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ABSTRACT: We consider gauge coupling unification in Eg F-Theory Grand Unified Theories
(GUTSs) where Eg is broken to the Standard Model (SM) gauge group using fluxes. In such
models there are two types of exotics that can affect gauge coupling unification, namely
matter exotics from the matter curves in the 27 dimensional representation of Eg and
the bulk exotics from the adjoint 78 dimensional representation of Eg. We explore the
conditions required for either the complete or partial removal of bulk exotics from the
low energy spectrum. In the latter case we shall show that (miraculously) gauge coupling
unification may be possible even if there are bulk exotics at the TeV scale. Indeed in
some cases it is necessary for bulk exotics to survive to the TeV scale in order to cancel
the effects coming from other TeV scale matter exotics which would by themselves spoil
gauge coupling unification. The combination of matter and bulk exotics in these cases can
lead to precise gauge coupling unification which would not be possible with either type of
exotics considered by themselves. The combination of matter and bulk exotics at the TeV
scale represents a unique and striking signature of Eg F-theory GUTs that can be tested
at the LHC.
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1 Introduction

Recently there has been much interest [1-6] in formulating Grand Unified Theories (GUTSs)
within the framework of F-theory (for reviews see [7-12]). In this setting, there has been
great progress in both global and local model building in the last few years [13]-[61], where
global models focus on the construction of elliptically fibered Calabi-Yau four-folds, and
local models deal with the effective field theory where the GUT symmetry is realised on a
7-brane wrapping a 4-dimensional surface S. The so called ‘semi-local’ approach imposes
constraints from requiring that S is embedded into a local Calabi-Yau four-fold, which in
practice leads to the presence of a local Eg singularity [20]. All Yukawa couplings originate
from this single point of Eg enhancement, and we can learn about the matter and couplings
of the semi-local theory by decomposing the adjoint of Eg in terms of representations
of the GUT group and the perpendicular gauge group. In terms of the local picture,



matter is localised on curves where the GUT brane intersects other 7-branes with extra
U(1) symmetries associated to them, with this matter transforming in bi-fundamental
representations of the GUT group and the U(1). Yukawa couplings are then induced at
points where three matter curves intersect, corresponding to a further enhancement of the
gauge group.

A full classification of how Eg, SO(10) and SU(5) GUT groups arise in the semi-local
picture has been presented in [25], where the homology classes of the matter curves were
calculated in each case through the spectral cover formalism. However, as well as matter
transforming in the fundamental representation of the GUT group localised on curves on
S, in all these cases there will also be bulk matter, coming from the adjoint representation
of the GUT group. In the case that the GUT group is broken down to the Standard Model
(SM) gauge group by flux, there are topological formulae which dictate the multiplicities
of these adjoint states [2]. It was demonstrated in [4] that when the GUT group is SU(5),
bulk matter with exotic charges under the SM gauge group can be eliminated from the
spectrum provided certain topological properties of the manifold are satisfied. However,
the same study pointed out that when the GUT group is SO(10) or higher, some bulk
exotics must always be present in the low energy spectrum. As such, in order to give
these exotics masses, we can look for the topological requirements for them to appear in
vector-like pairs, and then turn on VEVs for suitable singlets. The presence of these bulk
states in the spectrum will clearly affect the running of the gauge couplings and their
unification, and in [43] it was shown that states descending from the adjoint of SU(5) with
exotic SM charges must be completely removed from the spectrum (in the way of [4]) due
to RGE arguments.

In this paper we will consider models where the GUT group is Eg, and is broken by
flux breaking down to the Standard Model gauge group via the sequence of breakings

Eg — SO(10) x U(1)y, (1.1)
SO(10) — SU(5) x U(1), (1.2)
SU(5) — SU(3) x SU(2) x U(1)y . (1.3)

In addition we shall consider models where U(1),, and U(1), are both broken near the GUT
scale by the vacuum expectation value (VEV) of some scalar field or where a particular
linear combination, under which the right handed neutrinos have no charge, survives down
to the TeV scale, namely [62, 63],

U(1)y = iuu)x 4 \T’U(nw . (1.4)
Unlike in [26] where the Eg breaking down to SU(5) was assumed to be achieved by Higgs
breaking, and only the last step, namely the SU(5) breaking was due to flux breaking, here
the entire breaking of Fg down to the Standard Model gauge group (perhaps also including
a surviving U(1)y) will be achieved in one step by flux breaking. According to the above
discussion, this will necessarily involve bulk exotics appearing below the string scale, which

will be a principal concern of the present paper.



We first focus on the bulk exotics coming from the adjoint 78 dimensional represen-
tation of Eg, and look at how topological properties of the internal manifold restrict the
elimination of these exotics from the spectrum, and dictate the numbers of exotics which
cannot be removed. These constraints are then translated into topological restrictions,
which then determine the multiplicities of vector-like matter. We impose constraints that
exotic matter should appear in vector-like pairs and hence can be eliminated from the low
energy spectrum by turning on VEVs for appropriate singlet fields. We show that it is pos-
sible that all bulk exotic as well as matter exotics could have masses close to the GUT scale
leading to an MSSM type theory somewhat below the GUT scale. However, there is the
possibility that the bulk exotics from 5s of SU(5) could get TeV scale masses whereas those
from 10s could be near the GUT scale, leading to a characteristic spectrum involving TeV
vector-like pairs of d®like and Hg-like bulk exotics, with the distinguishing feature that
there will always be one more vector pair of Hy-like states than d°-like states. Although
such bulk exotics would by themselves spoil gauge coupling unification, when combined
with matter exotics, corresponding to having complete 27 dimensional representations of
FEg at the TeV scale, gauge coupling unification is restored. We emphasise that, without
such bulk exotics, the TeV scale matter exotics would lead to an unacceptable splitting of
the couplings, and it is only the combination of TeV scale matter exotics from the 27s plus
TeV scale bulk exotics from the 78 which (miraculously) restores gauge coupling unifica-
tion. The resulting TeV scale matter exotics plus bulk exotics is equivalent to four extra
545 vector pairs of SU(5), beyond the minimal supersymmetric standard model (MSSM)
spectrum. The characteristic prediction of F-theory Fg GUTs of the matter content of four
extra 5+ 5 vector pairs can be tested at the LHC. This may be compared to the equivalent
of three extra 5 + 5 vector pairs predicted by the E6SSM [62, 63].

The layout of the remainder of the paper is as follows. In section 2 we review the basic
issues related to bulk exotics, including topological formulae from [4], before applying
these ideas to the Fg case, and working out the topological constraints. These constraints
are then translated into relations between the multiplicities of bulk exotics which appear
in vector-like pairs. Section 3 is concerned with gauge coupling unification, including a
renormalisation group equation (RGE) analysis, taking into account the constraints on
exotics, and the dependences on the exotic masses of the GUT scale and splitting of the
gauge couplings are studied. In section 4 we discuss Eg models from F-theory, where the
bulk exotics are put into the context of two realistic models given in [25] and [26]. In
particular we discuss the possibility that some bulk exotics could survive down to the TeV
scale, and show how, together with the matter exotics predicted by these models, they
restore gauge coupling unification.

