ //Cw̃0 ∈ GP . Define

d1 ≜ w̃0, d2 ≜ 0, e1 ≜ (w̃0 −ΠP̃ //Cw̃0) +  ∘ ΠP̃ //Cw̃0,

e2 = f1 ≜  ∘ΠP̃ //Cw̃0, f2 ≜ ΠP̃ //Cw̃0 −  ∘ ΠP̃ //Cw̃0.
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P = P̃ ≜ 0

C ≜ 0

x ∈ Ue + x 0

−
00

−
0 ∈ Ye ≜ {0}+

Figure 6.4: Deduction of Theorem 6.2 from Theorem 6.5

Since (e2, e2+f2) = ( ∘ΠP̃ //Cw̃0,ΠP̃ //Cw̃0) ∈ R−1
 , we have (e2, f2) ∈ R2. By using As-

sumption 6.4 for the interconnection of P and C, we also have ΠP//Ce1 =  ∘ΠP̃ //Cw̃0 =

f1 and this in turn implies (e1, f1) ∈ R1 ≜ RΠP//C
.

Thus, for the feedback structure of Figure 6.3, the relations R1, R2 on We are stable

with gains 
1, 
2 ∈ K∞, respectively, and (ei, fi) ∈ Ri, i = 1, 2 and d1 = e1 + f2, 0 =

d2 = e2− f1. Since 
2 ∘ 
1(s) ≤ (I + ")−1(s), ∀s ≥ 0 with " ∈ K∞, by applying Theorem

6.2 with V1e = V2e = We, we obtain

∥
∥
∥ ∘ΠP̃ //Cw̃0

∥
∥
∥
�
= ∥e2∥� ≤ 
1 ∘ (I + "−1)(∥w̃0∥� ) (6.11)

for any � > 0. Since ( ∘ΠP̃ //Cw̃0,ΠP̃ //Cw̃0) ∈ R−1
 , by using (6.8) and (6.11), we get

∥
∥
∥ΠP̃ //Cw̃0

∥
∥
∥ ≤ (I + 
2) ∘ 
1 ∘ (I + "−1)(∥w̃0∥� ), ∀� > 0.

Since ∥w̃0∥� is arbitrarily chosen from We, we obtain that ΠP̃ //C is stable and (6.9),

(6.10) holds.

Next we show that the small-gain Theorem 6.2 can also be derived from the Georgiou

& Smith’s robust stability Theorem 6.5.

Theorem 6.7. If Theorem 6.5 is true, then Theorem 6.2 is true.

Proof. The task is as follows: under the premises of Theorem 6.2, we need to estab-

lish the conclusions of Theorem 6.2 by using the Georgiou & Smith’s robust stability

Theorem 6.5. The main idea lies in Figure 6.4.

Consider any fixed (ei, fi) ∈ Ri, i = 1, 2 and d1 ∈ V1e with d1 = e1 + f2 and e2 = f1.

Note that e1, f2 ∈ V1e and e2, f1 ∈ V2e. Let Ue ≜ V1e,Ye ≜ {0} and We ≜ Ue × Ye.
Define the nominal plant P : Ue → Ye, the perturbed plant P̃ : Ue → Ye and the

controller C : Ye → Ue as follows: P (x) = P̃ (x) = 0, ∀x ∈ Ue and C(0) = 0 (see

Figure 6.4). It’s trivial to see that Assumption 6.4 holds for the interconnection of P (also

P̃ ) and C. The corresponding operator ΠP//C : We → We is defined by ΠP//C(w0) =

w0, ∀w0 ∈ We ≜ Ue × {0}. It is easy to see that ΠP//C is stable with gain 
̃1 ∈ K∞,

where 
̃1(s) = s, ∀s ≥ 0. Note that GP = GP̃ = We = Ue × {0}. Next we define

a map  : GP̃ → GP as follows:  
((x

0

))
≜
(x
0

)
for any x ∈ Ue with x ∕= d1, and
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((

d1
0

))

≜
(e1

0

)
. Note that

∥
∥
∥

(
d1
0

)

−
(e1

0

)
∥
∥
∥
�
=
∥
∥
∥

(
f2
0

)∥
∥
∥
�
≤ 
2(∥e2∥� ) = 
2(∥f1∥� ) ≤


2 ∘ 
1(∥e1∥� ) = 
2 ∘ 
1
(∥
∥
( e1

0

)∥
∥
�

)
. It is not hard to check that the inverse relation R−1

 

of the relation R deduced from the map  satisfies

∥w̃1 − w1∥� ≤ 
2 ∘ 
1(∥w1∥� ), ∀(w1, w̃1) ∈ R−1
 , ∀� > 0,

Define 
̃2 ≜ 
2 ∘ 
1. From the condition of Theorem 6.2:


