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Abstract 

Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism 

with little biological activity. However, recent studies have demonstrated that dietary nitrate 

can modulate mitochondrial function in man and is effective in reversing features of the 

metabolic syndrome in mice. Using a combined histological, metabolomics, and 

transcriptional and protein analysis approach we mechanistically define that nitrate not only 

increases the expression of thermogenic genes in brown-adipose tissue but also induces the 

expression of brown adipocyte-specific genes and proteins in white adipose tissue, 

substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate 

induces these phenotypic changes through a mechanism distinct from known physiological 

small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide 

pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-

morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown 

adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. 

Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be 

an effective means of inducing the browning response in adipose tissue to treat the metabolic 

syndrome. 
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The diffuse and complex nature of the metabolic syndrome integrates peripheral insulin 

resistance and visceral obesity with cardiovascular disease; making the discovery of 

underlying molecular mechanisms that unite the aspects of the metabolic syndrome both 

challenging and essential. The perturbation of nitric oxide (NO) synthesis and signaling has 

emerged as a potential modulator of both cardiovascular morbidity and metabolic dysfunction 

(1; 2). 

Until recently inorganic nitrate was considered a non-bioactive product of NO oxidation (3). 

However, a number of studies have identified nitrate treatment of humans and rodents as 

having effects similar to NO (4; 5). The discovery of anti-obesity effects of nitrate in rodents, 

including weight loss, a reduction of body fat, reversal of lipodystrophy and an improvement 

in glucose and insulin homeostasis, may highlight nitrate as having therapeutic potential for 

the treatment of the metabolic syndrome (6).  

Dietary nitrate increases the circulating concentration of cGMP in humans (7) and low 

nitrate/nitrite diets decrease steady-state concentrations of cGMP in a number of tissues (8). 

Recently, cGMP has been shown to regulate energy balance in white adipocytes (9). The 

development of a brown adipocyte-like phenotype in white adipocytes, a process known as 

“browning”, includes the induction of thermogenesis, the dissipation of chemical energy to 

produce heat (10; 11). Peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α) 

activates key components of the thermogenic program in white adipocytes, including fatty 

acid oxidation, mitochondrial biogenesis, and increased oxygen consumption (12). The 

thermogenic process occurs through the activity and increased expression of several brown-

adipocyte specific genes including uncoupling protein 1 (UCP1), an inner mitochondrial 

membrane protein that uncouples the mitochondrial proton gradient (13). Cells expressing 

brown-adipocyte specific genes are interspersed within the white adipose tissue (WAT) of 

rodents and humans (so-called “beige” or “brite” cells) (14; 15)) and demonstrate anti-
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diabetic and anti-obesity effects in rodent models (16-19). The recent discovery of a 

physiological small molecule activator of browning in WAT highlights metabolites as both 

potential mediators of the thermogenic response and therapeutics for the metabolic syndrome 

(20). 

In this study we investigate the effect of nitrate on WAT metabolism both in the classic 

experimental model of browning in vitro, the mouse primary adipocyte, and in vivo in mice 

and rats to establish whether this may, in part, explain the anti-obesity activity of nitrate. We 

demonstrate that nitrate increases the expression of brown-adipocyte specific genes and 

concordant proteins within white adipocytes to confer a brown-adipocyte like phenotype. 
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Research Design and Methods 

Animal Experimentation. Male Wistar rats (6 weeks old) (269 ± 2 g; n = 24) (Charles 

River.) were weight matched and received either distilled water or water containing sodium 

nitrate (NaNO3) (0.35, 0.7, 1.4 mM; n = 6/group) (Ultra-pure, Sigma-Aldrich) ad libitum for 

18 days with food and water intake monitored.  Animals were housed in conventional cages 

at room temperature with a 12-hour/12-hour light/dark photoperiod. In the hypoxia study, 

male Wistar rats (6 weeks old) were weight matched and separated into two groups (n = 

10/group), housed in either normoxic or normobaric hypoxic environments (hypoxia 

chamber: 13% O2, with 20 air changes per hour). The rats in each group received either 

distilled water containing NaCl (n = 5, 0.7mM NaCl) or water containing NaNO3 (0.7 mM; n 

= 5) for 14 days. All other details are as above.   

 

Male p129 mice (6 weeks old) received either distilled water containing NaCl (0.7mM, 

Control, n = 7) or NaNO3 (0.7mM, n = 7) (Ultra-pure, Sigma-Aldrich) ad libitum for 15 days 

with food and water intake monitored.  

  

ob/ob mice (n = 10) and C57bl/6 wild type mice (n = 10) (9 weeks old, The Jackson 

Laboratory) received either distilled water containing NaCl (0.7mM, Control, n = 5) or 

NaNO3 (0.7mM, n = 5) (Ultra-pure, Sigma-Aldrich) ad libitum for 8 weeks with food and 

water intake monitored. Animals were housed in conventional cages at room temperature 

with a 12-hour/12-hour light/dark photoperiod.    

 

All animals had micro-nutrient levels normalized by a standardized quality controlled (SQC) 

diet (RM1 (E); 55% crude carbohydrate, 3% crude fat, 15% crude protein; Special Diets 
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Services, UK) one week prior to study commencement. The nitrate content of this diet is 2 

mg/Kg and the nitrite content was undetectable below a threshold of 1 mg/Kg. 

 

All procedures were carried out in accordance with UK Home Office protocols by a personal 

license holder. 

 

Blood and Tissue Collection. Rats and mice were euthanized with sodium pentobarbital 

(200 mg/ml, Vétoquinol UK Ltd.). Blood was obtained by cardiac puncture, collected in N-

ethylmaleimide/EDTA (10 and 2.5 mM, respectively) containing tubes and immediately 

centrifuged to obtain plasma. WAT and interscapular brown adipose tissue (iBAT) were 

removed and flash frozen in liquid nitrogen. 

 

Histology. WAT was fixed for 24 hr in 10% formalin and washed for 1 hr in PBS before 

being set in wax. The tissue was then cut into 8 µm thick slices and stained with 

haematoxylin and eosin. 

 

Plasma Nitrate Measurements. Plasma nitrate was measured as described previously (21).   

 

Culture and Differentiation of Primary Adipocytes. Primary white adipose stromal 

vascular cells were fractionated from 6 – 10 week old C57BL6 male mice as previously 

described (22).  Stromal vascular cells were then cultured and differentiated into adipocytes 

according to published methods (22; 23).  During the 6 day differentiation, cells were 

cultured with either saline (control), 25 µM NaNO3, 50 µM NaNO3 or 500 µM NaNO3 (Ultra-

pure, Sigma-Aldrich) or, during the investigation of the effects of sodium nitrite (NaNO2), 

with saline (control), 50 µM NaNO2 or 500 µM NaNO2 (Ultra-pure, Sigma-Aldrich). The 
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pharmacological inhibitor studies utilized 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-

oxide (PTIO) (50 µM), NG-nitro-L-arginine methyl ester (L-NAME) (1 mM), 1H-[1,2,

4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (1 µM) (Sigma-Aldrich) and KT5823 (1 µM) 

(Santa Cruz Biotechnology). Cells were treated with PTIO, L-NAME, ODQ or KT5823 with 

and without 500 µM NaNO3. NaNO3 and inhibitors were added at day 1 of differentiation. In 

the hypoxia study, cells were isolated and differentiated as above. Hypoxic conditions were 

achieved using a New Brunswick Eppendorf Galaxy 14S incubator supplied with nitrogen 

and set to maintain a 2% O2 environment. 

 

siRNA Xanthine Oxidoreductase Knockdown. FlexiTube siRNA against XOR, AllStars 

negative control siRNA and HiPerFect Transfection Reagent were purchased from Qiagen. 

Transfection of primary adipocytes was carried out as per the manufacturer’s instructions (75 

ng siRNA, 3 µl transfection reagent per well,10 nM final siRNA concentration) on day 2 and 

4 of differentiation.  

 

Tissue and Primary Adipocyte Metabolite Extraction. Metabolites were extracted from 

WAT and primary adipocytes as previously described (24).  

 

13
C-palmitate Substrate Labeling Study. Palmitate was solubilized using a dialyzed 

albumin solution (24). At 6 days post-differentiation medium was removed from primary 

adipocytes and replaced with serum free media containing insulin 850 nM, triiodothyronin 1 

nM, and rosiglitazone 1 µM and 140 µM U-
13

C labeled palmitate (Cambridge Isotope 

Laboratories). After 2 days cells were collected and metabolites extracted as previously 

described. During the 8 days of the experiments duration, cells were cultured with either 

saline (control), 50 µM NaNO3 or 500 µM NaNO3. 
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Gene Expression Analysis. Total RNA extraction from WAT, BAT, and adipocytes, cDNA 

conversion and quantitative RT-PCR was performed according to published protocols (20). 

All data were normalized to 18SrRNA (mouse WAT, BAT and adipocytes) or RLPL1 (rat 

WAT) and quantitative measures obtained using the ∆-∆-CT method.  

