The University of Southampton
University of Southampton Institutional Repository

Chondrogenic potential of human articular chondrocytes and skeletal stem cells: a comparative study

Chondrogenic potential of human articular chondrocytes and skeletal stem cells: a comparative study
Chondrogenic potential of human articular chondrocytes and skeletal stem cells: a comparative study
Regenerative medicine strategies have increasingly focused on skeletal stem cells (SSCs), in response to concerns such as donor site morbidity, dedifferentiation and limited lifespan associated with the use of articular chondrocytes for cartilage repair. The suitability of SSCs for cartilage regeneration, however, remains to be fully determined. This study has examined the chondrogenic potential of human STRO-1-immunoselected SSCs (STRO-1+ SSCs), in comparison to human articular chondrocytes (HACs), by utilising two bioengineering strategies, namely ‘‘scaffold-free’’ three-dimensional(3-D) pellet culture and culture using commercially available, highly porous, 3-D scaffolds with interconnected pore networks. STRO-1+ SSCs were isolated by magnetic-activated cell sorting from bone marrow samples of haematologically normal osteoarthritic individuals following routine hip replacement procedures. Chondrocytes were isolated by sequential enzymatic digestion of deep zone articular cartilage pieces dissected from femoral heads of the same individuals. After expansion in monolayer cultures, the harvested cell populations were centrifuged to form high-density 3-D pellets and also seeded in the 3-D scaffold membranes, followed by culture in serum-free chondrogenic media under static conditions for 21 and 28 days, respectively. Chondrogenic differentiation was determined by gene expression,histological and immunohistochemical analyses. Robust cartilage formation and expression of hyaline cartilage-specific markers were observed in both day-21 pellets and day-28 explants generated using HACs. In comparison, STRO-1+ SSCs demonstrated significantly lower chondrogenic differentiation potential and a tendency for hypertrophic differentiation in day-21 pellets. Culture of STRO-1+ SSCs in the 3-D scaffolds improved the expression of hyaline cartilage-specific markers in day-28 explants, however, was unable to prevent hypertrophic differentiation of the SSC population. The advantages of application of SSCs in tissue engineering are widely recognised; the results of this study, however, highlight the need for further development of cell culture protocols that may otherwise limit the application of this stem cell population in cartilage bioengineering strategies.
0885-3282
824-836
Li, Siwei
7c1afb74-246f-4596-8a7d-30cd5bb4747b
Sengers, Bram G.
d6b771b1-4ede-48c5-9644-fa86503941aa
Oreffo, Richard O.C.
ff9fff72-6855-4d0f-bfb2-311d0e8f3778
Tare, Rahul S.
587c9db4-e409-4e7c-a02a-677547ab724a
Li, Siwei
7c1afb74-246f-4596-8a7d-30cd5bb4747b
Sengers, Bram G.
d6b771b1-4ede-48c5-9644-fa86503941aa
Oreffo, Richard O.C.
ff9fff72-6855-4d0f-bfb2-311d0e8f3778
Tare, Rahul S.
587c9db4-e409-4e7c-a02a-677547ab724a

Li, Siwei, Sengers, Bram G., Oreffo, Richard O.C. and Tare, Rahul S. (2015) Chondrogenic potential of human articular chondrocytes and skeletal stem cells: a comparative study. Journal of Biomaterials Applications, 29 (6), 824-836. (doi:10.1177/0885328214548604). (PMID:25145989)

Record type: Article

Abstract

Regenerative medicine strategies have increasingly focused on skeletal stem cells (SSCs), in response to concerns such as donor site morbidity, dedifferentiation and limited lifespan associated with the use of articular chondrocytes for cartilage repair. The suitability of SSCs for cartilage regeneration, however, remains to be fully determined. This study has examined the chondrogenic potential of human STRO-1-immunoselected SSCs (STRO-1+ SSCs), in comparison to human articular chondrocytes (HACs), by utilising two bioengineering strategies, namely ‘‘scaffold-free’’ three-dimensional(3-D) pellet culture and culture using commercially available, highly porous, 3-D scaffolds with interconnected pore networks. STRO-1+ SSCs were isolated by magnetic-activated cell sorting from bone marrow samples of haematologically normal osteoarthritic individuals following routine hip replacement procedures. Chondrocytes were isolated by sequential enzymatic digestion of deep zone articular cartilage pieces dissected from femoral heads of the same individuals. After expansion in monolayer cultures, the harvested cell populations were centrifuged to form high-density 3-D pellets and also seeded in the 3-D scaffold membranes, followed by culture in serum-free chondrogenic media under static conditions for 21 and 28 days, respectively. Chondrogenic differentiation was determined by gene expression,histological and immunohistochemical analyses. Robust cartilage formation and expression of hyaline cartilage-specific markers were observed in both day-21 pellets and day-28 explants generated using HACs. In comparison, STRO-1+ SSCs demonstrated significantly lower chondrogenic differentiation potential and a tendency for hypertrophic differentiation in day-21 pellets. Culture of STRO-1+ SSCs in the 3-D scaffolds improved the expression of hyaline cartilage-specific markers in day-28 explants, however, was unable to prevent hypertrophic differentiation of the SSC population. The advantages of application of SSCs in tissue engineering are widely recognised; the results of this study, however, highlight the need for further development of cell culture protocols that may otherwise limit the application of this stem cell population in cartilage bioengineering strategies.

Text
Journal of Biomaterials Applications.pdf - Author's Original
Available under License Other.
Download (2MB)

More information

e-pub ahead of print date: 20 August 2014
Published date: 1 January 2015
Organisations: Human Development & Health

Identifiers

Local EPrints ID: 369195
URI: http://eprints.soton.ac.uk/id/eprint/369195
ISSN: 0885-3282
PURE UUID: 057b5ea7-1f58-4cfe-a780-639a81f69d41
ORCID for Bram G. Sengers: ORCID iD orcid.org/0000-0001-5859-6984
ORCID for Richard O.C. Oreffo: ORCID iD orcid.org/0000-0001-5995-6726
ORCID for Rahul S. Tare: ORCID iD orcid.org/0000-0001-8274-8837

Catalogue record

Date deposited: 29 Sep 2014 12:53
Last modified: 15 Mar 2024 03:26

Export record

Altmetrics

Contributors

Author: Siwei Li
Author: Bram G. Sengers ORCID iD
Author: Rahul S. Tare ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×