

Error Correcting Code Analysis for
Cache Memory High Reliability and Performance*

Daniele Rossi
DEIS – U. of Bologna (Italy)

 d.rossi@unibo.it

Nicola Timoncini
DEIS – U. of Bologna (Italy)
n.timoncini@studio.unibo.it

Michael Spica
Cypress Semiconductor (USA)

msr@cypress.com

Cecilia Metra
DEIS – U. of Bologna (Italy)

cecilia.metra@unibo.it

Abstract⎯ In this paper we address the issue of improving
ECC correction ability beyond that provided by the standard
SEC/DED Hsiao code. We analyze the impact of the standard
SEC/DED Hsiao ECC and for several double error correcting
(DEC) codes on area overhead and cache memory access time
for different codeword sizes and code-segment sizes, as well as
their correction ability as a function of codeword/code-
segment sizes. We show the different trade-offs that can be
achieved in terms of impact on area overhead, performance
and correction ability, thus giving insight to designers for the
selection of the optimal ECC and codeword organization/code-
segment size for a given application.

I. INTRODUCTION

The continuous scaling of microelectronic technology
enables to keep on increasing system complexity, that will
soon exceed billions of transistors integrated on the same
die. However, since this growth comes together with the
reduction in power supply and, consequently, noise
margins, the vulnerability of electronic systems to radiation
induced errors (namely soft errors, or Single Event Upsets
(SEUs)) is expected to increase considerably as well.
Particularly, SEUs affecting caches are considered a major
threat to the reliability of next generation microprocessors.
This due to the increased likelihood of SEUs with
technology scaling, as well as to the continuous increase in
cache size to improve microprocessor performance.

Several error detecting codes (EDCs) and error
correcting codes (ECCs) have been proposed so far to
improve cache reliability. They range from the simple
parity check code (used, for instance, to protect the L1
caches of the Itanium [1], and the L1 and L2 caches of the
Power4 [2] microprocessors), to the more complex Single
Error Correcting/Double Error Detecting (SEC/DED) ECC
[3] (used to protect the L2 and L3 caches in the Itanium
microprocessor [1].

However, in the perspective of the continuous scaling of
microelectronic technology, and the increase in cache size,
the problem to extend the correction ability of the cache
ECCs is arising. In fact, with increasingly higher density
memory arrays and more scaled down technologies, the
probability of SEUs will increase, and that of multiple bit
upsets (MBUs) will no longer be negligible [4]. Currently,

MBUs are tackled by memory interleaving [5, 6], that is by
logically mapping physically adjacent memory cells into
different memory logical words. This way, a clustered error
affecting two or more adjacent cells manifests itself as a
single error affecting two or more different memory words,
thus being successfully corrected by a SEC/DED code.
However, interleaving generally requires a more complex
(thus more expensive) decoding circuitry, and can not
guarantee error correction in case of two errors affecting the
same memory word. Moreover, it has been proven that a
single MBU, or an SEU followed by an MBU (or vice-
versa), or a combination of MBUs may lead to double bit
errors in the same logical word [7, 8].

Therefore, extending the correction ability of the ECCs
to be employed to protect caches of next generation
microprocessors is still an open issue. The problem is that,
while powerful ECCs do exist, they usually imply high area
overhead and non negligible impact on performance,
mainly due to the higher number of check bits to be stored,
and to the more complex encoding/decoding procedure,
respectively, compared to standard SEC/DED codes. Of
course, the optimal solution depends on the considered
memory architecture (high level caches may tolerate higher
area and performance penalties than low level caches), and
the considered application (high reliability applications may
favor error protection towards cost reduction, while the
opposite applies for general purpose applications).

On principle, a simple way to increase the number of
errors within a memory array that can be corrected by an
ECC, would be to reduce the codeword length. In fact, this
way the number of codewords stored in a memory array of
a given capacity increases and, for a given ECC
detection/correction ability, the number of correctable
errors increases as well. Similarly, a memory word could be
segmented [9], thus considering each segment as a different
(shorter) codeword to be encoded/decoded in parallel.