 

Protein Analysis. Analysis of UCP1 and PGC-1α was performed using ELISA as per the 

manufacturer’s instructions (UCP1 Kit SEF557Ra, PGC-1α Kit SEH337Ra, Cloud-Clone 

Corp. Houston, TX, USA). Immunoblotting for CPT1 was carried out as previously described 

(25).  

 

Citrate Synthase Assay. Citrate synthase was assayed according to Houle-Leroy et al.(26).  

 

White Adipocyte Respirometry. Oxygen consumption rates were measured in white 

adipocytes (250,000 cells) maintained in Krebs-Henseleit buffer at 37
○
C, using Clark-type 

oxygen electrodes (Strathkelvin Instruments, Strathkelvin, UK) as described previously (27).  

 

Gas Chromatography-Mass Spectrometry Analysis. Dried aqueous and organic phase 

samples were derivatized using the method described previously (24). Gas Chromatography-

Mass Spectrometry (GC-MS) and data analysis were performed according to published 

methods (24). 

 

13
C-labeled Substrate GC-MS Analysis. Analysis of organic and aqueous phases was 

carried out as described above and according to published methods (24).  
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Liquid Chromatography-Mass Spectrometry Analysis of Intact Lipids. Liquid 

Chromatography-Mass Spectrometry (LC-MS) was performed on WAT using a Waters Q-

ToF Xevo mass spectrometer (Waters Corporation, Manchester, UK) operating with 

electrospray ionization in combination with an Acquity UPLC according to the method 

described by Roberts at al. (24).  LC-MS spectra and chromatograms were analyzed using the 

MarkerLynx Application MassLynx (version 4.1; Waters Corporation) using published 

protocols (24).   

 

LC-MS Analysis of cGMP. LC-MS analysis of cGMP was performed using a 4000 QTRAP 

triple quadrupole mass spectrometer (Applied Biosystems/Sciex), coupled to an Acquity 

UPLC (Waters Corporation, Manchester, UK) according to a previously described method 

(28). The multiple reaction monitoring parameters for cGMP were: Q1 = 346.13 m/z, Q3 = 

152.1 m/z, collision energy = 23, declustering potential = 41, collision cell exit potential = 10.   

 

Statistical Analyses. Error bars represent standard error of the mean. P-values were 

calculated by either one-way or two-way ANOVA as stated with a Dunnett’s post-hoc test 

when multiple comparisons where made solely to control and a Tukey’s post-hoc test when 

comparisons were made between all treatment groups.  
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Results   

Nitrate Induces a Brown Adipocyte-like Phenotype in White Adipocytes In Vivo 

Rodents treated with dietary nitrate are protected against diabetes and obesity (6). Activation 

of the browning response in WAT may represent a process underlying this altered systemic 

energy balance; therefore, we assessed the effect of dietary nitrate on the expression of brown 

adipocyte-specific genes in WAT in vivo. Wistar rats were treated with 0.35 mM, 0.7 mM or 

1.4 mM NaNO3 in drinking water for 18 days based on preliminary dose escalation studies. 

Plasma nitrate concentrations were found to increase in a dose-dependent fashion, with the 

basal concentration in control rats at 11.1 ± 0.7 µM, increasing to 15.4 ± 2.0 µM, 22.8 ± 4.0 

µM, and 32.6 ± 5.0 µM in the rats treated with 0.35 mM, 0.7 mM and 1.4 mM NaNO3, 

respectively. Water and food intake was not significantly different between the groups (Table 

S1). Since it is the subcutaneous WAT that has the greatest predisposition to undergo 

browning and influence energy balance (23), we concentrated our analyses on the inguinal 

WAT depot. Nitrate dose-dependently increased brown adipocyte-specific gene expression in 

WAT. The expression of UCP-1 was increased, as was the molecular marker of brown-like 

adipocytes, cell death-inducing DFFA-like effector a (CIDEA), which has a role in the 

regulation of the thermogenic process (Fig. 1A). Expression of PGC-1α, and the 

mitochondrial electron transport chain component cytochrome c (CYCS) were increased 

dose-dependently. Nitrate also increased expression of β-oxidation genes including carnitine 

palmitoyltransferase 1 (CPT1) and acyl-CoA dehydrogenase, very long chain (ACADvl) 

(Control vs. 0.35 mM NaNO3 P ≤ 0.01, Control vs. 0.7 mM NaNO3 P ≤ 0.0001, Control vs. 

1.4 mM NaNO3 P ≤ 0.001). Specific beige-selective genes, including T-box transcription 

factor (Tbx1), Transmembrane Protein 26 (Tmem26) and CD137, distinguish beige fat cells 

from both classical brown and white adipocytes (29). Nitrate moderately increased the 

expression of the beige-selective markers Tbx1, Tmem26 and CD 137 specifically 
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characterizing these cells as beige adipocytes within the inguinal WAT depot (Fig. S1). 

Nitrate did not significantly change the expression of the canonical adipocyte-specific 

markers adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) in the WAT 

indicating that adipose tissue exposed to nitrate presents similar levels of adipogenesis (Fig. 

S2). Furthermore, analysis of brown-adipocyte specific gene expression in the visceral 

(epididymal) WAT of nitrate treated rats also revealed a moderate increase in the mRNA of 

several genes involved in the thermogenic and browning process (Fig. S3). 

 

To determine whether changes in the expression of key brown adipocyte-specific genes were 

translated to the level of protein, the concentrations of UCP-1, PGC-1α and CPT1 protein in 

the subcutaneous WAT of nitrate treated rats were analyzed. Nitrate increased the expression 

of the brown-adipocyte specific proteins UCP-1 and PGC-1α (Control vs. 0.35 mM NaNO3 P 

≤ 0.001, Control vs. 0.7 mM NaNO3 P ≤ 0.05, Control vs. 1.4 mM NaNO3 P = 0.01) (Fig 

1.B). Nitrate also increased the concentration of the β-oxidation protein CPT1 within WAT 

(Control vs. 0.35 mM NaNO3 P ≤ 0.05, Control vs. 0.7 mM NaNO3 P ≤ 0.05, Control vs. 1.4 

mM NaNO3 P ≤ 0.05) (Fig. 1C). The observed induction of characteristic brown adipocyte 

genes and increase in the concentration of brown adipocyte-specific proteins suggests a 

browning of the subcutaneous WAT.  

 

We next examined whether the changes in gene and protein expression induced by nitrate 

resulted in altered energy metabolism within the WAT. The activity of citrate synthase, a 

marker of mitochondrial density and TCA cycle flux, was significantly increased following 

nitrate treatment, suggesting increased mitochondrial biogenesis consistent with browning of 

WAT (Control vs. 0.35 mM NaNO3 P ≤ 0.05, Control vs. 0.7 mM NaNO3 P ≤ 0.05, Control 
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vs. 1.4 mM P ≤ 0.01) (Fig. 1D). Since beige/brite cells utilize fatty acids as fuel for 

thermogenesis, we investigated whether nitrate affected lipid metabolism in the WAT of 

treated rats. GC-MS and LC-MS were utilized to measure total fatty acid and triacylglycerol 

(TAG) species in the WAT, respectively. Nitrate treatment increased the medium chain fatty 

acid (MCFA) (laurate, myristate) / long chain fatty acid (LCFA) (arachidate, behenate) ratio, 

indicative of increased β-oxidation shortening fatty acid chain length (Control vs. 0.35 mM 

NaNO3 P ≤ 0.05, Control vs. 0.7 mM NaNO3 P ≤ 0.05, Control vs. 1.4 mM NaNO3 P ≤ 0.01) 

(Fig. 1E and Fig. S4). LC-MS analysis demonstrated that nitrate also decreased the total TAG 

content within WAT (0.95-fold, 0.35 mM NaNO3; 0.94-fold, 0.7 mM NaNO3; 0.98-fold, 1.4 

mM NaNO3; Control vs. 0.35 mM P ≤ 0.01, Control vs. 0.7 mM P ≤ 0.01) (Fig. 1F). 

Therefore, metabolic changes induced in WAT in vivo by nitrate treatment were characteristic 

of a brown adipocyte-like phenotype. 

 

Histological analyses of the inguinal WAT of nitrate treated rats at fifty-times magnification 

revealed the presence of fascicles of multilocular brown adipocyte-like cells (Fig 1G). Under 

greater magnification the smaller multilocular brown adipocyte-like cells can be observed 

confirming morphological changes in the WAT. Together these data indicate that nitrate 

induces the browning of WAT.    

 

To ensure nitrate-induced expression of brown adipocyte-specific genes in rat WAT is not 

species-specific, mice were treated with 0.7 mM NaNO3 in drinking water. As in rat, brown 

adipocyte-specific gene expression was increased in inguinal WAT by nitrate treatment (Fig. 

