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Abstract—SpiNNaker is a multi-core computing engine, with a bespoke and specialised communication infrastructure that supports
almost perfect scalability up to a hard limit of 216 x 18 = 1,179,648 cores. This remarkable property is achieved at the cost of ignoring
memory coherency, global synchronisation and even deterministic message passing, yet it is still possible to perform meaningful
computations. Whilst we have yet to assemble the full machine, the scalability properties make it possible to demonstrate the
capabilities of the machine whilst it is being assembled; the more cores we connect, the larger the problems become that we are able
to attack. Even with isolated printed circuit boards of 864 cores, interesting capabilities are emerging. This paper is the third of a series
charting the development trajectory of the system. In the first two, we outlined the hardware build. Here, we lay out the (rather unusual)
low-level foundation software developed so far to support the operation of the machine.

Index Terms—Interconnection architectures, parallel processors, neurocomputers, real-time distributed

1 INTRODUCTION

SPINNAKER is a multi-core message-passing computing
engine based upon a completely different design philos-
ophy from conventional machine ensembles. It possesses an
architecture that is completely scalable to a limit of over a
million cores, and the fundamental design principles disre-
gard three of the central axioms of conventional machine
design: the core-core message passing is non-deterministic
(and may, under certain conditions, even be non-transitive);
there is no attempt to maintain state (memory) coherency
across the system; and there is no attempt to synchronise
timing over the system.

Notwithstanding this departure from conventional wis-
dom, the capabilities of the machine make it highly suitable
for a wide range of applications, although it is not in any
sense a general purpose system: there exists a large body of
computational problems for which it is spectacularly ill-
suited. Those problems for which it is well-suited are those
that can be cast into the form of a graph of communicating
entities. The flagship application for SpiNNaker—neural sim-
ulation—has guided most of the hard architectural design
decisions, but other types of application—for example mesh-
based finite difference problems—are equally suited to the
specialised architecture.

The hardware architecture of the machine is described in
detail elsewhere [1], [2], [3], [4], [16]—here we describe the
low-level software infrastructure necessary to underpin the
operation of the machine. It is tempting to call this an
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operating system, but we have resisted this label because
the term induces preconceptions, and the architecture and
mode of operation of the machine does not provide or uti-
lise resources conventionally supported by an operating
system. Each of the million (ARMY) cores has—by neces-
sity—only a small quotient of physical resource (less than
100 kbytes of local memory and no floating-point hard-
ware). The inter-core messages are small (<= 72 bits) and
the message passing itself is entirely hardware brokered,
although the distributed routing system is controlled by spe-
cialised memory tables that are configured with software.
The boundary between soft-, firm- and hardware is even
more blurred than usual.

SpiNNaker is designed to be an event-driven system. A
packet arrives at a core (delivered by the routing infrastruc-
ture), and causes an interrupt, which causes the (fixed size)
packet to be queued. Every core polls its incoming packet
queue, passing the packet to the correct packet handling
code. These packet event handlers are (required to be) small
and fast. The design intention is that these queues spend
most of their time empty, or at their busiest, containing only
a few entries. The cores react quickly (and simply) to each
incident packet; queue sizes much larger than one are
regarded as anomalous (albeit sometimes necessary). If han-
dler ensembles are assembled that violate this assumption,
the system performance rapidly (and uncompetitively)
degrades.

The components of this paper are as follows:

e In Section 2, we review—selectively—existing multi-
core and neuromorphic activities.

e Section 3 highlights the differences between SpiN-
Naker and a conventional architecture.

e Section 4 contains a précis of the SpiNNaker hard-
ware architecture. Most of the material in this section
has appeared in [1], but some aspects are enhanced.

e In Section 5 we describe the bootstrapping, initialisa-
tion and low-level kernel software.

Section 6 contains an outline of the programming
environment provided to support the interrupt
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handlers, and an exemplar of how one might per-
form meaningful computation within the framework
provided by SpiNNaker. The data structures sup-
porting the mapping of a simple system onto a tiny
processor mesh are described. We also provide an
overview of how system output is realised.
e Finally, we mention some of the many future chal-
lenges we have to address in exploiting this machine.
We have not described the offline support tool portfolio
or any quantitative measurements—these, and the other
physical domains for which SpiNNaker is ideally suited
will all be described at a later date.

1.1 Terminology
Within the context of this paper, some terms would benefit
from a prior introduction/definition:

e An individual ARM9 processor (plus associated
local resources) is a core.

e The cores are physically implemented (in UMC
130 nm silicon), 18 to a die. The die also contains the
routing engine, and physically mounted on top of it
(stitch-bonded) within the same package is 128
Mbyte of SDRAM. This entire structure is a node, 2'°
of which are connected together to form the SpiN-
Naker engine. The node boundaries (necessary but
an artefact of fabrication) are transparent to the con-
nected mesh of cores. Phrases such as “processor top-
ology” and “core graph” refer to the physical
(functioning) hardware mesh of cores. 2'° is a hard
limit—the internal node address uses only 16 bits.

e SpiNNaker is a computing engine that comes into its
own with programming problems that can be
coerced into the form of a mesh, or graph, of commu-
nicating entities. In order to work, this abstract prob-
lem graph must be mapped onto the physical core
graph. This mapping is many:1, and is the responsi-
bility of the initialisation software.

e The vertices of the core graph are—naturally
enough—cores, and the vertices of the problem graph
are referred to generically as (problem) devices. As
will be seen later, the set of behaviours embodied by a
device are broad and eclectic, realised as small frag-
ments of code running on the core to which the device
has been mapped.