2 ∘ 
1(s) ≤ (I + ")−1(s), ∀s ≥ 0,

for some function " ∈ K∞, we have 
̃2 ∘ 
̃1(s) ≤ (I + ")−1(s), ∀s ≥ 0. By Theorem 6.5,

we have

∥
∥
∥ ∘ ΠP̃ //Cw̃0

∥
∥
∥
�
≤ 
̃1 ∘ (I + "−1)(∥w̃0∥� )

for any w̃0 ∈ We, � > 0. Choose w̃0 =
(
d1
0

)

, thus from above inequality and ΠP̃ //C

(
d1
0

)

=
(
d1
0

)

and  
((

d1
0

))

=
( e1

0

)
we have

∥
∥
∥

(e1
0

)∥
∥
∥
�
≤ 
̃1 ∘ (I + "−1)

(∥
∥
∥
∥

(
d1
0

)∥
∥
∥
∥
�

)

for any � > 0, i.e.,

∥e1∥� ≤ (I + "−1)(∥d1∥� ), ∀� > 0.

This completes the proof of Theorem 6.7.

We have thus shown the equivalence between a version of small-gain theorem and a

slight variation of Georgiou & Smith’s robust stability theorem.

6.3 Establishing Existence and Boundedness Simultane-

ously

To establish the well-posedness (i.e., existence and uniqueness) of a closed-loop system,

for simplicity we often restrict ourself to the case that the corresponding open-loop

subsystems are all well-posed themselves. Thus in the remainder of this chapter, we

only consider (open-loop) systems which are defined by operators rather than relations

on extended signal spaces.
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6.3.1 Small-Gain Theorem–Existence and Boundedness

Traditionally, the small-gain theorem was formulated in a way as Theorem 6.1 that the

stability property is completely disconnected from the properties of existence, unique-

ness, etc [Desoer and Vidyasagar, 2009, Chapter III]. However, it is of critical importance

to give a version of small-gain theorem establishing stability and existence simultane-

ously [French and Bian, 2012], since both existence and stability are important properties

of a feedback system.

For any signal space Ve and any � ∈ (0,∞), define an interval space V[0, �) by

V[0, �) ≜ {x ∣ ∃ y ∈ Ve such that x = R�y},

where R� is the restriction operator defined before.

An operator Q : V1e → V2e is said to be relatively continuous [French and Bian, 2012]

if for any � > 0 and any operators Φ : V2e → V1e with R�� compact, the operator

R�ΦQ : V1e → V1[0, �) is continuous. Note that if the operator R�� for any � > 0 is

also incrementally stable, i.e.,

∥R��x−R��y∥� ≤ 
(∥R�x−R�y∥� ), ∀x, y ∈ V2e,

for some function 
 ∈ K∞ (related to �), then the operator Q is relatively continuous if

R�Q is continuous for any � > 0.

We give a version of small-gain theorem which establishes existence and boundedness

simultaneously as follows.

Theorem 6.8. Consider the feedback system shown in Figure 6.1 with two signal spaces

V1e and V2e. Suppose that, for any � ∈ (0,∞), V1[0, �) is complete and a continuous

extension map E1� : V1[0, �) → V1e exists such that R�x = R� (E1�x), ∀x ∈ V1[0, �).

Let R1 = H1 : V1e → V2e and R2 = H2 : V2e → V1e be two causal operators, which

are stable with gains 
1, 
2 ∈ K∞ respectively. Suppose that the operator H1(⋅) + x is

relatively continuous for any fixed x ∈ V2e, and that R�H2 : V2e → V1[0, �) is compact for

any � ∈ (0,∞). Assume that the feedback system is causal and satisfies the uniqueness

property on V1e × V2e. If there exist two functions �, " ∈ K∞ such that


2 ∘ (I + �) ∘ 
1(s) ≤ (I + ")−1(s), ∀s ≥ 0. (6.12)

Then the feedback system is well-posed on V1e × V2e. Moreover, it is stable and for any

� > 0,

∥e1∥� ≤ (I + "−1)
(
∥d1∥� + 
2 ∘ (I + �−1)(∥d2∥� )

)
, (6.13)

∥e2∥� ≤ ∥d2∥� + 
1(∥e1∥� ). (6.14)
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Proof. For any input d = (d1, d2) ∈ V1e × V2e, consider the equation

e1 = d1 −H2(H1e1 + d2) (6.15)

For any � ∈ (0,∞), define a set Md
� by

Md
� ≜ {x ∈ V1[0, �) ∣ ∥x∥� ≤ (I + "−1)

(
∥d1∥� + 
2 ∘ (I + �−1)(∥d2∥� )