S5A). The expression of thermogenic genes in classical iBAT from nitrate treated mice was 

also increased (Fig. S5B). 
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Nitrate Induces a Brown Adipocyte-like Phenotype in White Adipocytes In Vitro 

Nitrate may function directly to increase the expression of brown adipocyte-specific genes in 

WAT or indirectly through metabolic bioactivation in cells distinct from those in the target 

tissue. Therefore stromal vascular fraction-derived primary adipocytes isolated from inguinal 

WAT of mice were treated with nitrate. NaNO3 concentrations of 25 µM, 50 µM and 500 µM 

were chosen. The latter two concentrations correspond to plasma levels in mice exhibiting 

improved metabolic phenotypes when chronically treated and acutely dosed with 0.1 

mmol/kg of NaNO3, respectively (6). Nitrate treatment significantly increased the expression 

of brown-adipocyte specific genes UCP-1, CIDEA and PGC-1α. Also increased in expression 

were CYCS, CPT1 and ACADvl (Control vs. 25 µM NaNO3 P ≤ 0.01, Control vs. 50 µM 

NaNO3 P ≤ 0.0001, Control vs. 500 µM NaNO3 P ≤ 0.0001) (Fig. 2A). By contrast, nitrate did 

not significantly affect the expression of a panel of classical mature adipocyte-specific genes 

including ADIPOQ, FABP4, and adipsin, suggesting that nitrate dose not directly affect 

adipogenesis per se (Fig. S6) (29).  These data indicate nitrate mediated induction of brown-

adipocyte specific gene expression occurs directly at the WAT.    

We next investigated whether the transcriptional changes induced by nitrate conferred 

functional effects on energy expenditure in primary adipocytes. The O2 consumption rates of 

adipocytes treated with nitrate (50 µM and 500 µM) were measured (Fig. 2B). The basal O2 

consumption rate was dose-dependently increased in adipocytes treated with nitrate (Control 

3.1 nmoles O2/min/10
6
 cells, 50 µM NaNO3 4.5 nmoles O2/min/10

6
 cells, 500 µM NaNO3 5.1 

nmoles O2/min/10
6
 cells, P ≤ 0.05). Maximal respiratory rates were probed using excess 

succinate (20 mM) (27), and were found to increase in adipocytes treated with nitrate 

(Control 4.2 nmoles O2/min/10
6
 cells, 50 µM NaNO3 6.6 nmoles O2/min/10

6
 cells, 500 µM 
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NaNO3 7.7 nmoles O2/min/10
6
 cells, P ≤ 0.05). These findings indicate that nitrate increases 

the respiration of adipocytes consistent with the browning response (Control vs. 50 µM 

NaNO3 P ≤ 0.01, Control vs. 500 µM NaNO3 P ≤ 0.001).   

GC-MS analysis of the fatty acid metabolism of adipocytes treated with nitrate also  

highlighted the increase in the MCFA/LCFA ratio, mirroring the effects observed in WAT in 

vivo (Control vs. 50 µM NaNO3 P ≤ 0.05, Control vs. 500 µM NaNO3 P = 0.08) (Fig. 2C). 

 

Nitrate Increases Fatty Acid Uptake and β-oxidation in White Adipocytes In Vitro 

To confirm the increased β-oxidation observed in nitrate treated adipocytes, the stable isotope 

substrate U-
13

C-palmitate was used to monitor flux through the fatty acid oxidation pathway. 

Primary adipocytes were incubated in serum-free media containing U-
13

C-palmitate and 

treated with nitrate. GC-MS analysis was used to determine the relative enrichment of 

metabolites. Nitrate significantly increased the 
13

C enrichment of palmitate (C16:0) in 

adipocytes, indicating increased fatty acid uptake (P ≤ 0.01) (Fig. 3A). Enrichment of shorter 

chain fatty acids, myristate (C14:0) and laurate (C12:0) was also increased in nitrate treated 

adipocytes (C14:0 P ≤ 0.05, C12:0 P ≤ 0.05) (Fig. 3B and 3C), consistent with augmented 

chain shortening through β-oxidation.  

 

The labeled fatty acids are catabolized releasing labeled acetyl-CoA which enters the TCA 

cycle. Nitrate treatment increased the labeling of TCA cycle intermediates, citrate (Control 

vs. 50 µM NaNO3 P ≤ 0.0001, Control vs. 500 µM NaNO3 P ≤ 0.001) (Fig. 3D), succinate 

(Control vs. 500 µM NaNO3 P ≤ 0.05) (Fig. 3E) and malate (Control vs. 500 µM NaNO3 P ≤ 

0.05) (Fig. 3F). Therefore, nitrate confers a functional effect on white adipocytes, increasing 
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flux through fatty acid β-oxidation. Taken together, these data demonstrate that nitrate 

induces the expression of thermogenic genes and the development of a brown-fat like 

phenotype in white adipocytes and WAT.  

 

Nitrate Functions through the Nitrate-Nitrite-NO Pathway to Induce Browning of 

Adipocytes  

In addition to the classical L-arginine-nitric oxide synthase (NOS)-NO pathway, NO can also 

be generated in vivo from nitrate through serial reduction to nitrite and then to NO via the 

nitrate-nitrite-NO pathway (30). Therefore, we hypothesized that nitrate might be functioning 

via NO to produce the browning response in WAT. Primary adipocytes were differentiated in 

the presence of nitrate and the NO scavenger PTIO (Fig. 4A) (Control vs. 500 µM NaNO3 P ≤ 

0.0001, 500 µM NaNO3 vs. 500 µM NaNO3 + 50 µM PTIO P ≤ 0.0001). Sequestration of NO 

by PTIO negated the nitrate-induced expression of brown adipocyte-specific genes, 

indicating that nitrate indeed functions via NO to induce browning.  

To exclude the induction of NO production through the L-arginine-NOS-NO pathway as a 

mechanism of nitrate stimulated browning, control experiments were conducted using the 

non-isoform selective NOS inhibitor L-NAME. Inhibition of NOS did not affect nitrate-

stimulated brown adipocyte-specific gene expression in adipocytes (Fig. 4B) (Control vs. 500 

µM NaNO3 P ≤ 0.001, Control vs. 500 µM NaNO3 + 1mM L-NAME P ≤ 0.0001, 500 µM 

NaNO3 vs. 500 µM NaNO3 + 1mM L-NAME not significant). Therefore, nitrate stimulated 

browning functions through NO but independently of NOS.  

An enzymatic mechanism for the reduction of nitrate to NO in mammals, catalyzed by XOR, 

was recently reported (4). XOR is expressed in WAT and has a role in adipocyte homeostasis 
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(31). Nitrate dose-dependently increased the expression of XOR in primary adipocytes (Fig. 

4C). Using PTIO, the nitrate stimulated increase in XOR expression was demonstrated to be 

mediated through NO (Fig. 4D). The expression of XOR in primary adipocytes was knocked 

down by approximately 80% using siRNA (Fig 4E). Knockdown of XOR abrogated the 

nitrate-induced expression of brown adipocyte-specific genes in white adipocytes (Fig 4F). 

Consistent with these results, nitrite promoted brown adipocyte-specific gene expression in 

adipocytes via an NO-dependent mechanism (Fig. S7A, B). By examining fold-increases of 

brown adipocyte-specific genes, nitrite at equivalent concentrations to nitrate appeared more 

potent in inducing the browning response, consistent with the inefficient overall rate of 

reduction of nitrate to nitrite and eventually NO (4). These results indicate that nitrate 

mediated browning of adipocytes requires XOR and the reduction of nitrate to NO.     

 

Nitrate Increases Browning of Adipocytes Through a cGMP and Protein Kinase G 

Mediated Mechanism  

We next characterized the downstream signaling/effector pathways mediating nitrate-induced 

browning of WAT. NO activates cGMP signaling through stimulation of soluble guanylyl 

cyclase (3). cGMP mediates browning of WAT (9) suggesting cGMP signaling as a potential 

mechanism underlying nitrate-induced browning.  Therefore, we measured the concentration 

of cGMP in nitrate treated adipocytes using LC-MS (Fig. 5A). Nitrate increased the 

concentration of cGMP in adipocytes, from 2.7 pmoles/10
6
 cells in the control to 5.2 

pmoles/10
6
 cells and 4.9 pmoles/10

6
 cells in the 50 µM NaNO3 and 500 µM NaNO3 treated 

cells, respectively (P = 0.04, Control vs. 50 µM NaNO3 P ≤ 0.05, Control vs. 500 µM NaNO3 

P ≤ 0.05) (Fig. 5B). Similarly, analysis of WAT from rats demonstrates an increase in cGMP 
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concentrations in vivo, following  nitrate treatment (P < 0.05, Control vs. 0.35mM NaNO3 P ≤ 

0.01, Control vs. 0.7mM NaNO3 P ≤ 0.05, Control vs. 1.4mM NaNO3 P = 0.07) (Fig. 5C).  

The pharmacological inhibitor of guanylyl cyclase, ODQ, was used to confirm a cGMP-

dependent mechanism for nitrate-induced browning. Inhibition of guanylyl cyclase abolished 

the nitrate-induced expression of brown adipocyte-specific genes in white adipocytes 

(Control vs. 500 µM NaNO3 P ≤ 0.0001, 500 µM NaNO3 vs. 500 µM NaNO3 + 1 µM ODQ 

P ≤ 0.001) (Fig. 5D).  

