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Abstract

This paper proposes a new approach for estimating and forecasting the moments

and probability density function of daily financial returns from intraday data. This

is achieved through a new application of the distributional scaling laws for the class

of multifractal processes. Density forecasts from the new multifractal approach are

typically found to provide substantial improvements in predictive ability over exist-

ing forecasting methods for the EUR/USD exchange rate and are also competitive

with existing methods when forecasting the daily return density of the S&P500 and

NASDAQ-100 equity index.
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1 Introduction

Over the past decade there has been a dramatic increase in the availability of intraday

financial data, resulting in an extensive literature on the use of high-frequency data in

financial econometrics. These data obviously allow for the study of financial market

behaviour at intraday timescales, but they also contain potentially valuable information

for longer timescales, which are arguably of more interest for most market participants.

As a result, there have been e↵orts to incorporate intraday data into the modelling and

forecasting of financial variables at daily or even lower frequencies.

The most notable example is provided by the large literature on realised volatility,

a concept that was introduced by Andersen & Bollerslev (1998) and then subsequently

formalised by Andersen et al. (2001). The daily realised volatility is obtained by summing

the squared intraday returns observed during that day and can then be used as an

estimate of the unobservable daily volatility. It has been found (see for example Andersen

et al., 1999, or Andersen et al., 2003) that the use of high-frequency data in the form of

these realised volatility measures can provide significant improvements in the modelling

and forecasting of daily return volatility compared to models using only daily data.

Whilst return volatility is undoubtedly a variable of substantial academic and prac-

tical interest, there are many situations encountered in finance in which information

concerning just the first two moments of the distribution of returns is not su�cient.

Perhaps most obviously, risk management problems, such as the calculation of value-

at-risk and expected shortfall, require knowledge of particular quantiles of the return

distribution. In addition, numerous studies including Harvey & Siddique (2000) and

Brooks et al. (2005) have shown that higher moments such as skewness and kurtosis are

time varying and there is empirical support for these higher moments being relevant in

problems of portfolio allocation and asset pricing (see for example Harvey & Siddique,

2000, or Dittmar, 2002, amongst others).

However, as noted by Žikěs (2009), the use of intraday data to model and forecast

characteristics of daily return distributions beyond the first two moments is not a subject

that has yet received much attention. Notable exceptions include Andersen et al. (2003),

Giot & Laurent (2004), Clements, Galvão & Kim (2008) and Maheu & McCurdy (2010),

all of which extend the use of realised volatility measures to either quantiles of daily

returns or the entire daily return density. The methods used by all of these previous

studies to link the realised volatility measures produced from intraday data to the density

(or quantiles) of daily returns consist of two components. The first is a parametric

time series model for volatility incorporating one or more realised volatility measures,
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which is used to model and produce point forecasts for daily volatility. The specific

parametric volatility model varies, with Giot & Laurent (2004) using an ARCH-type

model, Clements, Galvão & Kim (2008) considering mixed data sampling (MIDAS) and

heterogenous autoregressive (HAR) models and a bivariate VAR being used by Andersen

et al. (2003). The second component is a parametric distributional assumption about

daily returns, allowing density or quantile forecasts for daily returns to be produced

from the point forecasts of daily realised volatility. This is typically based on the finding

of Andersen et al. (2001), that daily returns are approximately normally distributed

when standardised by their corresponding daily realised volatilities, although Clements,

Galvão & Kim (2008) also explore the use of an empirical distribution estimated from

the data.

In response to these theoretical limitations, Hallam & Olmo (2013) propose a method

for estimating and forecasting the probability density of daily returns from intraday

data, based on a new application of distributional scaling laws for the class of unifractal

processes. These processes possess a form of scale invariance, such that the distribution

of the process at a given timescale is related to that at any other timescale through a

distributional scaling law.

Under the assumption of unifractality, the form of this distributional scaling can be

estimated for a given sample of data and it was demonstrated how these estimates can be

used to appropriately rescale the intraday returns such that they are equal in distribution

to daily returns; the density of daily returns can then be directly estimated from these

rescaled intraday observations. It should however be noted that the applicability of the

proposed approach only requires unifractal distributional scaling to be present locally

over each estimation window and for the range of timescales that are of direct interest,

rather than globally over all sampling intervals and sub-periods as for a true unifractal

process in the traditional sense.

In contrast to existing methods, information concerning both the magnitude and sign

of intraday returns can be incorporated into the estimates of the daily return density.

Furthermore, this approach also allows the use of nonparametric density estimation

methods, thus removing the need to impose a specific parametric form for the density

of daily returns. The empirical application of Hallam & Olmo (2013) suggests that the

proposed unifractal density forecasting method produces density forecasts that perform

well when the true scaling behaviour of the return processes is su�ciently close to that

of a unifractal process, even if it is not exactly unifractal. However, it also appears

that the predictive ability of the unifractal approach can be adversely a↵ected by larger

deviations from the unifractal distributional scaling behaviour that is required for the
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method to be theoretically valid.

The current paper therefore proposes an alternative approach for producing den-

sity forecasts for daily returns from intraday data, based on distributional scaling laws

for the more general class of multifractal processes. Compared to unifractal processes,

multifractal processes allow for a more flexible scaling relationship between return distri-

butions at di↵erent sampling frequencies, overcoming a key theoretical limitation of the

previous method. However, whilst the multifractal approach of the current paper per-

mits more flexible distributional scaling behaviour than the earlier unifractal approach,

the implementation of the method is more restrictive in some respects, most notably

requiring a parametric form to be selected for the daily return distribution. Nonethe-

less, the proposed method still allows the intraday data to directly influence properties

of the daily return density beyond the second moment. In particular, the approach al-

lows the kurtosis of daily returns to be estimated directly from the intraday data and

incorporated into the forecasts of the density of daily returns.

The aim of the current work is to formalise this alternative multifractal approach

and explore whether the additional flexibility it permits in terms of distributional scaling

behaviour allows it to produce accurate density forecasts, despite the more restrictive

implementation it requires compared to the competing unifractal approach. The density

forecasting performance of the proposed multifractal approach is compared to that of

benchmark models from the GARCH and realised volatility literature, in addition to

the unifractal approach of Hallam & Olmo (2013) in an empirical application using a

dataset of 5-minute intraday equity and exchange rate data.

The structure of the paper is as follows: Section 2 presents the relevant theory on

unifractal and multifractal processes and describes how these results can be applied to

link the properties of the return process at di↵erent sampling frequencies. Section 3

then discusses how these concepts can be applied in practice for the multifractal case

to estimate and forecast the moments of daily returns and ultimately forecast the daily

return density. Section 4 presents the empirical application of the new multifractal

approach and finally, Section 5 concludes.

2 Unifractal & Multifractal Processes

In order to estimate the density of daily returns from intraday data, a method for

formally linking the characteristics of return distributions across di↵erent sampling fre-

quencies is required. In contrast to the existing work in the literature based on realised

volatility measures, the proposed method relies instead on results from the theory of
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unifractal and multifractal processes.

On an intuitive level, such stochastic processes exhibit some form of scale invariance,

such that the behaviour of the process observed at one timescale is, after an appropriate

transformation, identical in a statistical sense to that observed at another time scale.

Whilst much of the work with these processes originated in physics, a large number of

empirical studies have subsequently confirmed the existence of this type of distributional

scaling behaviour in a wide range of financial time series1 and this has led to the de-

velopment of several asset pricing models that explicitly reproduce this distributional

scaling behaviour2.

The current section begins with a brief summary of the theoretical properties of these

processes (with more detailed treatments found in Mandelbrot, Fisher & Calvet, 1997,

Calvet & Fisher, 2002 or Kantelhardt, 2009), before exploring how these properties could

be applied to relate the distributional properties of the return process at the intraday

and daily sampling intervals.

2.1 A Review of Unifractal and Multifractal Processes

The distributional scaling behaviour of a unifractal or self-a�ne process can be defined

by a simple expression that links the distribution of the process at di↵erent sampling

intervals. Formally, unifractal or self-a�ne processes can be defined in the following way:

Definition 2.1. A process is said to be self-a�ne or unifractal if for some H > 0,

all c � 0 and all t1, t2, . . . , tk � 0 it obeys the distributional scaling relationship

{X(ct1), X(ct2), . . . , X(ctk)}
d
= {cHX(t1), c

HX(t2), . . . , c
HX(tk)} (2.1)

which can be expressed more compactly as:

X(ct)
d
= cH [X(t)] (2.2)

If the increments of the process are stationary, then the distributional scaling law of

1Empirical studies include Calvet & Fisher (2002), Fillol (2003), Matia, Ashkenazy & Stanley (2003),
Xu & Gençay (2003), Di Matteo, Aste & Dacorogna (2005), Selçuk & Gençay (2006), Di Matteo (2007)
and Onali & Goddard (2009)

2Key examples include the multifractal model of asset returns of Mandelbrot, Fisher & Calvet (1997)
and Calvet & Fisher (2002), the Markov switching multifractal model of Calvet & Fisher (2004) and
Calvet, Fisher & Thompson (2006) and the multifractal random walk of Muzy, Delour & Bacry (2000)
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(2.2) also holds at the local level:

X(t+ c�t)�X(t)
d
= cH [X(t+�t)�X(t)] (2.3)

The parameter H is known as the self-a�nity index and can be estimated for a specific

time series of data using a variety of methods. Common examples of unifractal pro-

cesses in finance include the standard Brownian motion, for which H = 1/2, and also

the more general fractional Brownian motion (and the corresponding increment series,

the fractional Gaussian noise), for which H is constant but not constrained to be equal

to 1/2. Equations (2.2) and (2.3) state that the distribution of the process X(t) and the

corresponding increment series are, after an appropriate rescaling, identical when the

time scale of the process is changed. In the current context this implies that the distri-

bution of returns over di↵erent horizons or sampling intervals, for example 1 hour and 1

day returns, are identical after rescaling by a factor that depends on the characteristics

of the particular return process (via H) and the di↵erence between the two sampling

intervals (via c).

