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Abstract—In this paper we present a methodology as a proof-
of-concept for recognizing fundamental movements of the human 
arm (extension, flexion and rotation of the forearm) involved in 
‘making-a-cup-of-tea’, typical of an activity of daily-living 
(ADL). The movements are initially performed in a controlled 
environment as part of a training phase and the data are grouped 
into three clusters using k-means clustering. Movements 
performed during ADL, forming part of the testing phase, are 
associated with each cluster label using a minimum distance 
classifier in a multi-dimensional feature space, comprising of 
features selected from a ranked set of 30 features, using 
Euclidean and Mahalonobis distance as the metric. Experiments 
were performed with four healthy subjects and our results show 
that the proposed methodology can detect the three movements 
with an overall average accuracy of 88% across all subjects and 
arm movement types using Euclidean distance classifier. 

Keywords—accelerometer; activities of daily living (ADL); 
activity recognition; clustering; minimum distance classifier; 
movement classification. 

I.  INTRODUCTION 
Motion tracking of the human body has been used in a wide 

range of applications such as home-based remote health 
monitoring [1-2], human computer interaction [3-4] and sports 
coaching [5-6] using various sensing technologies including: 
mechanical tracking, optical systems, radio-frequency 
identification (RFID) [7], low-cost body-worn inertial sensors 
[8-9], and fusion of vision-based and inertial sensor based 
approaches [10]. Nowadays, body-worn inertial sensors are low 
cost and are therefore a popular technique to track movements 
effectively. The sensor data collected is used to train an activity 
model for recognizing the activities from new observation data 
[11]. The considerable amount of variability inherent in 
movement patterns of each subject, poses a significant 
challenge towards recognition of activities during 
unconstrained daily living from sensor data without manual 
intervention or a-priori knowledge [12]. 

In this paper, we report on a systematic exploration to 
recognize three fundamental movements of the upper limb that 
are generally associated with activities of daily living, using 

data collected only from a wrist-worn, wireless tri-axial 
accelerometer. The motivation behind this work was to detect 
the occurrence of these specific arm movements in a real world 
scenario (i.e. unconstrained environment) using the minimal 
number of sensors, as opposed to detecting gross static or 
dynamic activities and postures like standing, sitting, running, 
cycling, brushing teeth [1, 6, 9], etc., using a combination of 
inertial, magnetic and optical sensors. The detection and 
classification of particular arm movements (e.g. prescribed 
exercises) during daily activities, over time can provide a 
measure of rehabilitation progress in several remote health 
monitoring applications. It will be particularly useful in the 
monitoring of arm rehabilitation in pathologies associated with 
neurodegenerative diseases such as stroke or cerebral palsy. 
The specific arm movements considered were: (1) reach and 
retrieve object, (2) lift cup to mouth and (3) performing 
pouring/(un)locking action, all of which involve rotations of 
the forearm about various axes. Continuous monitoring of 
activities in an unconstrained scenario involves data 
segmentation and activity recognition which are in practice 
interrelated but are individually two separate research problems 
owing to the possible qualitative non-uniqueness of an activity 
pattern exhibited by an individual subject and due to inter-
person variability. Here, we concentrate only on the activity 
recognition part as a proof-of-concept methodology.  

The fundamental concept is to formulate a set of clusters 
each uniquely capturing the essence of multi-dimensional 
features (selected from a ranked set of 30 features) of a 
particular type of movement (three clusters corresponding to 
the three chosen movements in our case) from a feature set 
generated by a set of person-centric training data collected in 
the laboratory (training phase) and then applying a pattern 
recognition technique associating multidimensional feature 
data collected while performing a real world activity in an 
unconstrained scenario (testing phase) to these predefined 
cluster labels for recognizing the movement. We used the 
regularized Mahalonobis distance based k-means clustering 
technique to form the pre-defined clusters on the training data 
and use an Euclidean and Mahalonobis distance based 
minimum distance classifier for assigning the test data to the 
formed clusters. We adopted a personalized approach to pattern 
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recognition, thereby formulating the clusters from person-
centric training data. This approach was adopted in view of the 
large degree of inter-person variability expected amongst the 
sample population. Furthermore, this would be beneficial when 
applied to monitoring individual patients who demonstrate 
differences in levels of impairment depending on their stage of 
rehabilitation. Experiments performed with four healthy 
subjects show that the proposed method can recognize the three 
movements with an overall average accuracy of 88% across all 
subjects and arm movement types. 

