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We discuss a minimal predictive see-saw model in which the right-handed neutrino mainly responsible
for the atmospheric neutrino mass has couplings to (νe, νμ,ντ ) proportional to (0,1,1) and the right-
handed neutrino mainly responsible for the solar neutrino mass has couplings to (νe, νμ,ντ ) proportional
to (1,4,2), with a relative phase η = −2π/5. We show how these patterns of couplings could arise from
an A4 family symmetry model of leptons, together with Z3 and Z5 symmetries which fix η = −2π/5 up
to a discrete phase choice. The PMNS matrix is then completely determined by one remaining parameter
which is used to fix the neutrino mass ratio m2/m3. The model predicts the lepton mixing angles
θ12 ≈ 34◦, θ23 ≈ 41◦, θ13 ≈ 9.5◦, which exactly coincide with the current best fit values for a normal
neutrino mass hierarchy, together with the distinctive prediction for the CP violating oscillation phase
δ ≈ 106◦.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Daya Bay [1] and RENO [2] have measured a non-zero reactor
angle θ13 ≈ 0.15 which excludes Tri-Bimaximal (TB) mixing [3]. Re-
cent global fits also hint at deviations of the atmospheric and solar
angles from their TB values (for a recent review see e.g. [4]). Such
deviations may be expressed in terms of the deviation parame-
ters (s, a and r) from TB mixing [5] (for a related parametrisation
see [6]):

sin θ12 = 1√
3
(1 + s), sin θ23 = 1√

2
(1 + a),

sin θ13 = r√
2
. (1)

With zero solar and atmospheric deviations from TB mixing,
s = a = 0, and Cabibbo-like reactor mixing described by r = λ,
with λ = 0.225 being the Wolfenstein parameter, one is led to
Tri-Bimaximal Cabibbo (TBC) mixing [7]. However, as mentioned
above, current global fits prefer non-zero solar and atmospheric
TB deviation parameters,

s = −λ2/2, a = −λ/3, r = λ, (2)

corresponding to the angles,

θ12 = 34.2◦, θ23 = 40.8◦, θ13 = 9.15◦. (3)
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These angles are close to the best fit values for all three global fits
in the case of a normal neutrino mass ordering [4]. Assuming a
normal neutrino mass hierarchy with m1 = 0, one is led to [13],

m2

m3
= 3

4
λ, (4)

corresponding to m2/m3 ≈ 0.17, close to the best fit value [4]. The
deviation parameters in Eq. (2) have the feature that the atmo-
spheric mixing angle is in the first octant and the solar mixing
angle is somewhat less than its tri-maximal value, in agreement
with the latest global fits for the case of a normal neutrino mass
ordering. In particular it reproduces the best fit values of angles of
all three global fits [4] to within one standard deviation.

There have been many attempts to describe the lepton mixing
angles based on the type I see-saw model [8] combined with se-
quential dominance (SD) [9] in which the right-handed neutrinos
contribute with sequential strength. Constrained sequential dom-
inance (CSD) [10] involves the right-handed neutrino mainly re-
sponsible for the atmospheric neutrino mass having couplings to
(νe, νμ,ντ ) proportional to (0,1,1) and the right-handed neutrino
mainly responsible for the solar neutrino mass having couplings
to (νe, νμ,ντ ) proportional to (1,1,−1) and it led to TB mixing.
CSD2 [11] was proposed to give a non-zero reactor angle and is
based on the same atmospheric alignment but with right-handed
neutrino mainly responsible for the solar neutrino mass hav-
ing couplings to (νe, νμ,ντ ) proportional to (1,0,−2) or (1,2,0)

yielding a reactor angle θ13 ≈ 6◦ which unfortunately is too small,
although the situation can be rescued by invoking charged lepton
corrections [12]. The CSD3 model in [13] involves the right-handed
neutrino mainly responsible for the solar neutrino mass having
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Table 1
Lepton, Higgs and flavon superfields and how they transform under the symmetries relevant for the Yukawa sector of the model. The only non-trivial charged lepton charges
are in the upper left of the table and the only non-trivial neutrino charges in the lower right of the table. Note that the only the lepton doublets L and A4 symmetry, are
common to both charged lepton and neutrino sectors and are given near the central column and row. The Standard Model gauge symmetries and U (1)R symmetry, under
which all the leptons have a charge of unity while the Higgs and flavons have zero charge, are not shown in the table.