2 Review of issues related to bulk exotics

2.1 Formalism and SU(5) example

In F-theory constructions, the appearance of matter is closely related to the topological
properties of the internal space. The multiplicities of states are given by specific topological
formulae, and therefore are subject to constraints which have to be taken into account. Bulk



exotic matter arises from the decomposition of the adjoint of the GUT group Gg. When
the gauge group Gg is broken to a group I's by turning on fluxes in a subgroup Hg, with
Gs D TI's x Hg, the adjoint of Gg decomposes into representations (7, 7j) of I's x Hg,

ad(Gs) = @; (1 ® Tj). (2.1)

Assuming that S is a del Pezzo surface, the multiplicity of four-dimensional massless fields
transforming in a representation 7; of I'g is given in terms of the Euler characteristic by

nj = —x(£;,5) = — (1 + 301(53') (e(Ly) + 01(5))> (2.2)

where £; is a line bundle transforming in the representation 7} of Hg, and the topolog-
ical quantities ¢i(L;), c1(S) are the first Chern classes of £; and S. The multiplicity of
the conjugate representation can be found by noting that cl(ﬁj_l) = —ci1(Lj), leading to
the equation

« _ 1 1
ny=—x(£;,8) = - (1 +5e1(Ly) - er(Ly) = Fe(Ly) ~01(S)) . (2.3)
In the case where we are dealing with states which transform in a representation of Hg
corresponding to a direct product of line bundles so that £; = £ ® L', we have n; =

—x(L® L, S) where
(£ L.8) =1+ 3 {alt) ad) @e (L) as)
+ % (L) - e1(L) ®er (L) -ex (L)) (2.4)

Taking for example the exotics coming from the adjoint of SU(5) after hypercharge flux
breaking to the Standard Model, we have the decomposition
24 — (8, 1)0 +(1,3)0+ (3,2)_s

5+ (3,2) (2.5)

s
where the line bundle L’é is associated to the hypercharge. This decomposition gives rise to
the states (3, 2)_% and (3, 2)% which are in exotic representations of the SM gauge group.
It has been shown in [43] that the presence of these exotics lower the unification scale to
unacceptable values, so we must require that these states are not present in the spectrum.
Using egs. (2.2) and (2.3), and labelling the multiplicities of (3,2)_s and (3, 2)% states by
m and m™* respectively, we have

_5
6

m—m*=—c1(Ly) - c1(S) (2.6)
m+m*=—(2+ca(Ly) a(ly)). (2.7)

If we require there to be only vector-like pairs of bulk exotics in the spectrum, eq. (2.6)
tells us that the following dot product has to be zero

c(Ly)-a(S)=0. (2.8)



If we further require the complete elimination of these exotics, then we must demand also
that the sum has to be zero, so from eq. (2.7), we can see that the line bundle has to satisfy

C1 (,Cy) . Cl([,y) = -2 (29)

which is equivalent to the condition for ¢;(Ly) to correspond to a root of Eg.

2.2 Eg bulk exotics and their SU(5) picture

It has been shown in [4] that bulk exotics coming from the adjoint of the GUT group
on S cannot be avoided in the case where the gauge group is SO(10) or higher, and the
breaking of the GUT group down to the Standard Model is achieved by flux breaking. If
we take the GUT group to be FEg, the spectrum can be found by decomposing under the
FEy enhancement

Eg D Eg x SU(3)J_

_ (2.10)
248 — (78,1) + (27,3) + (27,3) + (1,8).

The SM can be achieved by turning on fluxes in the U(1)s contained in the following
sequence of rank preserving breakings:

E6 — SO(lO) X U(l)dj
— SU(5) x U(1), x U(1)y, (2.11)
— SU(3) x SU(2) x U(1)y x U(1)y x U(1)y

In order to discuss the bulk exotics, we must decompose the adjoint of Fg appearing in
eq. (2.10) under the breaking pattern of eq. (2.11) as follows

78— (1,1)0,0,0 + {(1,1)0,0,0 + (1,1)0,00 + (8,1)0,00 + (1,3)0,00 + (3,2) 50,0 + (3,2)50,0
+(3,2) 14,0 + (3,2)—1,—40 + (3, 1) 40 + (3, 1)a—s0 + (1, 1)6.40 + (1,1)—,—40}
+{(1,1)0,—5,—3+(3, )23—3+(1 2)_33-3+(1,1)6-1,—3+(3,2)1,-1,—3+(3, 1)—4—1,-3}

+{(1,1)053+(3,1)—2,—33+(1,2)3-33+(1,1)—6.1,3+(3,2)—1,1,3+ (3, 1)a1,3} . (2.12)

All representations are charged under three U(1)s, and all triplets of U(1) charges can be
expressed as a linear combination of the following line bundles

L1 = (5,0,0), Lo =(1,4,0), L3=(1,-1,-3). (2.13)
In table 1 we write down the multiplicities of the exotic states coming from the adjoint

of E¢ (where the correct normalisation for the U(1)y is given by dividing by 6). We
can see where the exotics fit into the SU(5) picture as follows (where the un-normalised



Exotic X; Multiplicity n; Exotic X; Multiplicity n;

X1 = (3, 2)% n1 = —x(£1,9) X6 = (3, 1)% ne = —x(L2 ® L3, 5)
X2=(3,2)1 n2=-x(L2,5) Xr=(1,2)_1 nr=—x (L7 ® Lo ® L3, S)
X3=(3,1)2 ns=-x (L7 ® £2,9) | X = (1,1) ng = —x(L£1 ® L3, 9)
Xo=1101 na=—x(L1®Ly,S) | Xo=(3,2)1 ng = —x(L3,9)

Xs= (1,19 n5=—x(Ly'®L3,S) | X10= (3, 1)_% nio = —x (L7 ® L3, 5)

Table 1. Fg bulk exotics and their multiplicities.