The remainder of the paper is structured as follows. In 
Section II we provide a background to the state-of-the-art 
techniques for activity recognition, relating prior work to our 
methodology, and in Section III we describe the experiment 
protocol. The data processing techniques and the results are 
analyzed in Section IV and V respectively. Finally, a 
discussion is presented in Section VI. 

II. BACKGROUND 
Activity recognition of gross movements and postures 

using inertial sensors is generally analyzed using statistical 
signal processing involving the primary steps of feature 
extraction, feature selection and classification [1, 6, 8, 9, 13]. 
Different machine learning techniques have been used for such 
movement recognition, e.g. Support Vector Machines (SVM) 
[14-15], Decision Trees (DT) [8, 13], Naive Bayes (NB) [13], 
Multi-Layer Perceptron (MLP) [16], Artificial Neural 
Networks (ANN) [8], Hidden Markov Models (HMM) [17], or 
a combination of these techniques [10]. Instance-based 
classification algorithms have been used successfully over 
conventional algorithms to classify data from inertial sensors 
but suffer from high memory usage and long classification 
times [18].  

To the best of our knowledge, very little has been reported 
on recognizing specific upper limb movements in an 
unconstrained scenario, which is an important aspect for 
assessing rehabilitation of impaired limb functionality such as 
in stroke. Clustering techniques have been extensively used in 
diverse fields such as medicine (EEG, Functional MRI) 
psychology, geography (mining, earthquake detection) or 
marketing (seasonality patterns in finance and retail) and has 
produced successful results across disciplines and can be 
conveniently deployed with limited resources (memory and 
CPU) [19]. We extend it further to activity recognition 
involving the upper limb by using the widely popular k-means 
partitional clustering algorithm. 

The accuracy of any movement recognition technique is 
dependent on the system components and requirements, 
covering areas such as: type of activities, number of activities, 
type of sensors, number of sensors, placement of sensors [16], 
level of data fusion, and most importantly the classification 
methodology adopted. Further, there is a need for subject 
specific training especially for tracking activities that are 
susceptible to individual and temporal variation [20]. 
Recognition strategies generally follow one of three themes. 
Firstly, using only data collected under controlled conditions 
(i.e. in the laboratory) for training as well as testing, which 
results in high accuracies [8]. Secondly, using both controlled 

and un-controlled data for both training and testing, which 
results in reasonably high accuracies [6, 20]. Finally, using 
controlled data for training and only un-controlled data for 
testing, which generally results in lower accuracies [6, 20].  

It has been suggested that to increase the levels of accuracy 
there is a need to train the classifier with un-controlled data as 
well as controlled (training) data [6]. In this work we 
concentrated on using only the controlled data for training and 
un-controlled data for testing to explore the levels of 
recognition accuracy applicable in the field of rehabilitation in 
home settings, where a subject is instructed to follow a 
particular exercise regime to be performed in a controlled 
environment (clinic or home) and is later monitored to track 
the occurrence of the specific exercises while they perform 
their daily activities involving the impaired arm, facilitating 
rehabilitation progress. 

III. EXPERIMENTAL PROTOCOL 
A Shimmer 9DoF wireless kinematic sensor module 

comprising mutually orthogonal tri-axial accelerometers, rate 
gyroscopes and magnetometers, was used as the sensing 
platform [21]. For our experiments we only use the tri-axial 
accelerometer with ±1.5 g range selected and exclude the 
magnetometer since it can be affected by the presence of 
ferromagnetic materials which are expected to be present in 
the natural environment [22]. We also leave out the gyroscope 
in view of using a minimal number of sensors aimed at 
reducing the amount of data processing involved. The dorsal 
side of the forearm proximal to the wrist on the dominant arm 
was chosen as the sensing position since it was likely to 
produce significant sensor responses to the arm movements 
being investigated. The dorsal side was in contact with the XY 
plane of the sensor with the X-axis pointing towards the hand 
and the Z-axis pointing away from the dorsal aspect. Sensor 
data was collected at a rate of 50 Hz, deemed sufficient for 
assessing habitual limb movement, which is on the higher side 
compared to assessing holistic activity as in [13, 16]. 