)
}, (6.16)

and an operator Qd� as

Qd� :M
d
� → V1[0, �), x 7→ R�d1 −R�H2(H1E1�x+ d2),

By our assumptions, Qd� is well defined and continuous in V1[0, �). Let x ∈ Md
� and

r0 ≜ ∥d1∥� + 
2 ∘ (I + �−1)(∥d2∥� ), then ∥E1�x∥� = ∥x∥� ≤ (I + "−1)(r0), and so

∥
∥
∥Qd�x

∥
∥
∥
�
≤ ∥R�d1∥� + ∥R�H2(H1E1�x+ d2)∥�
≤ ∥d1∥� + 
2 (
1(∥E1�x∥� ) + ∥d2∥� ) (6.17)

≤ ∥d1∥� + 
2 ∘ (I + �) ∘ 
1(∥E1�x∥� ) + 
2 ∘ (I + �−1)(∥d2∥� )
≤ r0 + 
2 ∘ (I + �) ∘ 
1 ∘ (I + "−1)(r0).

By using condition (6.12) and the inequality (I+")−1∘(I+"−1)(s)+s = (I+"−1)(s), ∀s ≥
0, we have

∥
∥
∥Qd�x

∥
∥
∥
�
≤ (I + "−1)(r0) = (I + "−1)

(
∥d1∥� + 
2 ∘ (I + �−1)(∥d2∥�

)
.

Therefore, Qd� (M
d
� ) ⊆ Md

� . It follows from the compactness of R�H2 and boundedness

of H1 that Q
d
� is compact. Since V1[0, �) is complete, it follows by Schauder’s fixed point

theorem that Qd� has a fixed point in Md
� , i.e., there exists a x ∈ Md

� ⊆ V1[0, �) such

that x = Qd�x = R�d1 −R�H2(H1E1�x+ d2). Define e�1 ≜ E1�x, we have

R�e
�
1 = R� (d1 −H2(H1e

�
1 + d2))

Since this holds for all � ∈ (0,∞), we have (6.15) holds with e1 ≜ lim�→∞ e�1 ∈ V1e,

(note that e1 is causally related to the input (d1, d2) by our assumption). Define e2 =

d2 +H1e1 ∈ V2e. We have from (6.15) that d1 = e1 +H2e2. This shows the existence

property on V1e × V2e for the feedback system (Figure 6.1). Since it also satisfies the

uniqueness property on V1e × V2e by our assumption, it follows that it is well-posed on

V1e × V2e. Since ∥R�e1∥� ≤ (I + "−1)
(
∥d1∥+ 
2 ∘ (I + �−1)(∥d2∥)

)
, we have (6.13) and

thus (6.14) hold.

The following special case of Theorem 6.8 will be used later to show its corresponding

robust stability theorem (see Theorem 6.12).
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Theorem 6.9 (d2 ≡ 0). Consider the feedback structure of Figure 6.1 with d2 ≡ 0. Let

V1e, V2e be two signal spaces. Suppose that, for any � ∈ (0,∞), V1[0, �) is complete and

a continuous extension map E1� : V1[0, �) → V1e exists such that R�x = R� (E1�x), ∀x ∈
V1[0, �). Let R1 = H1 : V1e → V2e and R2 = H2 : DH2 ⊆ V2e → V1e with H1(V1e) ⊆ DH2

be two causal operators, which are stable with gains 
1, 
2 ∈ K∞ respectively. Suppose

that H1 is relatively continuous and that R�H2 : DH2 ⊆ V2e → V1[0, �) is compact for

any � ∈ (0,∞). Assume that the feedback system is stable and satisfies the uniqueness

property on V1e × {0}. If there exists a function " ∈ K∞ such that


2 ∘ 
1(s) ≤ (I + ")−1(s), ∀s ≥ 0. (6.18)

Then the feedback system is well-posed on V1e×{0}. Moreover, it is stable on V1e×{0}
and ∥e1∥� ≤ (I + "−1)(∥d1∥� ) and ∥e2∥� ≤ 
1 ∘ (I + "−1)(∥d1∥� ) for any � > 0.

Proof. It follows directly from the proof of Theorem 6.8 and the same approach as in

the proof of Theorem 6.2.

6.3.2 Robust Stability Type Theorem–Existence and Boundedness

The corresponding version of the robust stability theorem is as follows.