One can also consider the more general class of multifractal processes, which allow for

a more flexible relationship between distributions across di↵erent sampling frequencies.

In the case of a multifractal process, equations (2.2) and (2.3) can be generalised to:

X(ct)
d
= cH(c)[X(t)] (2.4)

and

X(t+ c�t)�X(t)
d
= cH(c)[X(t+�t)�X(t)] (2.5)

where the scaling factor cH has been replaced by the more general function of c, cH(c),

allowing for a more flexible scaling relationship between distributions over di↵erent sam-

pling frequencies than in the unifractal case. An alternative characterisation of scaling

behaviour is often used, particularly in the case of multifractal processes, for which equa-

tion (2.4) is perhaps somewhat less intuitive than the unifractal analogue of (2.2). It

can be shown (see for example Mandelbrot et al., 1997) that a stochastic process X(t)

with increments X(t+�t)�X(t) is multifractal if these increments are stationary and

satisfy:

E[| X(t+�t)�X(t) |q] = c(q)(�t)⌧(q)+1 (2.6)

6



where c(q) and ⌧(q) are deterministic functions of q. The function ⌧(q) in (2.6) is referred

to as the scaling function and describes the scaling behaviour for di↵erent moments (i.e.

values of q) of the absolute increments of the process X(t) for a given range of sampling

intervals, �t. It can be demonstrated (see Calvet & Fisher, 2002) that for a multifractal

process the scaling function is non-linear (though always concave with intercept equal

to -1), implying that di↵erent moments of the absolute increments scale di↵erently with

the sampling interval, �t, than others. For a unifractal process (2.6) also holds, but the

scaling function is linear and of the form ⌧(q) = Hq�1, where H is the same self-a�nity

index from equations (2.1) and (2.2). As with the self-a�nity index, H, for a unifractal

process, the scaling function can be estimated for a particular time series using various

methods (see Kantelhardt, 2009, for a survey of several common estimators).

2.2 Application of the Distributional Scaling Laws

Before explaining how the distributional scaling laws for multifractal processes can be

applied to estimate the density of daily return from intraday data, it is beneficial to

begin with a brief summary of the method proposed by Hallam & Olmo (2013) under the

assumption of a unifractal return process, in order to emphasise the di↵erences between

the methods and explain why an identical approach cannot be used in the multifractal

context.

Assume that a series of intraday returns are observed over a given time period and

we wish to use these intraday returns to estimate the density of daily returns over the

same time period. Denote the density functions of the intraday and daily returns over

the time period by f(yI) and f(yD) respectively. Under the assumption that the return

process is unifractal, it must satisfy the distributional scaling laws of equation (2.2) and

(2.3), which in the current context imply that:

f(yD) = f(cHyI) (2.7)

From (2.7), the density of daily returns is equal to the density of the intraday returns,

when these intraday returns have been appropriately rescaled by a factor consisting of

two components: c and the self-a�nity index, H. From (2.1), the value of c is determined

solely by the relative lengths of the two sampling intervals and the self-a�nity index, H,

can be estimated from the intraday data using various estimators3.

3A detailed survey of common estimators can be found in Kantelhardt (2009)
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The resulting estimate of the self-a�nity index, denoted by Ĥ, can then be combined

with the appropriate value of c to rescale the intraday returns by the factor cĤ ; the

density of these rescaled intraday returns can then be estimated and from (2.7) the

resulting estimate can then be viewed as an estimate of the density of daily returns

over the same period. The large number of rescaled intraday returns obtained over

even short time periods allows a wide range of methods to be used to estimate the daily

return density from these observations, including nonparametric methods, such as kernel

estimation, as used by Hallam & Olmo (2013).

It is therefore relatively straightforward to estimate the density of daily returns from

intraday data when the return process is assumed to be unifractal. In the multifractal

case the direct analogue of the distributional scaling rule in (2.3) employed above for

the unifractal case is given by (2.5), with the simple scalar H replaced with the function

H(c). If this function could be estimated (as H can be in the unifractal case), then

it would be possible to proceed in the same way as before. Unfortunately there is no

existing method for estimating this function and so any application in the multifractal

case must be based on an alternative representation of scaling behaviour.

Instead, we will employ the moment scaling property of multifractal processes given in

equation (2.6), which has been widely used in empirical studies of multifractal processes

in finance as the basis for estimating the scaling function, ⌧(q), for a given sample of

time series data. However, at least within the finance literature, the resulting estimates

of the scaling function have only been used to assess whether the distributional scaling

properties of the return process are consistent with that of a multifractal process and

have not been employed to estimate the moments of the time series process at one

sampling interval from data observed at a di↵erent timescale.

One possible reason for this is that the moment scaling condition is not immediately

applicable in the this context without making some additional assumptions; in particular,

equation (2.6) describes how the non-central moments of the absolute increments of the

price process scale with the sampling interval, but what is of more interest for financial

returns is the scaling behaviour of the central moments (such as variance, skewness and

kurtosis) of the untransformed returns (i.e. the increments of the log price process).

If it can be assumed that the expected value of returns is zero, the central and non-

central moments are equal. Furthermore, for all even values of q in (2.6), the moments

of the increments and absolute increments are equal. Therefore, under the assumption

of a multifractal return process with mean of zero, from equation (2.6) the q-th central

moment of the return process at sampling interval �t, denoted by m(q,�t), is given by:
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m(q,�t) = c(q)�t⌧(q)+1 (2.8)

for all even values of q. The scaling function, ⌧(q), and the prefactor, c(q), can both be

estimated from a given sample of intraday data using the method presented in Section 3.1

below. These values can then be used to produce an estimate of the q-th central moment

of returns at any sampling interval for all even numbered values of q. In particular, this

allows both the variance and kurtosis of daily returns for a given time period to be

estimated from intraday data observed over the same period.

Unlike the unifractal approach of Hallam & Olmo (2013), this method does not pro-

duce a sample of rescaled intraday data from which the daily return density can be

estimated. Instead, a parametric distributional form can be assumed that is uniquely

determined by the moments estimated from the intraday data, with some possible can-

didates discussed in Section 3.3.

3 Estimating and Forecasting the Moments of Daily Re-

turns from Intraday Data

The current section demonstrates how the theoretical results from the previous section

can be used in practice to estimate the moments of daily returns from intraday data

under the assumption that the return process is multifractal, before proceeding to the

problem of forecasting the moments and density of daily returns. Section 3.1 begins by

describing the chosen method for estimating the scaling function, ⌧(q), and the prefactor,

c(q), from a given sample of intraday data, which can then provide estimates of the

moments of the return process at the daily sampling interval. Section 3.2 then moves to

a dynamic context and considers how the moment estimates produced in this way can be

used to produce out-of-sample forecasts for the daily return moments and finally Section

3.3 discusses a possible method for constructing density forecasts for daily returns from

these point forecasts for the daily return moments.

3.1 Estimation of the Multifractal Scaling Function

Estimating the moments of daily returns from intraday data requires estimates of the

scaling function, ⌧(q), and the prefactor, c(q), for the relevant values of q. Whilst many

methods have been proposed for estimating the scaling function, the majority do not

provide a direct estimate of the prefactor, since this is typically not of direct interest
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in most studies of multifractal processes in finance or elsewhere, which focus almost

exclusively on the scaling function. However, from the discussion in Section 2.2 it is

clear that an estimate of c(q) is indeed required for the current application, in order to

estimate the moments via equation (2.8)

Initially the partition function estimator was employed for estimation; this is one of

the simpler estimators for ⌧(q), but was selected primarily because it also provides a di-

rect estimate of the prefactor, in addition to being one of the most commonly employed

estimators in the multifractal finance literature (see for example Calvet & Fisher, 2002).

Subsequently, more complex estimators for the scaling function were also tested, includ-

ing the multifractal detrended fluctuation analysis method of Kantelhardt et al. (2002)

and the multifractal detrended/centred moving average method of Schumann & Kantel-

hardt (2011). These more complex methods do not however estimate the prefactor and

so the estimates of ⌧(q) obtained from these alternative estimators were combined with

the corresponding partition function method estimate of c(q). Interestingly however,

despite being a simpler estimator for the scaling function, the density forecasting per-

formance of the method when using the partition function approach was actually found

to be superior than that obtained when using these alternative estimators.

The partition function method is based directly on the multifractal moment scaling

condition of (2.6), which must be satisfied by any multifractal process. If the process

X(t) is observed over the interval [0, T ] and this interval is divided into N subintervals

of length �t then the q-th order partition function of X(t) is defined as:

Sq(T,�t) ⌘
N�1X

i=0

|X(i�t+�t)�X(i�t)|q

From the stationarity of the increments of X(t) it follows that:

E [Sq(T,�t)] = N · E [|X(i�t+�t)�X(i�t)|q]

Then from the multifractal moment scaling condition of (2.6) and the fact thatN�t = T :

E [Sq(T,�t)] = Nc(q)(�t)⌧(q)+1

logE [Sq(T,�t)] = logc(q) + logT + ⌧(q)log(�t)

logE [Sq(T,�t)] = c*(q) + ⌧(q)log(�t) (3.1)
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where c*(q) = logc(q)+logT . Therefore, by calculating the value of Sq(T,�t) for a range

of sampling intervals, �t, it is possible to estimate the value of the scaling function, ⌧(q),

for a given value of q via (3.1) from the slope of logSq(T,�t) plotted against log(�t).

The corresponding value of the prefactor, c(q), can be estimated via the intercept. In

practice this process requires a minimum and maximum sampling interval (i.e. value of

�t ) to be selected. This is largely an empirical issue, with the optimal choices being

dependent on the intended application of the estimated scaling function and also to some

extent on the characteristics of the time series in question; as such, this issue will be

discussed further during the empirical exercise of Section 4.