U(1)y x U(1), x U(1), charges of the SU(5) states are indicated as subscripts),

533 — (1,2)_33-3+ (3, 1)2,3,—3

Xy Xe (2.14)
1040 — (1,1)6.4,0 + (3, 1)_47470 +(3,2)1,4,0
Xy X3 X5 (2.15)
1013 — (1,1)6,—1,—3 + (3, 1)_4,_17_3 +(3,2)1,-1.-3
X X10 Xy (2.16)
240,0 = (1,1)0,00 + (8,1)0,00 + (1,3)0,0,0 + (3,2) =500 + (3, 2)570,0
X1 X (2.17)

2.3 Removing bulk exotics

When breaking the adjoint of a high gauge group there are always representations beyond
those of the SM spectrum. These extraneous matter fields may be classified according to
their charges in two categories: the ones that carry charges like the SM fields and those
which have fractional charges other than those of the SM quarks. It can be seen that the
exotics X3 and X;o have the same SM quantum numbers as u¢, X» and Xg have the same
as @, and X, and Xg the same as e, with one set of states coming from eq. (2.15) and the
other coming from eq. (2.16). X; has exotic charges under the SM gauge group, and so we
wish to remove these states from the spectrum. Xg and X7 have the same SM quantum
numbers as d° and H; respectively, and if present in the spectrum, we must require that
they appear in vector pairs, and get mass via the couplings

1070 '537_3 . 5_373 — SXﬁYG + SX7Y7

_ — P— (2.18)
2400 -53,-3-5_33 = S XeX6+ S X7X7.

Requiring that Xg and X7 occur in vector pairs corresponds to imposing the conditions
ne —ng = ny — ny = 0. Using table 1, this leads to the following topological constraints

Cl(S) . Cl(£2) = —C1(S) . C1(£3) (2.19)
61(5) . Cl(ﬁl) =0. (2.20)



Presence of the X states with exotic SM charges in the spectrum has been shown to lower
the unification scale to unacceptable values, so requiring that these states are completely
removed imposes the constraints (from appendix A)

Cl(S) . Cl([fl) = 0

L= 2. (2.21)

From eq. (2.13) and table 1 along with the decompositions in the SU(5) picture, it can be
seen that £ corresponds to the hypercharge bundle. As such, eq. (2.21) simply corresponds
to the normal SU(5) condition ¢1(Ly)? = —2.

If we were to impose that each type of exotic came in vector pairs individually
(i.e n; = nf for i=1,...,10), from appendix A we would be led to the case of

61(5) . Cl(ﬁl) = Cl(S) . 01(,62) = Cl(S) . 61(,(,'3) =0. (2.22)

After imposing eq. (2.21), we can see that the only further choices we can make to eliminate
some exotics (without getting negative numbers for any multiplicities) is

c1(L2)? = -2 (2.23)
c1(L3)? = 2. (2.24)

This ensures that the exotics X5 and Xg are completely removed, in addition to X;. All
other exotics are present in vector pairs in this case, with their multiplicities given by

np=nt=2 m=n'=1 (i=3,4,568,10).

7

2.4 A more general case

As we have seen, we have two different 10 representations of SU(5), with different charges
under U(1), and U(1),, and so we can either give masses to the exotics contained in these
10s by couplings of the type

1070 . 104,0 . 170_47() — SXQYQ + SX3Y3 + SX4Y4
240’0 . 104’0 . T0_4’0 — S/XQYQ + S/X3Y3 + S/X4Y4 (225)

or
1_5-3-1040 - 1013 — X5 (X2X9) + X5 (X3X10) + X5 (X4X3) (2.26)
where X3 is a singlet exotic (corresponding to the ‘gluing morphism’ of [23]) coming from
the 16 of SO(10), inside the 78 of Eg. As such, we can more generally impose
ng + ng = ns + ng
n4 + ng = ny + ng (2.27)

n3 +nio = nz + njg -



ny=n] =0 ngz—l—g—%
m=-1-4-%  wm=-%-%
m=4-% nm=4-§
m=—4-% m=-1+4-4
n5:—1+A—€—% nlozé—%

Table 2. Multiplicities of the Eg exotics in terms of the topological numbers A, B, C' (see text).

It can be seen that all three of these constraints are satisfied by imposing eq. (2.19). As
such, with egs. (2.20), (2.21) also imposed, the multiplicities can be written in terms of the
dot products

c1(8) - e1(L2) = —c1(S) - e1(Ls)

QW o
[
2 0
RS
[SSHEN V]
=

(2.28)

The multiplicities are then given in table 2 where when dealing with the conjugate rep-
resentations, A changes sign, but B and C keep the same sign. We can now think about
different combinations of exotic matter which satisfy these constraints, and consider the
effect on gauge coupling unification. The multiplicities of exotic matter are as follows

ng=na+ng+ny+ng=—(B+C)—4=vy—-4
Nye =n3 +nig+n3 +njp=—(B+C) =7

Nee =Ny +ng+ny +ng=—(B+C) =7
nge =ng +ng=—(B+C)—2 =y -2
ng, =n7+ny; =—(B+C) =7y (2.29)

where we see that everything can be expressed in terms of the parameter «y, given in terms
of Chern classes by

Y= —Ci1 (£2)2 — C1 (£3)2 . (230)

It can be seen from table 2 that requiring ns = nj for the singlet X5 leads us to the
case A = 0. As such, all the exotic matter will satisfy n; = n}, although we will still
be able to get masses from both eqs. (2.25) and (2.26). It is important to note that as
everything comes in conjugate pairs, anomalies are always cancelled. We can now work
out the contributions to the beta functions due to the exotic matter, and discuss gauge
coupling unification. Note that in order to satisfy the requirement that all multiplicities
are positive, we must have v > 4, with the minimal value being taken in the case where
the line bundles satisfy the condition c;(£2)? = ¢1(£3)? = —2, meaning that ¢1(L2) and
c1(L3) correspond to roots of Eg.



3 Gauge coupling unification

In this section, the splitting of the gauge couplings at the GUT scale due to flux will
be considered. The eventual goal in the next section will be to study two types of semi-
realistic model and include the effects of bulk exotics at various different mass scales. Given
the presence of these bulk exotics (plus the matter exotics in each model), the SM gauge
couplings will be run up to the GUT scale, and it will be seen how closely they meet,
and hence which models are consistent with the GUT scale relations. In particular, it will
be found that one MSSM like model will be consistent with GUT scale bulk exotics, and
another E6SSM like model will be consistent with some bulk exotics at the TeV scale.

In this section, the effect of the bulk exotics alone on gauge coupling unification is
discussed. In Eg models with flux breaking, we can view the breaking to the SM occurring
in three steps. Firstly, a flux along U(1), breaks Egs to SO(10), then a flux along U(1)y
breaks SO(10) to SU(5), and finally the hypercharge flux breaks SU(5) to the SM. Using
section 4 of [26], it can be argued that in the Fg and SO(10) breakings, no relative splitting
of the coupling constants occurs but only a constant shift, which at this level is unknown
and can be treated as a free parameter of the model. It is only the hypercharge flux
which induces a relative splitting between the gauge couplings at the GUT scale, and so
we will use the SU(5) relations at the GUT scale from [41], effectively meaning that the
aforementioned free parameter is set to zero. It has been pointed out in [32] that the
splitting relations of this type in F-theory are different from those in type IIB, and so we
note that our treatment is simply an extrapolation of the type IIB results to F-theory. In
this way, we neglect corrections which can be important in the F-theory context, and so
are working with an approximate treatment.