Assumption 6.10. Consider the feedback configuration of Figure 6.2 with two signal

spaces Ue and Ye. The plant and controller are causal operators P : Ue → Ye and

C : Ye → Ue which satisfy P0 = 0 and C0 = 0. The closed-loop system is causal and

satisfies the uniqueness property on Ue × Ye.1

Theorem 6.11. Consider the feedback configuration of Figure 6.2. Let Ue, Ye be two

signal spaces. Define We ≜ Ue × Ue. Suppose that, for any � ∈ (0,∞), W[0, �) is

complete and a continuous extension map E� : W[0, �) → We exists such that R�x =

R� (E�x), ∀x ∈ W[0, �). Suppose the Assumption 6.4 holds for the interconnection of P

and C. Suppose that ΠP//C is stable with gain 
1 ∈ K∞ and that ΠP//C is relatively

continuous. Assume that the plant P is perturbed to be another plant P̃ , and that

the weak Assumption 6.10 holds for the interconnection of P̃ and C (i.e., replacing

P by P̃ in Assumption 6.10). If there exists a one-to-one map Φ : GP → GP̃ with

R� (Φ− I), ∀� ∈ (0,∞) compact and a function 
2 ∈ K∞ such that

∥(Φ− I)w1∥� ≤ 
2(∥w1∥� ), ∀w1 ∈ GP , ∀� > 0.

Then the feedback interconnection of P̃ and C is well-posed on We, (i.e., for any w̃0 ∈
We, there exists a unique w̃1 ∈ GP̃ such that w̃0 − w̃1 ∈ GC). Moreover, ΠP̃ //C is stable

1That is to say that for any input w0 ∈ We ≜ Ue × Ye, if there exist signals w1, w̃1 ∈ GP such
that w0 − w1, w0 − w̃1 ∈ GC , then w1 = w̃1; moreover, the thus defined closed-loop operator ΠP//C :
D ⊆ We → We, w0 7→ w1 is causal, where the domain of ΠP//C is denoted by D which contains all of
w0 ∈ We such that there exists a w1 ∈ GP with w0 − w1 ∈ GC .
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H1 ≜ ΠP//C

H2 ≜ Φ− I

d1 + e1 f1

+
e2f2

−

d2 ≡ 0+

Figure 6.5: Deduction of Theorem 6.11 from Theorem 6.9

on We and

∥
∥
∥ΠP̃ //Cw̃0

∥
∥
∥
�
≤ (I + 
2) ∘ 
1 ∘ (I + "−1)(∥w̃0∥� ), ∀w̃0 ∈ We, ∀� > 0, (6.19)

provided: the inequality 
2∘
1(s) ≤ (I+")−1(s), ∀s ≥ 0 holds for some function " ∈ K∞.

We now come to the relation between these versions of small-gain theorem and robust

stability theorem.

Theorem 6.12. If Theorem 6.9 is true, then Theorem 6.11 is true.

Proof. The task is as follows: under the premises of Theorem 6.11, we need to estab-

lish the conclusions of Theorem 6.11 by using Theorem 6.9. The essential idea lies in

Figure 6.5.

From our assumptions in Theorem 6.11, we know that the operator H1 ≜ ΠP//C : We →
We is stable with gain 
1 ∈ K∞, and that H1 is relatively continuous with H1(We) ⊆ GP .
Moreover, the operator H2 ≜ Φ − I : GP ⊆ We → We is stable with gain 
2 ∈ K∞; and

R�H2 = R� (Φ− I) is compact for any � ∈ (0,∞).

Next we show that the feedback system of H1 and H2 of Figure 6.5 with d2 ≡ 0 satisfies

the uniqueness property on We × {0}, (i.e., for any input d1 ∈ We and for any e =

(e1, e2) ∈ We × We, ẽ = (ẽ1, ẽ2) ∈ We × We with d1 = e1 + H2e2, e2 = H1e1 and

d1 = ẽ1 + H2ẽ2, ẽ2 = H1ẽ1, we need to show e = ẽ). Since e2 = H1e1 ∈ GP and

ẽ2 = H1ẽ1 ∈ GP , it follows from the well-posedness onWe of the feedback interconnection

of P and C (see Assumption 6.4) that d1−(H2+I)e2 = e1−e2 ∈ GC and d1−(H2+I)ẽ2 =

ẽ1 − ẽ2 ∈ GC . In addition, (H2 + I)e2 = Φe2 ∈ GP̃ and (H2 + I)ẽ2 = Φẽ2 ∈ GP̃ . Thus,

from the uniqueness property on We for the interconnection of P̃ and C (replacing P

by P̃ in Assumption 6.10), we obtain (H2 + I)e2 = (H2 + I)ẽ2, i.e., Φe2 = Φẽ2. Since

Φ is one-to-one, we have e2 = ẽ2, and so e1 = d1 −H2e2 = d1 −H2ẽ2 = ẽ1. This shows

e = ẽ.