We focused on three elementary types of arm movement 
(actions):  

�  Action A – reach and retrieve an object. 

�  Action B – lift forearm to mouth. 

�  Action C – perform pouring or (un)locking action. 

In principle, these elementary movements constitute a 
significant proportion of the complex movements performed 
with the upper limb in daily life and also resemble three of the 
tasks in the standard Wolf Motor Function Test (WMFT); an 
established clinical assessment method for quantifying upper 
extremity motor ability [23-25]. In this investigation, 
experiments were performed with four healthy subjects (age 
range 24 to 40, male, all right arm dominant) within an open 
laboratory with an attached kitchen at University of 
Southampton. To generate the training phase data for the 
target cluster formation all four participants performed 240 
trials of Action A, 120 trials of Action B and 120 trials of 
Action C, separated into groups of five repetitions, with each 
group of trials being separated by approximately three 
minutes. This was done to avoid unrepresentative data due to 
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fatigue and to minimize the effects of unconscious self-
learning of the activities. This data collection facilitates to 
have a large training set offering greater convenience for 
accurate recognition [20] since the cluster formulation on the 
training data inherently captures the person-centric nature of 
movement patterns. There were more number of trials for 
Action A since it is a generic movement performed more 
frequently in our daily lives as is further evident from Table I. 

We designed an activity-list (cf. Table I) which emulated 
the process of ‘making-a-cup-of-tea’, a common activity 
performed in daily life, having repeated occurrences of the 
three elementary types of arm movement (actions). The 
activity list in our experiment protocol comprises 20 
individual activities including 10 occurrences of Action A, and 
5 each of Action B and Action C. There were no restrictions on 
the various physical factors of the experiment such as the 
seating position or standing position with respect to the 
kitchen surface or the time required to complete the actions. 
The experiment was unconstrained in this manner to ensure a 
wider range of variability in the data paving the way for a 
robust arm movement recognition system which will produce 
acceptable levels of accuracy in a real world application. 

TABLE I.  USE CASE ACTIVITY LIST - ‘MAKING-A-CUP-OF-TEA’. 

Activity Action 
1. Fetch cup from desk A 

2. Place cup on kitchen surface A 

3. Fetch kettle A 

4. Pour out extra water from kettle C 

5. Put kettle onto charging point A 

6. Reach out for the power switch on the wall A 

7. Drink a glass of water while waiting for kettle to boil B 

8. Reach out to switch off the kettle A 

9. Pour hot water from the kettle in to cup C 

10. Fetch milk from the shelf A 

11. Pour milk into cup C 

12. Put the bottle of milk back on shelf A 

13. Fetch cup from kitchen surface A 

14. Have a sip and taste the drink B 

15. Have another sip while walking back to desk B 

16. Unlock drawer C 

17. Retrieve biscuits from drawer A 

18. Eat a biscuit B 

19. Lock drawer C 

20. Have a drink B 
 

On a separate day, participants were recalled and requested 
to perform four repetitions of the activity-list in Table 1, at a 
comfortable speed in a kitchen, with a 10 minute rest period 
between repetitions. The activity-list was prepared to facilitate 
the evaluation of the recognition methodology under semi-
naturalistic conditions. The start and stop time of the activities 
were noted down by the researcher observing them as they 
performed their designated tasks naturally. The corresponding 
data collected was segmented using the annotations from the 
researcher and used for the testing phase. Since our focus was 

mainly on recognizing the occurrence of these elementary 
movements, we did not implement an automated segmentation 
method. We, therefore have 1440 vectors comprising of 
samples of acceleration values {[(240 of A) + (120 of B) + 
(120 of C)] × 3-axis accelerometer} from the training phase 
and 240 vectors {[(10 of A) + (5 of B) + (5 of C)] × 4 trials × 
3-axis accelerometer} from the testing phase for each subject. 