The remainder of this section just deals with bulk exotics for simplicity, while other
exotics will be included in the analysis in the next section. In essence, the gauge couplings
are run from the MSSM values up to the GUT scale, and assuming bulk exotics at a mass
scale My, constraints on the GUT scale and splitting of the couplings at this scale are
studied. This will provide the groundwork for the next chapter, where matter exotics will
be considered in the spectrum as well (in the context of realistic models), and it will be
seen which combinations of matter and bulk exotics are compatible with the constraints.

3.1 The effect of bulk exotics at a single mass scale Mx

It has been shown in [41] that in the context of an SU(5) GUT, the splitting at Mgyt due
to hypercharge flux is

v 1
as(Mgur)  ac ©
71 ! + (3.1)
= — — €T .
ax(Mcur)  ac  ©
1 1 n 3
S I
ar(Mcur)  ag 05
where # = —1ReS [¢?(Ly) and y = iReS [c}(L,) associated with a non-trivial line

bundle £, and S = e~% + i Cy the axion-dilaton field. It is argued in [26] that the U(1),



and U(1), fluxes don’t lead to any relative splittings of the gauge couplings at unification,
although there could be a constant shift in all the couplings at each breaking. This constant
will be a free parameter of the model, and for simplicity we will set it to zero here. As
such, eq. (3.1) can be used in the case of interest, and combining the three equations shows

that the gauge couplings at Mgyr are found to satisfy the relation
1 D 1 1 2 1
ay(Mgur) 3 ai(Mgur) a2(Mgur) 3 as(Mgur)

If we assume that the bulk exotics all decouple at a single mass scale Mx, the low energy

values of the gauge couplings are given by the evolution equations

1 1 br M b M

—_— n [
ag(Mz)  ag(Mgur) 2w Mx 2r My

(3.3)

where b are the beta functions above the scale My, and b, are the beta functions below
this scale, i.e. those of the MSSM.
Combining egs. (3.2) and (3.3) leads to the relation for the GUT scale
1—
2 (M P
Mgyt = eBAP <X> My (3.4)
My

where A is a function of the experimentally known low energy values of the SM gauge
coupling constants

1.5 1 12 1
A 3 Oél(Mz) ag(Mz) 3 ag(Mz)
_cos(20w) 2 1

Qem §Oé3(Mz) '

= (3.5)
Here use has been made of the relations ay = a./(1 —sin? fy) and az = a./sin? Oy We
have also introduced the ratio p

_5B
B

where 3, B, are the beta-function combinations in the regions My < u < Mx and Mx <

p (3.6)

1 < Mgut respectively

2
Bo = b — b5 — 2b5 (37)

2
B=0by —by— §b3- (3.8)

Recall now the beta-function coefficients (b1 = %by)
3 1 1 4 3
b = — — c —_— —Nye — ec .
1 6+1O(nh+nL)+5nd +1OnQ+5n +5n (3.9)
1 3
by = §(nh—|—nL)+§nQ (3.10)
1 1

where ny, 1, counts the number of Higgses and exotic matter.

~10 -



Below Mx we have only the MSSM spectrum, thus ng = 3,n, = 2 and all extra
matter contributions are zero, n; = 0, thus

2
{by,b2,b3} ={11,1,-3} = B =by — by — §b3 =12.
Ignoring possible matter curve exotics for now and just focusing on the bulk exotics, above

Mx we have the extra matter given in eq. (2.29) in addition to the two Higgses of the
MSSM, giving for the beta functions

1
y = 5(204107)

by =2y—5
5=20v—4)
By =20. (3.12)

As such, we can see that the beta function combination 5, doesn’t depend on the parameter
~v and so the choice of this parameter will not affect the unification scale. Putting the
numbers into eq. (3.4) gives

[V

3
Mz 5 Mx 5 16
Mgur = 2.09 % 1 _ 1

eur (91 Gev> (2.09x1016 GeV> 09> 107 GeV (3.13)

There are a number of points associated with the above equations that we would like to
clarify. Firstly we emphasise that eq. (3.1) applies not only for SU(5) but also for Es models
for the reasons discussed above. Secondly we emphasise that the parameter x in eq. (3.1)
is constrained to be smaller than unity, since z = —3ReS [¢?(Ly) and [ c}(Ly) = —2
(as discussed earlier) and ReS < 1. This places a constraint on possible spectra consistent
with unification, as discussed in the next section. The above calculation of the GUT scale
in eq. (3.4) assumes such a compatible spectrum.

3.2 The splitting parameter, x

Combining egs. (3.1) and (3.3) leads to the following expression for the parameter z

1 1 bE — b M, bs — b M
:<_> + 3 210g< GUT>+ 3 210g< X)
ar  az /)y, 27 Mx 2 Mz
26 sin” Oy — 3 9 11 My
= — ——log|{—1.
0o, 1005 107 2\ 0,

(3.14)

The dependence of & on the bulk exotic mass scale Mx is shown in figure 1. It can be
seen that the splitting of the gauge couplings at the unification scale doesn’t depend on
the parameter . It should also be noted that as x is given by z = —%ReS J c(Ly) with
S = e ? +iCy, it must take a value between 0 and 1.
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Figure 1. The dependence of the splitting parameter x on the bulk exotic mass scale Mx. Only
values of x < 1 are acceptable, leading to the approximate lower bound on the bulk exotic mass
scale Mx > 2 x 10'® GeV. Note that this bound assumes that no matter exotics are present.

4 FEg models from F-theory

4.1 Matter exotics only

We start by looking at the class of models proposed in [25], which were motivated by
the fact that any model involving complete 27s of Eg, with no matter coming from the
adjoint 78 representation, automatically satisfies anomaly cancellation involving most of
the extra U(1)s.! Table 3 shows the model building freedom we have in choosing the M
and N integers specifying the flux breaking, and how these choices determine the Standard
Model particle content of the model. Here we make the same choices for the Ms and Ns as
in [25] and these choices are summarised in table 3. Although the SM particle content is
equivalent to having three complete 27s, it is clear that the particles are originating from
incomplete multiplets of several different 27s. The U(1)xy charges of all the particles in
the spectrum can be computed, and the results are shown in table 3. As required, the
right handed neutrinos have zero charge under U(1)y. In table 3, arbitrary numbers of
singlets are allowed in the spectrum for now, so that we can calculate the restrictions on
these numbers later on. The final column of table 3 shows the low energy spectrum of
the E6SSM obtained by eliminating the required exotics from the previous column, which
shows the SM particle content after flux breaking. By comparing the final two columns of
table 3, we can see that the matter exotics which we wish to remove are the vector pairs
2(L+L),Q+Q,2(u +u),d + d° and Hy + H,. Large masses will be generated for these
fields through their coupling to SM singlet fields which acquire large VEVs.