θ ec μc τ c ϕe ϕμ ϕτ H1 L H2 φatm φsol Natm Nsol ξatm ξsol

Z θ
3 ω ω ω2 1 1 1 1 1 1 1 1 1 1 1 1 1

Z e
3 1 ω2 1 1 ω 1 1 1 1 1 1 1 1 1 1 1

Zμ
3 1 1 ω2 1 1 ω 1 1 1 1 1 1 1 1 1 1

Zτ
3 1 1 1 ω2 1 1 ω 1 1 1 1 1 1 1 1 1

A4 1 1 1 1 3 3 3 1 3 1 3 3 1 1 1 1

Z atm
5 1 1 1 1 1 1 1 1 1 1 ρ3 1 ρ2 1 ρ 1

Z sol
5 1 1 1 1 1 1 1 1 1 1 1 ρ3 1 ρ2 1 ρ
couplings to (νe, νμ,ντ ) proportional to (1,3,1) or (1,1,3) with
a relative phase ∓π/3 yielding a reactor angle θ13 ≈ 8.5◦ close to
the observed value. However CSD3 predicts approximate TBC mix-
ing with an almost maximal atmospheric mixing angle disfavoured
by the latest global fits, and so it may soon be challenged.

In this Letter we shall propose a model based on a new pos-
sibility called CSD4 which predicts the above best fit angles in
Eq. (3) of the PMNS lepton mixing matrix and also makes predic-
tions for the physical CP violating phases. Similar to all SD models,
the CSD4 model involves effectively two right-handed neutrinos
and a normal neutrino mass hierarchy, leading to m1 = 0. As in
CSD2 and CSD3, the CSD4 model only requires one input param-
eter, namely the ratio of neutrino masses which is selected to be
m2/m3 ≈ 3λ/4, which is a natural value that one would expect in
such models. Also as in CSD2 and CSD3, once this value is chosen,
the entire PMNS mixing matrix is then fixed by the theory (up to
a discrete choice of phases) with no remaining free parameters.
In the CSD4 model, the right-handed neutrino mainly responsible
for the atmospheric neutrino mass has couplings to (νe, νμ,ντ )

proportional to (0,1,1) and the right-handed neutrino mainly re-
sponsible for the solar neutrino mass has couplings to (νe, νμ,ντ )

proportional to (1,4,2), with a relative phase η = −2π/5. These
couplings and phase relation were first discovered in [13] and
shown to lead to lepton mixing angles in good agreement with the
latest global fits, but no model has been proposed based on CSD4.
The goal of this Letter is to show how CSD4 can arise from an
A4 family symmetry, together with additional discrete Z5 and Z3
symmetries, and to present the first model of leptons along these
lines. This is necessary since it is far from clear whether align-
ments such as (1,4,2) are possible to achieve within a realistic
model. The CSD4 model presented here predicts the best fit PMNS
angles in Eq. (3) with the distinctive prediction for the oscillation
phase δ ≈ 106◦ .

2. A minimal predictive A4 model of leptons

In this section we outline a supersymmetric (SUSY) A4 model of
leptons with CSD4 along the lines of the A4 models of leptons dis-
cussed in [11,14]. The basic idea is that the three families of lepton
doublets L form a triplet of A4 while the right-handed charged
leptons ec , μc , τ c , right-handed neutrinos Natm, Nsol and the two
Higgs doublets H1, H2 required by SUSY are all singlets of A4. In
addition the model employs an additional Z θ

3 family symmetry in
order to account for the charged lepton mass hierarchy.

The vacuum alignment that is required for the model is dis-
cussed in Appendix A. In Table 1 we have displayed the sym-
metries and superfields relevant for the Yukawa sector only. In
Appendix A the transformation properties of the remaining super-
fields under Zl

3 × Zνi
5 responsible for vacuum alignment is dis-

cussed and are consistent with the charges shown in Table 1,
where we have written φatm ≡ ϕν3 and φsol ≡ ϕν4 and hence
Z atm

5 ≡ Zν3
5 and Z sol

5 ≡ Zν4
5 .

The charged lepton sector of the model employs the A4 triplet
flavons ϕe , ϕμ , ϕτ whose alignment is discussed in Appendix A.
With the lepton symmetries in the upper left of Table 1 we may
enforce the following charged lepton Yukawa superpotential at
leading order

We
Yuk ∼ 1

Λ
H1(ϕτ · L)τ c + 1

Λ2
θ H1(ϕμ · L)μc

+ 1

Λ3
θ2 H1(ϕe · L)ec, (5)

which give the charged lepton Yukawa couplings after the flavons
develop their vevs. Λ is a generic messenger mass scale, but in
a renormalisable model the messengers scales may differ. The
charged lepton symmetries include three lepton flavour symme-
tries Z e,μ,τ

3 under which ϕe , ϕμ , ϕτ and ec , μc , τ c transform
respectively as ω and ω2, together with a lepton family symme-
try Z θ

3 under which ec , μc , τ c transform as ω, ω2, 1 respectively
(where ω = ei2π/3) with the family symmetry breaking flavon θ

transforming as ω and otherwise being a singlet under all other
symmetries. H1 and L and all other fields are singlets under Z e,μ,τ

3
and Z θ

3 . With these charge assignments the higher order correc-
tions are very suppressed.