The cGMP-dependent protein kinase G (PKG) is expressed in the WAT of rodents and is a 

key regulator of adipocyte function (9; 32). Using a pharmacological inhibitor of PKG 

(KT5823) we investigated the role of this protein kinase in the nitrate-induced browning 

response. Inhibition of PKG abrogated the nitrate-induced expression of brown-adipocyte 

specific genes in the adipocytes (Control vs. 500 µM NaNO3 P ≤ 0.0001, 500 µM NaNO3 vs. 

500 µM NaNO3 + 1 µM KT5823 P ≤ 0.0001) (Fig. 5E). Therefore, the mechanism 

underlying nitrate-induced browning of WAT functions through the cGMP/PKG signaling 

axis.   

 

Nitrate Induced Browning of WAT is Enhanced In Hypoxia  

Unlike the L-arginine-NOS-NO pathway, which is dependent on oxygen, production of NO 

through the nitrate-nitrite-NO pathway is augmented as oxygen concentrations decrease (33) 

and may regulate tissue adaptations to hypoxia (34; 35). Since the nitrate-induced browning 

of WAT is mediated through the nitrate-nitrite NO pathway, we examined the capacity of 

nitrate to increase brown adipocyte-specific gene expression in adipocytes during hypoxia.  
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Primary adipocytes were treated with NaNO3 (50 µM) in low oxygen conditions (2% O2). 

These oxygen concentrations correspond to levels observed in obese WAT (36). In parallel, 

adipocytes from the same stromal vascular isolation were treated with NaNO3 (50 µM) under 

normoxic conditions. Since nitrate-induced browning requires the reduction of nitrate to NO, 

and XOR functions to reduce nitrate to NO (4), we assessed the expression of XOR in the 

adipocytes in response to changes in oxygen availability. XOR expression was found to 

increase in adipocytes exposed to hypoxia, an effect enhanced by simultaneous nitrate 

treatment (Fig. 6A) (Normoxia Control vs. Hypoxia Control P ≤ 0.01, Hypoxia Control vs. 

Hypoxia 50 µM NaNO3 P ≤ 0.05, Normoxia 50 µM NaNO3 vs. Hypoxia 50 µM NaNO3 P ≤ 

0.001). Nitrate also increased the expression of brown adipocyte-specific genes in both the 

normoxia and hypoxia conditioned cells (Normoxia Control vs. Normoxia 50 µM NaNO3 P ≤ 

0.0001, Hypoxia Control vs. Hypoxia 50 µM NaNO3 P ≤ 0.0001) (Fig. S8A). Hypoxia per se 

significantly decreased the expression of the brown-adipocyte specific genes compared to 

normoxia (Normoxia Control vs. Hypoxia Control P ≤ 0.01). However, nitrate increased the 

expression of the brown-adipocyte specific genes and fully restored the expression of UCP1, 

CIDEA and CPT1 under hypoxia to levels greater than that of normoxic controls. The 

decrease in expression of the genes due to hypoxia alone was corrected for by normalizing 

the hypoxia conditioned cells to hypoxia control to facilitate comparison of the fold-changes 

in expression of the browning genes following nitrate treatment (Fig. 6B). The fold-change 

increase of brown adipocyte-specific gene expression in hypoxic adipocytes treated with 

nitrate compared to hypoxic control was significantly greater than that observed in normoxic 

cells (Normoxia 50 µM NaNO3 vs. Hypoxia 50 µM NaNO3 P ≤ 0.0001). 

 

To investigate the enhanced browning effect of nitrate in WAT under hypoxic conditions in 

vivo, rats were housed in a hypoxia chamber and either received 0.7mM NaCl or 0.7 mM 
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NaNO3 in their drinking water for 14 days. A parallel group of rats were identically treated 

but housed in a normoxic environment. Water and food intake was not significantly different 

between the groups (Table S2). As in vitro, XOR expression was increased in WAT of rats 

exposed to hypoxia, and further enhanced by nitrate treatment (Fig. 6C) (Normoxia Control 

vs. Hypoxia Control P ≤ 0.01, Normoxia 50 µM NaNO3 vs. Hypoxia 50 µM NaNO3 P ≤ 

0.01).  As expected, nitrate increased expression of brown adipose-specific genes in WAT 

during normoxia (Normoxia Control vs. Normoxia 0.7 mM NaNO3, P ≤ 0.01) (Fig. 6D). 

Brown adipocyte-specific gene expression was also increased in the WAT of rats treated with 

nitrate under hypoxic conditions (Hypoxia Control vs. Hypoxia 0.7 mM NaNO3, P < 0.0001). 

Interestingly, brown adipocyte-specific gene expression within WAT was significantly 

increased in the rats treated with nitrate during hypoxia when compared to those treated with 

nitrate and housed in a normoxic environment (Normoxia 0.7 mM NaNO3 vs. Hypoxia 

0.7mM NaNO3, P < 0.0001). The expression of ADIPOQ was not significantly affected by 

either nitrate or hypoxia (Fig. S8B). Overall, these data indicate that the nitrate-induced 

expression of brown adipocyte-specific genes in WAT is augmented in hypoxia. 

 

The WAT of obese humans and rodents is in a hypoxic state that perturbs metabolism, 

increasing glycolysis and de novo lipogenesis and decreasing fatty acid breakdown, further 

contributing to the pathology of obesity (36-39). Therefore, we investigated the effect of 

dietary nitrate on the expression of brown adipocyte-specific genes in WAT in a rodent 

model of obesity, the ob/ob mouse. Wild-type C57bl/6 and ob/ob mice received either 0.7 

mM NaCl or 0.7 mM NaNO3 in their drinking water for 8 weeks. Plasma nitrate 

concentrations were elevated from 59.8 µM ± 4 and 53.8 µM ± 11 in the chloride treated 

C57bl/6 and ob/ob mice respectively to 373.1 ± 73 and 323.9 ± 58 in their nitrate treated 

counterparts. The expression of several brown adipocyte-specific genes in the WAT of ob/ob 
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mice was significantly reduced when compared to wild-type mice. Nitrate increased the 

expression of the brown adipocyte-specific genes, partially restoring the impaired levels of 

expression in this model of obesity (Fig 6E).  
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Discussion 

Nitrate was considered a non-bioactive metabolite of NO and a potentially toxic dietary 

constituent. However, studies showing that nitrate reduces blood pressure (5; 7; 40) and the 

oxygen demand of exercise (41) indicated that this anion may be beneficial for metabolic 

health. Complementary studies demonstrated that nitrate has anti-obesity and anti-diabetic 

effects, independent of increased mitochondrial biogenesis or PGC1α expression in liver or 

muscle, in endothelial NOS-deficient mice, a strain prone to a metabolic syndrome-like 

phenotype (6). Similar anti-diabetic effects of nitrate have since been described in Sprague-

Dawley rats (42). Diets low in nitrate and nitrite reduce the concentration of cGMP in certain 

tissues (8). In recent years a role for cGMP signaling in systemic energy balance has emerged 

(32; 43; 44). cGMP was recently demonstrated to  induce browning within WAT (9). These 

beige/brite cells (14; 15) have cardiometabolic protective effects in rodents (11; 16; 18; 19; 

22; 23; 45). Thus, we hypothesized that nitrate might contribute to the improved metabolic 

phenotype by inducing the browning response in WAT. 

 

In the present study we demonstrate that nitrate increases the expression of thermogenic 

genes in BAT and activates a brown adipocyte-like transcriptional and functional phenotype 

within WAT. Furthermore, we find that nitrate induces browning of adipocytes through the 

NOS-independent nitrate-nitrite-NO pathway. Thus nitrate activates the thermogenic process 

in a manner distinct from physiological metabolite activators of browning previously 

described (Fig. S9) (20). Our findings suggest a mechanism by which nitrate is reduced to 

NO, which in turn increases cGMP production via soluble guanylyl cyclase activation. 

Increased cGMP concentrations activate PKG, increasing the expression of PGC-1α and 

other key browning genes such as UCP1 and CIDEA in white adipocytes. Increased 

expression of brown adipocyte-specific and β-oxidation pathway genes translates to a brown 
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adipocyte-like functional phenotype characterized by increased fatty acid β-oxidation (Fig. 

7). Incidentally, the recently identified mechanism for natriuretic peptide induced browning 

of WAT was also revealed to signal through the cGMP cascade (43), underscoring the 

importance of this signaling pathway for the physiological activation of thermogenesis in 

WAT. 