2 THE MULTICORE/NEUROMORPHIC LANDSCAPE

Building large hardware is extremely costly, from the point
of view of both money and manpower, and most ‘broad-
scale’ multi-core research is undertaken by industrial spon-
sors. (SpiNNaker is unusual in that the entire design effort
was undertaken in University research groups.) However,
the “unconventional-architecture” landscape is not entirely
unpopulated:

e Anton [5] is a special-purpose supercomputer con-
sisting of 512 custom ASICs arranged in a high-
bandwidth 3D torus network designed for simulat-
ing molecular dynamics (MD) problems.

e Intel have produced a prototype chip that features 48
Pentium-class IA-32 processors, arranged in a 2D
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6x4 grid network optimised for the message passing
interface [6].

e Centip3De is a 130 nm stacked 3D near-threshold
computing (NTC) chip design that distributes 64
ARM Cortex-M3 processors over four cache/core
layers connected by face-to-face interface ports [7].

e Satpathy et al. [8] present a 128 bit 64-input 64-out-
put single-stage swizzle-switch network (SSN)
which is similar to a crossbar switch but also sup-
ports multicast (MC) messages.

e TILE64 is a chip-multiprocessor architecture design
that arranges 64x 32 bit VLIW processors in a 2D
8x8 mesh network that supports multiple static and
dynamic routing functions [9].

e BlueBrain [10] is not an unconventional architecture,
but the software organisation does contain parallels
to SpiNNaker. The simulator used by BlueBrain,
NEURON, is distributed over up to 128K processors
(each with 512 MB of RAM), with coarse communi-
cations supported by MPL

As the size of parallel systems increases, the proportion of

resource consumption (including design effort) absorbed by
‘non-computing’ tasks (communications and housekeeping)
increases disproportionally. Architectures that sidestep these
difficulties with unconventional mechanisms are gaining
traction in specialised areas. SpiNNaker is designed to be
effective for the simulation of systems comprising many sim-
ple elements with a massive communications component.

Other examples of massively-parallel neurally-inspired

architectures include:

e NeuroGrid [11] is an example of an analogue imple-
mentation of a neural equation solver with digital
communications that operates in biological real time
by virtue of using sub-threshold analogue circuits.

e The high input count neural network (HICANN)
chip [12], developed within the EU FACETS project,
uses above-threshold analogue circuits to deliver
large-scale neural models that run 10,000 times faster
than their biological equivalents; a technology that
has been carried forward through the EU Brain-
ScaleS project to form a major neuromorphic compu-
tation platform in the EU Human Brain Project
(alongside SpiNNaker).

e IBM has demonstrated a digital neural accelerator
chip [13] with the specific objective of achieving
deterministic and consistent behaviour between the
software model and the silicon.

Many of these concepts can be traced back to the original

analogue neuromorphic work at Caltech by Mead [14].

3 PRINCIPLES OF USE

3.1 Anatomy of a Conventional Parallel Program
The anatomy of a conventional parallel program is well
known. The program designer can realistically expect a host
of system level resources to be made available, and designs a
set of arbitrarily complicated programs, the intercommunica-
tion choreography of which may itself be extremely complex.
The messages by which these processes communicate are
made up of an arbitrary number of units, the structure of
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Fig. 1. Temporal cost of message passing.

which may be defined by the program designer. The tempo-
ral cost of sending a message is usually a function of the
message size: Fig. 1.

3.2 Anatomy of a SpiNNaker Program
In contrast, the anatomy of a SpiNNaker-based parallel pro-
gram is shown in Fig. 2. The structure (topology) of the
problem graph is distributed throughout the route tables of
the hardware—thereafter the potential routes of all the mes-
sages are considered fixed throughout the program execu-
tion. (It is possible to change the routing information during
program execution, but this is an expensive and hard task.)
An incoming message to a node causes an interrupt to be
generated in a core, which is handled by an appropriate
(user supplied) fragment of code (the interrupt handler). This
handler in turn may or may not cause consequent messages
to be sent. Two points are of note here:

e A handler says “send message”, but has no control
where the outgoing message goes (that information
is distributed throughout the routing table). An
incoming message contains the information outlined
in Table 1, and the incident (delivery) port is visible
to the handler, but the route across the interconnect
fabric is not available to the handler.

e A message is launched, propagated and delivered
with a delay dictated by the ambient hardware traffic
on the route. It contains no timestamp of any sort; the
interrupt handler is entirely asynchronous and
reactive.

SpiNNaker as a simulation engine operates at a much
finer (and non-hierarchical) level of granularity than con-
ventional simulators. In a conventional (electronic) system
description—say, VHDL or Verilog-based—the floorplan
interconnect is (relatively speaking) uninteresting—the
complexity lies inside the component descriptions. In SpiN-
Naker, the component descriptions are (relatively speaking)
very simple—the complexity resides in the interconnect
topology between the problem devices.

The behaviour of the problem devices is realised by the
interrupt handler code, which is supplied by the user, and
can, of course, be arbitrarily complex, but supplying large
and complex handlers moves the system out of its intended

functional design space, and the performance will suffer
enormously.

4 HARDWARE OVERVIEW

4.1 Architecture

SpiNNaker is a homogeneous network of triangularly con-
nected nodes, as in Fig. 3. The mesh—shown planar in the
figure—has its opposing edges identified with each other,
so the whole ‘computing surface’ is effectively mapped to
the surface of a toroid. (Many other mappings produce an
equivalent effect.) Each node corresponds to a physical
chip, and contains an Ethernet controller implemented in
silicon. In principle, an arbitrary number of these may be
connected to external (conventional) machines via an exter-
nal Ethernet. The internal structure of each node is outlined
in Fig. 4. The essential components are the set of eighteen
ARMY cores, the message router, watchdog timers/coun-
ters, all interconnected via the node NoC. All the cores in
the entire system have a 32-bit memory space; portions of
the individual maps refer to different tranches of physical
memory. The full details of the memory map may be found
in [1], but it is useful to review some relevant aspects here:

e Each node contains 128 M SDRAM and 32 k SRAM—

this is referred to as node-local memory.

e Each core contains 64 k DTCM (data memory) and 32

k ITCM (instruction memory)—this is referred to as
core-local memory, and provides a Harvard execution
model for each individual core.

e Each node also contains a 32k (memory mapped)

BOOT ROM.