The charged lepton Yukawa matrix is diagonal at leading order
due to the alignment of the charged lepton-type flavons in Eq. (25)
(where the driving fields responsible for the alignment in Eq. (24)
absorb the charges under the newly introduced symmetries Z e,μ,τ

3
and Z θ

3 ) and has the form,

Y e = diag(ye, yμ, yτ ) ∼ diag
(
ε2, ε,1

)
yτ (6)

where we choose ε ∼ 〈θ〉/Λ ∼ λ2 in order to generate the correct
order of magnitude charged lepton mass hierarchy, with precise
charged lepton masses also dependent on order-one coefficients
which we have suppressed here.

With the neutrino symmetries in the lower right part of Table 1
we may enforce the following leading order neutrino Yukawa su-
perpotential

Wν
Yuk ∼ 1

Λ
H2(φatm · L)Natm + 1

Λ
H2(φsol · L)Nsol. (7)

Again the higher order corrections are completely negligible. The
neutrino sector of the model exploits the A4 triplet flavons φatm ≡
ϕν3 , and φsol ≡ ϕν4 whose alignment is discussed in Appendix A.

As is typical in models of this kind [11,14], the RH neutrinos
have no mass terms at the renormalisable level, but they become
massive after some A4 singlet flavons ξatm and ξsol develop their
vevs due to the renormalisable superpotential,
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WR ∼ ξatmN2
atm + ξsolN

2
sol. (8)

When the right-handed neutrino flavons develop their vevs
〈ξatm〉 ∼ M A together with 〈ξsol〉 ∼ MB , then the RH neutrino mass
matrix is diagonal as required,

MR =
(

M A 0
0 MB

)
. (9)

To ensure that the mixed terms are absent at renormalisable or-
der we have imposed a right-handed neutrino flavour symmetry
Z atm

5 under which Natm and ξatm transform as ρ2 and ρ (where
ρ = ei2π/5) while φatm transforms as ρ3 with all other fields be-
ing singlets. We have also imposed a similar symmetry Z sol

5 under
which the “solar” fields transform in an analogous way. We remark
that these charge assignments are consistent with the flavon super-
potential in Eq. (29), where we identify φatm ≡ ϕν3 , and φsol ≡ ϕν4 ,
with suitable charges assigned to the driving fields.

With all masses, couplings and messenger scales set approx-
imately equal, the driving flavon superpotentials would predict
|〈ξatm〉| ≈ |〈ξsol〉| and hence approximately equal right-handed neu-
trino masses M A ≈ MB . Similarly, from Appendix A with φatm ≡
ϕν3 and φsol ≡ ϕν4 , we see that 〈φ2

atm〉 ≈ 〈φ2
sol〉 would lead to

〈φatm〉 = 1√
2

(0
1
1

)
vatm, 〈φsol〉 = 1√

21

(1
4
2

)
vsol, (10)

where vatm ≈ vsol.
The above charge assignments allow higher order non-renor-

malisable mixed terms such as

�WR ∼ 1

Λ
(φatm · φsol)NatmNsol, (11)

which contribute off-diagonal terms to the right-handed neutrino
mass matrix of a magnitude which depends on the absolute scale
of the flavon vevs 〈φatm〉 and 〈φsol〉 compared to 〈ξatm〉 and 〈ξsol〉. If
all flavon vevs and messenger scales are set equal then these terms
are suppressed by ε ∼ λ2 according to the estimate below Eq. (6),
however they may be even more suppressed. We shall ignore the
contribution of such off-diagonal mass terms in the following.

Implementing the see-saw mechanism, the effective neutrino
mass matrix has the form,

mν ∼ v2
2

Λ2

( 〈φatm〉〈φatm〉T

〈ξatm〉 + 〈φsol〉〈φsol〉T

〈ξsol〉
)

, (12)

where v2 = 〈H2〉. Hence it can be parameterised, up to an overall
irrelevant phase, as,

mν = ma

(0 0 0
0 1 1
0 1 1

)
+ mae2iηεν

( 1 4 2
4 16 8
2 8 1

)
(13)

where ma and εν are real mass parameters which determine the
physical neutrino masses m3 and m2 and we written the relative
phase difference between the two terms as 2η. Using Eq. (10) the
see-saw mechanism naturally leads to the neutrino mass matrix
in Eq. (13) with εν ≈ 2/21 ≈ 0.1. Hence the desired value of εν ≈
0.06 assumed below is not unreasonable, and may be achieved for
example by taking MB ≈ 2M A . As discussed in [13], we shall also
require a special phase relation η = −2π/5 in order to achieve our
goal of predicting the best fit values of the lepton mixing angles.