 

It was observed that the nitrate-induced browning response in WAT was enhanced in 

hypoxia. The nitrate-nitrite-NO pathway is significantly augmented during hypoxia, with 

both the activity and expression of XOR increased in low oxygen conditions (4). The 

pathway has also been implicated in the adaptive response of some tissues to hypoxia (30; 33; 

35). It is conceivable that production of NO from nitrate leads to the enhanced nitrate-

induced browning of WAT observed in hypoxia. The WAT of obese humans, and genetic and 

dietary models of obesity in rodents, is in a hypoxic state (36; 37). Exposure of adipocytes to 

hypoxia leads to cellular metabolic reprogramming, consisting of increased glycolysis and 

fatty acid and TAG synthesis and decreased fatty acid catabolism, that contributes to the 

pathology of obesity (38; 39). The identification of an enhanced capacity for nitrate to induce 

the browning response of WAT in low oxygen conditions through NO, which will likely also 

contribute to improved vascular health in obese individuals where NO production is 

decreased (46), may represent a significant therapeutic opportunity to partly reverse this 

hypoxia mediated pathological state. Indeed, our studies show that the impaired expression of 

several brown adipocyte-specific genes in the WAT of the ob/ob mouse model of obesity is 

partially reversed by nitrate treatment. 
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From a nutritional perspective, humans are exposed to nitrate as part of their daily diet, with 

green leafy vegetables representing a significant source of the anion. A high vegetable 

component to diets is consistently shown to have a protective role in the development of 

metabolic morbidity (47; 48). It has been suggested that the high nitrate content of vegetables 

is partly responsible for their association with cardiometabolic protection (30; 34). It is worth 

speculating that increasing the flux through the nitrate-nitrite-NO pathway may be one 

mechanism through which dietary vegetable consumption confers the associated metabolic 

protection. Given that the concentrations of nitrate utilized in our study are readily achievable 

through dietary vegetable consumption (6; 34), dietary nitrate may also function to activate 

cGMP signaling in human WAT. The possibility that this ubiquitous dietary constituent could 

induce browning of WAT in humans is tantalizing.  

 

It should be noted that the responses of WAT to nitrate were not universally dose-dependent. 

This observation may represent rapid tachyphylaxis and/or resistance to inorganic nitrate, a 

phenomenon well characterized in the clinical use of organic nitrates, in particular at high 

doses. Alternatively, cellular uptake of inorganic nitrate may become rate-limiting or 

saturated at high doses. The NO signaling pathway is also subject to counter regulation 

through a number of disparate mechanisms that include the action of phosphodiesterases 

(PDEs), which may influence the effect of nitrate in WAT (Fig S10). PDEs such as PDE5, 

control cGMP concentrations and therefore inhibit downstream effects such as protein kinase 

G stimulation. Indeed, inhibition of PDE5 is known to stimulate the browning of WAT (9).  

 

In summary, we identify nitrate as a novel non-β-adrenergic activator of the browning 

response in WAT and highlight this small anion as both a potential dietary mediator of 

protection from, and potential therapeutic modality for the treatment of, metabolic disease.   
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Figure Legends 

Fig. 1. Dietary nitrate induces a brown adipocyte-like phenotype in white adipose tissue 

(WAT) in vivo. (A) Increased expression of brown-adipocyte specific genes in subcutaneous 

WAT of nitrate treated rats (Two-way ANOVA, Control vs. 0.35 mM NaNO3 P ≤ 0.01, 

Control vs. 0.7 mM NaNO3 P ≤ 0.001, Control vs. 1.4 mM P ≤ 0.0001). (B) Increased 

concentration of brown-adipocyte specific proteins in subcutaneous WAT of nitrate treated 

rats determined by ELISA (Two-way ANOVA, Control vs. 0.35 mM NaNO3 P ≤ 0.001, 

Control vs. 0.7 mM NaNO3 P ≤ 0.05, Control vs. 1.4 mM P ≤ 0.01) (C) Increased 

concentration of carnitine palmitoyltransferase 1 (CPT1) protein in subcutaneous WAT of 

nitrate treated rats determined by immunoblotting (One-way ANOVA, Control vs. 0.35 mM 

NaNO3 P ≤ 0.05, Control vs. 0.7 mM NaNO3 P ≤ 0.05, Control vs. 1.4 mM NaNO3 P ≤ 0.05).  

(D) Increased citrate synthase activity in subcutaneous WAT of nitrate treated rats (One-way 

ANOVA, Control vs. 0.35 mM NaNO3 P ≤ 0.05, Control vs. 0.7 mM NaNO3 P ≤ 0.05, 

Control vs. 1.4 mM P ≤ 0.01) (E) The medium chain fatty acid (MCFA) / long chain fatty 

acid (LCFA) ratio in WAT from nitrate treated rats (One-way ANOVA, Control vs. 0.35 mM 

NaNO3 P ≤ 0.05, Control vs. 0.7 mM NaNO3 P ≤ 0.05, Control vs. 1.4 mM NaNO3 P ≤ 0.01). 

(F) LC-MS analysis of total triacylglycerols (TAGs) from WAT indicates decreased total 

TAGs stored in the WAT of nitrate treated rats (One-way ANOVA, Control vs. 0.35 mM 

NaNO3 P ≤ 0.01, Control vs. 0.7 mM NaNO3 P ≤ 0.01). (G) Haematoxylin and eosin staining 

of inguinal WAT of control and nitrate treated rats. Cumulative data from a total of 6 

independent observations are shown. Data are represented as Mean ± SEM. * P ≤ 0.05, ** P 

≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001. 

Fig. 2. Nitrate stimulates expression of brown adipocyte-specific genes and induces an 

oxidative phenotype in primary white adipocytes. (A) The expression of brown adipocyte-

specific genes in primary white adipocytes treated with nitrate (25 µM NaNO3, 50 µM 

NaNO3 and 500 µM NaNO3) (Two-way ANOVA, Control vs. 25 µM NaNO3 P ≤ 0.01, 

Control vs. 50 µM NaNO3 P ≤ 0.0001, Control vs. 500 µM NaNO3 P ≤ 0.0001). (B) Basal 

and stimulated (succinate 20 mM) oxygen consumption was increased in white adipocytes 

treated with nitrate, normalized to 10
6
 cells (Two-way ANOVA, Control vs. 50 µM NaNO3 P 

≤ 0.01, Control vs. 500 µM NaNO3 P ≤ 0.001). (C) The medium chain fatty acid (MCFA) / 

long chain fatty acid (LCFA) ratio was increased in white adipocytes with nitrate treatment 

(ANOVA, Control vs. 50 µM NaNO3 P ≤ 0.05, Control vs. 500 µM NaNO3 P ≤ 0.05). 

Cumulative data from a total of 4 independent observations are shown. Data are represented 

as Mean ± SEM. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P < 0.0001. 

Fig. 3 Fatty acid uptake and β-oxidation is increased in nitrate treated primary white 

adipocytes characteristic of the browning response. (A) 
13

C-enrichment of palmitate (C16:0) 

was significantly increased in nitrate treated adipocytes (One-way ANOVA, P ≤ 0.01). (B) 
13

C-enrichment of myristate (C14:0) was significantly increased in nitrate treated adipocytes 

(One-way ANOVA, P ≤ 0.05). (C) 
13

C-enrichment of laurate (C12:0) was significantly 

increased in nitrate treated adipocytes (One-way ANOVA, P ≤ 0.05).  (D) 
13

C-enrichment of 

citrate was significantly increased in nitrate treated adipocytes (Two-way ANOVA, P ≤ 

0.0001, Control vs. 50 µM NaNO3 P ≤ 0.0001, Control vs. 500 µM NaNO3 P ≤ 0.001) (E) 
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13
C-enrichment of succinate was significantly increased in nitrate treated adipocytes (Two-

way ANOVA, P ≤ 0.05, Control vs. 500 µM NaNO3 P ≤ 0.05). (F) 
13

C-enrichment of malate 

was significantly increased in nitrate treated adipocytes (Two-way ANOVA, P ≤ 0.05, 

Control vs. 500 µM NaNO3 P ≤ 0.05). Red highlighting indicates increased enrichment. 

Cumulative data from a total of 4 independent observations are shown. Data are represented 

as Mean ± SEM. * P ≤ 0.05, ** P ≤ 0.01,*** P ≤ 0.001, **** P < 0.0001. 

