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Abstract  –  We report reconfigurable metamaterial nanostructures controlled by electrical currents, 
magnetic fields and light. Our structures provide practically useful solutions for sub-megahertz and high 
contrast magnetoelectric modulation of metamaterial optical properties and a cubic optical nonlinearity 
that is ten orders of magnitude greater than the reference nonlinearity of CS2.  

 
I. INTRODUCTION 

 
Reconfigurable plasmonic metamaterials exhibit tunable or switchable optical properties that are controlled by 

dynamically rearranging the components of the metamaterial array. This deformation of the nanostructure is 
achieved by supporting the metamaterial building blocks with an elastic structure that moves in response to 
electrical fields or ambient temperature changes [1-2]. Here we demonstrate for the first time reconfigurable 
plasmonic metamaterials driven by electrical currents, magnetic fields and light. 

 
Fig. 1. (a) Scanning electron microscope image of an optically reconfigurable metamaterial consisting of gold (yellow) 

plasmonic resonators supported by free-standing silicon nitride bridges (red). The inset shows an individual unit cell with 
lengths marked in nm. (b) Simulated optical forces between the bridge segments of an individual 700 × 700 nm2 unit cell 

acting in the metamaterial plane. P is the incident power per unit cell and c is the speed of light in vacuum. The dashed line 
indicates the 1550 nm optical pump wavelength. (c) Observation of light-by-light modulation: Modulation depth as a 

function of modulation frequency for a pump power of 0.66 mW, with mechanical eigenmode simulations shown as insets. 
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II. OPTICALLY RECONFIGURABLE METAMATERIAL 
 

We experimentally demonstrate for the first time that light can control light in a plasmonic metamaterial using 
nonlinearity of nanooptomechanical nature. As illustrated by Fig. 1(a), the metamaterial consists of Π-shaped 
gold resonators known for plasmon-induced transparency. Horizontal and vertical parts of the resonators are 50 
nm thick and have been supported by different flexible silicon nitride bridges of 50 nm thickness to allow for 
relative movement. Maxwell stress tensor calculations reveal optical forces acting between the gold resonators 
supported by separate bridges  in response to optical excitation near the structure’s 1240 nm absorption 
resonance, see Fig. 1(b). In order to optomechanically modulate the metamaterial's optical properties, we pumped 
the nanostructure with a modulated laser beam at 1550 nm, where simulations predict significant relative forces 
on the bridges along within the metamaterial plane (along y). The modulation of the metamaterial’s transmission 
was probed at 1310 nm and detected using a lock-in amplifier. As shown by Fig. 1(c), pumping of the 
metamaterial leads to a modulation of the metamaterial’s transmission, which is largest at low frequencies and at 
several resonances at MHz frequencies, which have been identified as the in-plane and out-of-plane fundamental 
mechanical resonances of the bridge beams through eigenmode calculations. Both near-field optical forces and 
differential thermal expansion of gold and silicon nitride due to optical heating will contribute to out-of-plane 
oscillations of the bridge beams. However, the metamaterial’s in-plane mechanical oscillations at 1 MHz and 1.4 
MHz cannot be explained by heating of the nanostructure, providing strong evidence that the deformation of the 
nanostructure is driven by near-field optical forces between the plasmonic resonators. 

Detailed measurements show a linear dependence of the transmission modulation on the pump intensity and 
therefore the effect can be described by the first nonlinear absorption coefficient β. Assuming that the nonlinear 
transmission change ∆T results from nonlinear absorption, β~∆T/(It), where I is the intensity and t is the 
metamaterial thickness. In the low frequency limit β~10-2 m/W, which exceeds the nonlinearity of the classic 
nonlinear reference medium of CS2 by 10 orders of magnitude.  

 
 

IV. MAGNETOELECTRICALLY RECONFIGURABLE METAMATERIAL 
 

For the first time we demonstrate a reconfigurable metamaterial controlled by currents and magnetic fields, 
offering solutions that provide high-contrast modulation of optical properties at up to 100s of kHz, while 
integrating easily in optoelectronic devices. Here, we dynamically rearrange the entire metamaterial array by 
exploiting the magnetic Lorentz force associated with electrical charges moving in a magnetic field and 
differential thermal expansion of bimorph metamaterial components resulting from resistive heating. The 
associated optical manifestations correspond to an exceptionally large and novel optical magnetoelectric effect.  
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Fig. 2. (a) Structure of the reconfigurable photonic metamaterial consisting of free-standing plasmonic zig-zag shaped 
bridges, where every second bridge is connected to electrical terminals on both ends, see close-up of the bridges ends.  
(b) Magnetic tuning of the reconfigurable photonic metamaterial. Relative transmission change as a function of applied 

device current and magnetic field. 
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As illustrated by Fig. 2(a), the metamaterial consists of elastic zig-zag bridges manufactured from a bilayer of 
50 nm of gold on 50 nm of silicon nitride. Every second bridge is electrically connected to electrical terminals on 
both ends. Application of a current of 5 mA to the device leads to resistive heating of the electrically connected 
bridges, which bend due to differential expansion leading to transmission changes of up to 50%, see black curve 
in Fig. 2(b). Simultaneous application of a perpendicular magnetic field (170 mT) in the metamaterial plane leads 
to a Lorentz force that increases/decreases the mechanical deformation depending on the relative directions of 
current flow and magnetic field, leading to an increase/decrease of the electrothermal transmission modulation, 
which is particularly apparent around 1250 nm wavelength. Detailed measurements show that the electrothermal 
modulation of the nanostructure is limited by its thermal cooling timescale and can be driven up to modulation 
frequencies of 10s of kHz, while magnetic modulation can be driven up to the nanostructure’s fundamental 
mechanical resonance at about 400 kHz. 

 
 

VI. CONCLUSION 
 

In summary, we demonstrate the first plasmonic metamaterials exhibiting a giant optical nonlinearity and 
magnetoelectric effect driven by mechanical deformation of the metamaterial structure. 

The optically nonlinear metamaterial is driven by electromagnetic near-field interactions and thermo-optical 
effects that can overcome elastic forces: light intensities of only a few μW/μm2 can reconfigure the metamaterial 
array of plasmonic metamolecules fabricated on a flexible substrate leading to a significant change of its optical 
properties. This new type of nonlinearity has a resonant character and can provide light-by-light modulation with 
MHz bandwidth.  

The magnetoelectrically reconfigurable metamaterial demonstrates the fastest and most practical solutions for 
large-range tuning of reconfigurable photonic metamaterials so far: (i) Electrothermal modulation at up to 10s of 
kHz exploiting local resistive heating and differential thermal expansion to reconfigure the nanostructure and (ii) 
magnetic modulation up to 100s of kHz and beyond exploiting the Lorentz force on current-carrying 
reconfigurable parts of the metamaterial which is placed in an external magnetic field.  
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