Fisher, Calvert & Mandelbrot (1997) suggest the use of OLS to obtain estimates

of the slope and intercept for each partition function and this is generally the method

that has been employed since. Typically this process is repeated for a range of values

of q, producing estimates of a set of points on the scaling function; an estimate of the

complete function ⌧(q) can then be obtained by fitting a curve to this set of points. For

the current application this only needs to be performed for the values of q corresponding

to the moments of interest. Assuming that we wish to estimate both the variance and

kurtosis of daily returns, then the second and fourth central moments are required,

which can be obtained from the estimated values of c(q) and ⌧(q) for q = 2 and q =

4. In principle higher order moments can also be estimated in the same way, but it has

been noted (see Schmitt et al., 1999) that estimates of the scaling function from a finite

time series will become less reliable as the value of q increases. Given that these higher

moments have less direct interpretation in finance, attention will be restricted to the

second and fourth moments for now.

3.2 Forecasting the Moments of Daily Returns

The discussion so far has only considered the estimation of the moments of daily returns

from intraday data in a static context, but given the final objective of forecasting, ex-

tending this to a dynamic environment is required. This can be achieved by applying the

above estimation method to a rolling window of intraday data; by rolling this estimation

window forward one day at a time, a time series of estimates for the daily return variance

and kurtosis is obtained, with an estimate of each moment for every trading day.

More formally, it is assumed that a series of intraday returns are observed over a

period of T days, together with a corresponding series of daily returns. At day m,

estimates of the scaling function and prefactor are produced using the first m days of
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intraday data (from day 1, up to day m) and are then used to estimate the variance

and kurtosis of daily returns for day m via equation (2.8). The m day window is then

rolled forward by one day and the above procedure is repeated using the intraday data

from day 2 up to day m+ 1 to produce estimates of daily return variance and kurtosis

for day m + 2. By repeating this process over the complete sample, a time series of

M = T �m+ 1 estimates for both the daily return variance and kurtosis are obtained.

Producing moment forecasts from these time series of estimated moments requires

some form of dynamic structure to be imposed that describes the evolution of the daily

return process over time. The simplest way of achieving this is to impose the dynamic

structure directly onto the time series of estimated moments themselves; this is an

approach previously employed in the realised volatility literature, where various time

series models have been fitted to daily realised volatility measures obtained from intraday

data in order to produce forecasts for daily volatility.

Numerous time series models have been employed for this purpose in the realised

volatility literature, with some allowing for relatively complex dynamics, such as the

Mixed Data Sampling (MIDAS) and Heterogeneous Autoregressive models used by

Clements et al. (2008). Whilst these could also be employed here, two simpler autore-

gressive specifications will be considered initially that were previously used by Andersen

et al. (2003) to model and forecast the realised volatility of three exchange rates.

The first possibility is to assume that the dynamics of the daily return variance

and kurtosis can each be described separately by a standard univariate autoregressive

(AR) model. Whilst the true values of the daily return variance and kurtosis for day t

are not observable, they can be replaced by their corresponding multifractal estimates

obtained from the intraday data using the method of the previous subsection. These

multifractal moment estimates of the daily return variance and kurtosis are denoted by

�̂2 and k̂ respectively, with the hats used to emphasise the fact that we are modelling

the observable estimated daily return moments and not the true latent moments of the

daily return process. The general form of the first model is then given by:

log�̂2t+1 = ↵+
p�1X

i=0

�ilog�̂
2
t�i + ✏t

logk̂t+1 = � +
q�1X

j=0

 j logk̂t�j + ⌫t (3.2)
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where ✏t and ⌫t are iid error terms. The specification in (3.2) will be referred to as

the autoregressive multifractal variance and kurtosis, or AR-MFVK(p,q) model. Note

that following Andersen et al. (2003), the logarithmic multifractal moment estimates are

modelled in practice, rather than their levels, for two reasons. Firstly, the logarithmic

multifractal moment estimates are much closer to being normally distributed than their

levels and so should be easier to model using standard Gaussian time series methods; this

is supported in practice when testing for dynamic misspecification using the standard

Ljung-Box test for residual serial correlation, where models based on the levels of the

estimated moments display more evidence of dynamic misspecification than equivalent

models based on the logarithmic moments. Secondly, this guarantees that the resulting

moment forecasts obtained are non-negative, as is required for the second and fourth

standardised moments.

The parameters in (3.2) can then be estimated from the time series of estimated

moments and used to produce one-step-ahead forecasts for the daily return variance and

kurtosis. Denoting these parameter estimates by ↵̂, �̂, {�̂i : 1  i  p} and { ̂j : 1 
j  q}, one-step-ahead out-of-sample forecasts for the moments at time t + 1 are then

given by:

log�̃2t+1 = ↵̂+
p�1X

i=0

�̂ilog�̂
2
t�i

logk̃t+1 = �̂ +
q�1X

j=0

 ̂j logk̂t�j (3.3)

where tilde is used to distinguish the one-step-ahead out-of-sample forecasts for the

moments, from the in-sample multifractal moment estimates. A slightly more general

dynamic structure can be considered that allows for interdependence between the two

moments by jointly modelling the daily return variance and kurtosis using a vector

autoregression (VAR); this is again similar in spirit to the trivariate VAR specification

previously used by Andersen et al. (2003) to jointly model and forecast the realised

volatilities of three exchange rates. The general p-th order form of the model, expressed

in terms of the estimated moments, is given by:

 
log�̂2t+1

logk̂t+1

!
=

 
↵

�

!
+

p�1X

i=0

 
�11,i�12,i

�21,i�22,i

! 
log�̂2t�i

logk̂t�i

!
+

 
✏1,t

✏2,t

!
(3.4)

The dynamic specification of (3.4) was also tested in the empirical exercise of Section
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4, but was found to produce nearly identical density forecasting performance to the

simpler pair univariate AR models in equation (3.2) and as a result, this alternative

VAR specification has been omitted when reporting the empirical results.

Consistent with the previous notation, it is assumed that M multifractal estimates

can be produced for the variance and kurtosis from the complete sample of T days of

data; for notational simplicity it will be assumed from this point onwards that the first

of these moment estimates are produced for period 14.

A standard rolling estimation scheme is used for producing out-of-sample forecasts

for the daily return variance and kurtosis, with an n-day in-sample window used to

estimate the values of the parameters in (3.2) or (3.4). In period n the values of the

parameters in (3.2) or (3.4) are estimated using the first n estimated moments of order

2 and 4 (from period 1 to period n) and these parameter estimates are then substituted

into (3.2) or (3.4) to produce one-step-ahead forecasts of variance and kurtosis for use

in period n+ 1. The n-period in-sample window is then rolled forward by one day and

the n moment estimates from period 2 up to period n+ 1 are used to produce moment

forecasts for use in period n+2. This process can be repeated to produce one-step-ahead

moment forecasts for each day in the chosen out-of-sample period.

Finally, it should be noted that the use of the multifractal moment estimates to

approximate the unobserved true daily return moments in the predictive regressions of

(3.2) and (3.4) can potentially present di�culties for inference due to the ’generated

regressor problem’ of Pagan (1984). However, the use of a rolling estimation window

means that this should not be a problem in the current context, since the length of the

estimation sample does not grow to infinity.

3.3 Producing Density Forecasts from Point Forecasts of Moments

Whilst the forecasts of the variance and kurtosis of daily returns could be used directly

in many financial applications, the aim of the current paper is to produce forecasts of

the complete probability density. In the multifractal case, the obvious way to achieve

this is to impose a specific parametric distribution for daily returns that is uniquely

characterised by the forecasted moments.

As discussed previously in Section 2, one of the limitations of the multifractal ap-

proach is the inability to estimate the odd-numbered moments of daily returns, such as

skewness, from intraday data. Initially attention will simply be restricted to symmet-

ric distributions, as is common in financial econometrics, but non-zero values could be

4Following the previous discussion, this will not automatically be the case unless m = 1
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imposed for any odd-numbered moments based on estimates from daily data or other

information. A key advantage the multifractal method possesses over existing methods

based on realised volatility measures is that it allows the daily return kurtosis to be

estimated directly from intraday data, in addition to the variance. Therefore a symmet-

ric parametric distribution is required for daily returns, which will also allow kurtosis

to vary and be determined independently of the variance; this eliminates the normal

distribution and the simple 1-parameter version of the t-distribution as suitable options.

The generalised error distribution is also unsuitable, since recovering the distributional

parameters from the moments requires inversion of the Gamma function5.

An obvious choice commonly employed for modelling financial returns is the more

general location-scale (or three-parameter) t-distribution, which has the density function:

f(x : µ,�, ⌫) =
�
�
⌫+1
2

�

�
p
⌫⇡�(⌫/2)

"
⌫ +

�x�µ
�

�2

⌫

#�(⌫+1)/2

where µ,� and ⌫ are the location, scale and degrees of freedom parameters respectively.

The distribution has mean equal to µ and skewness equal to zero; the variance and the

fourth central moment, denoted by �2 and m4, are given by:

�2 =
�2⌫

⌫ � 2
for ⌫ > 2 and m4 =

3�4⌫2

(⌫ � 4)(⌫ � 2)
for ⌫ > 4

Kurtosis, denoted by k, is then equal to:

k =
m4

�4
=

3(⌫ � 2)

(⌫ � 4)
for ⌫ > 4

The distribution automatically satisfies the assumption of symmetry, but the location

parameter µ must also be set equal to zero to satisfy the assumption that the mean of

returns is zero required by the multifractal approach. The degrees of freedom and scale

parameters, ⌫ and �, can then be obtained from the estimates of daily return variance

and kurtosis produced using the intraday data via:

⌫ =
4k � 6

k � 3
for 3  k  9 (3.5)

5This is only possible as an approximation and only then for values of the distributional parameters
that produce an unsuitable density function for modelling asset returns.
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and

� =

r
�2(⌫ � 2)

⌫
(3.6)

From equations (3.5) and (3.6) the location scale t-distribution allows the values of the

distributional parameters to be recovered easily from the multifractal estimates of the

variance and kurtosis, although kurtosis is required to satisfy 3  k  9 in order for the

distributional parameters to be well-defined. Whilst this restriction is generally satisfied

for daily return kurtosis estimates from long samples of intraday data, the lower bound

of k = 3 can be violated by the multifractal estimates of kurtosis produced from short

windows of intraday data. The simplest way to overcome this problem is to impose a

lower bound on kurtosis of k = 3, so that if the estimated value of kurtosis is strictly

less than 3, then it is truncated and set equal to 3, resulting in a normal distribution (or

equivalently a location-scale t-distribution with infinite degrees of freedom).

