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Abstract⎯ In this paper we address the issue of improving 
ECC correction ability beyond that provided by the standard 
SEC/DED Hsiao code. We analyze the impact of the standard 
SEC/DED Hsiao ECC and for several double error correcting 
(DEC) codes on area overhead and cache memory access time 
for different codeword sizes and code-segment sizes, as well as 
their correction ability as a function of codeword/code-
segment sizes. We show the  different trade-offs that can be 
achieved in terms of impact on area overhead, performance 
and correction ability, thus giving insight to designers for the 
selection of the optimal ECC and codeword organization/code-
segment size for a given application. 

 
I. INTRODUCTION 

The continuous scaling of microelectronic technology 
enables to keep on  increasing system complexity, that will 
soon exceed billions of transistors integrated on the same 
die. However, since this growth comes together with the 
reduction in power supply and, consequently, noise 
margins, the vulnerability of electronic systems to radiation 
induced errors (namely soft errors, or Single Event Upsets 
(SEUs)) is expected to increase considerably as well. 
Particularly, SEUs affecting caches are considered a major 
threat to the reliability of next generation microprocessors. 
This due to the increased likelihood of SEUs with 
technology scaling, as well as to the continuous increase in 
cache size to improve microprocessor performance.  

Several error detecting codes (EDCs) and error 
correcting codes (ECCs) have been proposed so far to  
improve cache reliability. They range from the simple 
parity check code (used, for instance, to protect the L1 
caches of the Itanium [1], and the L1 and L2 caches of the 
Power4 [2] microprocessors), to the more complex Single 
Error Correcting/Double Error Detecting (SEC/DED) ECC 
[3] (used to protect the L2 and L3 caches in the Itanium 
microprocessor [1].  

However, in the perspective of the continuous scaling of 
microelectronic technology, and the increase in cache size,  
the problem to extend the correction ability of the cache 
ECCs is arising. In fact, with increasingly higher density 
memory arrays and more scaled down technologies, the 
probability of SEUs will increase, and that of multiple bit 
upsets (MBUs) will no longer be negligible [4]. Currently, 

MBUs are tackled by memory interleaving [5, 6], that is by 
logically mapping  physically adjacent memory cells into 
different memory logical words. This way, a clustered error 
affecting two or more  adjacent cells manifests itself as a 
single error affecting two or more different memory words, 
thus being successfully corrected by a SEC/DED code. 
However, interleaving generally requires a more complex 
(thus more expensive) decoding circuitry, and can not 
guarantee error correction in case of two errors affecting the 
same memory word. Moreover, it has been proven that a 
single MBU, or an SEU followed by an MBU (or vice-
versa), or a combination of MBUs may lead to double bit 
errors in the same logical word [7, 8]. 

Therefore, extending the correction ability of the ECCs 
to be employed to protect caches of next generation 
microprocessors is still an open issue. The problem is that, 
while powerful ECCs do exist, they usually imply high area 
overhead and non negligible impact on performance, 
mainly due to the higher number of check bits to be stored, 
and to the more complex encoding/decoding procedure, 
respectively, compared to standard SEC/DED codes. Of 
course, the optimal solution depends on the considered 
memory architecture (high level caches may tolerate higher 
area and performance penalties than low level caches), and 
the considered application (high reliability applications may 
favor error protection towards cost reduction, while the 
opposite applies for general purpose applications).  

On principle, a simple way to increase the number of 
errors within a memory array that can be corrected by an 
ECC, would be to reduce the codeword length. In fact, this 
way the number of codewords stored in a memory array of 
a given capacity increases and, for a given ECC 
detection/correction ability, the number of correctable 
errors increases as well. Similarly, a memory word could be  
segmented [9], thus considering each segment as a different 
(shorter) codeword to be encoded/decoded in parallel.  

However, shorter codewords/segments imply a higher 
number of check bits to be stored, thus a reduction of the 
useful memory, that is the memory portion storing data bits. 
For shorter codewords, such a drawback may be partially 
counterbalanced by the smaller area required by the ECC 
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encoding/decoding circuitry. Instead, this is not the case for 
code segmentation, since all segments are encoded/decoded 
in parallel, thus mandating an encoding/decoding circuit for 
each segment, with consequent increase in area. Such an 
increase in area is not linear with the number of segments. 
For instance, doubling the number of segments does not 
double the area overhead due to the ECC circuitry.  