IV. DATA PROCESSING 
The primary steps involved in our data processing for each 

subject’s data is illustrated in Fig. 1 and described in detail in 
the following sections. 

 
Fig. 1. Basic stages of data processing. 

A. Acquisition and Pre-processing  
The tri-axial accelerometer located on the wrist transmits 

data along with a time stamp to a host computer using the 
Bluetooth wireless transmission protocol and each activity 
performed by a subject is marked to record the start and end of 
the movement for all trials performed during the training and 
testing phases. The raw sensor data is band-pass filtered with a 
3rd order Butterworth filter having cut-off frequencies of 0.1 
Hz and 12 Hz to respectively attenuate the low frequency 
artifacts and high frequency noise components introduced in 
the data due to physical effects such as drift [13].  

B. Feature Extraction  
Typical feature sets for human activity recognition include 

statistical functions, time and/or frequency domain features, as 
well as heuristic features [9]. Each accelerometer data stream 
(AccX, AccY and AccZ) exhibits signal patterns that are 
distinctive for each of the arm movements, characterized by a 
set of features which are extracted from the signals [13]. In 
this investigation, we consider 10 time-domain features, 
extracted from each of the three individual sensor data streams 
as follows: 1) standard deviation – measure of the variability 
from the mean of the signal, 2) root mean square (rms) –
measure of the signal energy normalized by the number of 
samples, 3) information entropy - measure of the randomness 
of a signal [26], 4) jerk metric - rms value of the second 
derivative of the data normalized with respect to the maximum 
value of the first derivative [27], 5) peak number - obtained 
from gradient analysis of the signal, 6) maximum peak 
amplitude - measure of the amplitude of the peaks obtained 
after gradient analysis, 7) absolute difference - absolute 
difference between the maximum and the minimum value of a 
signal, 8) index of dispersion - ratio of variance to the mean, 
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9) kurtosis - a measure of the ‘peakedness’ of a signal 
assuming a non-Gaussian distribution in the data, 10) 
skewness - a measure of the symmetry of the data assuming a 
non-Gaussian distribution in the data. Although the last two 
features are usually associated with defining the shape of a 
probability distribution, they can still be used as classifying 
features if they routinely return values that distinguish one 
pattern of data from another. Moreover, features such as jerk 
metric, peak number and maximum peak amplitude are 
reflective of the movement fluidity associated with assessing 
motor functionality in human limb [28]. Hence, we have a list 
of 30 features (3-axis × 10 features) for each movement trial 
for each subject. The extracted features are linearly 
normalized and the best features for each subject are selected 
as discussed below. 

C. Feature selection  
The RELIEF algorithm [27], Clamping technique [16] and 

Principal Component Analysis (PCA) [11] are the most 
commonly used ranking/selection algorithms in the field of 
human activity recognition but are computationally intensive. 
We use the low-complexity class-separability measure based 
on scatter matrices to rank the 30 features. The scatter 
matrices quantify the scatter of feature vectors in the feature 
space. The rank of each individual feature for a multiple-class 
scenario is determined by the R value as shown below [29]: 

 
S Sw bR

Sw

�
�   (1) 

where, Sw and Sb are the within-class and between-class scatter 
matrices respectively. A high value of R represents a small 
within-class variance and a large between-class distance 
among the data points in the respective feature space [29]. The 
ranked features are sorted in descending order with respect to 
their R values. We employ a sequential forward selection 
(SFS) technique, selecting the first i features of the ranked 
feature set in each iteration (i = 2,…,30) and check if the data 
from the training phase can be correctly clustered in a multi-
dimensional feature space as described in the next section. 

D. Cluster Formation 
The fundamental concept of cluster analysis is to form 

groups of similar objects as a means of distinguishing them 
from each other and can be applied in any discipline involving 
multivariate data [19]. With a given dataset X = {xi}, i = 1,...,n 
to be clustered into a set of k clusters, the k-means algorithm 
iterates to minimize the squared error between the empirical 
mean of a cluster and the individual data points, defined as the 
cost function, J: 

 2( , )
1 1

n k
J u u xij i j

i j
� �� �� �

� �
� �   (2) 

where, �j is the cluster center and uij = 1 if xi lies close to �j, or 
0 if otherwise [30]. Initially k centroids are defined and the 

data vectors are assigned to a cluster label depending on how 
close they are to each centroid. The k centroids are 
recalculated from the newly defined clusters and the process 
of reassignment of each data vector to each new centroid is 
repeated. The algorithm iterates over this loop until the data 
vectors from the dataset X form clusters and the cost function 
J is minimized [29]. 