However, shorter codewords/segments imply a higher
number of check bits to be stored, thus a reduction of the
useful memory, that is the memory portion storing data bits.
For shorter codewords, such a drawback may be partially
counterbalanced by the smaller area required by the ECC

*Partially supported by Intel Corporation and by the Italian Ministry of
University and Research (MIUR) under PRIN Project n. 2008K4P7X9

978-3-9810801-7-9/DATE11/©2011 EDAA

encoding/decoding circuitry. Instead, this is not the case for
code segmentation, since all segments are encoded/decoded
in parallel, thus mandating an encoding/decoding circuit for
each segment, with consequent increase in area. Such an
increase in area is not linear with the number of segments.
For instance, doubling the number of segments does not
double the area overhead due to the ECC circuitry.

It clearly appears from the above considerations that
evaluating the impact on area overhead and performance of
different ECCs with different codeword organization
(different codeword size, code segmentation, etc.) is not a
straightforward task. Similarly, for the impact on
performance. Based on these considerations, in this paper
we address the issue of improving ECC correction ability
beyond that provided by the standard SEC/DED Hsiao
code, and provide a systematic evaluation of the different
cost-reliability tradeoffs that can be achieved by different
ECCs, with different codeword organization.

To perform our evaluation, we have developed an ad
hoc software tool allows the user to analyze and compare
area overhead, delay and correction ability of several ECCs,
each with different codeword length and/or code-segment
size. Our tool is scalable in codeword length and code-
segment size, as well as considered ECC.

We will present the results obtained for the standard
SEC/DED Hsiao ECC and for several double error
correcting (DEC) codes. We will show the different trade-
offs that can be achieved in terms of impact on area
overhead, performance and correction ability, thus giving
insight to designers for the selection of the optimal
combination of ECC and codeword organization/code-
segment size, for a target cost-correction ability tradeoff.

This paper is organized as follows. In Section 2, we
describe our developed software tool for ECC evaluation
and the considered metrics. In Section 3, we first show its
application to the standard SEC/DED Hsiao ECC and to
several DEC codes, and compare the achieved results.
Finally, in Section 4, we give some conclusive remarks.

II. DEVELOPED SOFTWARE TOOL AND METRICS FOR
ECC EVALUATION

In order to analyze and compare different ECCs, we
have developed an ad hoc software tool that, for a given
(logical) codeword length, is able to: i) generate all
codewords of a chosen ECC; ii) generate the ECC
encoding/decoding circuitries, described in VHDL
language, given its matricial or polynomial description; iii)
evaluate and compare different ECCs, considering the
required area overhead, delay and correction ability,
according to the metrics defined later in this section.

The platform that has been considered for such a
software tool is Visual Studio 2005 (working on Microsoft

Windows Operating System). As for the ECC generation
and evaluation, the software has been implemented in the
C++ standard language. As for the graphic interface, the
software has been implemented in Visual C++.NET.

Let us now introduce the metrics that we employed for
our ECC analysis. They are based on the evaluation of the
area overhead and delay due to the ECC encoding/decoding
circuitry in terms of equivalent gates, assuming a 2-input
NAND gate as the equivalent gate unit. Table 1 reports the
derived area and delay figures of various 2-input gates
considered for our evaluation, assuming their static
implementation by a standard CMOS technology.

Table 1 Area and delay figures expressed in terms of
equivalent gates.

Gate Area (A) Delay (D)
Not 0.5 0.5
Nand 1 1
Nor 1 1
And 1.5 1.5
Or 1.5 1.5
Xor 2 1.75
Xnor 2 1.75
Memory cell 2 na

The area A and delay D of an n-input gate g (denoted by

Xg(n) with X = A, D) has been expressed as a function of
that of a 2-input gate g as follows:

=g g
nX n X with X=A, D.() (2),
2

 (2)

The metrics that we have employed for our ECC analysis
are defined in the remainder of this section.