It clearly appears from the above considerations that 
evaluating the impact on area overhead and performance of 
different ECCs with different codeword organization 
(different codeword size, code segmentation, etc.) is not a 
straightforward task. Similarly, for the impact on 
performance. Based on these considerations, in this paper 
we address the issue of improving ECC correction ability 
beyond that provided by the standard SEC/DED Hsiao 
code, and provide a systematic evaluation of the different 
cost-reliability tradeoffs that can be achieved by different 
ECCs, with different codeword organization.  

To perform our evaluation, we have developed an ad 
hoc software tool allows the user to analyze and compare 
area overhead, delay and correction ability of several ECCs, 
each with different codeword length and/or code-segment 
size. Our tool is scalable in codeword length and code-
segment size, as well as considered ECC.  

We will present the results obtained for the standard 
SEC/DED Hsiao ECC and for several double error 
correcting (DEC) codes. We will show the  different trade-
offs that can be achieved in terms of impact on area 
overhead, performance and correction ability, thus giving 
insight to designers for the selection of the optimal 
combination of ECC and codeword organization/code-
segment size, for a target cost-correction ability tradeoff.  

This paper is organized as follows. In Section 2, we 
describe our developed software tool for ECC evaluation 
and the considered metrics. In Section 3, we first show its 
application to the standard SEC/DED Hsiao ECC and to 
several DEC codes, and compare the achieved results. 
Finally, in Section 4, we give some conclusive remarks. 
 

II. DEVELOPED SOFTWARE TOOL AND METRICS FOR       
ECC EVALUATION 

In order to analyze and compare different ECCs, we 
have developed an ad hoc software tool that, for a given 
(logical) codeword length, is able to: i) generate all 
codewords of a chosen ECC; ii) generate the ECC 
encoding/decoding circuitries, described in VHDL 
language, given its matricial or polynomial description; iii) 
evaluate and compare different ECCs, considering the 
required area overhead, delay and correction ability, 
according to the metrics defined later in this section.  

The platform that has been considered for such a 
software tool is Visual Studio 2005 (working on Microsoft 

Windows Operating System). As for the ECC generation 
and evaluation, the  software has been implemented in the 
C++ standard language. As for the graphic interface, the 
software has been implemented in Visual C++.NET. 

Let us now introduce the metrics that we employed for 
our ECC analysis. They are based on the evaluation of the 
area overhead and delay due to the ECC encoding/decoding 
circuitry in terms of equivalent gates, assuming a 2-input 
NAND gate as the equivalent gate unit. Table 1 reports the 
derived area and delay figures of various 2-input gates 
considered for our evaluation, assuming their static 
implementation by a standard CMOS technology. 
 
Table 1 Area and delay figures expressed in terms of 
equivalent gates. 

Gate Area (A) Delay (D) 
Not  0.5   0.5  
Nand  1   1  
Nor  1   1  
And  1.5   1.5  
Or  1.5   1.5  
Xor  2   1.75  
Xnor  2   1.75  
Memory cell  2   na  

 
The area A and delay D of an n-input gate g (denoted by 

Xg(n) with X = A, D) has been expressed as a function of 
that of a 2-input gate g  as follows: 

=g g
nX n X  with X=A, D.( ) (2),
2

                  (2) 

The metrics that we have employed for our ECC analysis 
are defined in the remainder of this section. 
 
1) The Area Overhead (AO) due to the implementation of 
the ECC is given by: 

AO = (Area ECC) / (Area Data), 
where Area ECC  is the area occupied by the ECC circuitry 
(Acir) plus the area of the portion of the memory array 
employed to store the check bits (Acheck), while Area Data 
(Adata)  is the portion of the memory array required to store 
the (useful) data bits. 