The Euclidean distance used to compute the squared 
distance between the vectors xi and the mean of each cluster �j 
has an undesirable effect of splitting large and elongated 
clusters, since most real datasets do not have a well-defined, 
isolated and spherical underlying cluster structure. By 
comparison, the use of the Mahalonobis distance which 
involves computing the covariance matrix of the data vector 
causes a large cluster to absorb nearby smaller clusters, 
leading to the creation of unusually large or small clusters. 
Hence we use the regularized Mahalonobis distance as 
mentioned in [30] which prevents the clustering algorithm 
from producing unusually large or small clusters. 

1( , ) ( ) [(1 )( ) ]( )TJ x x xi j i j i jj� � � 	 � ��� � � � 
 � 
 ��  (3) 

where, j� is the covariance matrix of the k-th cluster and I is 
the d×d identity matrix, d is the input dimensionality (no. of 
feature vectors representing the data vector) and � is the 
regularization parameter. The value of �� ��� be used as a 
parameter to control the choice of distance measure to be used, 
when ���, J is the squared Mahalonobis distance and when 
��	, J is the squared Euclidean distance. 

In our exploration, we start with an initial value of ��	�and 
after 3 iterations change it to ���. We run k-means clustering 
on the training data [30 features × 480 movement trials (240-
A, 120-B, 120-C)] for each subject to form three clusters 
representing the three arm movements. The clustering 
algorithm runs on feature vectors which characterizes the 480 
movement trials, sequentially selecting a combination of 2 to 
30 ranked features in each run. We set a threshold of 25% of 
the expected number of data points for each cluster (i.e. 240 ± 
60 for Action A and 120 ± 30 for Action B and Action C) to 
check the number of data points in each of the three clusters 
formed. This threshold value was experimentally selected, as it 
produced the best results. If the number of data points in each 
cluster is within the threshold, we consider it as correctly 
clustered for each combination of features selected (i = 
2,...,30). We compute the distance of the mean of the training 
data for each class label from the cluster centroids for each 
feature combination and thereby assign each cluster with the 
class label that has its closest proximity to that particular class 
of training data. 

E. Distance Computation of Test Vector 
The data from the testing phase (80 test vectors - [{(10 of 

A) + (5 of B) + (5 of C)} × 4 trials]) for each subject is pre-
processed and 30 features are extracted from each test vector. 
We then use a minimum distance classifier [29] to compute 
the distance of each test vector from the centroid of each 

235235235235



cluster in a multi-dimensional feature space (considering only 
those feature combinations which resulted in successful 
clustering of the training data) based upon: a). Euclidean 
distance and b). Mahalonobis distance. The Mahalonobis 
distance takes into consideration the covariance of the clusters 
along with their mean for the maximum likelihood estimation 
of the covariance matrix and hence is effective for clusters 
with larger variance along one or many directions and in 
general having an ellipsoidal shape. The test vector is assigned 
to a particular cluster depending on the minimum distance 
computed for each of the two measures. The predicted label is 
further verified with respect to the annotations in the activity-
list of Table I. 

V. RESULTS AND ANALYSIS 
The accuracy of recognizing the actions performed in the 

testing phase are presented in Table II, where we define 
recognition accuracy of an action as the number of times that 
action was correctly identified and assigned to the correct 
cluster, expressed as a percentage of the total number of 
actions in that class. We had in total 80 movement trials 
(actions) to be recognized (40 of A, 20 of B, 20 of C). The 
table also shows the minimum number of features that were 
required to successfully form the three clusters for each 
subject. The results in general, show that each subject required 
a different minimum number of features to successfully form 3 
separate clusters from the training data, reflecting the 
variability in arm movement patterns between individuals. The 
right hand column in Table II shows the overall detection 
accuracy (total number of recognized actions expressed as a 
percentage of the total number of actions performed) for each 
subject, which covers the range 61% to 100% (average of 
88%) and 61% to 93% (average of 80%) for the respective 
distance measures. We also present a ranked list of features in 
Table III (sorted in descending order) highlighting the features 
selected for each subject. 