Since 
2 ∘ 
1(s) ≤ (I + ")−1(s), ∀s ≥ 0 with " ∈ K∞, by applying Theorem 6.9 with

V1e = V2e = We and E1� = E� for the feedback configuration of H1 and H2 (Figure 6.5)

with d2 ≡ 0, we obtain that the feedback system of H1 and H2 is well-posed on We×{0},
(i.e., for any input d1 ∈ We, there exists a unique e = (e1, e2) ∈ We × We such that
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d1 = e1 +H2e2 and e2 = H1e1). Moreover, for any � > 0,

∥e1∥� ≤ (I + "−1)(∥d1∥� ), ∥e2∥� ≤ 
1 ∘ (I + "−1)(∥d1∥� ). (6.20)

Thus, for any w̃0 = d1 ∈ We, it follows from (H2 + I)e2 ∈ GP̃ , d1 − (H2 + I)e2 ∈ GC
and the uniqueness property on We of the interconnection of P̃ and C that the feedback

interconnection of P̃ and C is well-posed on We. Moreover, ΠP̃ //Cw̃0 = (H2+ I)e2, and

from (6.20) we have
∥
∥
∥ΠP̃ //Cw̃0

∥
∥
∥
�
≤ (I + 
2) ∘ 
1 ∘ (I + "−1)(∥w̃0∥� ), ∀� > 0. Since w̃0 is

arbitrarily chosen from We, we obtain that ΠP̃ //C is stable on We and (6.19) holds.

Theorem 6.12 shows that the small-gain theorem implies the robust stability theorem in a

global setting with both of them establishing existence and boundedness simultaneously.

However, for the converse part of Theorem 6.12, the existence property for the small-

gain theorem cannot be established by using the robust stability theorem. This can be

seen from the proof of Theorem 6.7 in which the starting point is to fix the closed-loop

inputs and their corresponding outputs when showing the boundedness for the small-gain

theorem from the boundedness for the robust stability theorem.

6.4 Local versions of Small-Gain Theorem and Georgiou

& Smith’s Robust Stability Theorem

In this section, we consider the relation between small-gain theorem and Georgiou and

Smith’s robust stability theorem in the local setting. In [Zheng and Zafiriou, 1999] the

authors presented a local form of small-gain theorem obtained by using the contracting

mapping theorem. In this section, we give a different local version of the nonlinear

small-gain theorem by using the Schauder’s fixed point theorem, which is used to show

a variation of Georgiou and Smith’s robust stability theorem in the local setting.

6.4.1 Local Version of Small-Gain Theorem

Let Ve be a signal space. The open ball of radius d ≥ 0 in Ve is defined by

Bd(Ve) = {v ∈ Ve : ∥v∥� ≤ d,∀� ∈ (0,∞)}

The small-gain theorem in the local setting is given as follows:

Theorem 6.13. Consider the feedback system shown in Figure 6.1 with two signal spaces

V1e and V2e. Suppose that, for any � ∈ (0,∞), V1[0, �) is complete and a continuous

extension map E1� : V1[0, �) → V1e exists such that R�x = R� (E1�x), ∀x ∈ V1[0, �). Let

R1 = H1 : V1e → V2e and R2 = H2 : V2e → V1e be two causal operators. Suppose that

Hi is stable on Bℎi(Vie) ⊆ Vie with gain 
i ∈ K∞ for i = 1, 2 with 0 ≤ 
1(ℎ1) ≤ ℎ2 ≤ ∞.
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Suppose that the operator H1(⋅) + d2 is relatively continuous for any d2 ∈ V2e, and that

R�H2 : V2e → V1[0, �) is compact for any � ∈ (0,∞). Assume that the feedback system

is causal and satisfies the uniqueness property on V1e×V2e. If there exist two functions

�, " ∈ K∞ such that


2 ∘ (I + �) ∘ 
1(s) ≤ (I + ")−1(s), ∀s ≥ 0. (6.21)

Then the feedback system is well-posed on Bk1(V1e)×Bk2(V2e) with k1 ≜ (I+"−1)−1(ℎ1)−

2 ∘ (I + �−1)(k2) for any k2 ≤ min{(I + �−1)−1 ∘ 
−1

2 ∘ (I + "−1)−1(ℎ1), ℎ2 − 
1(ℎ1)}.2
Moreover, it is stable on Bk1(V1e)×Bk2(V2e) and for any � > 0,

∥e1∥� ≤ (I + "−1)
(
∥d1∥� + 
2 ∘ (I + �−1)(∥d2∥� )

)
, (6.22)

∥e2∥� ≤ ∥d2∥� + 
1(∥e1∥� ). (6.23)

Proof. It follows from minor modifications of the proof of Theorem 6.8. For any k2 ≤
min{(I + �−1)−1 ∘ 
−1

2 ∘ (I + "−1)−1(ℎ1), ℎ2 − 
1(ℎ1)} and k1 ≜ (I + "−1)−1(ℎ1)− 
2 ∘
(I + �−1)(k2), consider any input d = (d1, d2) ∈ Bk1(V1e)×Bk2(V2e), we know that the

inequality (6.17) still holds, since from (6.16), ∥E1�x∥� = ∥x∥� ≤ (I + "−1)
(
∥d1∥� +


2 ∘ (I + �−1)(∥d2∥� )
)
≤ (I + "−1)

(
k1 + 
2 ∘ (I + �−1)(k2)

)
= ℎ1 and ∥H1E1�x+ d2∥� ≤


1(ℎ1) + k2 ≤ ℎ2 for any � ∈ (0,∞). The rest of proof is the same as that of Theorem

6.8.