The area overhead can therefore be written as: 
+

= check cir

data

A AAO
A

.                       (3) 

In order to evaluate the area of the portion of the memory 
array devoted to store data and check bits, let us first denote 
the total memory array capacity by MAC. If CL indicates 
the codeword length, the number of codewords NW that can 
be stored in the memory is given by: NW =�MAC/CL�. 
Denoting by acell the area of a memory cell, the area of the 
whole memory array can be written as Amem=MAC acell, 



  

while the effective area of the memory array, that is the 
area actually utilized to store codewords, is:  

Amem-eff = NW CL acell.                        (4) 
Finally, the area of the memory array portion that stores 

check bits is given by:  
Acheck = m NW acell = Amem-eff ρ acell,              (5) 

where m denotes the number of check bits per codeword, 
and ρ the ECC redundancy. 
2) The Delay introduced by the ECC encoding/decoding 
circuitry has been evaluated considering the delay of its 
longest path that is  activated during a read/write operation, 
that is during the decoding/encoding procedure.  

In this regard, it should be noted that the decoding 
procedure, and in particular the phase devoted to error 
localization, is the more time consuming. Therefore, the 
delay of the ECC has been evaluated considering only the 
decoding circuit. In particular, the tool identifies the longest 
path of the ECC decoding circuit, and evaluates its delay in 
terms of number of gate delay levels, according to Eq. (2). 
3)  The Correction ability (CA) of an ECC has been defined 
as the total number of detectable/correctable errors within a 
memory codeword. 

In order to compute the CA, we have assumed that 
errors are uniformly distributed throughout the memory 
codewords, as it may likely be the case for SEUs.  

Actually, as introduced in Sect. 1, in dense 
semiconductor memories, errors can involve a cluster of 
cells, as it is the case for MBUs [4, 7]. In order to allow 
standard ECCs (like, for instance, the Hsiao code) to cope 
with physically clustered errors, interleaving is usually 
adopted [5, 6, 8, 10]. This way, memory cells that are 
physically adjacent are logically mapped to different 
codewords.  Clustered errors are therefore disaggregated 
into single errors, thus being possibly corrected by a SEC 
(or SEC/DED) code. However, the application of a SEC 
code with interleaving does not guarantee error correction 
in case of two errors affecting the same logical word which, 
as discussed in the Introduction, has been proven to be a 
possible event [7, 8]. 

The correction ability (CA) has been defined as reported 
in Eq. (6), that is as the weighted mean (with weights αd 
and αc) of the probability to detect up to jd errors (pd), and 
correct up to jc errors (pc), considering the probability pe(i) 
to have i errors (for i = 1 .. jd,c) affecting the same 
codeword. 

( ) ( )
d c

d

j j

d d e c c e
i=1 i=1

j jc

d e c e
i=1 i=1

� p i p (i)+� p i p (i)
CA

� p (i)+� p (i)
.=

� �

� �
            (6) 

 

The weights αd and αc, and the numbers jd and jc can be 
configured by the user. The coefficients αd and αc allow to 
weight differently the probability to correct errors (pc), or to 
detect them only (pd). As for pd and pc, they have to fulfill 
the following conditions: i) 0 ≤ pc(j) ≤ pd(j) ≤ 1, ∀j; ii) pd(0) 
= pc(0) = 1; iii) pd(1) = pc(1) = 1. 

Particularly, condition i) derives from the fact that, by 
definition, probability values range from 0 to 1. 
Furthermore, the detection probability is always higher than 
the correction probability, since to correct an error we first 
have to detect it. As an example, considering a SEC/DED 
code, it is: 

 

( ) ( )1 2 1 1
0 2 0 1

 ;
≤ ≤� �

� �
� �

d c

, i , i
p i =    p i =     

, i > , i >
             (7) 

 
Condition ii) derives from the fact that, if no error has 

occurred (so that i = 0), the ECC circuitry must indicate that 
the codeword is error free, and must give the correct word 
to the output. 

Analogously, property iii) derives from the fact that our 
considered ECCs, which are at least single error correcting, 
are able to handle properly a single error (i.e., they provide 
the proper indication).  

As for the error probability pe, it has been expressed it 
as the number of expected errors (ne) per kB of memory. 
As an example, we have assumed ne = 1). However, the 
value of ne is an input to our tool, to be specified by the 
user.  