The phase difference η = −2π/5 between flavon vevs can be
obtained in the context of spontaneous CP violation from discrete
symmetries as discussed in [12], and we shall follow the strategy
outlined there. The basic idea is to impose CP conservation on the
theory so that all couplings and masses are real. Note that the A4
assignments in Table 1 do not involve the complex singlets 1′ , 1′′
or any complex Clebsch–Gordan coefficients so that the definition
of CP is straightforward in this model and hence CP may be de-
fined in different ways which are equivalent for our purposes (see
[12] for a discussion of this point). The CP symmetry is broken in a
discrete way by the form of the superpotential terms. We shall fol-
low [12] and suppose that the flavon vevs 〈φatm〉 and 〈φsol〉 to be
real with the phase η in Eq. (13) originating from the solar right-
handed neutrino mass due to the flavon vev 〈ξsol〉 ∼ MB e4iπ/5 hav-
ing a complex phase of 4π/5, while the flavon vev 〈ξatm〉 ∼ M A is
real and positive. This can be arranged if the right-handed neutrino
flavon vevs arise from the superpotential,

W flavon,R
A4

= g P

(
ξ5

atm

Λ3
− M2

)
+ g′ P ′

(
ξ5

sol

Λ′ 3
− M ′ 2

)
, (14)

where, as in [12], the driving singlet fields P , P ′ denote linear
combinations of identical singlets and all couplings and masses are
real due to CP conservation. The F-term conditions from Eq. (14)
are,∣∣∣∣ 〈ξatm〉5

Λ3
− M2

∣∣∣∣
2

=
∣∣∣∣ 〈ξsol〉5

Λ′ 3
− M ′ 2

∣∣∣∣
2

= 0. (15)

These are satisfied by 〈ξatm〉 = |(Λ3M2)1/5| and 〈ξsol〉 =
|(Λ′ 3M ′ 2)1/5|e4iπ/5 where we arbitrarily select the phases to be
zero and 4π/5 from amongst a discrete set of possible choices in
each case. More generally we require a phase difference of 4π/5
since the overall phase is not physically relevant, which would
happen one in five times by chance. In the basis where the right-
handed neutrino masses are real and positive this is equivalent
to having a phase difference η = −2π/5 between flavon vevs in
Eq. (10) according to the see-saw result in Eq. (12).

Similarly the flavons appearing in Eqs. (36) each have a dis-
crete choice of phases. The charged lepton flavons ϕl may take any
phases since such phases are unphysical. In fact the only physically
significant flavon phases from the previous subsection are those of
φatm ≡ ϕν3 , and φsol ≡ ϕν4 whose phases are selected to be equal.
As before, this would occur one in five times by chance.

We emphasise that, with the alignments including the phase η
fixed, the neutrino mass matrix is completely determined by only
two parameters, namely an overall mass scale ma , which may be
taken to fix the atmospheric neutrino mass m3 = 0.048–0.051 eV,
the ratio of input masses εν , which may be taken to fix the solar
to atmospheric neutrino mass ratio m2/m3 = 0.17–0.18. In partic-
ular the entire PMNS mixing matrix and all the parameters therein
are then predicted as a function of m2/m3 controlled by the only
remaining parameter εν . In Table 2 we show the predictions for
CSD4 as a function of εν and hence m2/m3.

We remark that an accuracy of one degree in the angles is
all that can be expected due to purely theoretical corrections in
a realistic model due to renormalisation group running [16] and
canonical normalisation corrections [17]. In addition, there may be
small contributions from a heavy third right-handed neutrino [18]
which can affect the results.

As in the case of CSD2, the neutrino mass matrix implies the
TM1 mixing form [20] where the first column of the PMNS matrix
is proportional to (2,−1,1)T . The reason is simply that 〈ϕν1 〉 ∝
(2,−1,1)T is an eigenvector of mν in Eq. (13) with a zero eigen-
value corresponding to the first neutrino mass m1 being zero. The
reason for this is that mν in Eq. (13) is a sum of two terms, the
first being proportional to A AT ∝ 〈ϕν3 〉〈ϕν3 〉T and the second be-
ing proportional to B BT ∝ 〈ϕν4 〉〈ϕν4 〉T . Since 〈ϕν1 〉 ∝ (2,−1,1)T is
orthogonal to both 〈ϕν3 〉 and 〈ϕν4 〉 it is then clearly annihilated
by the neutrino mass matrix, i.e. it is an eigenvector with zero
eigenvalue. Therefore we immediately expect mν in Eq. (13) to be
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Table 2
The predictions for PMNS parameters and m2/m3 arising from CSD4 as a function
of εν . Note that these predictions assume η = −2π/5. The predictions are obtained
numerically using the Mixing Parameter Tools package based on [15]. The leading
order analytic results are not reliable as discussed in Appendix B.

