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Abstract 

Poor water quality is a global concern, with agricultural practices the major contributor to reduced water quality with emissions 

of nutrient fluxes in to water systems. Using a collaborative framework to support catchment-scale water quality monitoring, 

control and management (WQMCM), individual sub-networks can learn and predict the impact of catchment events on their 

locality[1], allowing dynamic decision making for local irrigation strategies. Since resource constraints on network nodes (e.g. 

battery life, computing power etc) require a simplified predictive model, low-dimensional model parameters are derived from the 

existing National Resource Conservation Method (NRCS). An M5 decision tree algorithm is then used to develop predictive 

models for total discharge volume (Q), response start and duration (t1 & td). Evaluation of these models demonstrates high 

accuracy (84-94%) even for a small training set of under 100 samples for Q and td. However, for t1, 300 samples are required to 

give adequate performance. 
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1. Introduction 

Excessive or poorly timed application of irrigation water and fertilizers, coupled with inherent inefficiency of 

nutrient uptake by crops result in nutrient fluxes into the water system. However, it is challenging to make valid 

predictions about these outflows (what and when to expect). Due to the recent adoption of WSNs in precision 
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agriculture, it is proposed that existing networked agricultural activities can be leveraged into an integrated 

mechanism by sharing information about discharges and predicting their impact [1, 2], allowing novel irrigation 

strategies to be implemented efficiently [3]. 

For discharge prediction, various hydrological models exist. One of the popular and simplified methods is the 

NRCS Curve number model [4]. However, at the time the NRCS method was developed, (pre-WSN), proxy 

parameters, average values or manual observations were used to represent land conditions. A WSN based system 

requires a simplified underlying physical model, based on fewer and, ideally, real-time field variables acquired 

autonomously. In the WQMCM framework [1], the output parameters of interest for discharge dynamics are Q, t1 

and td (See Figure 1). 

 

 

Figure 1: Plot of a hydrograph showing definitions of parameters 

2. Model Simplification 

Due to the availability of real field data from WSNs, empirical modelling using machine learning algorithms has 

become popular in hydrological forecasting [5]. In this paper, the NRCS model is used as a basis for deriving the 

simplified model parameters as illustrated in Figure 2 & Figure 3, resulting in a halving of the number of parameters 

required. This simplification is based on two steps; firstly the transient parameters from the NRCS model parameters 

are selected for each of the predictive models for Q, t1 and td. This is because learning models are trained only on 

transient values. After this, the transient parameters are analyzed for likely improvements made possible by using 

available real field data from WSNs. For example, methods such as field imaging and signal attenuation methods 

have been used to determine the plant biomass autonomously [6]. This can give a measurement of crop stage. 

Similarly, various applications have used sensors to monitor soil moisture conditions of the field for precision 

irrigation [1]. Therefore, it is proposed to use actual soil moisture values instead of the 5-day rainfall index. 
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Figure 2: Model simplification for a Q-predictive model 
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3. Dataset 

For training and testing the model, data is generated using a simulator based on the NRCS method [7], which was 

developed in Matlab. A combination of various event depths, field conditions and event duration is considered to 

generate two sets of data – one for the Q predictive model and the other for the t1 and td predictive model. The 

obtained data set is then modified to substitute CN with the proposed simplified model parameters of CS and SM. 

To ensure robust evaluation of the model performance, the datasets are randomly sampled, in order to create training 

and testing subsets, respectively containing one-third and one-fourth of the available data. 

4. Results and Discussion 

Using these parameters, an M5-tree learning algorithm [8] generates the predictive models for Q, and t1 and td. 

The prediction accuracy of the learned models is tested using RMSE (Root Mean Square Error), 10-fold cross 

validation (CVRMSE), Relative RMSE (RRSME) and R squared value (R2). A good value for RMSE and 

CVRMSE is stated as half of the standard deviation value for the output data. This comes out as 1.3 for Q and t1, and 

3.2 for td. Values of R2 and RRMSE can range between 0 and 1, where 1 means perfect forecasting. The value of 

RRMSE is represented as a percentage. The prediction results for these models show excellent match against the 

estimated output of the NRCS method (Figure 4). The Q-predictive and td-predictive model was tested to perform 

well even for a small training set of under 100 samples with 5.98% and 8% RRMSE respectively (Table 1). R2 for 

the two models is 0.984 and 0.99 respectively. However the t1-predictive model required a minimum of 300 training 

samples to show reasonable performance (RRMSE=16.8%, R2=0.976). 

Table 1: Performance of the predictive models based on various training sizes using M5 trees 

  

  

Q-Predictive Model 

(P, CS, SM)  

t1-Predictive Model 

(Pd, P, CS, SM) 

td-Predictive Model 

(Pd, P, CS, SM) 

Training set size 250 125 65 450 300 100 450 300 100 

RMSE 0.159 0.234 0.317 0.239 0.318 0.825 0.2755 0.299 0.598 

R2 0.998 0.997 0.984 0.985 0.976 0.835 0.997 0.977 0.991 

CVRMSE 0.216 0.278 0.465 0.2935 0.381 1.042 0.3856 0.426 0.713 

RRMSE  5.7% 7.5% 5.98% 16.1% 16.8% 27% 5% 6% 8.2% 

 

Figure 4A also shows results from a model only using P, verifying that further simplification leads to poor results. 

RRMSE increases from 5.98% to 35%. Figures 4B and C also illustrate the performance of t1 and td model when the 

model parameters of the Q-predictive model are used for training. In this case for t1 and td, the plot shows very poor 

performance with RRMSE increasing from 16.8% to 65% and 8% to 98% respectively. This verifies the need for the 

inclusion of the Pd parameter for the prediction of t1 and td.  

 

Figure 3: Model simplification for the t1 and td-predictive models 
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 In conclusion it can be seen that these results give confidence that the low complexity discharge prediction 

models described here can give excellent results when compared with standard methods, and further, the models are 

suitable for implementation on resource constrained wireless sensor networks. 
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Figure 4: Plot of test data for, A) Q-predictive modes (100 samples), B) t1-predictive model (300 samples), C) td-predictive 

model(100 samples) 
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