The essentially homogenous nature of the coarse inter-
connect (Fig. 3) allows the size of the overall machine to be
almost arbitrary; the only constraint with the current design
being the size of the address space used to identify the
nodes (currently this is 16 bits, giving a maximum node
count of 2'°). The nodes are assembled onto PCBs holding
48 nodes each; each PCB dissipates around 20 to 50 W
depending on workload. When fully assembled, the system
will contain a maximum of 65,536 (2'°) nodes, giving a total
possible core count of 65,536 x 18 = 1,179,648, with over 8.5
Tbyte of on-board distributed memory. It will dissipate
around 90 kW under full computational load.

The boards form another artificial boundary. The board-
to-board interconnect is supported by three Xilinx Spartan-6
FPGAs mounted on each board; again, these have a broad
mandate to be transparent to the core-core communications.

4.2 The Message-Passing Infrastructure

Although the cores on a given node may communicate with
each other via shared memory [1], the dominant communi-
cation route between cores—and the only route between
cores on different nodes—is by message passing.

Message passing on conventional cluster machines is
expensive. Fig. 1 shows the approximate message latency
and throughput times measured on a 1,000+ core Beowulf
cluster machine, using MPI brokered by Myrinet [15]. It has

1. 1008 compute nodes, 2 x 4 core 2.27GHz Nehalem processors (i.e.
8 processors/node) providing > 72 TFLOPS.
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Fig. 2. The anatomy of a SpiNNaker parallel program.

been reported [16] that some biological simulation codes
spend over 30 percent of their wall-clock time sending and
receiving messages.

Messages in SpiNNaker are hardware brokered, moving
through the communications fabric controlled by the router
subsystems in each node. The size of a message is fixed at
72 bits (it is hardware), and each step (node-node transit)
takes around 0.1 ps. Thus in the complete machine, config-
ured as a toroid, the maximum node-node hop delay (when
the chosen nodes are on opposite sides of the torus) is
V@2'%)/2 % 0.1 ~ 12.8 ps. The minimum transit time (two
cores on the same node) is 0.1 us. In every case the individ-
ual message throughput is around 30 Mbytes/s. By the
standards of today, this is not a high number, but factored
into the interconnect topology gives the machine as a whole
a bisection bandwidth of around 4.8 Gpackets/s.

SpiNNaker comes into its own when a problem can be
cast into a form that requires many, many tiny asynchro-
nous messages—the region near the origin in Fig. 1—and
there are a diverse and interesting set of problems that meet
this criterion.

From the perspective of the nodes, SpiNNaker is indeed a
homogeneous, isotropic computing mesh. However, within
a node, all the cores are not equal. On power-up, a
(designed) race elects one core as the monitor core. This
core—identified as core 0 by definition—then interrogates

TABLE 1
Internal Message Structure (Bitwidths in ())

Packet Data word (32) Payload
type word (32)
NN user user
P2P  srcnode (16) tgt node (16) user
MC  srcnode (16) Src core src dev user

4) (12)
FR user user

" .
. o
DR
ant

...binary files loaded into

! > Messages launched at
core instruction memory...

runtime take a path defined
by the firmware router

its node-local peers, assigning them identifiers 1. .. 16. (Rep-
resented internally by 4 bits—we can do this because the
monitor core is special on a number of levels, and is never—
can never be—addressed by the same mechanism as an
application core.) These become the application processors.

The low-level fault tolerance philosophy is detailed in [1].
One of the early design decisions taken made the assumption
that it would be naive—in a system consisting of over 65,000
chips—to assume that we could rely on 100 percent yield. On
power-up, the cores self-organise into one monitor core and
(up to) 16 functioning application cores, with a core to spare.
We have so far taken delivery of around 750 chips, of which
82 percent had at least 17 functioning cores. The self-organis-
ing initialisation is capable of configuring nodes with any
number of failed cores, although of course the definition of
functioning is not all-embracing. (We have one core that res-
olutely refuses to do anything whatsoever except report that
it is functioning correctly.) Any node with at least two func-
tioning cores is considered useful.

Message transmission is fast because messages are
small—72 bits. (Higher level protocols can obviously be lay-
ered on top of this, increasing the message size at the cost of
speed.) Messages can be one of four primitive types, and
the makeup of the message—the meaning of the 72 bits—
depends upon this type. The types are nearest neighbour
(NN), point-to-point (P2P), multicast and fixed route (FR).

Zl Y1Z2 Y2Z3 Y3Z4 Z5

zZ5 21yl z2Y2 Z3Y3 ZzZ4

Fig. 3. The SpiNNaker interconnect topology.
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4.3 Resource Addresses

SpiNNaker is designed for the simulation of large systems
that can be modelled as networks of small discrete entities,
communicating with each other via small packets of infor-
mation. The flagship application—neural simulation—
gives the system its name: Spiking Neural Network Archi-
tecture. The speed and scale of the system owes much to
the fact that a lot of the infrastructure is hardware, rather
than software. Consequently, the freedom usually enjoyed
in labelling entities in software systems does not exist here.

Ik
!n 0 !n ::

5

Everything is an unsigned integer, which allows us to pack
information efficiently into messages.

Each application core can handle a number of entities
(devices), the limit realistically being given by the size of
the state space of each device and the physical memory
available to the core. Within a 32-bit address space, we allo-
cate 16 bits for the node address (node ID) and 4 bits for the
core (core ID), which leaves 12 bits for each device hosted
by a core (deviceID), making it feasible for the system to
uniquely address 4,096 devices per core. The natural limit
to the overall size of systems that can be simulated on SpiN-
Naker is over a billion devices.

4.4 Messages

Messages consist of a control byte, a data word, and an
(optional) payload word—see Table 1. (Strictly, the pay-
load being optional means that a packet size may be 72 or
40 bits, but in practice, the payload is almost always used,
so it is easier to think in terms of a 72-bit packet.) The con-
trol byte contains the packet type (2 bits) and a variety of
housekeeping data [1]. The type dictates how the packet is
handled by the routing infrastructure, and (part of) the bit
layout within the data word (which contains routing infor-
mation used by the router hardware). The cells in Table 1
labelled ‘user’ are unused by SpiNNaker—the application
programmer may use these bits.