TABLE II.  RECOGNITION ACCURACIES (%) FOR EACH ARM MOVEMENT 
WITH EUCLIDEAN (EUC) AND MAHALONOBIS (MAH) DISTANCE CLASSIFIER. 

Subject Features 
Recognition accuracies Overall 

accuracy A B C 
Euc Mah Euc Mah Euc Mah Euc Mah 

Subject1 11 100 98 100 100 100 75 100 93 
Subject2 2 80 75 5 5 80 95 61 61 
Subject3 7 95 85 100 100 90 60 95 83 
Subject4 23 95 63 100 100 85 100 94 81 
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Fig 2. Change in accuracy with number of features selected (for Subject2). 

TABLE III.  FEATURES SELECTED FROM THEIR INDIVIDUAL RANKED 
ORDERS FOR EACH SUBJECT. 

Subject1 Subject2 Subject3 Subject4 

stddev_y stddev_y rms_z stddev_y 
rms_y rms_y rms_x rms_y 
rms_z stddev_z stddev_y stddev_x 

stddev_z rms_x stddev_x rms_x 
rms_x stddev_x rms_y diff_y 
diff_y rms_z entropy_z max_mag_y 

stddev_x diff_x stddev_z diff_x 
diff_z max_mag_x diff_y max_mag_x 

max_mag_y diff_y entropy_y kurtosis_x 
diff_x skewness_y kurtosis_x kurtosis_z 

max_mag_z kurtosis_z entropy_x skewness_z 
kurtosis_z diff_z max_mag_y entropy_y 

max_mag_x skewness_z diff_x diff_z 
entropy_z max_mag_y diff_z max_mag_z 

skewness_z max_mag_z peaks_z kurtosis_y 
kurtosis_x kurtosis_y skewness_y stddev_z 
entropy_x entropy_z peaks_x entropy_x 

skewness_y skewness_x max_mag_x skewness_x 
entropy_y kurtosis_x max_mag_z peaks_y 
kurtosis_y entropy_x skewness_x skewness_y 

skewness_x entropy_y kurtosis_z entropy_z 
peaks_x peaks_z kurtosis_y rms_z 
peaks_z peaks_x peaks_y peaks_x 
peaks_y peaks_y skewness_z peaks_z 
jerk_x disp_y jerk_z jerk_z 
disp_z jerk_y jerk_y jerk_x 
disp_y jerk_x disp_z jerk_y 
jerk_z disp_z jerk_x disp_y 
disp_x disp_x disp_x disp_z 
jerk_y jerk_z disp_y disp_x 

 
This shows that for each subject, the ranked order of 

features is different (reflecting on the different ways in which 
they perform a movement) and also shows the difference in 
the number of features required to form the clusters. In general 
we can consider the recognition accuracies achieved as being 
favorable, with the obvious exception of detecting Action B 
with Subject 2 with both the Euclidean and Mahalonobis 
minimum distance classifiers. It is worth noting that this 
subject required the smallest number of features to form 
clusters from the training data. This is somewhat counter-
intuitive – fewer features imply sufficient differences in arm 
movement patterns to make unique cluster formation easier. 
Whilst this may be the case, however, the low detection 
accuracy for Action B could be accounted for by poor 
repeatability by the subject in this particular arm movement. 
The detection accuracies for Subject 2 using additional 
features are illustrated in Fig. 2, which reveals that increasing 
the number of features beyond 2 does not yield successful 
cluster formations or improved accuracy. In comparison with 
the results achieved, the minimum distance classifier based on 
Euclidean distance appears as the favorable choice of distance 
metric. This is favorable since computation of the Euclidean 
distance is far less complex than that of the Mahalonobis 
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distance which involves the maximum likelihood estimation of 
the covariance matrix.  