Given that there is no theoretical justification for this restriction and that imposing

it discards information whenever the estimated value of kurtosis is less than 3, pos-

sible alternative distributional forms were also explored. The first notable alternative

considered was the Pearson distribution family, which also results in a location-scale

t-distribution when kurtosis is greater than 3, but a symmetric 4-parameter beta dis-

tribution otherwise; such a distribution has finite support and the density forecasting

performance when using he Pearson family of distributions was found to be poorer than

that obtained from the location-scale t-distribution.

The second alternative investigated was the use of Gram-Charlier expansions, which

can be employed to obtain a semi-parametric approximation to the density function,

in which the moments, such as skewness and kurtosis, appear as the parameters in a

polynomial expansion. However, the polynomial expansion is not guaranteed to produce

a valid density function unless restrictions are imposed on the moments; for a symmetric

distribution this requires kurtosis to satisfy 3  k  7 (see for example Jondeau &

Rockinger, 2001), which is even more restrictive than for the truncated location-scale

t-distribution approach proposed above. Again, the resulting density forecasts from

the alternative Gram-Charlier specification were found to perform worse for the current

dataset than those from the location-scale t-distribution, despite the slightly arbitrary

restriction on kurtosis that is required for the parameters to be well defined. The original

approach based on the t-distribution is therefore the distributional specification used for

the remainder of the paper in order to construct daily return density forecasts from the
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values of variance and kurtosis.

3.4 Sources of Multifractality and an Extension to the Method

A fundamental property of multifractal processes is that the scaling behaviour of fluc-

tuations of di↵erent sizes is characterised by a range of scaling exponents and cannot

be described by a single scaling exponent as in the unifractal case. As discussed in the

literature (see for example Kantelhardt et al., 2002 or Kantelhardt, 2009), these di↵er-

ences in scaling behaviour for di↵erent sized fluctuations can arise from two possible

sources; the first is multifractality due to a broad probability density function for the

process (such as a power-law probability density function), whilst the second is caused

by small and large fluctuations of the process having di↵erent long-range correlations

and is therefore a consequence of the temporal structure of the data. Multifractality

of the second type will be eliminated if the time series is shu✏ed randomly, since any

temporal dependence present in the original ordered time series will be destroyed. If

the multifractality displayed by the original series is purely of the second type then the

resulting shu✏ed series will display non-multifractal distributional scaling behaviour, if

it is entirely of the first type then the scaling behaviour of the shu✏ed series will be

unchanged and finally if both types are present in the original data then the shu✏ed

series will still display multifractal scaling, but weaker than that of the original series.

This issue has previously been studied both for simulated multifractal processes (see

again Kantelhardt et al., 2002) and also return series for various financial assets (see for

example Onali & Goddard, 2009). In the case of financial data, it is generally found that

the randomly shu✏ed returns display di↵erent multifractal scaling behaviour than the

original ordered return series (as indicated by di↵erences in the shape of the estimated

scaling function) implying that at least some of the scaling present in financial data is

due to the second source of multifractality. This in turn implies that the multifractal

estimates of the daily return variance and kurtosis obtained from ordered and reshu✏ed

financial data will generally di↵er; a potentially interesting extension is therefore to

explore which of these moment estimates results in forecasts with the greatest predictive

ability, by applying the proposed multifractal method to both ordered and randomly

shu✏ed data. If the part of multifractal scaling due to the temporal structure of the

data is not relevant for the current application, then randomly shu✏ing the intraday

data before estimating the daily return moments may result in more accurate density

forecasts. Conversely, if this component of scaling behaviour is informative for the

current application, then eliminating it through reshu✏ing the data should reduce the
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forecasting performance of the multifractal method.

One potential problem with this extension to the method is that the partition func-

tion estimator of Section 3.1 is a↵ected by the ordering of the observations and so each

random shu✏ing of the data will produce a di↵erent estimate of the scaling function and

therefore di↵erent estimates of the daily return moments. The predictive ability of den-

sity forecasts produced from these multifractal moment estimates will therefore become

stochastic. This has not posed a problem in previous studies, since scaling functions

were only estimated in a static context from very long time series of data, making the

resulting estimates of the scaling function relatively insensitive to the specific ordering of

the observations obtained from shu✏ing the data. Unfortunately, in the current context

where the scaling function is estimated from a short rolling window of data this is no

longer the case and estimated scaling functions obtained from successive reshu✏ings of

each window of intraday data exhibit substantial variability.

The solution proposed here is to shu✏e the sample of intraday data multiple times,

each time producing a new estimate of the daily return variance and kurtosis, before

taking an average of these moment estimates that could then be used as before to pro-

duce density forecasts for daily returns. However, for this approach to work in practice

the average moment estimates obtained over the repetitions must have a tendency to

converge to a particular value as the number of repetitions increases. Whether this is the

case in practice will be investigated for the current dataset during the empirical exercise

of Section 4.

4 Empirical Application

The current section compares the density forecasting performance of the new multifractal

approach with that of existing methods when applied to both foreign exchange and

equity data. Section 4.1 describes the dataset employed for the empirical analysis and

Section 4.2 discusses the alternative density forecasting methods used as benchmarks

to compare the multifractal method against. Section 4.3 outlines the methods used to

formally compare the relative performance of these competing density forecasting models

and finally Section 4.4 presents the empirical results.

4.1 Data

The data used throughout were obtained from Olsen Associates and consist of intraday

5-minute observations from 3rd January 2007 until 31st December 2010 on the Euro
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(EUR) and Japanese Yen (JPY) exchange rates against the US Dollar (USD) and the

levels of the S&P500 and NASDAQ-100 equity indexes. The choice of 5-minute data

was guided by the desire to exploit as much of the potentially valuable intraday infor-

mation as possible, whilst at the same time avoiding the distortions caused by market

microstructure e↵ects typically encountered at very short sampling intervals6.

The raw price or level data contains all 5-minute intervals in the sample period and

so weekends and other non-trading days need to be removed. For the S&P500 and

NASDAQ-100 data this is a relatively straightforward task, since the equity markets

have well-defined trading hours with no trading taking place over weekends or on hol-

idays (such as Christmas day and Thanksgiving). The list of non-weekend closures for

the S&P500 and NASDAQ-100 was constructed from the historical list of holidays avail-

able on the NYSE website. Throughout the sample there were also 9 days for which

the market was open, but trading took place for reduced hours (such as the day after

Thanksgiving); the analysis was performed with these partial trading days both removed

and included, but the choice did not have any significant e↵ect on the results.

For the EUR/USD and JPY/USD exchange rate series trading takes place for 24

hours a day and 7 days a week, however over weekends and certain holidays trading

slows substantially. Following Andersen et al. (2001), the end of each 24-hour trading

day was taken to be 21:00 GMT and the 48-hour weekend periods between 21:05 GMT

on each Friday and 21:00 on each Sunday were removed from the raw 5-minute price

series. For most of the NYSE holidays during the sample period both the EUR/USD and

JPY/USD markets were open for normal trading hours; only for Christmas Day and New

Year’s Day was trading noticeably slower than normal and so only these holidays were

omitted from the exchange rate series. The analysis was also performed with a larger and

more comprehensive list of holidays removed from the EUR/USD and JPY/USD series,

but as with the partial trading days for the equity index data, this did not significantly

influence the results.

Removing the weekends and holidays from the original data series leaves a sample

size of 1008 trading days for the equity index series and 1037 for the exchange rate

series. Continuous 5-minute returns were then constructed from the first di↵erence of

the log-price series for each asset, with the first 5-minute return for each day calculated

between the closing price in the previous trading day and the opening price in the current

day (thus including any overnight or weekend e↵ects). A daily return series was also

6This problem is also encountered in the literature on realised volatility, where the 5-minute sampling
interval has generally been found to be a good compromise between these two factors (see for example
Andersen et al., 2001).
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constructed for both assets from the last 5-minute price observed in each trading day.

This daily return series is required for estimating the GARCH models used for density

forecast comparison and the statistical method used for forecast comparison.

Before proceeding it is worth checking that the assumptions of Section 2.2 required for

the proposed multifractal method to be applicable are satisfied for the current dataset.

The first requirement is that the distributional scaling properties of the data are consis-

tent with that of a multifractal process7, in order for the moment scaling condition of

equation (2.6) to hold. It is important to note however that the rolling estimation scheme

employed allows the values of the scaling function, ⌧(q), and the prefactor, c(q), in equa-

tion (2.6) to vary over time; this implies that it is su�cient for the process to be locally

multifractal within each of the rolling estimation windows, even if it may have more

complex non-multifractal scaling properties when viewed globally. The same distinc-

tion between local and global scaling properties is also relevant for the earlier unifractal

approach of Hallam & Olmo (2013), where local unifractality is su�cient within each

estimation window.

Previous work on unifractal and multifractal processes in finance has relied on an

informal graphical method based on the scaling function, ⌧(q), from equation (2.6) in

order to distinguish between unifractal and multifractal scaling; as previously discussed

in Section 2.1, ⌧(q) is strictly concave for a multifractal process and linear for a unifractal

process with functional form ⌧(q) = Hq� 1, where H is the self-a�nity index of Section

2.1. A visual inspection of the sample estimate of ⌧(q) for a given sample of data can

then be used to assess the distributional scaling properties of the series.

In financial applications, this informal graphical testing method is almost exclusively

employed to study the global distributional scaling properties of return series, with a

single sample estimate of the scaling function produced for the complete sample of data,

thus requiring the visual inspection of a single estimated function. However, as stated

above it is the local, rather than global, scaling properties that are relevant for the

current application; in this context the graphical testing method becomes problematic,

since an assessment of the local scaling properties of the series over the complete sample

period may require the visual inspection of a very large number of estimates for the

scaling function. In the absence of an appropriate method for examining the local

scaling properties of a series, the estimated global scaling properties of the return series

are briefly examined instead, however the distinction between local and global scaling

7Again, multifractal scaling nests unifractal scaling as a special limiting case and so the method will
also be applicable in this case. In this situation however, it may be more logical to employ the unifractal
approach of Hallam & Olmo (2013), given the additional flexibility provided by that methodology.
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properties should be kept in mind, with the global scaling properties not necessarily

being informative about the local scaling properties.