1) The Area Overhead (AO) due to the implementation of
the ECC is given by:

AO = (Area ECC) / (Area Data),
where Area ECC is the area occupied by the ECC circuitry
(Acir) plus the area of the portion of the memory array
employed to store the check bits (Acheck), while Area Data
(Adata) is the portion of the memory array required to store
the (useful) data bits.

The area overhead can therefore be written as:
+

= check cir

data

A AAO
A

. (3)

In order to evaluate the area of the portion of the memory
array devoted to store data and check bits, let us first denote
the total memory array capacity by MAC. If CL indicates
the codeword length, the number of codewords NW that can
be stored in the memory is given by: NW =�MAC/CL�.
Denoting by acell the area of a memory cell, the area of the
whole memory array can be written as Amem=MAC acell,

while the effective area of the memory array, that is the
area actually utilized to store codewords, is:

Amem-eff = NW CL acell. (4)
Finally, the area of the memory array portion that stores

check bits is given by:
Acheck = m NW acell = Amem-eff ρ acell, (5)

where m denotes the number of check bits per codeword,
and ρ the ECC redundancy.
2) The Delay introduced by the ECC encoding/decoding
circuitry has been evaluated considering the delay of its
longest path that is activated during a read/write operation,
that is during the decoding/encoding procedure.

In this regard, it should be noted that the decoding
procedure, and in particular the phase devoted to error
localization, is the more time consuming. Therefore, the
delay of the ECC has been evaluated considering only the
decoding circuit. In particular, the tool identifies the longest
path of the ECC decoding circuit, and evaluates its delay in
terms of number of gate delay levels, according to Eq. (2).
3) The Correction ability (CA) of an ECC has been defined
as the total number of detectable/correctable errors within a
memory codeword.

In order to compute the CA, we have assumed that
errors are uniformly distributed throughout the memory
codewords, as it may likely be the case for SEUs.

Actually, as introduced in Sect. 1, in dense
semiconductor memories, errors can involve a cluster of
cells, as it is the case for MBUs [4, 7]. In order to allow
standard ECCs (like, for instance, the Hsiao code) to cope
with physically clustered errors, interleaving is usually
adopted [5, 6, 8, 10]. This way, memory cells that are
physically adjacent are logically mapped to different
codewords. Clustered errors are therefore disaggregated
into single errors, thus being possibly corrected by a SEC
(or SEC/DED) code. However, the application of a SEC
code with interleaving does not guarantee error correction
in case of two errors affecting the same logical word which,
as discussed in the Introduction, has been proven to be a
possible event [7, 8].

The correction ability (CA) has been defined as reported
in Eq. (6), that is as the weighted mean (with weights αd
and αc) of the probability to detect up to jd errors (pd), and
correct up to jc errors (pc), considering the probability pe(i)
to have i errors (for i = 1 .. jd,c) affecting the same
codeword.

() ()
d c

d

j j

d d e c c e
i=1 i=1

j jc

d e c e
i=1 i=1

� p i p (i)+� p i p (i)
CA

� p (i)+� p (i)
.=

� �

� �
 (6)

The weights αd and αc, and the numbers jd and jc can be
configured by the user. The coefficients αd and αc allow to
weight differently the probability to correct errors (pc), or to
detect them only (pd). As for pd and pc, they have to fulfill
the following conditions: i) 0 ≤ pc(j) ≤ pd(j) ≤ 1, ∀j; ii) pd(0)
= pc(0) = 1; iii) pd(1) = pc(1) = 1.

Particularly, condition i) derives from the fact that, by
definition, probability values range from 0 to 1.
Furthermore, the detection probability is always higher than
the correction probability, since to correct an error we first
have to detect it. As an example, considering a SEC/DED
code, it is:

() ()1 2 1 1
0 2 0 1

 ;
≤ ≤� �

� �
� �

d c

, i , i
p i = p i =

, i > , i >
 (7)

Condition ii) derives from the fact that, if no error has

occurred (so that i = 0), the ECC circuitry must indicate that
the codeword is error free, and must give the correct word
to the output.