VI. DISCUSSION 
 In this paper we describe a proof-of-concept methodology 
to recognize three fundamental movements of the upper limb 
typical of an activity of daily living, using only a wrist worn 
tri-axial accelerometer and partitional k-means clustering 
algorithm to form 3 pre-defined clusters with the training 
data. Test data are then associated to each of these clusters 
using a minimum distance classifier based on Euclidean and 
Mahalonobis distance. Our results show that we can detect all 
three arm movements performed in a real world scenario with 
an accuracy of 61-100% using between 2-23 time domain 
features and both the Euclidean distance and the Mahalonobis 
distance based classifiers. Furthermore, our methodology 
exhibits an overall average accuracy of 88% across all subjects 
and arm movement types using the Euclidean distance metric 
where the number of features used is subject-specific, 
reflecting the variability inherent in human movement. The 
methodology will be scalable and adaptable when applied to a 
larger group of subjects as it looks for the best combination of 
features to achieve the highest overall accuracy for each 
individual subject which when applied in the field of remote 
health monitoring will provide a gross measure of subject-
specific rehabilitation. We believe that this methodology can 
be used for real time detection of arm movements where the 
cluster formation and feature selection can be performed 
offline whereas computation of the selected features and 
distance from cluster centroids can be performed in an online 
mode thereby providing energy efficient solutions for body-
worn sensors: an essential component of telehealth systems. 
The study can be extended further to observe the effects of 
other sensors and arm attachment locations on a larger sample 
population with appropriate cross-validation techniques 
applied to the cluster formation on the training data. 

REFERENCES 
[1] 
����
�� et al., “Ambulatory system for human motion analysis using a 

kinematic sensor: Monitoring of daily physical activity in the elderly,” 
IEEE Trans. Biomed. Eng., vol. 50, no.6, pp. 711-723, Jun. 2003. 

[2] A. Hadjidj, A. Bouabdallah, and Y. Challal, “Rehabilitation supervision 
using wireless sensor networks,” in Proc. IEEE WoWMoM, Luca, Italy, 
pp.1-3, Jun. 2011. 

[3] M.S. Raisinghania, A. Benoit and J. Ding, “Ambient intelligence: 
Changing forms of human-computer interaction and their social 
implications,” Texas Digital Library, vol. 5, no.4, 2004. 

[4] D. Merrill, J. Kalanithi and P. Maes, “Siftables: Towards sensor network 
user interfaces,” in Proc 1st Int. Conf. on Tangible and Embedded 
Interaction, Baton Rouge, LA, pp. 75-78, Feb. 2007. 

[5] S. Armstrong, “Wireless connectivity for health and sports monitoring: a 
review,” B. J. Sports Medicine, vol. 41, pp. 285-289, Jan. 2007.  

[6] M. Ermes et al., “Detection of daily activities and sports with wearable 
sensors in controlled and uncontrolled conditions,” IEEE Trans. Inf. 
Technol. Biomed., vol. 12, no.1, pp. 20-26, Jan. 2008. 

[7] �������������-Pérez et al., “Activity inference for ambient intelligence 
through handling artifacts in a healthcare environment,” Sensors, vol. 
12, no.1, pp. 1072–1099, Jan. 2012. 

[8] J. Parkka et al., “Activity classification using realistic data from 
wearable sensors,” IEEE Trans. Inf. Technol. Biomed., vol.10, no.1, 
pp.119-128, Jan. 2006. 

[9] K. Altun, B. Barshan, O. Tuncel, “Comparative study on classifying 
human activities with miniature inertial and magnetic sensors”, Pattern 
Recognition, vol. 43, no. 10, pp. 3605-3620, Oct. 2010. 

[10] C. Zhu and W. Sheng, “Motion- and location-based online human daily 
activity recognition,” Pervasive and Mobile Computing, vol. 7, no. 2, pp. 
256-269, Apr. 2011. 

[11] L.Wang et al., “A hierarchical approach to real-time activity recognition 
in body sensor networks”, Pervasive and Mobile Computing, vol. 8, no. 
1, pp. 115-130, Feb. 2012. 