Figure 1 presents estimated scaling functions obtained from the complete sample of

5-minute returns for each asset; the solid lines are unrestricted estimates of ⌧(q) obtained

using the partition function estimator of Section 3.1. The dashed lines in each sub-plot

are the linear scaling functions obtained under the assumption of unifractality, with

the self-a�nity index (and therefore the slope of ⌧(q)) estimated using the standard

detrended moving average estimator of Alessio et al. (2002), previously employed by

Hallam & Olmo (2013). These functions are plotted over the domain 0  q  5, which is

a common choice in empirical studies of scaling behaviour in asset returns. For Figure 1,

the partition function and DMA estimators were implemented exactly as in Hallam &

Olmo (2013), in order to maintain consistency between Figure 1 and the equivalent figure

in the earlier work. This does however mean that the maximum sampling intervals used

for the partition function estimates of ⌧(q) in Figure 1 are not identical to those used in

the actual forecasting exercise of Section 4.4.

It can be seen from Figure 1 that all estimated scaling functions are strictly concave,

indicating distributional scaling consistent with multifractal rather than unifractal pro-

cesses, at least in a global sense. Whilst the degree of nonlinearity, and thus the strength

of multifractality, varies from one return series to another, all return series appear to be

consistent with the first requirement that the processes possesses either multifractal or

unifractal distributional scaling properties.

The second assumption that must be satisfied is that mean value of the return process

is equal to zero, to guarantee that the central and non-central moments are equal and

equation (2.8) holds. The validity of the assumption was checked for the current dataset

using the standard test statistic for testing that the population mean is equal to some

hypothesised value and for none of the 5-minute return series could the null that the

population mean is equal to zero be rejected at any conventional significance level.

4.2 Benchmark Density Forecasting Models

For the empirical exercise it is necessary to have one or more existing density forecasting

methods to compare the performance of the new multifractal method against. Whilst

there are many possibilities, two simple but established examples from the literature have

been used initially as benchmarks, in addition to the closely related unifractal density

forecasting model of Hallam & Olmo (2013).

The first is a standard autoregressive conditional heteroskedasticity (ARCH) model
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(d) S&P500

Figure 1: Estimated unifractal and multifractal scaling functions. Solid lines correspond to
estimated scaling functions for the multifractal case (obtained using the partition function es-
timator) and dashed lines correspond to the estimates under the assumption of unifractality
(obtained using the DMA estimator).

based on daily data; the mathematical details of this approach will not be presented

here, since they are discussed in detail elsewhere. Whilst standard ARCH models are

somewhat simplistic in nature and utilise only daily data, they remain popular in empir-

ical work due largely to this simplicity. Given this motivation, attention was restricted

to standard commonly used specifications for the mean and volatility equations and dis-
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tribution of the error terms8. Given that the current focus is on producing forecasts

for the complete density of daily returns, rather than just the conditional variance, the

specification of the ARCH models was chosen in order to maximise the performance of

the resulting density forecasts for the current dataset in terms of the CRPS-based test

outlined in Section 4.3. For both the S&P500 and EUR/USD data, this resulted in

GARCH(1,1) volatility equations, AR(1) mean equations and t-distributed errors.

In order to include a comparison with established density forecasting methods em-

ploying intraday data, the second benchmark density forecasting model selected was the

autoregressive realised volatility (AR-RV) model of Andersen et al. (2003), which fits a

univariate autoregressive model to the time series of (logarithmic) daily realised volatility

measures. Density forecasts for daily returns can then be produced by combining these

point forecasts of volatility with the empirical observation that daily returns are ap-

proximately normally distributed if standardised by their corresponding (time-varying)

realised volatilities for each day and their constant sample mean. Following Andersen

et al. (2003), a 5th order AR-RV(5) model was used initially for the empirical exercise of

Section 4.4 and this choice was also found to produce the best average density forecasting

performance for the dataset employed here. Further details of the AR-RV method can

be found in Andersen et al. (2003).

Finally, the unifractal density forecasting model of Hallam & Olmo (2013) is included

as a third benchmark model. A brief summary of this method can be found in Section 2.2,

with a more detailed treatment found in the original paper. As should be clear from the

earlier discussion of Section 2.2, the unifractal method of Hallam & Olmo (2013) imposes

a more restrictive distributional scaling structure than the current multifractal method,

but allows more flexible specifications to be employed for the daily return density; as

such, the inclusion of this unifractal benchmark model allows the relative importance of

these factors for predictive ability to be investigated.

The unifractal benchmark method is implemented as described in Hallam & Olmo

(2013), with the self-a�nity index H estimated from the intraday data using the de-

trended moving average method of Alessio et al. (2002) and daily return densities esti-

mated from the rescaled intraday returns using a standard non-parametric kernel density

function estimator. The simpler variant of the unifractal method is employed for which

the autoregressive parameter values used to produce density forecasts are fixed rather

than time varying, since this was typically found to maximise density forecasting per-

8These included ARMA(p,q) models for the mean equation and ARCH and GARCH specifications for
the volatility equation. For the equity index data, EGARCH and GJR specifications were also included,
to allow for the possibility of leverage e↵ects. For the error distribution, the standard choices of normal,
generalised error and Student’s t distributions were all tested.
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formance.

The set of benchmark forecasting methods, and indeed the proposed multifractal

approach, could be extended through the use of more general dynamic structures or more

flexible specifications for the daily return density9. Such extensions are not considered

here, since the chosen benchmark methods, whilst simple, allow two key comparisons

of forecasting performance to be made; the first is between the forecasting performance

attainable when incorporating intraday data via the new multifractal approach and that

from using existing approaches based on realised volatility. The second is an assessment

of the benefits from allowing for more general multifractal distributional scaling rather

than the more restrictive unifractal scaling imposed by the unifractal approach of Hallam

& Olmo (2013). As stated above, the final GARCH benchmark has largely been included

due to the popularity it maintains in empirical work; given that this popularity follows

largely from the simplicity of the approach, extensions beyond the basic variants were

not considered.

For all benchmark density forecasting methods, the same rolling window estimation

scheme as described in Section 3 was employed for producing density forecasts: the

parameters of the models are estimated using an n-day rolling window of data (daily

data in the case of the GARCH model and 5-minute intraday data for the case of the

AR-RV model) and these parameter estimates are then used to produce one-step-ahead

point forecasts for the relevant moments of daily returns. When combined with the

relevant parametric form assumed for the return distribution, this allows one-step-ahead

out-of-sample density forecasts to be produced for daily returns.

4.3 Methods for Density Forecast Comparison

The first method used for comparing the out-of-sample density forecasting performance

of the methods is the statistical test for equal predictive ability proposed by Gneiting

& Ranjan (2011) based on the continuous ranked probability score, which is similar

in spirit to the earlier weighted likelihood ratio (WLR) test of Amisano & Giacomini

(2007). Both of these testing methodologies provide tests of relative forecasting perfor-

mance, sometimes referred to as forecast ‘comparison’, enabling a direct comparison of

the predictive ability of forecasts from the proposed multifractal method and those from

9As noted by an anonymous referee, the latter could include specifications for the daily return density
allowing for time varying skewness and kurtosis through the use of Gram-Charlier expansions, generalised
t-distributions or other methods (see for example Jondeau & Rockinger, 2001, Guermat & Harris, 2002,
Jondeau & Rockinger, 2003 or León et al., 2005).
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alternative approaches10.

The CRPS-based test employed here assumes that two competing forecasting models

are used to produce one-step-ahead out-of-sample density forecasts for the variable of

interest, y. It is assumed that N density forecasts are produced by each forecasting

method and the forecasts produced by the two models at time t (for use at time t+ 1)

are denoted by f̃t(y) and g̃t(y), respectively.

The loss function employed by the test is the continuous ranked probability score

(CRPS), generalised to allow more importance to be placed on forecast accuracy in

particular regions of the density via the use of a weighting function. The value of the

weighted CRPS for the forecast produced by the first model for use in period t + 1,

denoted by S(f̃t, yt+1), is given by:

S(f̃t, yt+1) = 2

Z 1

0

⇣
I{yt+1  F̃�1

t (↵)}� ↵
⌘⇣

F̃�1
t (↵)� yt+1

⌘
w(↵) d↵ (4.1)

where F̃t(y) is the CDF forecast produced at time t obtained from the PDF forecast for

the same period f̃t(y), I{.} is an indicator function and w(↵) is a weighting function; the

authors suggest several possible forms for w(↵), which allow more weight to be placed

on forecast accuracy in di↵erent regions of the density, such as the centre or tails.

Whenever a closed form expression for (4.1) is unavailable, it can be approximated

easily to any degree of accuracy using the method outlined by Gneiting & Ranjan

(2011). The average value of the weighted CRPS in (4.1) can be calculated for each

of the two density forecasting models over the N out-of-sample periods (for period

m+ 1 until period T ) as:

S
f
=

1

N

T�1X

t=m

S(f̃t, yt+1) and S
g
=

1

N

T�1X

t=m

S(g̃t, yt+1) (4.2)

A formal test can then be based on the following test statistic:

t =
S
f � S

g

�̂n/
p
N

(4.3)

10This di↵ers from methods providing tests of absolute forecasting performance of a single method in
isolation, sometimes referred to as forecast ‘evaluation’, such as that of Diebold et al. (1998) and related
work. See Amisano & Giacomini (2007) for a short discussion of this issue.
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where �̂2n is a standard heteroskedasticity and autocorrelation consistent estimator for

the asymptotic variance of
p
N(S

f � S
g
).