εν m2/m3 θ12 θ13 θ23 δ β

0.057 0.166 34.2◦ 9.0◦ 40.8◦ 107◦ −84◦
0.058 0.170 34.2◦ 9.2◦ 40.9◦ 107◦ −83◦
0.059 0.174 34.1◦ 9.4◦ 41.0◦ 106◦ −82◦
0.060 0.177 34.1◦ 9.6◦ 41.1◦ 105◦ −80◦
0.061 0.181 34.1◦ 9.7◦ 41.3◦ 104◦ −79◦

diagonalised by the TM1 mixing matrix [20] where the first col-
umn is proportional to 〈ϕν1 〉 ∝ (2,−1,1)T . Therefore we already
know that CSD4 must lead to TM1 mixing exactly to all orders ac-
cording to this general argument.

Exact TM1 mixing angle and phase relations are obtained by
equating moduli of PMNS elements to those of the first column of
the TB mixing matrix (see also [20]):

c12c13 =
√

2

3
, (16)

∣∣c23s12 + s13s23c12eiδ
∣∣ = 1√

6
, (17)

∣∣s23s12 − s13c23c12eiδ
∣∣ = 1√

6
. (18)

From Eq. (16) we see that TM1 mixing approximately preserves the
successful TB mixing for the solar mixing angle θ12 ≈ 35◦ as the
correction due to a non-zero but relatively small reactor angle is of
second order. While general TM1 mixing involves an undetermined
reactor angle θ13, we emphasise that CSD4 fixes this reactor angle.
For η = −2π/5 the reactor angle is in the correct range as shown
in Table 2.

In an approximate linear form, the relations in Eqs. (16)–(18)
imply the atmospheric sum rule relation a = r cos δ [11], hence,

θ23 ≈ 45◦ + √
2θ13 cos δ. (19)

For η = −2π/5 the predictions shown in Table 2 for the small
deviations of the atmospheric angle from maximality are well de-
scribed by the sum rule in Eq. (19). In the present model this
sum rule is satisfied by particular predicted values of angles and
CP phase which only depend on the neutrino mass ratio m2/m3.
Over the successful range of m2/m3 we predict CP violation with
δ ≈ 106◦ and θ23 ≈ 41◦ which satisfy the sum rule. Note that
according to this sum rule, non-maximal atmospheric mixing is
linked to non-maximal CP violation.

3. Conclusions

There is long history of attempts to explain the neutrino mixing
angles starting from the type I see-saw mechanism and using SD,
first using CSD to account for TB mixing, then using CSD2 to obtain
a small reactor angle before going to CSD3 where the correct reac-
tor angle can be reproduced along with maximal atmospheric mix-
ing. We have discussed a minimal predictive see-saw model based
on CSD4 in which the right-handed neutrino mainly responsible
for the atmospheric neutrino mass has couplings to (νe, νμ,ντ )

proportional to (0,1,1) and the right-handed neutrino mainly re-
sponsible for the solar neutrino mass has couplings to (νe, νμ,ντ )

proportional to (1,4,2), with a relative phase η = −2π/5. We
have shown how these patterns of couplings and phase could arise
from an A4 family symmetry model of leptons.

We remark that the type of model presented here is referred
to as “indirect” according to the classification scheme of models
in [4], meaning that the family symmetry is completely broken by
flavons and its only purpose is to generate the desired vacuum
alignments. By contrast, the “direct” models where the symmetries
of the neutrino and charged lepton mass matrices is identified as
a subgroup of the family symmetry, requires rather large family
symmetry groups in order to account for the reactor angle [21].
It is possible to have “semi-direct” models, either at leading or-
der or emerging due to higher order corrections [4], but these
are inherently less predictive. In the light of the observed reactor
angle, “indirect models” therefore offer the prospect of full predic-
tivity at the leading order from a small family symmetry group.
Spontaneous CP violation seems to be an important ingredient in
the “indirect” approach since a particular phase relation between
flavons a crucial requirement.