4.4.1  Nearest Neighbour Messages

A NN message may be launched from any core (although in
preferred usage it will only ever be the monitor), into a set of
output ports (chosen by the generating core), whence it is
delivered to the monitor core on the appropriate adjacent
node. The generating core controls the content of the data
word and payload, and once despatched, the message will
be delivered to the monitor core of whatever node (or
nodes) are physically connected to the chosen output ports -
see Fig. 5. Thus the route of a NN message is fixed by the

II ” ” ll 55
ll ll |l

]I

eecccccce NNpath
P2P path

Fig. 5. SpiNNaker message types; router interactions.

== == = MC path
EEEEEEEEE FRpath

@ Router interaction
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hardware configuration—see Fig. 3—and requires no
initialisation.

4.4.2 Point-to-Point Messages

A P2P message may be launched from any core, and will be
delivered to the monitor core of the addressed target node.
The generating core has (and needs) no knowledge of the
route taken by the message—see Fig. 5.

Within the router of each node is a P2P table. It contains
a 1:1 map of (target node address) => (output port). On any
node, the router extracts the target node field from a P2P
message (see Table 1), looks up the corresponding output
port and forwards the message accordingly (except when
the message has arrived at the target node, in which case it
is forwarded to the local monitor core). The table should be
complete, but if a P2P message is processed that has an
unrecognised target address it will be dropped, and an error
interrupt [1] sent to the node monitor. This illustrates an
aspect of the design philosophy that is worthy of labouring:
at every level of abstraction, wherever possible, the machine
makes no assumptions about the integrity of its internal
state. It should not be possible for a P2P packet to contain
an address that has no match in a P2P table; but if it does,
the system has a defined (and useful) behaviour.

Aside from the initialisation of the P2P tables in each
router, the process is entirely hardware brokered. The P2P
tables define a node topology which must be a function of
the working processor mesh (that is, the subset of the system
that is fault-free).

4.4.3 Multicast Messages

An MC message is (intended to be) used for device-level
communication within a simulation. It may be launched by
any application core, and will be delivered to a set of target
application cores (which may be one)—see Fig. 5. The system
makes use of a labelling methodology known as address
event representation (AER) [17], taken from the world of
neural simulation.

Whereas the NN and P2P messages are primarily used
for initialisation and housekeeping functions, the MC
packet is the ‘simulation workhorse’ packet. Although
physically it is launched from an application core and deliv-
ered to an application core, in intended use it is more
sharply focussed: it will be generated by an interrupt han-
dler operating on a device (part of the problem graph) in one
core, and delivered to a device in another core. The full
address of every device modelled in a simulation is node(16
bits):core(4 bits):device(12 bits)—see Section 4.3. Each MC
packet carries embedded within it this information for the
launching device (Table 1) and the topology of the problem
graph—embodied and distributed in the MC route tables
of the system—ensures that the packet is delivered to the
intended core(s). As part of the system initialisation process,
a table is created in each node-local memory, defining the
location of the target device state information, using the
source device ID contained in the packet (Table 1) as a key.

The MC table is a complex (hardware) subsystem, consist-
ing primarily of a content-addressable memory, described in
[1]. It contains a 1:many map of (source device) => ({output
port}, {target local application core}). If the entries in the table
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for the output port set or target local application core set are
multi-valued, the router will “duplicate” the message and
forward each copy. If the table contains no entry for an MC
packet, it will simply be routed straight through the node,
emerging from the (geometrically) opposite port to the one
that it entered. This is the single point in the routing infra-
structure design where the behaviour is based on the geo-
metric, rather than topological attributes of the system, but
the utility of the behaviour far outweighs its inelegance.
Aside from the initialisation of the MC tables in each router,
the process is entirely hardware brokered.

The MC tables effectively contain a distributed represen-
tation of the problem graph. The entries are thus Va func-
tion of the problem graph (which dictates which device is
connected to which) and the P2P tables (which define how a
message might get between specific nodes).

4.4.4 Fixed Route Messages

These are intended as a straight-through communication
channel with the outside world. As with the other message
types, their passage across the computing mesh is hardware
brokered. They may be launched from any core, and will be
delivered to the monitor core on the topologically closest
node that has a connected Ethernet capability. (Internally,
this is realised as a single entry MC table that matches every
FR message.)

5 BOOTSTRAPPING

When the machine is powered up, virtually the only facility
available is the NN packet routing, which is pure hardware
and has no internal route tables that require initialisation. In
this section, we describe the sequence of events necessary to
initialise the SpiNNaker engine to the point where the simu-
lation of a meaningful problem graph may be undertaken.

5.1 |Initialisation
In order to perform useful calculations, the system needs to
be initialised. Fig. 6 shows the interaction between the SpiN-
Naker system and its external software support. The vertical
dividing line in the middle of Fig. 6 separates SpiNNaker
internals from the outside world.

Externally, three tools are necessary, the Loader, the
Uploader and a cross-compiler. The first two are bespoke;
for the third, any commercial tool is suitable.

5.1.1 The Loader
Input to the Loader is

e The known topology of the processor mesh (includ-
ing any known fault map)—i.e. what we know we
have.

e The problem graph—i.e. the graphical description of
the input problem—is described further in Section 6.

Output from the Loader is

e The contents of the P2P tables on each node (this is a
function of the processor topology + fault map
alone—it is independent of the problem graph).
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Fig. 6. Initialisation sequence.

e The contents of the MC tables for each node (these
are functions of the P2P tables and the problem
graph—Section 6 contains an example).

e The contents of various lookup tables that have to be
written into the SDRAM and SRAM of each node,
and the DTCM of each core.

5.1.2 The Uploader

The Uploader is shown in Fig. 6 as several small blocks
(UP), to emphasize that the operations carried out are inde-
pendent, although they are all embodied as one software
tool.

Input to the Uploader are

e The various binary files generated by the Loader—
solid lines.

e Some signals from the SpiNNaker engine via Ether-
net—dotted lines. Throughout the rest of the paper,
the Ethernet-connected node is referred to as the
root node.

Output from the Uploader are

e Output files (the .k files shown in the figure)
e Control signals to the SpiNNaker engine itself (con-
nected via the Ethernet port—dotted lines).