 
III. ECC ANALYSIS AND COMPARISON 

A.  SEC/DED Code Analysis  
We have considered the SEC/DED Hsiao code [3] as 

the reference code. In fact, thanks to its limited impact on 
cache area and performance, it is the de facto standard. This 
is due to its requiring a minimum number of ones in the 
parity check matrix, thus allowing the  implementation of 
the ECC encoding/decoding circuitry by the minimum 
number of XOR gates. The constraints to compose the 
parity check matrix H are the following: i) all columns are 
different from 0; ii) each column is different from the 
others (thus allowing to identify and correct all single errors 
[3]); iii) each column has an odd number of ones (thus 
allowing to detect, but not correct, all double errors [3]).  

As shown later, its area overhead varies with the size of 
the memory array. Therefore, as an example, for our 
analysis we have considered two different memory sizes: 
32 kB and 6MB, which correspond to the size of the L1 
cache (16  kB data + 16 kB instruction) and the L3 cache  
of the Intel Itanium 2 9010, respectively. 

 



  

1) Codeword Size Analysis 
We have considered different codeword sizes, with data 

bits ranging from 8 to 2048. As expected, as the code 
efficiency (that is the ratio between the number of data bits 
in a codeword and the whole codeword length) increases, 
also the area overhead and delay due to the ECC 
encoding/decoding circuitry increase. 

Tab. 2 reports the values generated by our tool, for 
delay, area overhead and correction ability, when the 
codeword size is changed. As for delay, the values are in 
terms of gate delay levels computed as in Eq. (2); as for 
area overhead, the values are computed according to Eq. 
(3), and are expressed as a percentage; finally, correction 
ability has been calculated as shown in Eq. (6), and its 
value has been reported as a percentage.  

We can notice that the ECC encoding/decoding circuitry 
delay slightly increases with the codeword length (CL) 
increase. This is due to the fact that, if CL increases, the 
complexity of the ECC circuit increases as well, thus 
implying a higher delay. This holds true independently of 
the memory array size. 

Tab. 1. Hsiao SEC/DED code: Code Size Analysis. 

 
As for area overhead, different considerations can be 

made for the two considered memory array sizes.  
For the 32kB array area overhead initially decreases 

with the increase in CL, then reaches a minimum for a word 
size approximately equal to 256 bits, to then start 
increasing. This is due to the fact that, for small CLs, as CL 
increases, the area overhead due to check bits diminishes 
considerably (due to their lower number), and this reduction 
exceeds the area overhead increase due to the more 
complex ECC encoding/decoding circuitry. Overall, we 
have an area overhead decrease. For long CLs (larger than 
256 bits), instead, the significant increase in area overhead 
due to the considerably more complex ECC circuitry 
exceeds the reduction in area overhead due to the lower 
number of the total check bits, leading to an overall area 
overhead increase. 

For the 6MB array, area overhead decreases 
monotonically with longer codewords. In fact, if CL 
increases, the memory array contains fewer codewords, 
thus a lower number of total check bits. Therefore, the area 
overhead due to check bits decreases. Moreover, longer 
codewords imply a more complex ECC encoding/decoding 
circuitry, but its area overhead increase is smaller compared 
to the previously discussed decrease due to fewer check 
bits. The area overhead decrease reduces its pace for larger 
CLs. This because, for large CLs, the impact of the ECC 
encoding/decoding circuitry complexity on area overhead 
increases. If CL increase further, we can expect a non-
monotonic behavior qualitatively similar to that found for 
the 32kB array.   

Finally, as for the correction ability (CA), as expected, it 
decreases with the increase in the CL. In fact, with longer 
codewords, the probability to have multiple errors in the 
same codeword increases, leading to a reduction of CA. 
2) Partition Size Analysis 

As previously introduced, in order to increase the 
correction ability, ECC segmentation can be adopted. 
Particularly, a read-out memory word can be partitioned in 
two or more “sub-words” (code-segments), and each of this 
sub-words can be decoded at the same time by means of a 
dedicated ECC circuitry, that is different ECC circuits can 
operate in parallel to encode/decode different sub-words. 
Analogously to the case of smaller codeword sizes, this 
approach requires an increase in the number of stored check 
bits. Moreover, it requires also extra ECC circuitry, due to 
the dedicated ECC circuitry for each code-segment.   