Analogously, property iii) derives from the fact that our
considered ECCs, which are at least single error correcting,
are able to handle properly a single error (i.e., they provide
the proper indication).

As for the error probability pe, it has been expressed it
as the number of expected errors (ne) per kB of memory.
As an example, we have assumed ne = 1). However, the
value of ne is an input to our tool, to be specified by the
user.

III. ECC ANALYSIS AND COMPARISON

A. SEC/DED Code Analysis
We have considered the SEC/DED Hsiao code [3] as

the reference code. In fact, thanks to its limited impact on
cache area and performance, it is the de facto standard. This
is due to its requiring a minimum number of ones in the
parity check matrix, thus allowing the implementation of
the ECC encoding/decoding circuitry by the minimum
number of XOR gates. The constraints to compose the
parity check matrix H are the following: i) all columns are
different from 0; ii) each column is different from the
others (thus allowing to identify and correct all single errors
[3]); iii) each column has an odd number of ones (thus
allowing to detect, but not correct, all double errors [3]).

As shown later, its area overhead varies with the size of
the memory array. Therefore, as an example, for our
analysis we have considered two different memory sizes:
32 kB and 6MB, which correspond to the size of the L1
cache (16 kB data + 16 kB instruction) and the L3 cache
of the Intel Itanium 2 9010, respectively.

1) Codeword Size Analysis
We have considered different codeword sizes, with data

bits ranging from 8 to 2048. As expected, as the code
efficiency (that is the ratio between the number of data bits
in a codeword and the whole codeword length) increases,
also the area overhead and delay due to the ECC
encoding/decoding circuitry increase.

Tab. 2 reports the values generated by our tool, for
delay, area overhead and correction ability, when the
codeword size is changed. As for delay, the values are in
terms of gate delay levels computed as in Eq. (2); as for
area overhead, the values are computed according to Eq.
(3), and are expressed as a percentage; finally, correction
ability has been calculated as shown in Eq. (6), and its
value has been reported as a percentage.

We can notice that the ECC encoding/decoding circuitry
delay slightly increases with the codeword length (CL)
increase. This is due to the fact that, if CL increases, the
complexity of the ECC circuit increases as well, thus
implying a higher delay. This holds true independently of
the memory array size.

Tab. 1. Hsiao SEC/DED code: Code Size Analysis.

As for area overhead, different considerations can be

made for the two considered memory array sizes.
For the 32kB array area overhead initially decreases

with the increase in CL, then reaches a minimum for a word
size approximately equal to 256 bits, to then start
increasing. This is due to the fact that, for small CLs, as CL
increases, the area overhead due to check bits diminishes
considerably (due to their lower number), and this reduction
exceeds the area overhead increase due to the more
complex ECC encoding/decoding circuitry. Overall, we
have an area overhead decrease. For long CLs (larger than
256 bits), instead, the significant increase in area overhead
due to the considerably more complex ECC circuitry
exceeds the reduction in area overhead due to the lower
number of the total check bits, leading to an overall area
overhead increase.

For the 6MB array, area overhead decreases
monotonically with longer codewords. In fact, if CL
increases, the memory array contains fewer codewords,
thus a lower number of total check bits. Therefore, the area
overhead due to check bits decreases. Moreover, longer
codewords imply a more complex ECC encoding/decoding
circuitry, but its area overhead increase is smaller compared
to the previously discussed decrease due to fewer check
bits. The area overhead decrease reduces its pace for larger
CLs. This because, for large CLs, the impact of the ECC
encoding/decoding circuitry complexity on area overhead
increases. If CL increase further, we can expect a non-
monotonic behavior qualitatively similar to that found for
the 32kB array.