It is the following special case of Theorem 6.13 that we shall use to show a local version

of Georgiou & Smith’s robust stability theorem.

Theorem 6.14 (d2 ≡ 0). Consider the feedback structure of Figure 6.1 with d2 ≡ 0. Let

V1e, V2e be two signal spaces. Suppose that, for any � ∈ (0,∞), V1[0, �) is complete and

a continuous extension map E1� : V1[0, �) → V1e exists such that R�x = R� (E1�x), ∀x ∈
V1[0, �). Let R1 = H1 : V1e → V2e and R2 = H2 : DH2 ⊆ V2e → V1e with H1(V1e) ⊆ DH2

be two causal operators. Suppose that Hi is stable on Bℎi(Vie) ⊆ Vie with gain 
i ∈ K∞
for i = 1, 2 with 0 ≤ 
1(ℎ1) ≤ ℎ2 ≤ ∞. Suppose that H1 is relatively continuous and

that R�H2 : DH2 ⊆ V2e → V1[0, �) is compact for any � ∈ (0,∞). Assume that the

feedback system is causal and satisfies the uniqueness property on V1e × {0}. If there

exists a function " ∈ K∞ such that


2 ∘ 
1(s) ≤ (I + ")−1(s), ∀s ≥ 0. (6.24)

Then the feedback system with d2 ≡ 0 is well-posed on Bk1(V1e) × {0} with k1 ≜ (I +

"−1)−1(ℎ1).
3 Moreover, it is stable on Bk1(V1e)×{0} and ∥e1∥� ≤ (I + "−1)(∥d1∥� ) and

∥e2∥� ≤ 
1 ∘ (I + "−1)(∥d1∥� ) for any d1 ∈ Bk1(V1e) and any � > 0.

2That is, for any input d = (d1, d2) ∈ Bk1(V1e) × Bk2(V2e), there exists a unique e = (e1, e2) ∈
V1e × V2e such that d1 = e1 +H2e2 and d2 = e2 −H1e1.

3That is, for any input d1 ∈ Bk1(V1e), there exists a unique e = (e1, e2) ∈ V1e × V2e such that
d1 = e1 +H2e2 and e2 = H1e1.
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Proof. It follows directly from the proof of Theorem 6.13 and the same approach as in

the proof of Theorem 6.2.

6.4.2 Local Version of Georgiou & Smith’s Robust Stability Theorem

The corresponding version of Georgiou & Smith’s robust stability theorem in the local

setting is as follows.

Theorem 6.15. Consider the feedback configuration of Figure 6.2. Let Ue, Ye be two

signal spaces. Define We ≜ Ue × Ue. Suppose that, for any � ∈ (0,∞), W[0, �) is

complete and a continuous extension map E� : W[0, �) → We exists such that R�x =

R� (E�x), ∀x ∈ W[0, �). Suppose the Assumption 6.4 holds for the interconnection of

P and C. Suppose that ΠP//C is stable with gain 
1 ∈ K∞ on Bℎ1(We) ⊆ We with

ℎ1 ≥ 0 and that ΠP//C is relatively continuous. Assume that the plant P is perturbed

to be another plant P̃ , and that the weak Assumption 6.10 holds for the interconnection

of P̃ and C (i.e., replacing P by P̃ in Assumption 6.10). If there exists a one-to-one

map Φ : GP → GP̃ with R� (Φ − I), ∀� ∈ (0,∞) compact and a function 
2 ∈ K∞ with

0 ≤ 
1(ℎ1) ≤ ℎ2 ≤ ∞ such that

∥(Φ− I)w1∥� ≤ 
2(∥w1∥� ), ∀w1 ∈ GP ∩Bℎ2(We), ∀� > 0.

Then the feedback interconnection of P̃ and C is well-posed on Bk1(We) with k1 ≜

(I + "−1)−1(ℎ1).
4 Moreover, ΠP̃ //C is stable on B(k1) ⊆ We and

∥
∥
∥ΠP̃ //Cw̃0

∥
∥
∥
�
≤ (I + 
2) ∘ 
1 ∘ (I + "−1)(∥w̃0∥� ), ∀w̃0 ∈ Bk1(We), ∀� > 0, (6.25)

provided: the inequality 
2∘
1(s) ≤ (I+")−1(s), ∀s ≥ 0 holds for some function " ∈ K∞.