Fig. 4. Nitrate functions through the nitrate-nitrite-NO pathway to induce browning of white 

adipocytes. (A) Brown adipocyte-specific gene expression in primary adipocytes treated with 

the NO scavenger PTIO (50 µM) with and without 500 µM NaNO3 (Two-way ANOVA, 

Control vs. 500 µM NaNO3 P ≤ 0.0001, 500 µM NaNO3 vs. 500 µM NaNO3 + 50 µM PTIO P 

≤ 0.0001) (n = 3). (B) Brown adipocyte-specific gene expression in primary adipocytes 

treated with the NOS inhibitor L-NAME (1 mM) with and without 500 µM NaNO3 (Two-

way ANOVA, Control vs. 500 µM NaNO3 P ≤ 0.001, Control vs. 500 µM NaNO3 + 1 mM L-

NAME P ≤ 0.0001) (n = 3). (C) The expression of xanthine oxidoreductase (XOR) in primary 

white adipocytes treated with nitrate (25 µM, 50 µM, 500 µM) (One-way ANOVA, Control 

vs. 50 µM NaNO3 P ≤ 0.05, Control vs. 500 µM NaNO3 P ≤ 0.05) (n = 4). (D) XOR 

expression in primary adipocytes treated with the NO scavenger PTIO (50 µM) with and 

without 500 µM NaNO3 (One-way ANOVA, Control vs. 500 µM NaNO3 P ≤ 0.01, 500 µM 

NaNO3 vs. 500 µM NaNO3 + 50 µM PTIO P ≤ 0.01) (n = 3). (E) XOR expression in primary 

adipocytes treated with negative control siRNA or siRNA against XOR with and without 500 

µM NaNO3 (n = 3 / group) (One-way ANOVA, Control siRNA vs.Control siRNA + 500 µM 

NaNO3 P ≤ 0.001, Control siRNA vs XOR siRNA P ≤ 0.001, Control siRNA vs XOR 

siRNA+ 500 µM NaNO3 P ≤ 0.001) (F) Brown adipocyte-specific gene expression in primary 

adipocytes treated with negative control siRNA or siRNA against XOR with and without 500 

µM NaNO3 (n = 3 / group) (Two-way ANOVA, Control siRNA vs Control siRNA + 500 µM 

NaNO3 P ≤ 0.0001, Control siRNA + 500 µM NaNO3 vs XOR siRNA+ 500 µM NaNO3 P ≤ 

0.0001, XOR siRNA vs XOR siRNA+ 500 µM NaNO3 not significant).  Data are represented 

as Mean ± SEM. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P < 0.0001. 

Fig. 5. cGMP signaling mediates the nitrate stimulated browning response in white 

adipocytes. (A) LC-MS chromatograms of typical peaks for cGMP from control and 500 µM 

NaNO3 treated primary adipocytes. (B) The concentration of cGMP increases in primary 

white adipocytes treated with nitrate (ANOVA, P ≤ 0.05, Control vs. 50 µM NaNO3 P ≤ 0.05, 

Control vs. 500 µM NaNO3 P ≤ 0.05) (n = 4). (C) The concentration of cGMP increases in 

white adipose tissue of rats treated with nitrate (0.35 mM NaNO3, 0.7 mM NaNO3 and 1.4 

mM NaNO3) (ANOVA, P < 0.05, Control vs. 0.35 mM NaNO3 P ≤ 0.01, Control vs. 0.7 mM 

NaNO3 P ≤ 0.05, Control vs. 1.4 mM NaNO3, P = 0.07) (n = 6). (D) Primary adipocytes 

treated with the guanylyl cyclase inhibitor ODQ (1 µM) with and without 500 µM NaNO3 

(Two-way ANOVA, Control vs. 500 µM NaNO3 P ≤ 0.0001, 500 µM NaNO3 vs. 500 µM 

NaNO3 + 1 µM ODQ P ≤ 0.001) (n = 6). (E) Primary adipocytes treated with the protein 

kinase G inhibitor KT5823 (1 µM) with and without 500 µM NaNO3 (Two-way ANOVA,  

Control vs. 500 µM NaNO3 P ≤ 0.0001, 500 µM NaNO3 vs. 500 µM NaNO3 + 1 µM KT5823 
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P ≤ 0.0001) (n = 3). Data are represented as Mean ± SEM. * P ≤ 0.05, ** P ≤ 0.01, **** P < 

0.0001. 

Fig. 6. The nitrate stimulated browning response is enhanced in hypoxia. (A) Nitrate (50 µM 

NaNO3) induced expression of xanthine oxidoreductase (XOR) in white adipocytes is 

increased in hypoxia (Two-way ANOVA, Normoxia Control vs. Hypoxia Control P ≤ 0.01, 

Normoxia NaNO3 vs. Hypoxia NaNO3 P ≤ 0.001, Hypoxia Control vs. Hypoxia NaNO3 P ≤ 

0.05) (n = 4). (B)  The expression of brown adipocyte-specific genes in primary white 

adipocytes treated with nitrate (50 µM NaNO3) in normoxia or hypoxia and normalized to 

relevant control (normoxia 50 µM nitrate normalized to normoxia control, hypoxia 50 µM 

nitrate normalized to hypoxia control) (Two-way ANOVA, Normoxia NaNO3 vs. Hypoxia 

NaNO3 P ≤ 0.001) (n = 4). (C) The expression of XOR in white adipose tissue (WAT) of 

nitrate treated (0.7 mM NaNO3) rats is increased in hypoxia (Two-way ANOVA, Normoxia 

Control vs. Hypoxia Control P ≤ 0.01, Normoxia NaNO3 vs. Hypoxia NaNO3 P ≤ 0.01, 

Hypoxia Control vs. Hypoxia NaNO3 P ≤ 0.05) (n = 5). (D) The increased expression of 

brown-adipocyte specific genes in WAT of nitrate treated rats is enhanced during hypoxia 

(Two-way ANOVA, Normoxia 0.7 mM NaNO3 vs. Hypoxia 0.7mM NaNO3, P < 0.0001) (n 

= 5). (E) The reduced expression of brown adipocyte-specific genes in WAT of the ob/ob 

mouse compared to wild type controls is partially restored following nitrate treatment. (Two-

way ANOVA, Wild Type Control vs. ob/ob Control P ≤ 0.0001, Wild Type Control vs. Wild 

Type NaNO3 P ≤ 0.01, ob/ob Control vs. ob/ob NaNO3 P ≤ 0.0001)  Data are represented as 

Mean ± SEM. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P < 0.0001. 

 

Fig. 7.  Proposed mechanism for nitrate-induced browning of white adipocytes. After entering 

the cell, nitrate is reduced first to nitrite, then to nitric oxide (NO). NO increases cGMP 

production via soluble guanylyl cyclase activation. Increased cGMP concentrations activate 

PKG, increasing the expression of PGC-1α and key browning genes. Increased expression of 

brown adipocyte-specific and β-oxidation pathway genes confers an oxidative brown 

adipocyte-like functional phenotype on the white adipocytes. ACAD, acyl-CoA 

dehydrogenase; CIDEA, cell death-inducing DFFA-like effector a; cGMP, cyclic guanosine 

monophosphate; CPT1, carnitine palmitoyltransferase; CYCS, cytochrome c; GTP, 

Guanosine triphosphate; LCFA, long chain fatty acid; NO, nitric oxide; ODQ, 1H-[1,2,

4]oxadiazolo[4,3-a]quinoxalin-1-one; PGC1α, peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha; SCFA, short chain fatty acid; UCP1, uncoupling protein 1; XOR, 

xanthine oxidoreductase. 
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Supplementary Text 

Nitrate Increases Browning of White Adipocytes Through a PPARα Independent Mechanism 

We have shown that nitrate increases the expression of PGC-1α in vivo and in vitro. PGC-1α 

drives the expression of brown adipocyte-specific genes in white adipocytes and regulates 

many of its effects through co-activation of transcription factors such as peroxisome 

proliferator-activated receptors (PPARs) (1). PPARα has been shown to mediate the effect of 

a number of activators of the browning response in white adipocytes (2-4). Therefore, we 

examined the effect of nitrate on brown adipocyte-specific gene expression in primary white 

adipocytes differentiated from the stromal vascular fraction of subcutaneous WAT of PPARα 

knockout mice. The absence of PPARα had no effect on the activity of nitrate to increase 

brown adipocyte-specific gene expression within the white adipocytes (Fig. S9). Nitrate 

treatment significantly increased the expression of UCP-1, CIDEA, PGC-1α, ELOVL3, 

CYCS and CPT1 (ANOVA, P < 0.0001, Control vs. 50 µM NaNO3 P ≤ 0.0001, Control vs. 

500 µM NaNO3 P ≤ 0.0001). Thus, nitrate activates the browning response in white 

adipocytes independently of PPARα. 
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Supplementary Figures 

 

Fig. S1  The expression of beige adipocyte-specific markers Tbx1, Tmem26 and 

CD137 is increased in white adipose tissue of nitrate treated rats (0.35 mM NaNO3, 0.7 mM 

NaNO3, 1.4 mM NaNO3). Cumulative data from a total of 6 independent observations are 

shown. Data are represented as Mean ± SEM. * P ≤ 0.05 
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Fig. S2  The expression of both adiponectin (ADIPOQ) and fatty acid binding protein 

4 (FABP4) is not significantly different in white adipose tissue of nitrate treated rats (0.35 

mM NaNO3, 0.7 mM NaNO3, 1.4 mM NaNO3). Cumulative data from a total of 6 

independent observations are shown. Data are represented as Mean ± SEM.  

Page 41 of 52

For Peer Review Only

Diabetes



 

 

Fig. S3  The expression of browning genes in epididymal white adipose tissue of rats 

treated with inorganic nitrate (0.7 mM) for 18 days. Exposure to nitrate significantly 

increased the expression of the brown adipocyte-specific genes UCP-1, CIDEA, PGC-1α and 

CYCS. Cumulative data from a total of 5 independent observations are shown. Data are 

represented as Mean ± SEM. ****, P ≤ 0.0001. 
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Fig. S4  The concentration of long chain and medium chain fatty acids measured by 

GC-MS in white adipose tissue of rats treated with inorganic nitrate (0.35 mM, 0.7 mM, 1.4 

mM). (A). Arachidate. (B) Behenate. (C) Laurate. (D) Myristate. Cumulative data from a total 

of 6 independent observations are shown. Data are represented as Mean ± SEM. *, P ≤ 0.05, 

**, P ≤ 0.01. 
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Fig. S5  (A) Brown adipocyte-specific gene expression in subcutaneous WAT of mice 

treated with 0.7 mM NaNO3 in drinking water for 15 days. (B) Real-time qPCR analysis 

shows increased expression of thermogenic genes in iBAT of nitrate treated mice. 