Finally, as for the correction ability (CA), as expected, it
decreases with the increase in the CL. In fact, with longer
codewords, the probability to have multiple errors in the
same codeword increases, leading to a reduction of CA.
2) Partition Size Analysis

As previously introduced, in order to increase the
correction ability, ECC segmentation can be adopted.
Particularly, a read-out memory word can be partitioned in
two or more “sub-words” (code-segments), and each of this
sub-words can be decoded at the same time by means of a
dedicated ECC circuitry, that is different ECC circuits can
operate in parallel to encode/decode different sub-words.
Analogously to the case of smaller codeword sizes, this
approach requires an increase in the number of stored check
bits. Moreover, it requires also extra ECC circuitry, due to
the dedicated ECC circuitry for each code-segment.

Now let us investigate how memory word partition
impacts the ECC metrics defined in Sect. 2. We have
considered the case of the Hsiao code with a 2048-bit
memory word segmented (partitioned) in sub-words, whose
length ranges from 8 data bits (256 partitions) to 2048 data
bits (1 partition). Tab. 2 reports the values obtained by our
tool, when the partition size analysis is performed.

Tab. 2. Hsiao SEC/DED code: Partition Size Analysis.

Data Bits Check Bits CA (%) Delay
(EqG)

AO (%)
32kB 6MB

8 5 74.2 13.5 62,55% 62,50%

16 6 73.8 16.0 37,59% 37,50%

32 7 72.6 18.5 22,04% 21,88%

64 8 70.1 19.5 12,82% 12,50%

128 9 67.7 23.0 7,71% 7,03%

256 10 57.9 25.5 5,35% 3,91%

512 11 44.8 28.0 5,20% 2,16%

1024 12 27.6 29.5 7,60% 1,21%

2048 13 10.4 35.0 15,00% 0,71%

Data Bits Check Bits CA (%) Delay
(EqG)

AO (%)
32kB 6MB

8 5 74.2 13.5 76,07% 62,57%

16 6 73.8 16.0 49,22% 37,56%

32 7 72.6 18.5 32,50% 21,93%

64 8 70.1 19.5 23,00% 12,55%

128 9 67.7 23.0 18,04% 7,09%

256 10 57.9 25.5 15,52% 3,97%

512 11 44.8 28.0 14,38% 2,21%

1024 12 27.6 29.5 14,02% 1,24%

2048 13 10.4 35.0 14,74% 0,71%

Similarly to the case of the codeword size analysis
previously described, the delay of the ECC encoding/
decoding circuitry increases for larger partition sizes. It
should be noted that, for small partition sizes, the longest
path for which the delay has been evaluated is represented
by the additional logic that collects the double error
detection (DED) signals from all the ECC circuits (one for
each partition), in order to generate a single DED signal.

Also for area overhead, similar qualitative behaviors as
those highlighted by the codeword size analysis have been
obtained for both the considered memory array sizes.
Particularly, the curve relative to the 32kB memory array is
non-monotonic, with the minimum reached for 512-1024
partition size. The area overheads for both memory arrays
are higher than those highlighted in Tab. 1, since in the
partition size analysis we must account for one ECC circuit
for each partition (code-segment).

Finally, the correction ability has the same values as in
Tab. 1, since the number of detectable/correctable errors in
a codeword or code-segment of a given length is the same.
Therefore, analogous considerations hold true.

B. DEC Codes’ Analysis and Comparison

We have analyzed several DEC codes and compared the
achieved results with those obtained for the reference Hsiao
code. As an example, we have considered three DEC codes
able to correct two random errors within a codeword or
code-segment. As an example, we have considered the sum
code obtained by combining Hsiao SEC/DED code and a
single parity check (SPC) (HSIAO-SPC) code, built as
reported in [11], the Origuchi-Morita code [12], and the
Cross-Parity Check (CPC) code, that we have obtained by
modifying the Origuchi-Morita code in order to reduce its
impact on performance. Moreover, it has been considered
also the Single byte Error Correcting (SbEC) Bossen code
[13]. All the selected DEC codes can be decoded by fast
combinational circuits, which is a mandatory property for
being implemented in fast cache memories.