From the Ejg point of view, the only Eg allowed trilinear term in the superpotential is
274,274, 27;,. The vectorlike pairs which we wish to remove from the low energy particle
content are those which have components in both the 27;, and 27;, multiplets. As such,

'n reality, there is a small region of energy between 1.5 x 10'% GeV and Mgur =~ 2 x 10'® GeV where
a particular anomaly is not cancelled, but the anomalies involving just the U(1)s inside Eg are always
cancelled. There is a discussion of this subtle point in [25].
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Eg | SO(10) | SU(5) | Weight vector | Qn | Ny | My | SM particle content | Low energy spectrum
27y 16 B3 t1 +t5 %TO 1 4 4d° + 5L 3d° + 3L
27y, 16 100 t ﬁ -1 4 4Q + 5u’ + 3e° 3Q + 3u’ + 3e°
2716/1 16 0915 tl — t5 0 0 nis 3v°¢ -
27y 10 51 —t —t3 —ﬁ -1 3 3D + 2H, 3D + 2H,
27, | 10 55 t+ts 5o | 1 3 3D + 4H, 3D + 3H,
271&’1 1 014 t1 —ty 2% 0 Nn14 014 014
27y 16 Bs ts +t5 ﬁ 1] -1 dc+ 2L -
27y 16 105 ts ﬁ 1 -1 Q + 2uc -
27té 16 935 t3 - t5 0 0 n3s - -
27y, 10 55, -2t 72—% 1 0 H, H,
27y, 10 54 ts+ 1y -3 % -1 0 Hy -

27% 1 034 t3 - t4 2\‘;)@ 0 n3q 2034 2934

- 1 031 t3 —t1 0 0 n31 031 -

- 1 053 t5 — t3 0 0 n53 053 -

- 1 054 t5 — 14 ﬁ 0 N54 054 -

- 1 045 ty —t5 *2\%0 0 ny5 045 -

Table 3. Complete 27s of Eg and their SO(10) and SU(5) decompositions. The SU(5) matter states
decompose into SM states as 5 — d°, L and 10 — @, u¢, e¢ with right-handed neutrinos 1 — v¢,
while SU(5) Higgs states decompose as 5 — D, H, and 5 — D, Hy, where D, D are exotic colour
triplets and antitriplets. We identify RH neutrinos as v¢ = 6y5. Arbitrary singlets are included for
giving mass to neutrinos and exotics and to ensure F- and D- flatness.

they are removed by introducing 631, an Ejg singlet, with couplings:
03127y 2Ty, = 031QQ + 031 (2u°) (2u°) + O31d°d° + 031 (2L) (2L) + 031 HyH. (4.1)

If 031 gets a large VEV these vector states get large masses as required. The difference
between this case and model 1 [25] is that in model 1, 034 also gets a large VEV. This
singlet has the following couplings

0345152 = 034[3D + 2H,] [3D + 3Hy| = 634 [3 (DD)] + 634[2(H, Hy)). (4.2)

In the E6SSM, these matter exotics are light, and so instead of getting a large VEV, this
singlet now must acquire a TeV scale VEV. It was checked that the F and D-flatness
constraints are satisfied, and that rapid proton decay is forbidden for the realisation of the
spectrum [25].

Clearly the matter exotics (d + Ec), (Q + @), (Hd + ﬁd), 2(L + L), 2 (u® +u®) get
masses and decouple at some scale Mp,, < Mgyt due to the couplings in eq. (4.1). The
matter exotics 3(D + D), 2(H,, Hy) get masses and decouple at a scale Mp,, < Mpy,, due
to the couplings in eq. (4.2). In [25, 26] (which we will call models 1 and 2 respectively
from now on) two different classes of model were proposed only distinguished by the mass
scales of the matter exotics. The scales of the two models are summarised below.
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In model 1 (“MSSM”):
My =1.31 x 101°GeV

MY = 0.306 x 106GeV .

034

In model 2 (“E6SSM”):

My =144 x 10'9GeV
My?) =1 x 10°GeV.

The main difference between the two models is clearly that in model 1 the 34 matter
exotics are computed to be almost as heavy as the f3; exotics, whereas in model 2 the 34
matter exotics are kept light, getting TeV scale masses. We see that model 1 reproduces the
MSSM somewhat below the GUT scale since only the MSSM spectrum survives below My,, ,
whereas model 2 corresponds to the so called E6SSM above the TeV scale (or NMSSM+- if
the U(1) y gauge group is broken at high energy). However strictly speaking the spectrum of
model 2 is not quite that of the E6SSM since it only contains the matter content of three
27 dimensional representations of Eg and does not contain the extra vector-like matter
usually denoted as H' and H’ which is required for gauge coupling unification. As we shall
see shortly, the role of the extra H' and H’ will be played by bulk exotics.

4.2 The complete spectra of potential models

In the previous section, we have reviewed the spectra of the models presented in [25]
and [26]. In order to include bulk exotics into these cases, we can note from eq. (2.29) that
taking the minimal case of v = 4 leads to the following vector pairs of bulk exotics, which
have to be added to the spectrum of any chosen model:

2(u° + u%) + 2 (° + &) + 2 (Hy + Hy) + (d° + d°). (4.3)

The question now remains as to what masses these vector-like exotics acquire. Those
exotics which originate from 5 representations at the SU(5) level become massive through
the couplings in eq. (2.18). The same singlets which appear in this equation and acquire
VEVs can also give mass to the bulk exotics from 10s of SU(5), through eq. (2.25). However,
the 10-like exotics can also get masses through the coupling in eq. (2.26). This gives three
distinct possibilities for the masses of the bulk exotics: (i) all can get masses at the GUT
scale, (ii) all can get TeV scale masses, or (iii) the 5-like exotics could acquire TeV scale
masses, while the 10-like ones could acquire GUT scale masses through the coupling of
eq. (2.26). All of these possibilities will be discussed in the context of different models in
this section.

It should be noted that in terms of anomaly cancellation, we will end up with two
cases: one where we have the MSSM at the TeV scale and all exotics near the GUT scale,
and one where we have the E6SSM and some extra vector pairs of bulk exotics at the TeV
scale, and everything else at the GUT scale. Clearly the MSSM case is anomaly free at
the TeV scale and so we simply must check that anomalies are cancelled by the spectrum
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as a whole. Not including the bulk exotics for now, appendix C shows that all anomalies
are cancelled apart from a U(1)y x U(1) anomaly. However, this anomaly only exists in
the small region of energy between the f3; VEV and the GUT scale, and due to the errors
in our energy scale estimates, this shouldn’t be a problem. In the E6SSM case, clearly
the whole spectrum suffers the same issue as the first case, and so we must just check the
TeV spectrum. Clearly, if we just had the low energy matter of the E6SSM we would be
free from anomalies due to the presence of complete 27s of E6. As such, it is only the
bulk exotics at the TeV scale which could possibly spoil this fact. However, these bulk
exotics come in vector pairs and so they come with a built in minus sign between the D
anomaly coefficients, thereby cancelling all anomalies at the TeV scale. It should also be
noted that [32] points out that anomaly cancellation constraints can be relaxed in the case
of geometrically massive U(1)s in F-theory.