Theorem 6.16. If Theorem 6.14 is true, then Theorem 6.15 is true.

Proof. The task is as follows: under the premises of Theorem 6.15, we need to establish

the conclusions of Theorem 6.15 by using Theorem 6.14. The proof is similar to the proof

of Theorem 6.12.

From our assumptions in Theorem 6.15, we know that the operator H1 ≜ ΠP//C : We →
We is stable with gain 
1 ∈ K∞ on Bℎ1(We), and that H1 is relatively continuous with

H1(We) ⊆ GP . Moreover, the operator H2 ≜ Φ− I : GP ⊆ We → We is stable with gain


2 ∈ K∞; and R�H2 = R� (Φ − I) is compact for any � ∈ (0,∞).

Next we show that the feedback system of H1 and H2 of Figure 6.5 with d2 ≡ 0 satisfies

the uniqueness property on We × {0}, (i.e., for any input d1 ∈ We and for any e =

(e1, e2) ∈ We × We, ẽ = (ẽ1, ẽ2) ∈ We × We with d1 = e1 + H2e2, e2 = H1e1 and

4That is, for any w̃0 ∈ Bk1(We), there exists a unique w̃1 ∈ GP̃ such that w̃0 − w̃1 ∈ GC .
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d1 = ẽ1 + H2ẽ2, ẽ2 = H1ẽ1, we need to show e = ẽ). Since e2 = H1e1 ∈ GP and

ẽ2 = H1ẽ1 ∈ GP , it follows from the well-posedness of the feedback interconnection of P

and C (see Assumption 6.4) that d1 − (H2 + I)e2 = e1 − e2 ∈ GC and d1 − (H2 + I)ẽ2 =

ẽ1 − ẽ2 ∈ GC . In addition, (H2 + I)e2 = Φe2 ∈ GP̃ and (H2 + I)ẽ2 = Φẽ2 ∈ GP̃ . Thus,

from the uniqueness property on We for the interconnection of P̃ and C (replacing P

by P̃ in Assumption 6.10), we obtain (H2 + I)e2 = (H2 + I)ẽ2, i.e., Φe2 = Φẽ2. Since

Φ is one-to-one, we have e2 = ẽ2, and so e1 = d1 −H2e2 = d1 −H2ẽ2 = ẽ1. This shows

e = ẽ.

Since 
2 ∘ 
1(s) ≤ (I + ")−1(s), ∀s ≥ 0 with " ∈ K∞, and 0 ≤ 
1(ℎ1) ≤ ℎ2 ≤ ∞, by

applying Theorem 6.9 with V1e = V2e ≜ We, DH2 ≜ GP and E1� ≜ E� for the feedback

configuration of H1 and H2 (Figure 6.5) with d2 ≡ 0, we obtain that the feedback

system of H1 and H2 is well-posed on Bk1(V1e) × {0} with k1 ≜ (I + "−1)−1(ℎ1), i.e.,

for any input d1 ∈ Bk1(We), there exists a unique e = (e1, e2) ∈ We × We such that

d1 = e1 +H2e2 and e2 = H1e1. Moreover, for any d1 ∈ Bk1(We) and any � > 0,

∥e1∥� ≤ (I + "−1)(∥d1∥� ), ∥e2∥� ≤ 
1 ∘ (I + "−1)(∥d1∥� ). (6.26)

Thus, for any w̃0 = d1 ∈ Bk1(We), it follows from (H2 + I)e2 ∈ GP̃ , d1 − (H2 + I)e2 ∈
GC and the uniqueness property on We of the interconnection of P̃ and C that the

feedback interconnection of P̃ and C is well-posed on Bk1(We) with k1 ≜ (I+"−1)−1(ℎ1).

Moreover, ΠP̃ //Cw̃0 = (H2 + I)e2, and from (6.26) we have
∥
∥
∥ΠP̃ //Cw̃0

∥
∥
∥
�
≤ (I + 
2) ∘


1 ∘ (I + "−1)(∥w̃0∥� ), ∀� > 0. Since w̃0 is arbitrarily chosen from We, we obtain that

ΠP̃ //C is stable on Bk1(We) and (6.25) holds.

Here we have shown that the small-gain theorem implies the robust stability theorem in

a local setting with both of them establishing existence and boundedness simultaneously.

The converse part of Theorem 6.16 cannot be established because of the same reason

given at the end of Section 6.3. However, if we only consider the boundedness for both

theorems in the local setting, the equivalence between them can be similarly established

as Theorems 6.6 and 6.7 in the global setting.

6.5 Summary

In this chapter, we consider the connections between Georgiou and Smith’s robust sta-

bility type theorems and the nonlinear small-gain theorems. A fundamental robust

stability theorem of Georgiou and Smith [Georgiou and Smith, 1997b, Theorem 6] is

shown to be equivalent to a special case of the usual nonlinear small-gain theorem.