Under the null hypothesis that the two density forecasting models have equal predic-

tive ability, the test statistic in (4.3) is asymptotically normally distributed, with the null

rejected at the ↵% significance level if |t| > z↵/2, where z↵/2 is the (1�↵/2) quantile of

the standard normal distribution. Given that lower values of the CRPS correspond to

better forecasts, in the case of rejection, the forecasting model f should be chosen when

the sample value of the test statistic is negative and model g when it is positive.

The CRPS-based test above is a purely statistical measure of predictive ability and

as such can give no indication of the economic gains or losses that would be realised

by applying the various density forecasting methods in practice. Therefore, the CRPS-

based test is supplemented by a second density forecast comparison method based on

the problem of optimal portfolio allocation between a risky and a risk-free asset.

It is assumed that at time t an investor has total wealth of 1 to allocate between

a single risky asset and a risk-free asset. The proportion invested in the risky asset is

given by !t, with the remainder invested in the risk-free asset. Denoting the risky and

risk-free returns from time t to t+1 by rrt+1 and rft respectively, the value of the portfolio

at time t+ 1, denoted Wt+1, is then given by:

Wt+1 = 1 + !tr
r
t+1 + (1� !t)r

f
t

The utility of the investor at time t + 1 is assumed to depend on final wealth Wt+1

according to a power utility function, with a coe�cient of relative risk aversion �:

U(Wt+1) =
W 1��

t+1

1� �

=
1

1� �

h
1 + !tr

r
t+1 + (1� !t)r

f
t

i1��

When choosing wt at time t, rrt+1 the rate of return on the risky asset from time t to

t+ 1, is unknown and so the investor chooses the portfolio weight in order to maximise

the expected utility obtained at t + 1. Formally, the optimal weight !⇤
t at time t is

obtained as the solution to:

!⇤
t = argmax

!t

Et [U(Wt+1)]

= argmax
!t

Et


1

1� �

h
1 + !tr

r
t+1 + (1� !t)r

f
t

i1��
�

(4.4)
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Rewriting (4.4) using the standard expression for the expectation of a random variable

gives:

!⇤
t = argmax

!t

Z
1

1� �

h
1 + !tr

r
t+1 + (1� !t)r

f
t

i1��
f̃t(r

r
t+1) dr

r
t+1 (4.5)

where, consistent with previous notation, f̃t(rrt+1) is the density forecast produced at

time t for the risky return rrt+1. From (4.5) it is clear that di↵erent density forecasts for

rrt+1 will lead to di↵erent portfolio allocations a time t and therefore di↵erent realised

utilities at time t+ 1.

It is assumed that the investor holds the portfolio defined by the weight !⇤
t for a single

period, before readjusting the portfolio weights based on new information in the follow-

ing period. In the current empirical exercise this portfolio readjustment is performed

daily and the portfolio allocation is made between one of the risky assets discussed in

Section 4.1 and a risk-free asset, which is represented by the 3-month Treasury bill rate

(with the rate converted to a daily return). Solving the portfolio allocation problem in

equation (4.5) in each of the N days in the out-of-sample period results in a time series

of portfolios, which in turn produces a time series of N realised utilities once the true

risky return for the following period is observed.

The relative performance of the portfolios obtained from the density forecasting

methods is then compared using the certainty equivalent return (CER) of the portfolio,

which is defined as follows:

CER =

"
(1� �)

1

N

NX

t=1

RUt

# 1
(1��)

� 1

where RUt is the realised utility obtained from the portfolio in period t. The CER gives

the risk free rate of return that would provide the same average level of realised utility

as the portfolio over the out-of-sample period, implying that higher CER values are

preferable to lower values.

4.4 Empirical Results

For the empirical results presented in this section a 250-day rolling in-sample window

(or value of n in the notation of Section 3) is used for parameter estimation and the

density forecasts are compared over a 750 working day evaluation period, from the 250th
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until the 1000th working day in the sample for each series11.

Following Andersen et al. (2003), the initial order for the autoregressive component

of the AR-MFVK(p,q) specification was set equal to 5 (i.e. one working week). The ade-

quacy of these initial dynamic specifications was then checked by applying the standard

Ljung-Box test for residual autocorrelation to the residuals obtained from fitting each

time series model over the complete sample period. In almost all cases, for these initial

5th order models the null of no residual autocorrelation could not be rejected at any con-

ventional significance level, suggesting that the 5th order specifications are adequate for

modelling the dynamic structure of the estimated moment series. The only exceptions

were for the two equity index series, where the null of no residual autocorrelation was

rejected for the variance component (but not the kurtosis component) at the 10% level

for the NASDAQ-100 and the 5% level for the S&P500.

As previously noted in Section 3, implementation of the partition function estimator

requires the selection of a maximum sampling interval ( �t in the notation of equation

(3.1)). Given that the final aim of the current empirical exercise is to estimate and

forecast the moments and probability density functions of daily returns from the intraday

data, the maximum sampling interval used for the partition function estimator was

initially set to just over 1 trading day for all series12. Alternative values were also

explored, but these initial choices were generally found to produce the most accurate

density forecasts (as measured by the CRPS-based criteria of Section 4.3) and were used

throughout the current empirical exercise.

A final issue of model specification that must be investigated for the multifractal

method is the optimal choice of size for the window of intraday data used to produce

each rolling estimate of the scaling function and prefactor (m in the notation of Section

3.2). Table 1 contains sample values for the simple unweighted CRPS-based test statistic

comparing the predictive ability of the multifractal method using various window sizes

against the di↵erent benchmark methods.

It can be seen from Table 1 that on average the optimal window size is around 15

working days across the four assets; 10 working days appears to be approximately optimal

for the two equity index series and 20 days for the exchange rate series, with these values

used for the remainder of the empirical exercise. Longer windows increase the number

11Because of the di↵erence in trading days, the start and end dates of this period di↵er slightly for
the two series: for the EUR/USD it spans 19th Dec 2007 - 11th Nov 2010 and 31st Dec 2007 21st Dec
2010 for the S&P500 data

12For the two exchange rate series the number of 5-minute returns in each trading day is 288 and the
maximum value of �t used was 300. The equity index series average around 80 5-minute returns per
trading day and the maximum value of �t used was 100.
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Table 1: Sensitivity of predictive ability to changes in estimation window length

Window size 2 days 5 days 10 days 15 days 20 days 25 days 50 days

EUR/USD:

GARCH(1,1) benchmark 4.28 0.75 -1.72 -2.23 -2.71 -2.75 -2.76
AR-RV(5) benchmark 5.45 3.13 0.22 -0.32 -0.93 -0.87 -0.56
AR-UF(5) benchmark 5.93 4.71 2.26 1.80 1.18 1.26 1.24

JPY/USD:

GARCH(1,1) benchmark 3.03 1.58 0.39 -0.63 -0.66 -0.65 -0.59
AR-RV(5) benchmark 3.38 2.70 1.70 0.75 0.69 0.61 0.52
AR-UF(5) benchmark 3.39 2.22 0.83 -0.65 -0.70 -0.69 -0.57

NASDAQ-100:

GARCH(1,1) benchmark 4.87 2.00 0.44 1.04 1.15 1.22 1.73
AR-RV(5) benchmark 5.37 2.62 0.32 1.07 1.14 1.16 1.60
AR-UF(5) benchmark 5.36 3.91 2.24 3.17 3.06 2.91 2.78

S&P500:

GARCH(1,1) benchmark 4.59 1.79 0.53 0.74 0.82 1.11 1.97
AR-RV(5) benchmark 5.26 2.42 0.50 0.71 0.73 0.95 1.66
AR-UF(5) benchmark 5.51 3.98 2.41 2.68 2.74 2.83 3.11

Values correspond to the sample values of the simple unweighted CRPS-based test statistic of Section
4.3. The CRPS-based test statistic is asymptotically normally distributed under the null of equal
predictive ability and the test statistic is constructed such that significant negative values imply the
multifractal method is superior to the benchmark model. See Section 4.3 for further details.

of intraday observations available, but do not result in an improvement in forecasting

performance, presumably because older intraday data are no longer informative about

the current properties of the return process. Equally, shorter windows reduce density

forecasting performance, either because some degree of smoothing produces superior

estimates of daily return moments13, or because of limited finite sample performance of

the chosen partition function estimator.

Table 2 presents a comparison of density forecasting performance between the multi-

fractal method and the benchmark models using the CRPS-based test outlined in Section

4.3. Considering first the more established GARCH and AR-RV benchmarks, it is clear

that the density forecasts from the multifractal model perform well for the EUR/USD

data, frequently providing highly statistically significant improvements in predictive abil-

ity over the GARCH benchmark method. Compared to the more competitive AR-RV

13Noise in the observed intraday return process could make estimates calculated from short periods less
informative about the true behaviour of the underlying process. This is an issue previously encountered
in the realised volatility literature (see for example Andersen et al., 2003), where various methods have
been proposed to mitigate the problem.
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Table 2: Out-of-sample density forecast comparison using CRPS-based test statistic

Weighting Function None Centre Left Tail Right Tail

EUR/USD:

GARCH(1,1) benchmark -2.71*** -2.91*** -3.73*** -0.57
AR-RV(5) benchmark -0.93 -1.57 -1.15 -0.35
AR-UF(5) benchmark 1.18 0.62 0.46 1.03

JPY/USD:

GARCH(1,1) benchmark -0.66 -0.12 -1.31 0.22
AR-RV(5) benchmark 0.69 0.65 -1.16 2.22**
AR-UF(5) benchmark -0.70 -0.67 -1.75* 0.64

NASDAQ-100:

GARCH(1,1) benchmark 0.44 0.34 -0.24 1.01
AR-RV(5) benchmark 0.32 0.98 0.15 0.41
AR-UF(5) benchmark 2.24** 2.12** 2.03** 1.81*

S&P500:

GARCH(1,1) benchmark 0.53 0.29 -0.34 1.14
AR-RV(5) benchmark 0.50 1.14 -0.32 1.23
AR-UF(5) benchmark 2.41** 2.85*** 1.69* 2.48**

The CRPS-based test statistic is asymptotically normally distributed under the null of equal predictive
ability and the test statistic is constructed such that significant negative values imply the multifractal
method is superior to the benchmark model. See Section 4.3 for further details.

benchmark utilising intraday data, the sample values for the EUR/USD data are gener-

ally negative, implying that the multifractal method provides superior predictive ability,

but the gains are not large enough to be statistically significant. In addition, the gains in

forecasting performance from the multifractal method appear to vary across the regions

of the density function; the performance of the unifractal method is particularly strong

in the centre and left tail of the EUR/USD return density, suggesting that it should

perform well in risk management applications, such as the calculation of Value at Risk

or expected shortfall.