Cumulative data from a total of 7 independent observations are shown. Data are represented 

as Mean ± SEM. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001. 

Page 44 of 52

For Peer Review Only

Diabetes



 

 

 

Fig. S6  Real-time qPCR analysis shows unchanged expression of classical mature 

adipocyte-specific genes adiponectin (ADIPOQ), fatty acid binding protein 4 (FABP4) and 

adipsin in primary white adipocytes treated with nitrate (25 µM, 50 µM and 500 µM). 

Cumulative data from a total of 4 independent observations are shown. Data are represented 

as Mean ± SEM. 
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Fig. S7  (A) The expression of brown-adipocyte specific genes is increased in primary 

white adipocytes treated with NaNO2 (50 µM and 500 µM) (Two-way ANOVA, Control vs. 

50 µM NaNO2 P ≤ 0.0001, Control vs. 500 µM NaNO2 P ≤ 0.0001). Cumulative data from a 

total of 4 independent observations are shown.  (B) Primary adipocytes differentiated from 

the stromal vascular fraction treated with the NO scavenger PTIO (50 µM) with and without 

500 µM NaNO2 (Two-way ANOVA, Control vs. 500 µM NaNO2 P ≤ 0.0001, 500 µM 

NaNO2 vs. 500 µM NaNO2 + 50µM PTIO P ≤ 0.001). Cumulative data from a total of 3 

independent observations are shown. Data are represented as Mean ± SEM. ***, P ≤ 0.001, 

****, P ≤ 0.0001. 
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Fig. S8  (A) The expression of brown adipocyte-specific genes in primary white 

adipocytes treated with nitrate (50 µM NaNO3) in normoxic and hypoxic conditions (Two-

way ANOVA, Normoxia control vs. Normoxia NaNO3 P ≤ 0.0001, Hypoxia Control vs. 

Hypoxia NaNO3 P ≤ 0.0001, Normoxia Control vs. Hypoxia Control P ≤ 0.01) (n = 4). (B) 

Real-time qPCR analysis shows unchanged expression of adiponectin (ADIPOQ) in 

subcutaneous white adipose tissue of nitrate treated rats both in normoxia and hypoxia. 

Cumulative data from a total of 5 independent observations are shown. Data are represented 

as Mean ± SEM. **, P ≤ 0.01, ****, P ≤ 0.0001. 
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Fig. S9   Nitrate increases expression of brown adipocyte-specific genes in primary 

white adipocytes differentiated from the stromal vascular fraction isolated from inguinal 

WAT of PPARα null mice (Two-way ANOVA, Control vs. 50 µM NaNO3 P ≤ 0.0001, 

Control vs. 500 µM NaNO3 P ≤ 0.0001). Cumulative data from a total of 4 independent 

observations are shown. Data are represented as Mean ± SEM. ****, P ≤ 0.0001. 
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Fig. S10 Nitrate increases expression of phosphodiesterase 5 (PDE5) in white 

adipocytes in vivo and in vitro. (A) Increased expression of PDE5 in subcutaneous WAT of 

nitrate treated rats (One-way ANOVA, Control vs. 0.35 mM NaNO3 P ≤ 0.05, Control vs. 0.7 

mM NaNO3 P ≤ 0.05, Control vs. 1.4 mM P ≤ 0.05). Six independent observations are 

shown. (B) The expression of PDE5 increased in primary white adipocytes treated with 

NaNO3 (25 µM, 50 µM and 500 µM) (One-way ANOVA, Control vs. 25 µM NaNO3 P ≤ 

0.05, Control vs. 50 µM NaNO3 P ≤ 0.05, Control vs. 500 µM NaNO3 P ≤ 0.001). Cumulative 

data from a total of 4 independent observations are shown. Data are represented as Mean ± 

SEM. * P ≤ 0.05, ***, P ≤ 0.001. 
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Supplementary Tables 

NaNO3 Dose  
Control 

(n=6) 

0.35 mM 

(n=6) 

0.7 mM 

(n=6) 

1.4 mM 

(n=6) 

 

Start weight (g) 

 

265 ± 5 268 ± 6 270 ± 4 271 ± 3 

 

End weight (g) 

 

406 ± 8 420 ± 13 415 ± 9 404 ± 4 

 

Food intake 

(g/day) 

30 ± 1 30 ± 1 30 ± 1 30 ± 1 

 

Water intake 

(mL/day) 

30 ± 3 35 ± 2 36 ± 3 32 ± 3 

 

Nitrate intake 

(mg/kg/day) 

1 ± 1 5 ± 2
 

8 ± 2 13 ± 1 

 

Table S1  Table of morphological parameters of rats treated with 0.35 mM, 0.7 mM and 

1.4 mM NaNO3 in drinking water for 18 days. Table detailing start and final weights, and 

food and water intakes, allowing subsequent calculation of daily nitrate intake.  
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 Normoxia 

0.7mM NaCl 

Normoxia 

0.7mM NaNO3 

Hypoxia 

0.7mM NaCl 

Hypoxia 

0.7mM NaNO3 

     

Start weight (g) 268 ± 5 268 ± 6 276 ± 2 280 ± 4 

End weight (g) 429 ± 8 431 ± 9 416 ± 14 412 ± 12 

Food Intake 

(g/day) 

 

 

32 ± 2 

 

33 ± 1 

 

35 ± 2 

 

33 ± 1 

Water Intake  

(ml/day) 

 

28 ± 1 28 ± 1 27 ± 4 32 ± 2 

Adipose tissue 

(g) 

3.5 ± 0.3 3.2 ± 0.2 4.4 ± 0.3 3.5 ± 0.3 

 

 

Tibia Length 

(mm) 
47 ± 0.2 47 ± 0.2 47 ± 0.4 47 ± 0.4 

 

Nitrate intake 

(mg/kg/day) 

1 ± 0 9 ± 0*** 1 ± 0 7 ± 0†††
aa 

 

Plasma 

Triglycerides 

(mmol / L) 

0.93 ± 0.2 1.317 ± 0.1†† 
aaa

 2.98 ± 0.4 *** 1.98 ± 0.2 *† 

 

Plasma Glucose 

(mmol/L) 

12.9 ± 1.5  15.3 ± 2.9 15.5 ± 0.4 12.4 ± 0.7 

 

Plasma Insulin 

(µg/L) 

2.7 ± 1 3.392 ± 1.2 1.410 ± 0.3 1.35 ± 0.4 

 

Table S2  Table detailing morphological parameters of rats treated with 0.7 mM NaCl 

or 0.7mM NaNO3 in drinking water and housed in normoxic or hypoxic conditions for 14 

days. Two-way ANOVA with Tukey’s post-hoc test, significant effect compared to 

normoxia/0.7 mM NaCl, * = p ≤ 0.05  ,** = p ≤ 0.01 ,*** = p ≤ 0.001. Two-way ANOVA 

with Tukey’s post-hoc test, significant effect compared to hypoxia/0.7 mM NaCl,  †† = p ≤ 

0.01 ,†††= p ≤ 0.001. 2-way ANOVA with Tukey’s post-hoc test, significant effect compared 

to normoxia/0.7mM NaNO3, aa = p ≤ 0.01, aaa = p ≤ 0.001. 
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Nitrate Increases Browning of White Adipocytes Through a PPARα Independent Mechanism 
 