4.3 High scale bulk exotics

The above analysis does not so far include the effect of bulk exotics. However, as we
have seen earlier in the paper, such bulk exotics are an inevitable consequence of the flux
breaking of Fg. As remarked above, such additional bulk exotics at the TeV scale, not
included in the spectrum so far, are able to provide the extra vector-like matter to enable
gauge unification to be achieved for the E6SSM. However the resulting spectrum will differ
somewhat from that of the E6SSM, providing a distinctive experimental signature and
providing a smoking gun test of the F-theory model at the LHC.

In both the above models, the beta function combination given in eq. (3.8) is given by
B = 12 (the MSSM value) in all of the regions Mz < u < Mpy,, and Mp,, < u < Mpy,, and
Mpy,, < p < Mgur. As such, assuming that the bulk exotics get masses Mx, somewhere
between Mpy,, and Mgy, we will have an equation analogous to eq. (3.4)

Maur = €54 Mg M -P My "My (4.4)
where in the same way as foreq. (3.4), p=n= A= % As such, the GUT scale only depends
on the mass of the bulk exotics, and is still given by eq. (3.13). If we take Mx = Mgur, the
RGE analysis is obviously unchanged from that of [25, 26], however if we take Mx = My,, ,
the GUT scale is lowered slightly by eq. (3.13)

M) =173 x 10'0CeV

ME) . =1.80 x 1010GeV .

For model 1 (MSSM) the one loop running of the couplings is shown in figure 2. This
takes into account the modification of the beta functions due to the bulk exotics above the
scale Mx = Mp,,. In this case the couplings are split by 2% (compared to 1.3% when the
bulk exotics are not taken into account), and it can be seen that the effect of bulk exotics
near the GUT scale on the splitting of the gauge couplings is small (0.5 — 1% depending
on the model).

For model 2 (E6SSM) the splitting is 35% (compared to 34.5% in the case with no
bulk exotics), which would correspond to x ~ 5. This is shown in figure 3. As pointed out
before, x must take a value between 0 and 1 and so model 2 must be ruled out in the case
where the bulk exotics get masses near the GUT scale.
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Figure 2. Gauge coupling unification in model 1 (MSSM) with high scale bulk exotics.
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Figure 3. Gauge couplings fail to unify in model 2 (E6SSM) with high scale bulk exotics.

4.4 Low scale bulk exotics

We have seen that as long as the bulk exotics get masses close to the GUT scale, the GUT
scale is not lowered drastically. However, due to the fact that the bulk exotic spectrum
ensures anomaly cancellation, the gauge groups U(1), and U(1), and the bulk exotics
could in principle survive to the TeV scale. We will now look at this possibility that at
least some of the bulk exotics are light. From egs. (3.9), (3.10), (3.11) we have

/3: 12+nuc+nec —2”@
0B = dnye + 0nee — 26ng (4.5)
where 08 = 5, — [ is the difference in S as we move a higher energy scale where a number
of exotics (0nye, dnee and dng) join with the massless spectrum. In models 1 and 2 there is

no exotic e type matter and the only ) and u® exotics get the same mass, near the GUT
scale. In both models, there is twice as much u°like exotic matter as there is Q-like, and
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so 63 = 0 when we don’t take into account contributions from the bulk exotics. For the
bulk exotics, eq. (2.29) gives

08 = nye + nee —2ng = 8. (4.6)

Previously, we looked at the case where Mx > M’ and we found that the GUT scale is
slightly lowered. If we now consider the case where Mx < My,,, eq. (4.4) gets modified to

2m _ —_ _
Mgur = ePA” MGMY P My "My (4.7)
with
15} 3
p = = -
6931 b
B
’[’] = = 1
6931
Ao Dom _q (4.8)
5931

Again, we end up with eq. (3.13) for the GUT scale, with the bulk exotic mass (the mass

of those coming from a 10 of SU(5) if we allow the 5s and 10s to get different masses) being

the only exotic mass entering the equation. As such, apart from the possibility that all

bulk exotics get masses near the GUT scale (as previously discussed), we have two other
possibilities:

o All bulk exotics at the TeV scale: in this case eq. (4.7) tells us that Mgur ~

1 x 10''GeV. It may seem at first sight that such a low unification scale would

lead to dangerous dimension 6 operators giving proton decay rates which are much

faster than experimentally observed. However, in [52] a method has been pointed out

for suppressing proton-decay in F-theory SU(5) with hypercharge flux breaking. The

idea is that since the dangerous operators involve the SU(5) gauge bosons X,Y in tri-

linear couplings such as XQu¢, a computation would consist of firstly computing the

trilinear coupling by using the wavefunction overlap techniques of eg. [29], and then

integrating out X,Y. The key is that the SU(5) gauge bosons need not be localised on

a matter curve, but can be spread out over S. As such, these fields feel the effect of

hypercharge flux in a different way to those on matter curves, and this gives rise to a

suppression of the integral. This way, we can in principle avoid rapid proton decay,

even with a seemingly low unification scale. Even though this is the case, when all

the bulk exotics are at the TeV scale the splitting of the gauge couplings is large, and

x > 1. As such, this possibility must be ruled out and we must look at the next case.

e Bulk exotics from 10s heavy, but those from 5s light: as the singlets S and S’ which
give the 5 state mass through eq. (2.18) can also give the 10s mass through eq. (2.25),
we reject the possibility of heavy 5s and light 10s. However, since the 10s can get
mass from a different singlet in eq. (2.26), it would seem that there is a possibility of
giving this singlet a much bigger VEV, and keeping the 10s heavy whilst the 5s could
be TeV exotics. If this was the case, we would once again have Mgyt ~ 2 x 10'6GeV
due to the fact that the 5s don’t contribute to §5 of eq. (4.5). If the splitting
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Es origin | SU(5) origin | TeV scale spectrum | U(1)nx
27y 5 3d° + 3L \/%
27y 10 3Q + 3uc + 3e° ﬁ
27y 5 3D +2H, —ﬁ
27y 5 3D +3H, — %
27y 1 014 5 jﬁ
27y 5 H, — ﬁ
27y 1 2034 ﬁ
78 5 2X g, + Xge _ﬁ
78 5 2Xq, + Xz NG,

Table 4. The complete low energy spectrum for the E6SSM-like model with TeV scale bulk exotics.
The fields @, u®, d¢, L, e° represent quark and lepton SM superfields in the usual notation. In this
spectrum there are three families of H,, and Hy Higgs superfields, as compared to a single one in
the MSSM. There are also three families of exotic D and D colour triplet superfields, where D has
the same SM quantum numbers as d¢, and D has opposite quantum numbers. We have written

the bulk exotics as X with a subscript that indicates the SM quantum numbers of that state. The
superfields 6 are SM singlets.