From the later sections of Table 2, the multifractal method is clearly less competi-

tive with the GARCH and AR-RV benchmarks for the other return series than for the

EUR/USD data, with the method unable to provide a statistically significant improve-

ment in predictive ability over the benchmark methods. Nonetheless, in all but one

case, the null of equal predictive ability cannot be rejected, implying that the multifrac-

tal method is again competitive with these benchmark established forecasting methods.

The final unifractal AR-UF benchmark model of Hallam & Olmo (2013) typically

provides the strongest density forecasting performance of the three benchmark methods.
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For the equity index data in particular, the unifractal AR-UF method consistently pro-

vides gains in predictive ability over the new multifractal method that are highly signif-

icant across the whole domain of the density. This finding suggests that when modelling

and forecasting the distribution of equity returns, the ability to employ nonparametric

specifications for the daily return density is more beneficial than the additional flexibility

in distributional scaling properties permitted by moving from a unifractal to a multi-

fractal context. For the exchange rate data the relative performance of the unifractal

and multifractal methods is closer, with the null of equal predictive ability not rejected

in most cases.

The clearly observed di↵erences in relative density forecasting performance for the

new multifractal method that are observed across the di↵erent return series cannot

simply be due to di↵erences in the type of distributional scaling across the included

assets (as appeared to be the case for the unifractal method of Hallam & Olmo, 2013)

since the multifractal approach of the current paper should be valid for data exhibiting

either unifractal or multifractal scaling behaviour.

A possible alternative explanation is provided by di↵erences in the strength, rather

than the type, of distributional scaling across the di↵erent return series. This can be

measured to some extent by considering the standard errors of the estimated values

of ⌧(q) in the regressions of logSq(T,�t) on log(�t) that follow from equation (3.1).

Whilst these standard errors could be calculated for the scaling function estimates from

the complete sample of data, given the rolling estimation method used to obtain the

dynamic estimates of the scaling properties it is more relevant to calculate standard

errors for estimates of ⌧(q) obtained from rolling windows.

Adjusting the lengths of the rolling windows employed to compensate for the di↵er-

ence in trading hours per day between the two types of asset14, there is indeed evidence

of di↵erences in the strength of distributional scaling across the assets. The rolling esti-

mates of ⌧(q) for the EUR/USD data have the lowest standard errors on average over

the sample period, followed by the JPY/USD data. The standard errors for both equity

index series are approximately double those for the EUR/USD data, suggesting that

they do indeed exhibit weaker distributional scaling than the exchange rate series.

We next investigate the extension to the standard multifractal method proposed

in Section 3.4, which modifies the basic method by randomly shu✏ing the intraday

data in each rolling window before estimating the daily return variance and kurtosis.

14A rolling window of 20 days was used for the exchange rate series and 65 days for the equity index
series. This is necessary to ensure that each rolling estimate is calculated from approximately the same
number of intraday observations, minimising the e↵ects of sample size on the standard errors.
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As previously discussed, one potential problem is that each time the data are randomly

shu✏ed di↵erent estimates of daily return moments will be obtained, making the density

forecasts produced by the model stochastic. The solution proposed for this problem

in Section 3.4 is to repeat the shu✏ing process numerous times, producing multiple

multifractal estimates of the daily return moments for each window of intraday data,

before taking an average of these estimates over all of the repetitions. However, this

solution will only be e↵ective if the moment estimates averaged over the repetitions

converge to a particular value as the number of repetitions is increased and so whether

this holds in practice should be investigated.

Figure 2 contains plots of the average moment estimates obtained using 1 to 2500

repetitions of the shu✏ing process described above for the EUR/USD data15. To ensure

that the exercise is as relevant for the current context as possible, the samples of intraday

data used have the same length of 15 working days used previously to estimate the

daily return moments for each trading day; 3 di↵erent 15-day windows were tested from

arbitrary points in the sample, beginning on the 1st, 500th and 1000th trading days

respectively.

From Figure 2 it can be seen that although the average moment estimates from

the shu✏ed intraday data do not converge entirely to specific values as the number of

repetitions increases (at least up to the maximum of 2500 repetitions considered here),

they do typically converge to a narrow range of values. Whilst these figures represent

just one possible realisation for each of the 3 arbitrarily chosen windows, the same

pattern of convergence was observed for other windows of intraday data chosen from

the complete sample of EUR/USD data and also more generally for data from the other

3 asset return series. Furthermore, in none of the cases from Figure 2 do the average

moment estimates from the shu✏ed data converge to the estimated values obtained

from the original ordered data, with the di↵erences in many cases being substantial.

This implies that at least some of the multifractal scaling present in the original ordered

data is due to the second source of multifractality mentioned in Section 3.4 (small and

large fluctuations of the process having di↵erent long-term correlations) and so this

modification to the method should produce noticeable changes in the resulting density

forecasts.

Having established that the modified version of the multifractal method should be

valid for the current dataset, the density forecasting performance of the method can now

be investigated. Whilst Figure 2 shows that some variation may remain in the average

15Equivalent figures for the other series have been omitted to conserve space, but similar results are
observed for each.
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(a) 15-day window beginning on 1st trading day
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(b) 15-day window beginning on 500th trading day
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(c) 15-day window beginning on 1000th trading day

Figure 2: Multifractal moment estimates from shu✏ed and ordered intraday data
Dashed lines are multifractal moment estimates obtained from the original ordered 5-minute intraday
data in the specified window. Solid lines are multifractal moment estimates obtained from the same
intraday data shu✏ed randomly, averaged over the number of repetitions shown on the horizontal axis.
Variance estimates are presented in the left column and kurtosis estimates in the right column.

moment estimates beyond 2500 repetitions, in practice it was found that repetition

numbers as low as 500 resulted in consistent density forecasting performance over the
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out-of-sample period16 and so as a compromise the number of repetitions was set to

1000.

Table 3: Out-of-sample density forecast comparison using CRPS-based test statistic - shu✏ed
data with 1000 repetitions used for multifractal approach

Weighting function None Centre Left tail Right tail

EUR/USD:

GARCH(1,1) benchmark -3.75 *** -3.42*** -4.00 *** -1.83*
AR-RV(5) benchmark -2.78 *** -2.47 ** -2.30** -1.98 *
AR-UF(5) benchmark -1.49 -1.02 -1.07 -0.93

JPY/USD:

GARCH(1,1) benchmark -0.27 0.21 -0.90 0.49
AR-RV(5) benchmark 1.16 1.29 -1.02 2.75***
AR-UF(5) benchmark -0.18 0.05 -1.15 0.98

NASDAQ-100:

GARCH(1,1) benchmark -0.36 -0.07 -0.84 0.26
AR-RV(5) benchmark -0.85 0.39 -0.68 -0.76
AR-UF(5) benchmark 1.23 1.43 1.27 0.61

S&P500:

GARCH(1,1) benchmark -0.45 -0.29 -0.64 -0.16
AR-RV(5) benchmark -0.82 0.27 -0.69 -0.76
AR-UF(5) benchmark 1.19 1.73* 1.43 0.03

Table 3 contains equivalent results for the modified multifractal method to those in

Table 2; from the sample values it can be seen that this modification to the multifractal

method consistently improves the predictive ability of the multifractal method for the

EUR/USD, NASDAQ-100 and S&P500 data. The changes in the sample values of the

test statistics are often substantial in size, with the outcome of the test often changing

as a result. Most notably, the unifractal AR-UF benchmark previously provided sta-

tistically significant improvements in predictive ability over the standard multifractal

approach, but when compared to the modified multifractal approach the null of equal

predictive ability cannot typically be rejected at any conventional significance level.

However, the same improvement in density forecasting performance is not found for the

JPY/USD data for which the modification to the multifractal approach typically reduces

performance, although only in the right tail of the return density are these changes large
16The remaining variation in the moment estimates for a given trading day will become less signifi-

cant when comparing density forecasting performance in practice, since the CRPS-based test of equal
predictive ability compares average forecasting accuracy over the complete length of the out-of-sample
period (750-days in the current context).
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enough to alter the outcome of the test for equal predictive ability at any conventional

significance level.

The improvements in predictive ability that are typically obtained from shu✏ing the

data in this way suggest that of the two sources of multifractality highlighted in Section

3.4, multifractality due to a broad probability distribution is more relevant for the current

application than that due to small and large fluctuations of the process having di↵erent

long-range correlations. A possible explanation for this follows from the discussion and

explanation of the multifractal method in Sections 3.1 to 3.3. It can be seen that at the

point when the multifractal moment scaling law is applied to estimate the daily return

moments, no dynamic structure has actually been imposed on the return process at any

timescale; the dynamic structure required to produce forecasts for the moments (and

ultimately the density function) of daily returns is imposed at a later stage onto the

time series of estimated daily return moments. Intuitively therefore, it seems possible

that the component of scaling that is due to the temporal structure of the ordered data is

less relevant in the current application than the scaling of the unconditional distribution

of returns at di↵erent timescales.

Finally, Table 4 contains the results for the portfolio allocation exercise discussed in

Section 4.3. The reported values are the certainty equivalent returns (CER) expressed as

an annualised percentage return for the expected utility maximising portfolio using the

density forecasts from the GARCH and AR-RV benchmarks, plus the new multifractal

AR-MFVK method17. The portfolio allocation exercise has been performed with several

di↵erent values of the coe�cient of relative risk aversion �, in order to assess whether

the optimal forecasting method varies with the level of investor risk aversion.