5.1.3 Cross-Compiler

Our language of choice for both the software development
infrastructure and the code for SpiNNaker itself is C/C++;
the user is expected to supply the source for the interrupt
handlers in C, and the Uploader generates C header files.
Consequently the cross-compiler must generate ARM
binary from C. However, none of this is embedded into the
design; virtually any (sensible) high-level language can be
used.

The final component in the left side of Fig. 6 is the POR
(power-on reset) signal, physically implemented as a push-
button.

The right side of Fig. 6 shows the actions occurring inside
SpiNNaker, arranged as a timing chart. The solid lines show
information flow, and the predicate relationships are shown
by the dotted curved lines. Thus, for example, the P2P con-
figuration must terminate before the ‘ping’ process starts,
but the SDRAM and SRAM loads may occur in any order,
or, indeed, simultaneously.

1. Boot code. The POR causes the contents of the BOOT
ROM to be copied into the ITCM of all the cores in
all the nodes, and executed. In each node, these exe-
cuting images perform a self-test, and working cores
then take part in an (intentional) race, communicat-
ing via SRAM, to assign local identifiers (core IDs) to
themselves. Thus one core will be elected the moni-
tor core (ID:0) and up sixteen others allocated IDs
1..16. (In a perfectly functional node, then, one core
will be unused). This mechanism allows nodes with
less than 100 percent functionality to be useful. All
the cores in a node are electrically equivalent; the
nomination of one as monitor is (electrically) arbi-
trary. This process takes around 2 seconds, and is
independent of machine size, because all the nodes
boot simultaneously. There is no way for SpiNNaker
to know when all its nodes have booted (cleanly or
otherwise) so the process is timed out by the
Uploader after 2 seconds.

2. Inject SCAMP. (SpiNNaker Control And Monitor
Program) SCAMP is a control program (about 15 k
binary) which is injected by the Uploader (via Ether-
net) and loaded into the ITCM of the monitor core
on the root node. It then copies itself into the ITCM
of all the cores in all the nodes. (This is achieved by a
combination of writing to shared memory—



SDRAM—to perform intra-node copies, and using
~3,750 NN packets to perform an inter-node flood-
fill over the entire system.) The overall process is a
self-timed pipeline, and the completion time is a
function of the system size. As a reference point, it
takes around 1 second on an 864 core system; quanti-
tative timing data is available in [4]. As with the pre-
vious step, it is not possible for any one point in the
system to know when the overall process has termi-
nated, so this step is also timed out by the Uploader.
At the end of this step, then, SCAMP is resident in
the ITCM of every core in every node.

P2P configuration. At this point, it becomes possible
to configure the data in the P2P routing tables, and
assign system-wide unique identifiers to each of
the nodes. This can be done in a number of ways. If
the node topology is regular (the design intention)
the P2P tables can ‘self-organise’: the root node allo-
cates itself a compound identifier (0,0), and sets out a
set of tokens (embodied as NN packets) to its nearest
neighbours. Using knowledge of the incoming port
and the generating node ID—enclosed in the ‘user’
fields of the packet—the receiving node can fill in a
single entry in its P2P table. Subsequently, it does two
things: it passes the token on to its nearest neigh-
bours, to complete the search for the original node,
and also it initiates a search wavefront for itself,
enabling the system to populate further fragments of
the P2P tables. In this way, the complete P2P table in
each node can be assembled. The algorithm is sim-
plistic, inasmuch as it makes assumptions about the
node geometry, and is described in full in [4].

If the node topology is not regular (as may be the
case if a non-empty fault map exists), more sophisti-
cated processing is required. A variant on the above
can be used to populate the tables of arbitrary node
topologies (this will be described in a later publica-
tion) or the data can be generated in the Loader, and
injected into the system by the Uploader.

In either case, like the previous steps, it is not pos-
sible to determine automatically when the process
has terminated, so the Uploader times the step out
after 2 seconds on the 864 core system.

Ping response. The Uploader interrogates each node
in turn, to establish how many cores each has identi-
fied as functional. (This provides a rudimentary
dynamic fault-mapping capability.) This information
is used in the next few initialisation steps. It is gath-
ered by the root monitor sending req/ack signals to
every core in the system, via P2P packets to the mon-
itor cores and shared memory (SRAM) messages to
the consequent application cores. This step takes
around 1 msec/core, the total time being roughly
proportional to the system size.

Load MC/TCDM. The Uploader takes the images of
the MC tables and the TCDM memory fragments,
and uploads them. The information is targeted (it is
different for each node) and transmitted to the
recipient node by P2P packets. The content of the
MC tables is described in Section 4, and the TCDM
memory fragments are core-local tables that allow

IEEE TRANSACTIONS ON COMPUTERS, VOL.63, NO.X, XXXXX 2014

the interrupt handlers to locate data in the node-
local memory.

The information is generated by the Loader,
based upon the node topology and any a priori
faults supplied to it. However, if the ping response
data garnered in the previous step shows that
cores have gone out of service unknown to the a
priori map, the Uploader can—up to a (small)
point—modify the core assignment, by reworking
the MC tables and TCDM maps such that referen-
ces to the now faulty core are replaced by referen-
ces to the ‘spare’ core on a node. Obviously this is
only a viable tactic if a node has a core to spare—if
any ping responses show > 1 unexpected cores at
fault in a node, the entire initialisation has to abort.

The information is also embedded in a machine-
generated C header file that is cross-compiled with
the user-supplied interrupt handlers. It contains
the offsets for various Loader-generated lookup
tables and the dynamic fault map derived in the
previous section.

6. Load SDRAM. The SDRAM contains the state of the
devices in the problem graph. It is a targeted load
(each node has different information) brokered by
P2P packets. It is unaffected by any core re-assign-
ment and (almost) independent of machine size, but
is a function of problem graph size.

7. Load SRAM. In this step, the SRAM tables are loaded
(these are independent of the dynamic fault map),
and another C header file generated. Again, this is a
targeted load, and takes around 1 second (dependent
on machine size) on an 864-core machine.

(Loading the MC tables, TCDM, SRAM and
SDRAM is a mnode-by-node targeted load so the
Uploader knows when it has completed—there is no
global timeout. Individual packet timeouts are used.)