parameter x is calculated for this case with the spectrum of model 1, it turns out
to be negative so again we must rule this case out. This means that for model 1,
high energy bulk exotics are the only possibility, but on the contrary we will see that
for model 2 these low energy bulk exotics are the only possibility. As pointed out
previously, model 2 which has TeV scale exotics in it’s spectrum cannot be compatible
with bulk exotics with masses close to the GUT scale, as x > 1 which is forbidden.
However, if we have the bulk exotics which belong to 5s of SU(5) at the TeV scale
as described above, it turns out that the multiplicities of exotic states forced upon
us by topological constraints make the couplings unify. If we take the mass of the
exotics from 10s to be Mguyr, we find  ~ 0.01, corresponding to a splitting of
approximately 0.2%. This effect is illustrated in figure 4, which shows how the low
energy bulk exotics are precisely what is needed to make the couplings unify. In
addition to the 3(D + D), 2(H,, Hy) exotics which are also at the TeV scale, this
leads to a characteristic spectrum involving TeV vector-like pairs of d° and H,4 exotics,
with the distinguishing feature that there will always be one more vector pair of Hy
states than d°s. (In the v = 4 case, we have one pair of d° states and two pairs of Hy
states). The low energy spectrum of this model is summarised in table 4.

In the presence of large VEVs for X5 and X5, the F and D flatness equations of [26]
must be modified accordingly. It is shown in appendix B that there is a solution to the
flatness relations for this model where X5 and X5 get large VEVs without giving rise to

dangerous operators. In this section we have taken (X) = Mgyt for simplicity and to
illustrate it’s effects.
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Figure 4. Gauge coupling unification in model 2 (E6SSM) with TeV scale bulk exotics.

5 Conclusions

We have considered gauge coupling unification in Eg F-Theory Grand Unified Theories
(GUTSs) where Eg is broken to the Standard Model (SM) gauge group using fluxes. In such
models there are two types of exotics that can affect gauge coupling unification, namely
matter exotics from the matter curves in the 27 dimensional representation of Eg and the
bulk exotics from the adjoint 78 dimensional representation of Fg. The matter exotics have
been considered previously in [25, 26] where two models were considered which we called
model 1 (MSSM) and model 2 (E6SSM), which only differ by the mass scale of the matter
exotics. In particular model 2 (E6SSM) involves TeV scale matter exotics, equivalent to
having complete 27 dimensional representations at the TeV scale, and is inconsistent with
gauge coupling unification.

We have mainly focussed on the question of bulk exotics arising from the flux breaking
of Eg, which have not previously been considered in the literature. We have explored the
conditions required for either the complete or partial removal of bulk exotics from the low
energy spectrum. In particular we have examined the conditions for the removal from the
low energy spectrum of bulk exotic matter from the adjoint of Fg in terms of topological
properties of the manifold. These conditions led to the fact that all vector-like pairs come
in multiplicities which depend on one topological parameter, v. We studied how the bulk
exotics affect the one loop RGE anaylsis, and it was shown that both the GUT scale and
the splitting of the gauge couplings depend on the mass of the exotics, but not on =,
meaning that the results are general for any Eg F-theory model using fluxes to break the
GUT group.

We then considered the effect of the necessary bulk exotics on gauge coupling unifica-
tion. For the case of high scale bulk exotics at a single mass scale My, where we assumed
them to be the only type of exotics present, we found that the requirement that they do not
lead to an unacceptable splitting of gauge couplings led to the bound My > 2 x 101 GeV.
We also found that having bulk exotics also led to a lowering of the GUT scale down to
about Mx > 8 x 10™ GeV for the case where the bound is saturated, My = 2 x 10'° GeV.
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Finally we considered the effect of bulk exotics on the realistic Fg models where also
matter exotics are present. For model 1 (MSSM) with high scale bulk exotics we found
that unification is maintained with Mgyt being lowered slightly (< 15%), and the splitting
of the gauge couplings increased by less than 1%. Model 2 (E6SSM), which involves TeV
scale matter exotics, is not much affected by the high scale bulk exotics and it still fails
to provide gauge coupling unification. However for the case of low scale bulk exotics the
picture changes dramatically.

We considered the possibility that the bulk exotics from 5s of SU(5) could get TeV
scale masses whereas those from 10s could be near the GUT scale due to a large VEV for a
singlet charged under U(1), and U(1),, and showed that this possibility is consistent with
the F and D flatness conditions. The TeV scale bulk exotics then consist of vector-like
pairs of d®like and Hy-like exotics, with the distinguishing feature that there will always
be one more vector pair of Hy states than d°s. In the case of model 2 (E6SSM), we found
the elegant result that such bulk exotics combine with the TeV scale matter exotics to
ensure almost perfect gauge coupling unification.

In summary, in Eg models broken by flux, while it is possible that all bulk exotics
as well as matter exotics could have masses close to the GUT scale leading to acceptable
gauge coupling unification with an MSSM type theory somewhat below the GUT scale, it
is equally likely to have TeV scale exotics in such models. We have discussed a remarkable
possibility, namely model 2 (E6SSM) where the matter exotics correspond to having com-
plete 27 dimensional representations of Fg at the TeV scale, in which gauge coupling
unification would fail badly without the presence of bulk exotics. However including bulk
exotics from the 5s of SU(5) at the TeV scale, with those from the 10s near the GUT scale,
restores gauge unification for this model. We find this result remarkable, indeed almost
miraculous, since the origin of the matter and bulk exotics is apparently quite different
in F-theory.

We emphasise that, without such bulk exotics, the TeV scale matter exotics of model
2 (E6SSM) would lead to an unacceptable splitting of the couplings, and it is only the
combination of TeV scale matter exotics from the 27s plus TeV scale bulk exotics from
the 78 which restores gauge coupling unification. The resulting TeV scale matter exotics
plus bulk exotics is equivalent to having four extra 5+ 5 vector pairs of SU(5), beyond the
minimal supersymmetric standard model (MSSM) spectrum. This may be compared to
the equivalent of three extra 5 + 5 vector pairs predicted by the E6SSM [62, 63]. Clearly
the discovery of such exotics at the LHC would provide evidence for Fg F-theory GUTs
broken by flux.
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A Topological relations arising from the elimination of bulk exotics

The requirement that each type of exotic matter occurs in vector pairs is given by

n;j—nj = 0. The extra requirement which would mean that this type of exotic is completely
eliminated from the spectrum is n; + n;

type of exotic. Note that all of these relations can’t be satisfied at once, and are written

= 0. There requirements are given here for each

here on the assumption that a subset of them will be satisfied.