In the sum Hsiao-SPC code, the bits of a memory
codeword are logically arranged as a matrix. For each
matrix row, a Hsiao SEC/DED code is computed, while, for
each column, a parity bit is determined. All single errors are
detected and corrected by the Hsiao code, while the
correction of double errors is performed into two steps: as a
first step, all codewords containing double random errors
are identified by the Hsiao code; as a second step, the two
erroneous bits within the selected codeword are localized
by the column parities, and then corrected.

Also for the Origuchi-Morita code, the bits of a memory
codeword are logically arranged as matrix. In this case,
however, the matrix has to be squared, and should have an
odd number of rows/columns [12]. Row (horizontal),

column (vertical), secondary diagonals and overall parities
are computed. Correction is performed by majority voting
over a properly selected sub-set of syndrome bits.

The CPC code construction is similar to that of the
Origuchi-Morita code, with the difference that the
calculation of the overall parity, which can require a
considerable latency, is replaced by the calculation of the
parities obtained from the primary matrix diagonals. The
reduction of the latency is however counterbalanced by an
increase in the check bit redundancy. Similarly to the case
of the Origuchi-Morita code, correction is performed by
majority voting over a properly selected sub-set of
syndrome bits.

Finally, as for the considered Bossen SbEC code [13],
which is able to correct single 2-bit clustered errors, it has
been implemented by the scheme shown in [14].

Let us now go through the results obtained by our tool
for the partition size analysis. As previously discussed,
these results are qualitatively similar to those of the
codeword size analysis.

In Fig. 1 we report the results obtained for the delay
analysis of the considered ECCs.

Fig. 1. Considered ECCs’ delay comparison.

As can be seen, the Origuchi-Morita code is the worst

one for partition size larger than 32 bits. Sum Hsiao-SPC,
Hsiao SEC/DED and Bossen codes introduce a similar
latency for all partition sizes. As for the CPC code, it
presents a delay considerably lower than all other codes. To
summarize, sum Hsiao-SPC and CPC codes, which are
DEC codes, may show a lower impact on memory access
time than the Hsiao code, which is only SEC/DED code.
Moreover, the CPC code implies a delay which is
approximately a half of that due to the Hsiao SEC/DED
code for 8-bit partitions, and which is lower of more than
30% for all other partition sizes.

Fig. 2 reports the plots depicting the behavior of area
overheads as a function of partition size, obtained by our
tool for the 32kB memory array.

Fig. 2. Considered ECCs’ area overhead comparison.

Hsiao SEC/DED and Bossen codes imply a very similar
area overhead for all partition sizes, while all other
considered ECCs introduce a higher area overhead for all
partition sizes. Among these latter, the Origuchi-Morita
code is the one requiring the higher overhead for partition
sizes larger than 64 bits due to its encoding/decoding
circuitry, whose complexity increases considerably for
large partition sizes. The area overhead due to the DEC
Hsiao-SPC and CPC codes may be twice the overhead of
the Hsiao SEC/DED code, but it reduces to approximately
+30% for 2048-bit partitions.

Finally, as for correction ability, the plots shown in Fig.
3 have been obtained considering, as an example, an error
occurrence equal to 1 error per kB of memory.

Fig. 3. Considered ECCs’ correction ability comparison.

It can be noticed that, for all DEC codes, the correction
ability approaches 100% for small partition sizes.
Moreover, for all partition sizes, the correction ability of the
Bossen code is even lower that that of the Hsiao code, since
the probability that multiple errors belong to the same
symbol, thus being correctable by the Bossen code, is rather
low and decreases with the increase in the codeword length.

The difference between the correction ability of the
Hsiao SEC/DED code and that of the DEC codes decreases
with the increase in partition size.