We have shown that nitrate increases the expression of PGC-1α in vivo and in vitro. PGC-1α drives the 
expression of brown adipocyte-specific genes in white adipocytes and regulates many of its effects 
through co-activation of transcription factors such as peroxisome proliferator-activated receptors 
(PPARs) (1). PPARα has been shown to mediate the effect of a number of activators of the browning 
response in white adipocytes (2-4). Therefore, we examined the effect of nitrate on brown adipocyte-
specific gene expression in primary white adipocytes differentiated from the stromal vascular fraction of 
subcutaneous WAT of PPARα knockout mice. The absence of PPARα had no effect on the activity of 
nitrate to increase brown adipocyte-specific gene expression within the white adipocytes (Fig. S9). 
Nitrate treatment significantly increased the expression of UCP-1, CIDEA, PGC-1α, ELOVL3, CYCS 
and CPT1 (ANOVA, P < 0.0001, Control vs. 50 μM NaNO3 P ≤ 0.0001, Control vs. 500 μM NaNO3 P ≤ 
0.0001). Thus, nitrate activates the browning response in white adipocytes independently of PPARα. 
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Supplementary Figure 1. The expression of beige adipocyte-specific markers Tbx1, Tmem26 and 
CD137 is increased in white adipose tissue of nitrate treated rats (0.35 mM NaNO3, 0.7 mM NaNO3, 1.4 
mM NaNO3). Cumulative data from a total of 6 independent observations are shown. Data are 
represented as Mean ± SEM. * P ≤ 0.05 
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Supplementary Figure 2. The expression of both adiponectin (ADIPOQ) and fatty acid binding protein 
4 (FABP4) is not significantly different in white adipose tissue of nitrate treated rats (0.35 mM NaNO3, 
0.7 mM NaNO3, 1.4 mM NaNO3). Cumulative data from a total of 6 independent observations are 
shown. Data are represented as Mean ± SEM.  
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Supplementary Figure 3. The expression of browning genes in epididymal white adipose tissue of rats 
treated with inorganic nitrate (0.7 mM) for 18 days. Exposure to nitrate significantly increased the 
expression of the brown adipocyte-specific genes UCP-1, CIDEA, PGC-1α and CYCS. Cumulative data 
from a total of 5 independent observations are shown. Data are represented as Mean ± SEM. ****, P ≤ 
0.0001. 
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Supplementary Figure 4. The concentration of long chain and medium chain fatty acids measured by 
GC-MS in white adipose tissue of rats treated with inorganic nitrate (0.35 mM, 0.7 mM, 1.4 mM). (A). 
Arachidate. (B) Behenate. (C) Laurate. (D) Myristate. Cumulative data from a total of 6 independent 
observations are shown. Data are represented as Mean ± SEM. *, P ≤ 0.05, **, P ≤ 0.01. 
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Supplementary Figure 5. (A) Brown adipocyte-specific gene expression in subcutaneous WAT of mice 
treated with 0.7 mM NaNO3 in drinking water for 15 days. (B) Real-time qPCR analysis shows 
increased expression of thermogenic genes in iBAT of nitrate treated mice. Cumulative data from a total 
of 7 independent observations are shown. Data are represented as Mean ± SEM. * P ≤ 0.05, ** P ≤ 0.01, 
*** P ≤ 0.001, **** P ≤ 0.0001. 
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Supplementary Figure 6. Real-time qPCR analysis shows unchanged expression of classical mature 
adipocyte-specific genes adiponectin (ADIPOQ), fatty acid binding protein 4 (FABP4) and adipsin in 
primary white adipocytes treated with nitrate (25 μM, 50 μM and 500 μM). Cumulative data from a total 
of 4 independent observations are shown. Data are represented as Mean ± SEM. 
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Supplementary Figure 7. (A) The expression of brown-adipocyte specific genes is increased in primary 
white adipocytes treated with NaNO2 (50 μM and 500 μM) (Two-way ANOVA, Control vs. 50 μM 
NaNO2 P ≤ 0.0001, Control vs. 500 μM NaNO2 P ≤ 0.0001). Cumulative data from a total of 4 
independent observations are shown.  (B) Primary adipocytes differentiated from the stromal vascular 
fraction treated with the NO scavenger PTIO (50 μM) with and without 500 μM NaNO2 (Two-way 
ANOVA, Control vs. 500 μM NaNO2 P ≤ 0.0001, 500 μM NaNO2 vs. 500 μM NaNO2 + 50μM PTIO P 
≤ 0.001). Cumulative data from a total of 3 independent observations are shown. Data are represented as 
Mean ± SEM. ***, P ≤ 0.001, ****, P ≤ 0.0001. 
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Supplementary Figure 8. (A) The expression of brown adipocyte-specific genes in primary white 
adipocytes treated with nitrate (50 μM NaNO3) in normoxic and hypoxic conditions (Two-way 
ANOVA, Normoxia control vs. Normoxia NaNO3 P ≤ 0.0001, Hypoxia Control vs. Hypoxia NaNO3 P ≤ 
0.0001, Normoxia Control vs. Hypoxia Control P ≤ 0.01) (n = 4). (B) Real-time qPCR analysis shows 
unchanged expression of adiponectin (ADIPOQ) in subcutaneous white adipose tissue of nitrate treated 
rats both in normoxia and hypoxia. Cumulative data from a total of 5 independent observations are 
shown. Data are represented as Mean ± SEM. **, P ≤ 0.01, ****, P ≤ 0.0001. 
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Supplementary Figure 9. Nitrate increases expression of brown adipocyte-specific genes in primary 
white adipocytes differentiated from the stromal vascular fraction isolated from inguinal WAT of 
PPARα null mice (Two-way ANOVA, Control vs. 50 μM NaNO3 P ≤ 0.0001, Control vs. 500 μM 
NaNO3 P ≤ 0.0001). Cumulative data from a total of 4 independent observations are shown. Data are 
represented as Mean ± SEM. ****, P ≤ 0.0001. 
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Supplementary Figure 10. Nitrate increases expression of phosphodiesterase 5 (PDE5) in white 
adipocytes in vivo and in vitro. (A) Increased expression of PDE5 in subcutaneous WAT of nitrate 
treated rats (One-way ANOVA, Control vs. 0.35 mM NaNO3 P ≤ 0.05, Control vs. 0.7 mM NaNO3 P ≤ 
0.05, Control vs. 1.4 mM P ≤ 0.05). Six independent observations are shown. (B) The expression of 
PDE5 increased in primary white adipocytes treated with NaNO3 (25 μM, 50 μM and 500 μM) (One-
way ANOVA, Control vs. 25 μM NaNO3 P ≤ 0.05, Control vs. 50 μM NaNO3 P ≤ 0.05, Control vs. 500 
μM NaNO3 P ≤ 0.001). Cumulative data from a total of 4 independent observations are shown. Data are 
represented as Mean ± SEM. * P ≤ 0.05, ***, P ≤ 0.001. 
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Supplementary Table 1. Table of morphological parameters of rats treated with 0.35 mM, 0.7 mM and 
1.4 mM NaNO3 in drinking water for 18 days. Table detailing start and final weights, and food and 
water intakes, allowing subsequent calculation of daily nitrate intake. 
 

NaNO3 Dose  
Control 
(n=6) 

0.35 mM 
(n=6) 

0.7 mM 
(n=6) 

1.4 mM 
(n=6) 

 
Start weight (g) 
 

265 ± 5 268 ± 6 270 ± 4 271 ± 3 

 
End weight (g) 
 

406 ± 8 420 ± 13 415 ± 9 404 ± 4 

 
Food intake 
(g/day) 

30 ± 1 30 ± 1 30 ± 1 30 ± 1 

 
Water intake 
(mL/day) 

30 ± 3 35 ± 2 36 ± 3 32 ± 3 

 
Nitrate intake 
(mg/kg/day) 

1 ± 1 5 ± 2 8 ± 2 13 ± 1 
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Supplementary Table 2. Table detailing morphological parameters of rats treated with 0.7 mM NaCl or 
0.7mM NaNO3 in drinking water and housed in normoxic or hypoxic conditions for 14 days. Two-way 
ANOVA with Tukey’s post-hoc test, significant effect compared to normoxia/0.7 mM NaCl, * = p ≤ 
0.05  ,** = p ≤ 0.01 ,*** = p ≤ 0.001. Two-way ANOVA with Tukey’s post-hoc test, significant effect 
compared to hypoxia/0.7 mM NaCl,  †† = p ≤ 0.01 ,†††= p ≤ 0.001. 2-way ANOVA with Tukey’s post-
hoc test, significant effect compared to normoxia/0.7mM NaNO3, aa = p ≤ 0.01, aaa = p ≤ 0.001. 
 

 Normoxia 
0.7mM NaCl 

Normoxia 
0.7mM NaNO3 

Hypoxia 
0.7mM NaCl

Hypoxia 
0.7mM NaNO3 

     
Start weight (g) 268 ± 5 268 ± 6 276 ± 2 280 ± 4 

End weight (g) 429 ± 8 431 ± 9 416 ± 14 412 ± 12 

Food Intake 
(g/day) 
 

 
32 ± 2 

 
33 ± 1 

 
35 ± 2 

 
33 ± 1 

Water Intake  
(ml/day) 
 

28 ± 1 28 ± 1 27 ± 4 32 ± 2 

Adipose tissue 
(g) 

3.5 ± 0.3 3.2 ± 0.2 4.4 ± 0.3 3.5 ± 0.3 
 
 

Tibia Length 
(mm) 

47 ± 0.2 47 ± 0.2 47 ± 0.4 47 ± 0.4 

 
Nitrate intake 
(mg/kg/day) 

1 ± 0 9 ± 0*** 1 ± 0 7 ± 0†††aa 

 
Plasma 
Triglycerides 
(mmol / L) 

0.93 ± 0.2 1.317 ± 0.1†† aaa 2.98 ± 0.4 *** 1.98 ± 0.2 *† 

 
Plasma Glucose 
(mmol/L) 

12.9 ± 1.5  15.3 ± 2.9 15.5 ± 0.4 12.4 ± 0.7 

 
Plasma Insulin 
(μg/L) 

2.7 ± 1 3.392 ± 1.2 1.410 ± 0.3 1.35 ± 0.4 
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