Now let us investigate how memory word partition 
impacts the ECC metrics defined in Sect. 2. We have 
considered the case of the Hsiao code with a 2048-bit 
memory word segmented (partitioned) in sub-words, whose 
length ranges from 8 data bits (256 partitions) to 2048 data 
bits (1 partition).  Tab. 2 reports the values obtained by our 
tool, when the partition size analysis is performed. 

Tab. 2. Hsiao SEC/DED code: Partition Size Analysis. 

Data Bits Check Bits CA  (%) Delay 
(EqG) 

AO (%) 
32kB 6MB 

8 5 74.2 13.5 62,55% 62,50%

16 6 73.8 16.0 37,59% 37,50%

32 7 72.6 18.5 22,04% 21,88%

64 8 70.1 19.5 12,82% 12,50%

128 9 67.7 23.0 7,71% 7,03%

256 10 57.9 25.5 5,35% 3,91%

512 11 44.8 28.0 5,20% 2,16%

1024 12 27.6 29.5 7,60% 1,21%

2048 13 10.4 35.0 15,00% 0,71%

Data Bits Check Bits CA  (%) Delay 
(EqG) 

AO (%) 
32kB 6MB 

8 5 74.2 13.5 76,07% 62,57%

16 6 73.8 16.0 49,22% 37,56%

32 7 72.6 18.5 32,50% 21,93%

64 8 70.1 19.5 23,00% 12,55%

128 9 67.7 23.0 18,04% 7,09%

256 10 57.9 25.5 15,52% 3,97%

512 11 44.8 28.0 14,38% 2,21%

1024 12 27.6 29.5 14,02% 1,24%

2048 13 10.4 35.0 14,74% 0,71%



  

Similarly to the case of the codeword size analysis 
previously described, the delay of the ECC encoding/ 
decoding circuitry increases for larger partition sizes. It 
should be noted that, for small partition sizes, the longest 
path for which the delay has been evaluated is represented 
by the additional logic that collects the double error 
detection (DED) signals from all the ECC circuits (one for 
each partition), in order to generate a single  DED signal. 

Also for area overhead, similar qualitative behaviors as 
those highlighted by the codeword size analysis have been 
obtained for both the considered memory array sizes. 
Particularly, the curve relative to the 32kB memory array is 
non-monotonic, with the minimum reached for 512-1024 
partition size. The area overheads for both memory arrays 
are higher than those highlighted in Tab. 1, since in the 
partition size analysis we must account for one ECC circuit 
for each partition (code-segment).  

Finally, the correction ability has the same values as in 
Tab. 1, since the number of detectable/correctable errors in 
a codeword or code-segment of a given length is the same. 
Therefore, analogous considerations hold true. 
 
B.  DEC Codes’ Analysis and Comparison 

We have analyzed several DEC codes and compared the 
achieved results with those obtained for the reference Hsiao 
code. As an example, we have considered three DEC codes 
able to correct two random errors within a codeword or 
code-segment. As an example, we have considered the sum 
code obtained by combining Hsiao SEC/DED code and a 
single parity check (SPC) (HSIAO-SPC) code, built as 
reported in [11], the Origuchi-Morita code [12], and the 
Cross-Parity Check (CPC) code, that we have obtained by 
modifying the Origuchi-Morita code in order to reduce its 
impact on performance. Moreover, it has been considered 
also the Single byte Error Correcting (SbEC) Bossen code 
[13]. All the selected DEC codes can be decoded by fast 
combinational circuits, which is a mandatory property for 
being implemented in fast cache memories. 

In the sum Hsiao-SPC code, the bits of a memory 
codeword are logically arranged as a matrix. For each 
matrix row, a Hsiao SEC/DED code is computed, while, for  
each column, a parity bit is determined. All single errors are 
detected and corrected by the Hsiao code, while the 
correction of double errors is performed into two steps: as a 
first step, all codewords containing double random errors 
are identified by the Hsiao code; as a second step, the two 
erroneous bits within the selected codeword are localized 
by the column parities, and then corrected.  