[12] P. Turaga et al., “Machine recognition of human activities”, IEEE Trans. 
Circ. Syst. Video Technol., vol. 18, no. 11, pp. 1473-1488, Nov. 2008. 

[13] O. Banos et al., “Daily living activity recognition based on statistical 
feature quality group selection,” Expert Systems with Applications, vol. 
39, no. 9, pp. 8013-8021, Jul. 2012. 

[14] A. Fleury, M. Vacher, and N. Noury, “SVM-based multimodal 
�����������������������������������������������!����!��"����!�"��$�&������'�
�������!"�'� ���� ����� �*<���"������ ���>���'Q� IEEE Trans. Inf. Technol. 
Biomed., vol.14, pp. 274-283, Mar. 2010. 

[15] D. Fuentes et al., “Online motion recognition using an accelerometer in a 
mobile device,” Expert Systems with Applications, vol. 39, no. 3, pp. 
2461-2465, Feb. 2012. 

[16] S. Chernbumroong et al., “Elderly activities recognition and 
classification for applications in assisted living,” Expert Systems with 
Applications, vol. 40, no. 5, pp. 1662-1674, Apr. 2013. 

[17] H. Junker et al., “Gesture spotting with body-worn inertial sensors to 
detect user activities,” Pattern Recognition, vol. 41, no. 6, pp. 2010-
2024, Jun. 2008. 

[18] N. Bicocchi, M. Mamei, F. Zambonelli, “Detecting activities from body-
worn acclerometers via instance-based algorithms”, Pervasive and 
Mobile Computing, vol. 6, no. 4, pp. 482-495, Aug. 2010. 

[19] T.Warren Liao, “Clustering of time series data-a survey”, Pattern 
Recognition, vol. 38, no. 11, pp. 1857-1874, Nov. 2005. 

[20] L. Bao and S. Intille, “Activity recognition from user-annotated 
acceleration data”, in Proc. 2nd Int. Conf. Pervasive Comput, pp. 1-17, 
2004. 

[21] A. Burns et al., “Shimmer – A wireless sensor platform for noninvasive 
biomedical research,” IEEE Sensors Journal, vol. 10, no. 9, pp.1527–
1534, Sep. 2010. 

[22] C. Kendell and E.D. Lemaire, “Effect of mobility devices on orientation 
sensors that contain magnetometers,” J. Rehab. Res. Dev., vol. 46, no. 7, 
pp. 957-962, 2009. 

[23] S. L. Wolf et al., “The Excite trial: relationship of intensity of constraint 
induced movement therapy to improvement in the wolf motor function 
test,” Restorative Neurology and Neuroscience, vol. 25, no. 5, pp. 549–
562, Mar. 2007. 

[24] S. L. Wolf et al., “Pilot normative database for the wolf motor function 
test,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 3, 
pp. 443–445, Mar. 2006. 

[25] D. M. Morris et al., “The reliability of the Wolf Motor Function Test for 
assessing upper extremity function after stroke,” Archives of Physical 
Medicine and Rehabilitation, vol. 82, no. 6, pp. 750–755, Jun. 2001. 

[26] I. Kim et al., “ADL classification using triaxial accelerometers and 
RFID,” in Proc. First Int. Conf. Ubiquitous Computing Convergence 
Technology, 2007. 

[27] S. Patel et al., “A novel approach to monitor rehabilitation outcomes in 
stroke survivors using wearable technology,” Proceedings of the IEEE, 
vol. 98, no. 3, pp. 450-461, Mar. 2010. 

[28] B. Rohrer, S. Fasoli, et al, “Movement smoothness changes during 
stroke recovery,” The Journal of Neuroscience, vol. 22, pp. 8297–8304, 
Sep. 2002. 

[29] S. Theodoridis and K. Koutroumbas, “Pattern Recognition”, 4th ed., 
Elsevier, pp. 30-31 and pp. 280-288, 2008. 

[30] J. Mao, A.K. Jain, “A self-organizing network for hyperellipsoidal 
clustering (HEC)”, IEEE Trans. Neural Networks, vol. 7, no.1, pp. 16-
29, Jan. 1996. 
 

237237237237