8. Load handler library. Finally, the user binary is loaded.
This binary is created externally by the cross-com-
piler, and is derived from a number of constituents:

8.1: The header files generated by the Uploader—
these reflect the dynamic fault map, and contain
code offset data handed out of the Loader.

8.2:  The object code of SARK (SpiNNaker applica-
tion run-time kernel)—a static module that
supports system-wide inter-processor commu-
nication and communication with the outside
world via the root node.

8.3:  Library code (needs to be compiled with the two
machine generated headers).

8.4:  The user code itself, describing the behaviour of
the devices in the problem graph.

This binary image is written into a part of the ITCM
that is unused by SCAMP; the final act of SCAMP is to
transfer program control to SARK (and hence the user
code). There is no return; although SCAMP still physi-
cally exists in each core, it is effectively orphaned at this
point and becomes invisible.

At this point, SCAMP is effectively controlling the moni-
tor cores, and a software stack SARK-library-user control-
ling all the application cores.
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Fig. 7. Event handling.

5.2 Application Programming Model—SARK

The SpiNNaker programming model is a simple, event-
driven model. Applications do not control execution flow, they
only indicate the functions (event handlers), to be executed
when specific events occur, such as the arrival of a packet, a
software-generated interrupt from an application core or
the lapse of a periodic time interval. SARK controls the flow
of execution and schedules the invocation of the handlers.

Fig. 7 shows the architecture of the event-driven frame-
work. Application developers write event handler routines
that are associated with events of interest and register them
at a certain priority with the kernel. When the correspond-
ing event occurs the scheduler either executes the handler
immediately and atomically (in the case of a non-queueable
handler) or places it into a scheduling queue at a position
according to its priority (in case of a queueable handler).
When control is returned to the dispatcher (following the
completion of a handler) the highest-priority queueable
handler is executed. Queueable handlers do not necessarily
execute atomically: they may be pre-empted by non-queue-
able handlers if a corresponding event occurs during their
execution. The dispatcher goes to sleep (low-power con-
sumption state) if the handler queue is empty but will be
awakened by any subsequent event.

The SpiNNaker application programming interface (API)
supports the programming model providing functions to
register handlers, enter and exit critical sections, communi-
cate with other cores and the host, trigger DMA operations
and other useful tasks. In all, 32 different types of interrupt
are supported—these are detailed in [1].

6 COMPUTING WITH INTERRUPTS

6.1 Interrupt Handler Programming Environment

In a conventional parallel system the user can reasonably
expect a comprehensive computing environment and an

application programming interface to be provided. This
will include file and console input/output (I/0), memory
management (a heap manager for dynamic memory alloca-
tion), software libraries (including some message passing
infrastructure), and some notion of temporal coherency and
the passing of real time.

In SpiNNaker, almost none of these are available. Each
packet interrupt handler has read access to the bits of the
packet that triggered it; knowledge of the local physical
port by which the packet arrived, I/O to its own memory
map; knowledge of its own core ID (0..16) and node ID
(0..2'%); the ability to launch packets, and a coarse (ms) timer
(which has an associated interrupt, for which the user can
provide a handler). The interrupt handlers are an ensemble
of (necessarily small) program threads, each invoked by the
hardware in response to a specific incoming hardware
event—the arrival of an interrupt.

e There is no direct file or console I/O from a core: the
sheer size plus the isotropic and homogeneous
nature of the architecture of the system precludes
this. Design provision is made for each node to con-
nect to the outside world, but in practice we commu-
nicate via a single link (Fig. 5) and a set of handlers
in each core that allow the transient creation of com-
munication channels between any core and the out-
side world, which is a cumbersome process.

e There is no memory management: Although each
core has a full 32 bit memory map, it has only 64k
DTCM and 32 k ITCM. There is little room for a mem-
ory manager, and the design intention is that the indi-
vidual handler threads are very simple—handlers
requiring internal memory management are way out-
side the design spirit and intention of the architecture.

e There is no interactive debug, because there is no
notion of an overseer process or temporal coherency
across nodes. SpiNNaker is designed to simulate
systems in which time models itself—the devices of
the problem graph asynchronously communicate
amongst themselves. The user could inject ‘pause’,
‘read” and even ‘write’ command packets into the
system, but would have no control over when they
might arrive, or what state the machine might be in
when they do.

e There is no MPI-type message passing system. The
memory footprint is too big, the resources to support
it do not exist, and the physical limitations on the
SpiNNaker packet size (and hence bandwidth for
large messages) would make the system unusable.

e The physical difficulty of providing a rigorous tem-
poral synchronisation capability led us to discard
this very early on. A coarse (O(ms)) timer interrupt
provides rough knowledge of the passing of wall-
clock time.

6.2 Algorithmic Concerns—Neural Simulation

The flagship application—for which the hardware is opti-
mised—is neural simulation. At the level of granularity at
which we consider matters, neural systems are composed of
neurons, that communicate via action potentials (spikes)
that travel between the neurons along axons, terminating at
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Fig. 8. Cut-down SpiNNaker processor mesh.

a synapse on the target neuron. It is (almost) a discrete sys-
tem, but with terminology that may be alien to an engineer-
ing audience. The problem is, then, that of discrete
simulation, and the underlying hardware turns it into the
parallel discrete simulation problem, which has been the subject
of attention for decades [18], [19]. What sets SpiNNaker apart
in this application is the manner in which simulation causal-
ity is handled. In a conventional parallel simulation system,
non-trivial effort is required to maintain simulation causality
across the computing ensemble. SpiNNaker avoids this
computational overhead by simply ignoring it. Biological
neurons (all) operate at frequencies of up to around a kilo-
hertz, and neural signals propagate at speeds of a few ms ™.
This means that the propagation delay of packet traffic
throughout the compute fabric is completely negligible com-
pared to the biological delays intrinsic to the system being
simulated. Biological delays are modelled by local real-time
physical delays implemented on the ARM cores, and time
effectively models itself: events arrive “infinitely fast”, are
delayed by a biologically realistic amount, then processed
“infinitely quickly” and any consequent events immediately
broadcast.