np—ny=0=c(5) c1(L1) =0 (A.1)
n+ni=0= ¢ (L)? =2 (A.2)
ng —ny =0=¢1(S)-c1(L2) =0 (A.3)
ny+ny=0=c(Ly)? = -2 (A.4)
n3 —nj =0=c1(S)-c1(L1) = c1(S) - c1(L2) (A.5)
n3+ni=0=c(L£1)? +c1(L2)? = -2 (A.6)
ng—mny =0=c1(S) c1(L1) = —c1(S) - c1(L2) (A.7)
ng+ni=0= (L) + c1(L2)? = =2 (A.8)
ns —ng =0=c1(9)-c1(L3) = c1(S) - c1(L2) (A.9)
ns +ni=0= ¢ (L2)? +c1(L3)? = =2 (A.10)
ng —ng = 0= c1(S) - c1(L2) = —c1(S) - e1(L3) (A.11)
ng +ng =0 = c1(L2)* 4+ c1(L3)* = =2 (A.12)
ny —ny =0=c1(5) - c1(L1) = c1(S) - c1(L2) + c1(S) - c1(L3) (A.13)
ny+ni=0=c1(L1)*+c1(L2)* + c1(L3)? = -2 (A.14)
ng —ng =0=c1(5)-c1(L1) = —c1(5) - c1(L3) (A.15)
ng +ny=0=c (L) + c1(£3)2 =2 (A.16)
ng —ng =0=c1(5) - c1(L3) = (A.17)
ng +ng=0= c1(L3)* = -2 (A.18)
nio —njg = 0= c1(9) - c1(L1) = c1(S) - c1(L3) (A.19)
n1o 4+ njp =0 = ¢1(L1)? + c1(L£3)% = —2. (A.20)

B F and D flatness conditions
In the language of table 3, the singlets X5 and X5 correspond to 645 and 054 respectfully.

As these singlets get GUT scale VEVs in the E6SSM model, we must check that this is
compatible with the F- and D-flatness conditions. The D-flatness condition for Ux(1) is

T A
Q8 (105)F ~ 110:0F) = — o222
= —XTrQ". (B.1)
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This condition must be checked for all the U(1)s, the charge generators of which are given
in the form Q = diag[t1, t2, ts, t4,t5] by

Qy o diag[—1,—1,—1,—1,4] (B.2)
Qy o diag|1,1,1, —3,0] (B.3)
Q.  diag[l,1,—2,0,0]. (B.4)

We can see immediately that if (045) = (054) = Mgur, the presence of these VEVs will
not affect the D flatness relations due to the relative minus sign in eq. (B.1). As such, it
is only necessary to check the conditions for F flatness. As in the E6SSM model 03, and
053 get large VEVs while 034 gets a TeV scale VEV, the only new problematic terms in the
superpotential are

Wo = Nijutlis0250%5, + Map0350%, . (B.5)

As such, the F flatness equations will be satisfied provided the following conditions are
satisfied

g5, ~ Mk (i) (tha) =0
01, = Nijk (045) <934> =0

Z;Z = Nijk <9%5> <9’§4> + M, <9g4> —0.

Due to the model building freedom we have in the number of singlet fields and the fact that
the number of 645 and 054 fields in the spectrum can be changed by looking at topological
relations where v > 4 in eq. (2.30), these F flatness relations can always be satisfied in
realisations of the E6SSM-like model.

C Anomaly cancellation

It has been noted in [31] that in models with multiple perpendicular U(1) symmetries,
there is a U(1)y — U(1) — U(1). anomaly which is not automatically cancelled through
the spectral cover approach. In order for this anomaly to be cancelled, the following
condition is required:

33 (Qh0)" (@) Mg+ 3 (@) (@) "N =0 (C.1)

Cio Cg

where the sums are over all the 10 and 5 matter curves, Q denotes the charge under either
the U(1) labelled A or the one labelled B (allowing for mixed anomalies in the case of
multiple U(1)s), and the Ns refer to the chirality induced by hypercharge flux. In the
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Curve QX Qw QJ_ Ny
1 1 1
v | =506 | 36 | 33 | !
1 1 1
109 ~3vi5 | 2v8 -5 1
55 L S U . 1
“ V10 V6 V3
91 L —L L -1
V10 V6 2v3
59 L L 1 | 1
V10 V6 2v3
53 | —5o= | =52 | 55 | -1
2v/10 26 2v/3
54 L 1 1 1
V10 V6 V3
5y | —= | - | L 1
2V/10 2V6 V3

Table 5. U(1) charges of the 10 and 5 matter curves.

models considered in this paper, we have 3 U(1)s, with generators

1
- diag(—1,—1,—1,—1,4 C.2
Q= =i ) ©2)
1
— _diag(1,1,1,-3,0 C.3
Qy %@1%( ) (C.3)
I
QJ_ = Tﬁdlag(l, 1, —2, O, O) . (04)

As such, we can tabulate the U(1) charges of all the 5 and 10 matter curves in model 2.
The bulk exotics are not included in this table, as anomalies are automatically cancelled
by the bulk spectrum. As they come from a 78 of Eg, they are uncharged under U(1) |,
and so anomalies involving this U(1) are zero. Also, as they always occur in vector pairs,
the U(1), and U(1), anomalies are also cancelled. Without the bulk states, the charges
are shown in table 5. We can now check if eq. (C.1) holds for all the combinations of

A,B = x,v, Lin U(1)y —U(1)4 —=U(1)5. Plugging in the charges and the Ny values from
table 5 into the left hand side of eq. (C.1) gives

1 1 1 1 1 9 1 9

A= B=y—23|—-—+ — e T

X X 3[ 404—40]4-[ + + ] 0
0

11 1 1 1 1 1 1
A= B = 3|l—— +— [+ |- —=— 4| =
¥, Y — [ 24+24]+[ + -4 ]

1 1 1 1 1 3 1 3
A=y, B=1¢—3 - + b ——— F—t =0.
X v [4@ 4%6*0]{\/@\/@\/@4\/@\/@4\/@}

This shows that the relation is indeed obeyed for the cases U(1)y —U(1)X—=U(1)X, U(1)y —
U(1)¥ = U(1)¥ and U(1)y — U(1)X — U(1)¥. (This was to be expected, as U(1), and U(1),,
are both embedded in E6). However, for the 3 anomalies involving U(1),, eq. (C.1) is
not satisfied, meaning that the anomalies involving U(1), are not cancelled. This U(1)4,
however, is broken by the 631 VEV, so there are no problems below this scale. Also,
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we know that all anomalies are automatically cancelled above the GUT scale so there is
only a problem in the gap in energy between the GUT scale and 031 VEV. As we have
(031) ~ 1.5 x 106 GeV and Mgyt ~ 2 x 109 GeV, the ratio of the GUT scale to the
U(1)_ breaking scale is only a factor of 1.5 and we do not regard anomalies in such a small
energy interval as being problematic, especially bearing in mind the error in our energy
scale estimates.
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