The particular indirect model presented here, in which CSD4
emerges from an A4 family symmetry, offers a highly predictive
framework involving only one free parameter which is used to fix
the neutrino mass ratio m2/m3, together with an overall neutrino
mass scale which is used to fix the atmospheric neutrino mass m3.
Remarkably, the model then predicts the PMNS angles θ12 ≈ 34◦ ,
θ23 ≈ 41◦ , θ13 ≈ 9.5◦ , which exactly coincide with the current best
fit values for a normal neutrino mass hierarchy, together with
the distinctive prediction for the CP violating oscillation phase
δ ≈ 106◦ . These predictions will surely be tested by current and
planned high precision neutrino oscillation experiments.

Acknowledgements

S.F.K. would like to thank A. Merle for help with MPT, Christoph
Luhn and Stefan Antusch for discussions and A. Kusenko and
T. Yanagida and the IPMU for hospitality and support. S.F.K.
also acknowledges partial support from the STFC Consolidated
ST/J000396/1 and EU ITN grants UNILHC 237920 and INVISIBLES
289442.

Appendix A. Vacuum alignment

In this appendix we shall discuss how to achieve the following
vacuum alignment,

〈φatm〉
Λ

∝
(0

1
1

)
,

〈φsol〉
Λ

∝
( 1

4
2

)
, (20)

which we refer to as CSD4.
The vacuum alignments associated with TB mixing have been

very well studied. Here we shall focus on the family symmetry A4
as it is the smallest non-Abelian finite group with an irreducible
triplet representation. The generators of the A4 group, can be writ-
ten as S and T with S2 = T 3 = (ST )3 = I . A4 has four irreducible
representations, three singlets 1, 1′ and 1′′ and one triplet. The
products of singlets are:

1 ⊗ 1 = 1, 1′ ⊗ 1′′ = 1,

1′ ⊗ 1′ = 1′′, 1′′ ⊗ 1′′ = 1′. (21)

We work in the basis [19],

S =
⎛
⎝ 1 0 0

0 −1 0
0 0 −1

⎞
⎠ , T =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ . (22)

In this basis one has the following Clebsch rules for the multipli-
cation of two triplets,

(ab)1 = a1b1 + a2b2 + a3b3,
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(ab)1′ = a1b1 + ωa2b2 + ω2a3b3,

(ab)1′′ = a1b1 + ω2a2b2 + ωa3b3,

(ab)31 = (a2b3,a3b1,a1b2),

(ab)32 = (a3b2,a1b3,a2b1), (23)

where ω3 = 1, a = (a1,a2,a3) and b = (b1,b2,b3).
Following the methods of [14] it is straightforward to obtain

the vacuum alignments for charged lepton flavon alignments suit-
able for a diagonal charged lepton mass matrix. The charged lepton
flavon alignments used to generate a diagonal charged lepton mass
matrix are obtained from the renormalisable superpotential [14],

W flavon,�
A4

∼ Aeϕeϕe + Aμϕμϕμ + Aτ ϕτϕτ + O eμϕeϕμ

+ O eτ ϕeϕτ + Oμτϕμϕτ . (24)

The triplet driving fields Ae,μ,τ give rise to flavon alignments
〈ϕe,μ,τ 〉 with two zero components, and the singlet driving fields
O ij require orthogonality among the three flavon vevs so that we
arrive at the vacuum structure [14],

〈ϕe〉 = ve

(1
0
0

)
, 〈ϕμ〉 = vμ

( 0
1
0

)
,

〈ϕτ 〉 = vτ

( 0
0
1

)
. (25)

Of more interest to us in this Letter are the new neutrino flavon
alignments. The starting point for the discussion is the usual stan-
dard TB neutrino flavon alignments proportional to the respective
columns of the TB mixing matrix,

〈ϕν1〉 = vν1

( 2
−1
1

)
, 〈ϕν2〉 = vν2

( 1
1

−1

)
,

〈ϕν3〉 = vν3

( 0
1
1

)
. (26)

We will also employ the alternative TB alignments which are re-
lated by phase redefinitions,

〈ϕν ′
1
〉 = v ′

ν1

( 2
1

−1

)
, 〈ϕν ′

2
〉 = vν ′

2

( 1
−1
1

)
,

〈ϕν ′
3
〉 = vν ′

3

( 0
−1
−1

)
. (27)

In the remainder of this subsection we shall show how to obtain
the neutrino flavon alignments including the new alignment,

〈ϕν4〉 = vν4

( 1
4
2

)
, (28)

which corresponds to the CSD4 solar flavon alignment in Eq. (20).
We shall identify φatm ≡ ϕν3 , and φsol ≡ ϕν4 . The renormalisable
superpotential involving the driving fields necessary for aligning
the neutrino-type flavons is given as

W flavon,ν
A4

= Aν2(g1ϕν2ϕν2 + g2ϕν2ξν2)