Moreover, both the global and local versions of the nonlinear small-gain theorem which

establishes simultaneously the existence and boundedness properties are presented to

show the corresponding types of Georgiou and Smith’s robust stability theorem.
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Conclusions

In this chapter we will summarise the main contribution of this thesis and outline some

directions for future research.

7.1 Summary of Contributions

The main contributions of this thesis are as follows:

∙ Appropriate signal spaces (i.e., interval spaces, extended spaces and ambient spaces)

are introduced with some fundamental assumptions to constitute the basic frame-

work for the study of input-output systems with abstract initial conditions.

∙ A unified construction of an underlying abstract state space is provided, which is

applicable to input-output systems defined in a set theoretic manner from input-

output pairs on a doubly infinite time axis. Fundamental properties (such as

existence, uniqueness, well-posedness and causality) of both systems and closed-

loop systems are defined and discussed from a very natural point of view.

∙ A fundamental robust stability result (Theorem 4.8 on page 81) is given based on

the input-output framework set up in this work, which generalises the operator

based robust stability theorem of [Georgiou and Smith, 1997b] to include the case

of a general initial condition. This also includes a suitable generalisation of the

nonlinear gap metric which takes into account both the effect of the perturbation

on the state space structure (and hence the initial condition) as well as the input-

output response. Theorem 4.8 can also be viewed as a generalisation of the ISS

approach to enable a realistic treatment of robust stability in the context of per-

turbations which fundamentally change the structure of the state space. The proof

of Theorem 4.8 is given in two different versions: one requires the well-posedness

139
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of the perturbed closed-loop system; and another one requires only the uniqueness

property of the perturbed closed-loop system.

∙ A notion of finite-time reachability for a system is defined, and a more applicable

robust stability result than Theorem 4.8 is established in this framework (see

Theorem 4.18 on page 92).

∙ Theorem 4.8 is also generalised to systems with potential for finite-time escape by

extending signals on extended spaces to a wider space named ambient space.

∙ A general nonlinear ISS-type small-gain result (Theorem 5.2 on page 112) is devel-

oped based on the input-output framework set up in this thesis, which is established

without extra “observability” conditions and with complete disconnection between

the stability property and the existence, uniqueness properties of systems.

∙ Connections between Georgiou and Smith’s robust stability type theorems and the

nonlinear small-gain theorems are also discussed. An equivalence between a small-

gain theorem and a slight variation on the fundamental robust stability result of

Georgiou and Smith (i.e., [Georgiou and Smith, 1997b, Theorem 6]) is shown.

7.2 Directions for Future Research

In this section we give some further potential areas of research.

1. The applications of input-output theory for nonlinear systems are often restricted

by the ability to compute those gain functions. Such difficulties remain for the

application of Theorems 4.8 and 4.18 in this thesis. Further research into relevant

issues of practical significance (such as computational issues, real applications,

etc.) should be very useful for the application of Theorems 4.8 and 4.18.

2. Theorems 4.8 and 4.18 include a suitable generalisation of the nonlinear gap metric

of [Georgiou and Smith, 1997b] by incorporating initial conditions (see (4.2–4.3)

on page 81 and (4.36–4.37) on page 92). We have discussed the case of linear

time-invariant systems (Section 4.5 on page 93) and a class of nonlinear systems

with input delay (Section 4.6 on page 97). It will be very useful to develop a

fuller description of the types of nonlinear systems within a gap ball, e.g., singular

perturbation.

3. The tightness of the small-gain like condition (4.4) for the robust stability Theorem

4.8 on page 82 is not considered in this thesis. For systems defined by input-

output operators, necessity results are available for linear systems (see e.g., [Dahleh

and Ohta, 1988, Doyle and Stein, 1981, Shamma and Dahleh, 1991]) or nonlinear

systems with fading memory (see e.g., Gonçalves and Dahleh [1998], Shamma
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[1991], Shamma and Zhao [1993]); for general nonlinear systems, a weaker notion

of gain (i.e., conditional gain) is required to recover the necessity results (see e.g.,

[Chen et al., 2004, Freeman, 2001]). A type of necessity result seems to be very

useful to understand the degree of conservatism of Theorem 4.8.

4. In Chapter 6, we have discussed the connections between Georgiou and Smith’s

robust stability type theorems and the classical nonlinear small-gain theorems. It

looks quite possible to extend these results to input-output systems with abstract

initial conditions set up in this thesis. In particular, the generalised nonlinear

small-gain theorem for systems with initial conditions developed in Chapter 5 may

be used to establish the robust stability result (the first part of Theorem 4.8)

given in Chapter 4 but of course with a looser bound for the gain of the perturbed

closed-loop systems.
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