From Table 4 it can be seen that the patterns observed when assessing density fore-

casting performance in the context of portfolio allocation are consistent with those pre-

viously observed in Table 2 in terms of the CRPS-based test statistic, thus reinforcing

the previous empirical findings. For the exchange rate series the portfolios obtained from

the multifractal approach provide the highest CER values, with those from the AR-RV

benchmark in second place. For the EUR/USD series the gains from the multifractal

approach over the benchmark methods are substantial, again confirming the previous

finding of strong performance for the EUR/USD data. For the JPY/USD series the per-

formance of the multifractal and AR-RV methods are typically closer, with the largest

di↵erences observed at lower levels of risk aversion. For the equity index series the rank-

17The unifractal approach of Hallam & Olmo (2013) has been omitted from this comparison, since the
use of a non-parametric specification for the daily return density makes evaluating the integral of the
density forecast in equation (4.5) more complex.
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Table 4: Certainty equivalent returns from portfolio allocation exercise

Value of CRRA

1 2.5 5 10

EUR/USD:

GARCH(1,1) -9.29 -9.94 -10.31 -9.37
AR-RV(5) -6.15 -6.29 -5.71 -4.84
AR-MFVK(5) 0.78 0.72 0.63 0.58

JPY/USD:

GARCH(1,1) -4.44 -3.65 -2.63 -3.02
AR-RV(5) -1.38 -0.94 -0.15 0.23
AR-MFVK(5) -0.27 -0.05 0.09 0.26

NASDAQ-100:

GARCH(1,1) 27.07 23.95 17.34 8.99
AR-RV(5) 3.72 4.48 0.34 -1.15
AR-MFVK(5) 2.21 1.51 1.21 0.89

S&P500:

GARCH(1,1) 23.04 18.24 10.72 6.01
AR-RV(5) 7.63 5.44 -0.92 -3.43
AR-MFVK(5) 1.57 1.20 0.99 0.78

Reported values are certainty equivalent returns (CERs) of the expected utility maximising portfolio
for each density forecasting method, with various levels of investor risk aversion. All CER values are
expressed as annualised % rates of return. The negative CER values observed in some cases may be due
to the degree of risk aversion implicit in the investors’ utility function, or the uncertainty around the
density forecasts yielding portfolios with negative average rates of return. For the equity index series
the first of these two factors is su�cient to explain all negative CER values, but for the exchange rate
series both factors are relevant.

ing of the forecasting methods is typically reversed, with the GARCH method producing

portfolios with much higher CER values than either the AR-RV benchmark or the new

multifractal method. It should however be noted the multifractal density forecasts pro-

duce portfolios with lower return volatility than the benchmark models and so for higher

levels of risk aversion the multifractal method is actually able to provide higher a CER

than the realised volatility approach.

5 Conclusion

The current paper has proposed a new method for estimating and forecasting the mo-

ments and probability density function of daily financial returns using intraday data.

The method is based on a new application of results from the theory of multifractal

processes that provide a formal statistical link between the moments of the return pro-
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cess at di↵erent sampling intervals, allowing the variance and kurtosis of daily returns

to be estimated directly from high-frequency intraday data. In the current application,

these moment estimates are incorporated into density forecasts of daily returns, however

in other financial applications the variance and kurtosis of returns are also variables of

substantial interest in their own right.

In principle, the incorporation of relevant information contained in the intraday data

can provide gains when estimating daily return moments, compared to methods based

purely on daily data. At the same time, in comparison to existing methods utilising

intraday data in the realised volatility literature, the multifractal approach preserves a

greater proportion of the information contained in intraday returns by allowing the data

to be used to directly estimate both the variance and kurtosis of daily returns.

The predictive ability of density forecasts produced by the new multifractal method

was compared to existing methods in an empirical application using 5-minute intraday

data on Euro (EUR) and Japanese Yen (JPY) exchange rates against the US Dollar

(USD) and the S&P500 and NASDAQ-100 equity indexes. For the EUR/USD data the

multifractal method provides large improvements in predictive ability over the GARCH

benchmark model and is competitive with existing realised volatility based methods.

This strong performance is improved further when considering the modified multifractal

method proposed in Section 3.5 using randomly shu✏ed observations from each window

of intraday data; this modification further increases the existing gains in predictive

ability over the GARCH benchmark and also allows the method to provide statistically

significant improvements over the realised volatility based benchmark.

For the remaining asset return series, density forecasting performance of the multi-

fractal approach is competitive with existing methods, with the null of equal predictive

ability unable to be rejected in the majority of cases. As with the EUR/USD data,

the modified multifractal approach using shu✏ed intraday data provides consistent im-

provements in predictive ability for both the S&P500 and NASDAQ-100 data; in this

case, in no situations can the null of equal predictive ability be rejected for the equity

data, in contrast to the standard multifractal approach using ordered data for which the

benchmark methods were found to be superior in some situations.

These empirical findings are reinforced by the results of a portfolio allocation exercise,

in which the density forecasts from the competing methods are employed to optimally

allocate funds between a risky and risk-free asset. In this context it was again found that

the new multifractal approach can provide substantial gains over existing methods for

the EUR/USD data, when measured in terms of the certainty equivalent return of the

resulting portfolio. For the other assets the multifractal approach is found to outperform
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the realised volatility based method for higher levels of investor risk aversion, although

for the equity index series both of the intraday methods are outperformed by the GARCH

benchmark method.

A possible explanation identified for this variation in forecasting performance across

the various return series is provided by di↵erences in the strength of distributional scaling

for the return series; the EUR/USD data seem to exhibit much stronger distributional

scaling than the other series, with the JPY/USD and NASDAQ-100 data having the

weakest scaling and the S&P500 data in between these extremes. Thus it seems that

there is some positive relation between the strength of the distributional scaling exhibited

by a given time series of data and the resulting density forecasting performance of the

multifractal method.

There are several possible changes that could be made to the current implemen-

tation of the multifractal method that could potentially improve density forecasting

performance further. The first is to identify an alternative parametric form for the daily

return density that does not require restrictions to be placed on the daily return kurto-

sis, as is necessary with the current location-scale t-distribution. Secondly, alternative

estimators for the scaling function could be investigated to replace the current partition

function method; this would possibly allow the daily return moments for each day to be

more accurately estimated for return series possessing weaker distributional scaling, such

as the JPY/USD data. Finally, more flexible dynamic specifications could be tested for

modelling and forecasting the daily return moments to replace the simple autoregres-

sive models currently used; given the ability of the multifractal approach to estimate

moments of returns at any chosen timescale from the same intraday data, specifications

employing data at di↵erent sampling intervals could be employed, such as the mixed data

sampling (MIDAS) and heterogenous autoregressive (HAR) models previously applied

by Clements, Galvão & Kim (2008) to the problem of producing quantile forecasts for

daily returns from realised volatility measures.
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ity: Sample frequency vis-ā-vis forecast horizon. Journal of Empirical Finance, 6 ,

457–477.

Brooks, C., Burke, S., Heravi, S., & Persand, G. (2005). Autoregressive conditional

kurtosis. Journal of Financial Econometrics, 3 , 399–421.

Calvet, L., & Fisher, A. (2002). Multifractality in asset returns: theory and evidence.

Review of Economics and Statistics, 84 , 381–406.

Calvet, L., & Fisher, A. (2004). How to forecast long-run volatility: regime switching

and the estimation of multifractal processes. Journal of Financial Econometrics , 2 ,

49–83.

Calvet, L., Fisher, A., & Thompson, S. (2006). Volatility comovement: a multifrequency

approach. Journal of Econometrics , 131 , 179–215.

Clements, M. P., Galvão, A., & Kim, J. (2008). Quantile forecasts of daily exchange

rate returns from forecasts of realized volatility. Journal of Empirical Finance, 15 ,

729–750.

Di Matteo, T. (2007). Multi-scaling in finance. Quantitative Finance, 7 , 21–36.

Di Matteo, T., Aste, T., & Dacorogna, M. (2005). Long-term memories of developed

and emerging markets: using the scaling analysis to characterize their stage of devel-

opment. Journal of Banking & Finance, 29 , 827–851.

39



Diebold, F. X., Gunther, T., & Tay, A. (1998). Evaluating density forecasts with appli-

cations to financial risk management. International Economic Review , 39 , 863–883.

Dittmar, R. (2002). Nonlinear pricing kernels, kurtosis preference, and evidence from

the cross section of equity returns. Journal of Finance, 57 , 369–403.

Fillol, J. (2003). Multifractality: theory and evidence, an application to the French stock

market. Economics Bulletin, 3 , 1–12.

Giot, P., & Laurent, S. (2004). Modelling daily Value-at-Risk using realized volatility

and ARCH type models. Journal of Empirical Finance, 11 , 379–398.

Gneiting, T., & Ranjan, R. (2011). Comparing density forecasts using threshold- and

quantile-weighted scoring rules. Journal of Business & Economic Statistics, 29 , 411–

244.

Guermat, C., & Harris, R. (2002). Forecasting value at risk allowing for time variation

in the variance and kurtosis of portfolio returns. International Journal of Forecasting ,

18 , 409–419.

Hallam, M., & Olmo, J. (2013). Semiparametric density forecasts of daily financial

returns from intraday data. Forthcoming in Journal of Financial Econometrics, .

Harvey, C., & Siddique, A. (2000). Conditional skewness in asset pricing tests. Journal

of Finance, 55 , 1263–1295.

Jondeau, E., & Rockinger, M. (2001). Gram-Charlier densities. Journal of Economic

Dynamics and Control , 25 , 1457–1483.

Jondeau, E., & Rockinger, M. (2003). Conditional volatility, skewness, and kurtosis:

existence, persistence, and comovements. Journal of Economic Dynamics and Control ,

27 , 1699–1738.

Kantelhardt, J. (2009). Fractal and multifractal time series. In Encyclopedia of Com-

plexity and Systems Science. Springer.

Kantelhardt, J., Zschiegner, S., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley,

H. (2002). Multifractal detrended fluctuation analysis of nonstationary time series.

Physica A: Statistical Mechanics and its Applications, 316 , 87–114.
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