+ Aν ′
2

(
g′

1ϕν ′
2
ϕν ′

2
+ g′

2ϕν ′
2
ξν ′

2

)
+ O eν3 g3ϕeϕν3 + O ν2ν3 g4ϕν2ϕν3 + O ν1ν2 g5ϕν1ϕν2

+ O ν1ν3 g6ϕν1ϕν3 + O eν ′ g′
3ϕeϕν ′ + O ν ′ ν ′ g′

4ϕν ′ ϕν ′

3 3 2 3 2 3
+ O ν ′
1ν

′
2

g′
5ϕν ′

1
ϕν ′

2
+ O ν ′

1ν
′
3

g′
6ϕν ′

1
ϕν ′

3

+ Oμν5 g7ϕμϕν5 + O ν ′
1ν5

g8ϕν ′
1
ϕν5 + Oμν6 g9ϕμϕν6

+ O ν5ν6 g10ϕν5ϕν6 + O ν6ν4 g11ϕν6ϕν4

+ O ν1ν4 g12ϕν1ϕν4 , (29)

where Aν2 is a triplet driving field and O ij are singlet driving
fields whose F-terms lead to orthogonality relations between the
accompanying flavon fields. Here gi are dimensionless coupling
constants. The first line of Eq. (29) produces the vacuum alignment
〈ϕν2 〉 ∝ (1,1,−1)T of Eq. (26) and 〈ϕν ′

2
〉 ∝ (1,−1,1)T of Eq. (27)

as can be seen from the F -term conditions1

2g1

⎛
⎝ 〈ϕν2〉2〈ϕν2〉3

〈ϕν2〉3〈ϕν2〉1

〈ϕν2〉1〈ϕν2〉2

⎞
⎠ + g2〈ξν2〉

⎛
⎝ 〈ϕν2〉1

〈ϕν2〉2

〈ϕν2〉3

⎞
⎠ =

(0
0
0

)
(30)

plus similar conditions involving the primed flavons. The first two
terms in the second line of Eq. (29) give rise to orthogonality
conditions which uniquely fix the alignment 〈ϕν3 〉 ∝ (0,1,1)T of
Eq. (26),

〈ϕe〉T · 〈ϕν3〉 = 〈ϕν2〉T · 〈ϕν3〉 = 0 → 〈ϕν3〉 ∝
( 0

1
1

)
. (31)

The last two terms in the second line of Eq. (29) give rise to
orthogonality conditions which uniquely fix the alignment 〈ϕν1 〉 ∝
(2,−1,1)T of Eq. (26),

〈ϕν1〉T · 〈ϕν2〉 = 〈ϕν1〉T · 〈ϕν3〉 = 0 → 〈ϕν1〉 ∝
( 2

−1
1

)
. (32)

Similarly the terms in the third line of Eq. (29) give rise to or-
thogonality conditions which fix the alternative TB alignments in
Eq. (27) corresponding to a different choice of phases.

The terms in the fourth line of Eq. (29) give rise to orthogo-
nality conditions which fix the alignments of the auxiliary flavon
fields ϕν5 and ϕν6 ,

〈ϕμ〉T · 〈ϕν5〉 = 〈ϕν ′
1
〉T · 〈ϕν5〉 = 0 → 〈ϕν5〉 ∝

(1
0
2

)
, (33)

〈ϕμ〉T · 〈ϕν6〉 = 〈ϕν5〉T · 〈ϕν6〉 = 0 → 〈ϕν6〉 ∝
( 2

0
−1

)
. (34)

The neutrino-type flavon of interest labelled as ϕν4 gets aligned
by the remaining terms in the fifth line of Eq. (29), leading to the
desired alignment in Eq. (28),

〈ϕν1〉T · 〈ϕν4〉 = 〈ϕν6〉T · 〈ϕν4〉 = 0 → 〈ϕν4〉 ∝
( 1

4
2

)
. (35)

So far we have only shown how to align the flavon vevs and
have not enforced them to be non-zero. In order to do this we shall
introduce the additional non-renormalisable superpotential terms
which include,

1 We remark that the general alignment derived from these F -term conditions is
〈ϕν2 〉 ∝ (±1,±1,±1)T . One can, however, show that all of them are equivalent up
to phase redefinitions. Note that (1,1,−1) is related to permutations of the minus
sign as well as to (−1,−1,−1) by A4 transformations. The other four choices can
be obtained from these by simply multiplying an overall phase (which would also
change the sign of the ξν2 vev).
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�W flavon,�
A4

∼
∑

l=e,μ,τ

P

Λ

(
(ϕl · ϕl)ρl − M3) + P

(
ρ3

l

Λ
− M2

)
, (36)

�W flavon,ν
A4

∼
6∑

i=1

P

Λ

(
(ϕνi · ϕνi )ρνi − M3) + P

(
ρ5

νi

Λ3
− M2

)
, (37)

where, as in [11], the driving singlet fields P denote linear com-
binations of identical singlets and we have introduced explicit
masses M to drive the non-zero vevs, as well as the messenger
scales denoted as Λ. We have also introduced A4 singlets ρl and
ρνi whose vevs are driven by the F-terms of the singlets P in the
second terms in Eqs. (36) and (37). These singlet vevs enter the
first terms in Eqs. (36) and (37) which drive the vevs of the triplet
flavons.