Also for the Origuchi-Morita code, the bits of a memory 
codeword are logically arranged as matrix. In this case, 
however,  the matrix has to be squared, and should have an 
odd number of rows/columns [12]. Row (horizontal), 

column (vertical), secondary diagonals and overall parities 
are computed. Correction is performed by majority voting 
over a properly selected sub-set of syndrome bits. 

The CPC code construction is similar to that of the 
Origuchi-Morita code, with the difference that the 
calculation of the overall parity, which can require a 
considerable latency, is replaced by the calculation of the 
parities obtained from the primary matrix diagonals. The 
reduction of the latency is however counterbalanced by an 
increase in the check bit redundancy. Similarly to the case 
of the Origuchi-Morita code, correction is performed by 
majority voting over a properly selected sub-set of 
syndrome bits. 

Finally, as for the considered Bossen SbEC code [13], 
which is able to correct single 2-bit clustered errors, it has 
been implemented by the scheme shown in [14]. 

Let us now go through the results obtained by our tool 
for the partition size analysis. As previously discussed, 
these results are qualitatively similar to those of the 
codeword size analysis.   

In Fig. 1 we report the results obtained for the delay 
analysis of the considered ECCs. 

 

Fig. 1. Considered ECCs’ delay comparison.  

 
As can be seen, the Origuchi-Morita code is the worst 

one for partition size larger than 32 bits. Sum Hsiao-SPC, 
Hsiao SEC/DED and Bossen codes introduce a similar 
latency for all partition sizes. As for the CPC code, it 
presents a delay considerably lower than all other codes. To 
summarize, sum Hsiao-SPC and CPC codes, which are 
DEC codes, may show a lower impact on memory access 
time than the Hsiao code, which is only SEC/DED code. 
Moreover, the CPC code implies a delay which is 
approximately a half of that due to the Hsiao SEC/DED 
code for 8-bit partitions, and which is lower of more than  
30% for all other partition sizes. 

Fig. 2 reports the plots depicting the behavior of area 
overheads as a function of partition size, obtained by our 
tool for the 32kB memory array.  



  

 
Fig. 2. Considered ECCs’ area overhead comparison.  

Hsiao SEC/DED and Bossen codes imply a very similar 
area overhead for all partition sizes, while all other 
considered ECCs introduce a higher area overhead for all 
partition sizes. Among these latter, the Origuchi-Morita 
code is the one requiring the higher overhead for partition 
sizes larger than 64 bits due to its encoding/decoding 
circuitry, whose complexity increases considerably for 
large partition sizes. The area overhead due to the DEC 
Hsiao-SPC and CPC codes may be twice the overhead of 
the Hsiao SEC/DED code, but it reduces to approximately  
+30% for 2048-bit partitions.  

Finally, as for correction ability, the plots shown in Fig. 
3 have been obtained considering, as an example, an error 
occurrence equal to 1 error per kB of memory. 

 

Fig. 3. Considered ECCs’ correction ability comparison.  

It can be noticed that, for all DEC codes, the correction 
ability approaches 100% for small partition sizes. 
Moreover, for all partition sizes, the correction ability of the 
Bossen code is even lower that that of the Hsiao code, since 
the probability that multiple errors belong to the same 
symbol, thus being correctable by the Bossen code, is rather 
low and decreases with the increase in the codeword length. 

The difference between the correction ability of the 
Hsiao SEC/DED code and that of the DEC codes decreases 
with the increase in partition size. 

This is due to the fact that, for large partition sizes, the 
probability to have a number of errors in the same 
codeword exceeding the ECC correction ability is rather 
high for all considered ECCs. 
 

IV. CONCLUSIONS 
We have analyzed the impact of several SEC/DED and 

DEC codes on area overhead and  memory access time for 
different codeword sizes and code-segment sizes, as well as 
their correction ability as a function of codeword/code-
segment sizes. We have shown the  different trade-offs that 
can be achieved in terms of impact on area overhead, 
performance and correction ability, thus giving precious 
hints to designers for the selection of the optimal 
combination of ECC and codeword organization/code-
segment size for a considered application. 
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