This is due to the fact that, for large partition sizes, the
probability to have a number of errors in the same
codeword exceeding the ECC correction ability is rather
high for all considered ECCs.

IV. CONCLUSIONS
We have analyzed the impact of several SEC/DED and

DEC codes on area overhead and memory access time for
different codeword sizes and code-segment sizes, as well as
their correction ability as a function of codeword/code-
segment sizes. We have shown the different trade-offs that
can be achieved in terms of impact on area overhead,
performance and correction ability, thus giving precious
hints to designers for the selection of the optimal
combination of ECC and codeword organization/code-
segment size for a considered application.

REFERENCES

[1] H. Sharangpani, H. Arora, “Itanium processor microarchitecture”,
IEEE Micro, vol. 20 , no. 5, Sept.-Oct. 2000 , pp. 24 – 43.

[2] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, B. Sinharoy,
“POWER4 system microarchitecture”, IBM Journal of Research
and Development, vol. 46, no. 1, Jan. 2002, pp. 5-25.

[3] M. Y. Hsiao, “Class of Optimal Minimum odd-Weight-Column
SEC-DED Codes”, IBM Journal of Research and Development, vol.
14, no. 4, July 1970, pp. 395-401.

[4] J. Maiz, S. Hareland, K. Zhang, P. Armstrong, “Characterization of
Multi-bit Soft Error Events in Advanced SRAMs 130nm”, in Proc.
of IEEE Int’l Electron Devices Meeting, 2003, pp. 21.4.1 - 21.4.4.

[5] M. Blaum, J. Bruck, A. Vardy, “Interleaving Schemes for
Multidimensional Cluster Errors”, IEEE Trans. on Information
Theory, vol. 44, no. 2, Mar. 1998, pp. 730-743.

[6] Y. Q. Shi, X. M. Zhang, Z.-C. Ni, N. Ansari, “Interleaving for
Combating Burst of Errors ”, IEEE Circuist and Systems Magazine,
vol. 4, no. 1, 2004, pp. 29-42.

[7] D. Radaelli, H. Puchner, S. Wong, S. Daniel, “Investigation of
Multi-Bit Upsets in a 150 nm Technology SRAM Device”, IEEE
Trans. on Nuclear Science, vol. 52, no. 6, Dec. 2005, pp. 2433-
2437.

[8] P. Reviriego, J. A. Maestro, C. Cervantes, ‘‘Reliability Analysis of
Memories Suffering Multiple Bit Upsets’’, IEEE Trans. on Device
and Materials Reliability, vol. 7, no. 4, Dec. 2007, pp. 592 --- 601.

[9] Y.-H. Kwon, M.-K. Oh, D.-J. Park, ‘‘A New LDPC Decoding
Algorithm Aided by Segmented Cyclic Redundancy Checks for
Magnetic Recording Channels’’, IEEE Trans. on Magnetic, vol. 41,
no. 7, July 2005, pp. 2318-2320.

[10] C.W. Slayman,“Cache and Memory Error Detection, Correction,
and Reduction Techniques for Terrestrial Servers and
Workstations”, IEEE Trans. on Device and Materials Reliability,
vol. 5 , no. 3, September 2005, pp. 397-404.

[11] T. Fuja, C. Heegard, R. Goodman, “Linear Sum Codes for Random
Access Memories”, IEEE Trans. on Computers, vol. 37, no. 9, Sept.
1988, pp. 1030-1042.

[12] T. Horiguchi, K. Morita, “A parallel Memory with Double Error
Correction Capability”, Paper of Technical Group EC 75-42, IECE
Japan, Nov. 1975.

[13] D. C. Bossen, “b-Adjacent Error Correction”, IBM Journal of
Research and Development, vol. 14, no. 4, July 1970.

[14] T.R.N. Rao, E. Fujiwara, Error Control Coding for Computer
Systems, Prentice Hall: Englewood Cliffs, NJ, 1989.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