The flavons and driving fields introduced in this appendix trans-
form under Zl

3 × Zνi
5 symmetries whose purpose is to allow only

the terms in Eqs. (24), (29) and (36) and forbid all other terms.
The superfields ϕνi transform under Zνi

5 as ρ3 (where ρ = ei2π/5)
and are singlets under all other discrete symmetries. The super-
fields ρνi transform under Zνi

5 as ρ4 and are singlets under all
other discrete symmetries. Any superfield with a single subscript
l transforms under Zl

3 as ω (where ω = ei2π/3) and is a singlet
under all other discrete symmetries. The orthogonality driving su-
perfields O ij with two subscripts transform under Zl

3 × Zνi
5 in such

a way as to allow the terms in Eqs. (24), (29). For example the
O lνi driving fields transform under Zl

3 × Zνi
5 as (ω2,ρ2). In addi-

tion driving superfields are assigned a charge of two while flavon
superfields have zero charge under a U (1)R symmetry.

Appendix B. Leading order analytic results

For the case of atmospheric alignments of the form (0, z1,1)

and solar alignments of the form (1, z2, z3), the leading order ana-
lytic results in [9,13] give,

tan θ23 ≈ |z1|, (38)

cot θ12 ≈ c23|z2| cos

(
η2 − β

2

)
− s23|z3| cos

(
η3 − β

2

)
, (39)

θ13 ≈ m2

m3
s2

12c23
∣∣|z3| + |z2| tan θ23ei(η2−η3)

∣∣, (40)

where η2 = arg(z2/z1) and η3 = arg(z3), while β is a Majorana
phase. With z1 = 1 and arbitrarily assuming β = 0 and real phases
±1 associated with η2 and η3 one finds the relations

tan θ23 ≈ 1, (41)

cot θ12 ≈ 1√
2
|z2 − z3|, (42)

θ13 ≈ m2

m3

1

3
√

2
|z3 + z2|. (43)

We should say immediately that the assumption β = 0 is not jus-
tified so these results can be at best suggestive. With this caveat,
we note that approximately tri-maximal solar mixing cot θ12 ≈ √

2
results from the general condition |z2 − z3| = 2 which is satisfied
by all the proposed forms of CSD.2 Moreover, CSD with z2 = 1,
z3 = −1 leads to θ13 ≈ 0, CSD2 with z2 = 2, z3 = 0 leads to
θ13 ≈ m2

m3

√
2

3 , CSD3 with z2 = 3, z3 = 1 leads to θ13 ≈ m2
m3

4
3
√

2
, CSD4

with z2 = 4, z3 = 2 leads to θ13 ≈ m2
m3

√
2.

2 I would like to thank Stefan Antusch (private communications) for emphasising
the condition |z2 − z3| = 2.
Although the above leading order results provide a qualitative
understanding of the results obtained for CSD, CSD2, CSD3 and
CSD4, they have large corrections of order m2/m3, much larger
than the errors in the global fits and so do not give reliable pre-
dictions. In addition there is a strong dependence on the phase
difference between the solar and atmospheric alignments which
these results ignore. Moreover, the phase η does not appear in the
leading order formula for θ13, but in practise the reactor angle de-
pends strongly on η, as discussed in [13]. On the other hand, while
the phases do appear in the solar angle formula, we have arbitrar-
ily and incorrectly assumed β = 0.

In summary, the leading order results, while providing a qual-
itative understanding, are quantitatively unreliable and cannot be
used to estimate the mixing angles to the required accuracy. The
general analysis as performed in [13] did not rely on the leading
order results in any way and was not inspired by them. Start-
ing from an exact master formula, the analysis [13] determined
from first principles not only the moduli |zi | but also the phases
ηi which are required for a proper definition of any new type of
CSD. For example CSD4 with solar alignment (1,4,2) is only prop-
erly defined once the phases η2 = η3 = −2π/5 are specified. In
retrospect, it is rather fortuitous that the condition |z2 − z3| = 2
is satisfied for all the proposed forms of CSD. Indeed other more
complicated but equally successful examples were found that vio-
lated the condition |z2 − z3| = 2 and these were also tabulated in
[13].
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