These modelling compromises enable the cores to oper-
ate at full performance, giving each node (with 18 200 MHz
cores) approximately the same compute performance on
this task as an Intel ATOM N270° processor, but with a
power budget of 1 W.

The prototype development flow has so far been used to
develop small models (up to a few 10,000 s of neurons) [16].

2. The Intel Atom N270 single core processor delivers ~3.8 GIPS at
1.6 GHz; Spinnaker with 17 cores at 200 MHz delivers ~4 GIPS. Both
these figures are peak performance, and both will be adversely affected
by poor data locality. On Spinnaker, the memory hierarchy is organised
to ensure near-perfect data locality on suitable (small) problem frag-
ments. This is much harder to organise (and impossible to guarantee)
on a cached processor such as Atom.
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Fig. 9. Example problem graph.

Similar models have been demonstrated in real-time robot-
ics control [2] and simple vision applications.

SpiNNaker is designed as a computing engine that per-
forms by the asynchronous exchange of many small pack-
ets. A useful way of thinking about the system is to view it
as a large, distributed finite state machine or Petri net. The
fragment of the overall state embodied by a specific node/
core may be changed by an interrupt handler triggered by
an impinging packet. (This view is valid for almost any
computing engine, of course, but it is particularly useful in
the case of SpiNNaker.)

6.3 Simulation of a Simple Example
Here, we present a reasonably detailed example of how a
very simple problem graph might be loaded onto a very
simple, cut-down SpiNNaker engine, and how one might
perform a meaningful simulation within the architectural
constraints of SpiNNaker.

We do not describe:

How the P2P tables are initialised.
How the problem graph is mapped onto the SpiNNa-
ker core graph.

e How the MC tables are generated.

- we simply present the information here.

Fig. 8 shows a node-level representation of a much
reduced SpiNNaker system, consisting of six nodes (72, 2, 3,
1, 94, 23) connected as shown. The nodes are interconnected
by just seven links; and the ports—where present—labelled
0.3. The P2P tables associated with each node are also
shown. Fig. 9 shows a directed problem graph. The devices
(D1...D8) drive each other via labelled (1...12) connections.
Fig. 10 shows a possible mapping between problem graph
and node graph, and Fig. 11 shows the corresponding MC
table entries for the system. Also in the nodes of Fig. 11 are
the node-local device lookup tables (DLTs).

For the rest of the example, we will use the term neuron
for problem devices, and synapse for connection. For the
sake of illustration, assume a handler in node 72, core 14
(72| 14) emits a packet (spike) from D1. This is realised as an
MC packet, Fig. 9 shows us that this must be delivered to D2
and D7. How do the data structures of Fig. 11 support this?

The MC packet generated by core 14 is transmitted to the
multicast route table (Fig. 5) in node 72. The data word in
the MC packet (Table 1) is 72:14:D1. The router in node 72
will use 72:14 as a key for the MC table, and finds that the
packet is to be sent to both port 0 and core 15. The packet
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data is duplicated (recall this is hardware) and the two cop-
ies launched.

The copy arriving at core 15: will cause an interrupt. The han-
dler will read the packet data (72:14:D1), and from the node-
local connectivity table (DLT)—Fig. 11—see that if the source
neuron is D1, the target neuron must be D2 on this node/core. (If
the table has no entry, the packet is simply dropped.) The han-
dler then modifies the state of D2 (which may or may not
cause subsequent packets to be generated), and terminates.
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Fig. 11. Node datastructures.
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The copy sent from port 0: arrives (at port 2) of node 2
(Fig. 11). 72:14 matches the entry in the MC table on node 2
(retrieving port 3, no cores) and the data is forwarded out of
node 2 via port 3. This arrives at port 1 on node 94, and
matches the entry in the MC table in node 94, retrieving no
ports, core 2. The handler on core 2 is triggered; the packet
data shows the generating device to be D1, and the node-
local connectivity table shows the target neuron to be D7,
and the handler may modify the state of D7 and/or launch
packets (from D7).

From the perspective of biology, SpiNNaker is fast.
Node-node packet transit time is ~100 ns, and the design
intention is that the handlers should be comparable in
speed. The real-time clock interrupt enables interrupt han-
dlers to keep track of ‘real time’, and delay the emission of
generated packets to biologically realistic times.

The above explanation charted the movement of one
packet across the SpiNNaker fabric, but the system is mas-
sively parallel: in principle, there can be millions of packets
‘in flight” simultaneously.

6.4 Event Handlers

The final component of the system necessary are the event han-
dlers. The previous sections of the paper have been domain-
agnostic; we have described the functioning of SpiNNaker in
abstract terms, and these remain valid for every application
domain. The event handlers embody the behaviour of the
problem devices and the interpretation of messages.

For the sake of explanation, let us consider an extremely
simple device (this would be, for example, one of the nodes
in Fig. 9): a leaky integrate-and-fire pulse generator. The
packets passed between devices represent pulses (which we
will assume for the sake of simplicity to have unity weight).
On receipt of a packet, a device will increment an internal
counter (the state—this supports the ‘integrate’ behavioural
component). When a certain threshold is reached, the device
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Fig. 12. Simulated behaviour of the LIF device.

emits a packet of its own, and resets its state to 0. Alongside
this, every device is regularly informed of the passing of
wallclock time by timer packets delivered to it by the hard-
ware. On receipt of this packet, the internal state value of
each device is reduced by, say, 95 percent—(this supports
the ‘leaky” behavioural component).

The device behaviour outlined represents an extremely
simplistic neuron model, but it is not hard to see how this
could be re-interpreted in different physical domains.

The user must now provide two event handler functions,
one (triggered by the hardware on arrival of a pulse packet),
the other on arrival of a wall-clock tick:

void OnPulse (MC_t ¥*) void OnTimer (TT_t)

{ {

if (++state<=threshold) state *= 0.95;
return; }

SendPulse () ;

state = 0;

}

The incoming packet contents are available to OnPulse,
and the time to OnTimer, via their arguments, but are not
used here. The existence of the interrupt carries sufficient
information for the computation.

void OnPulse (MC_t * packet)
{
switch (packet->payload.type) {

case PULSE : if (++state<=threshold)return;
SendPulse() ;
state = 0;
return;
threshold = packet->payload.th;
return;
state=packet->payload.SO;
return;
oflag = 'oflag;
return;

case THRESH:

case RESET :

case OUTPUT:

void OnTimer (TT_t time)

{

state *= 0.95;

if (oflag) SendPulse (BuildPkt(time)) ;
}

The behaviour of a single device, subject to an incident
pulse train, is shown in Fig. 12.

It is not hard to see how a much richer set of behaviours
may be supported with the above framework:
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Returning to Fig. 2, we have now outlined all the infor-
mation necessary for both arms of the dataflow shown: the
machine topology (Fig. 8), the problem graph (Fig. 9) and
the individual device handlers described above.

6.5 Output

Output from the system can take a number of forms,
depending on the nature of the computation.

e When performing neural simulation, the system is
designed to operate in real time. Specific devices are
inserted into the problems graph, known as monitor
devices (not to be confused with monitor cores).
These do not represent physical entities; rather they
host a different set of event handlers. When a MC
packet is incident on a monitor device, the handler
wraps the data in a higher level protocol and re-
directs it to the monitor core on a node connected to
the Ethernet, and hence to the outside world. This
may be done using FR, P2P or MC packets (see
Section 4). Two further points are relevant: (1) the
monitor device may buffer the incident packets and
forward them as a bundle, if the timing information
intrinsic to the absolute packet arrival time is not
compromised; (2) each SpiNNaker node contains an
Ethernet controller—an arbitrary number of these
may be physically connected to the outside world.

Alternatively, simulator results may be written to the

SDRAM on each node, and harvested and transmitted to
the outside world by a post-simulation program (a reaper)
run after the main simulation is over.

6.6 Application Portfolio
SpiNNaker is a massively-parallel packet-mediated simula-
tion engine, and its position in the packet size/cost spec-
trum (Fig. 1) makes it ideally suited for certain types of
simulation. The attribute that these simulation types have in
common is the absence of a central computational overseer.
The impact of any such overseer has a dramatic effect on
the computational throughput; SpiNNaker is intended for
situations where the many, small, interacting cores can
behave autonomously.

The types of simulation for which SpiNNaker is ideal fall
roughly into two classes, mimicking the output strategies
outlined in the previous section.

e  Event-brokered systems. Neural simulation, discrete
system simulation, some representations of molecu-
lar dynamics. The problem is perturbed into a form
whereby locally autonomous devices react indepen-
dently via packets delivered through a network, the
topology of which is complex and an integral part of
the system under simulation (neurons, electronic

circuits).
e Relaxation-based systems. Finite difference (diffusion),
some representations of molecular dynamics/

computational chemistry, large matrix mathematics.
The problem is transformed again into a set of devi-
ces, but here the connection topology is derived
closely from the geometric relationships of the devices.
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7 FUTURE CHALLENGES

SpiNNaker is a massively ambitious undertaking, which
has been almost a decade in gestation. It has now got to the
state of beginning to deliver quantitative results, and it is
performing—so far—almost exactly to expectations. How-
ever, a host of problems remain unsolved:

7.1 Inline Place and Route

When SpiNNaker reaches its target size—2'® nodes—it will
be capable of simulating systems of 10° devices. The routing
tables, at least, are of fixed size, and in total occupy around
1.4 Gbyte. The total device state memory footprint—assum-
ing it is resident in the SDRAM—is limited to just over 7
Tbyte. The offline manipulation of this quantity of data, let
alone the upload task, is a ferocious challenge, and naturally
one looks for ways around—rather than through—the
problem.

One obvious technique is to present SpiNNaker with the
topological connectivity of the problem graph—or even
some high-level representation of it—and persuade SpiN-
Naker to generate the internal data structures itself. Whilst
we have some preliminary ideas [3], this in itself will proba-
bly require several years of effort.

7.2 Real Time Route Table Reconfiguration

The problem of dynamic changes in the topology of the prob-
lem graph is a characteristic of real, neurological systems.
The problem is at least architecturally localised: we need to be
able to dynamically change the contents of the MC table.
However, the table keys are aggressively compressed, and
any attempt at modulating the route information embedded
therein requires, at the very least, unpacking all or some of
the tables on a specific route, both pre-and post reconfigure.

7.3 Real Time Fault Tolerance

Biological neural systems exhibit remarkable fault toler-
ance at the connectivity level, and our long-term ambitions
for this project include both using massively parallel com-
puting resources to accelerate our understanding of brain
function, and utilising a growing understanding of brain
function to point the way to more efficient parallel, fault-
tolerant computation.

It is relatively simple to time-slice into the operation of
the simulation a packet-mediated network searching algo-
rithm that continuously monitors the health of the physical
compute fabric—the subsequent modification of the routing
tables (Section 5) is non-trivial. However, it is a necessary
but unsatisfactory procedure: necessary, because hardware
does fail in use, and we have to be able to cope with this;
unsatisfactory, because it is an engineering solution that
does not mimic biology.

8 FINAL COMMENTS

SpiNNaker is a hugely complex system, and its development
is pushing at a number of intellectual boundaries simulta-
neously: the hardware build (a million cores, communications
infrastructure, power management, storage and manipula-
tion of state data) and software development. The general
case parallelisation problem is one of the outstanding
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unconquered holy grails of computer science—with SpiNNa-
ker, there really is no other way of doing it, and one of the
long-term objectives of the project is a general-purpose for-
malism for large-scale fine-grain parallel programming,.

The system has two outstanding practical advantages:

e Thecircled area of Fig. 1 is where SpiNNaker wins in
terms of message cost.

e A ‘conventional” parallel supercomputer can cost of
the order of GBP1-2 k per core; SpiNNaker (to manu-
facture) costs around GBP1 per core.

This paper has outlined the low-level programming tech-
niques so far employed to underpin system development of
this nature. Whilst far from a generic solution technique, gen-
eral principles are beginning to emerge, and a way of thinking
about the necessary problem formalism starting to crystallise.
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