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ABSTRACT
The production of artificial light curves with known statistical and variability properties is of
great importance in astrophysics. Consolidating the confidence levels during cross-correlation
studies, understanding the artefacts induced by sampling irregularities, establishing detection
limits for future observatories are just some of the applications of simulated data sets. Currently,
the widely used methodology of amplitude and phase randomization is able to produce artificial
light curves which have a given underlying power spectral density (PSD) but which are
strictly Gaussian distributed. This restriction is a significant limitation, since the majority of
the light curves, e.g. active galactic nuclei, X-ray binaries, gamma-ray bursts, show strong
deviations from Gaussianity exhibiting ‘burst-like’ events in their light curves yielding long-
tailed probability density functions (PDFs). In this study, we propose a simple method which
is able to precisely reproduce light curves which match both the PSD and the PDF of either
an observed light curve or a theoretical model. The PDF can be representative of either the
parent distribution or the actual distribution of the observed data, depending on the study to be
conducted for a given source. The final artificial light curves contain all of the statistical and
variability properties of the observed source or theoretical model, i.e. the same PDF and PSD,
respectively. Within the framework of Reproducible Research, the code and the illustrative
example used in this paper are both made publicly available in the form of an interactive
MATHEMATICA notebook.

Key words: methods: statistical – galaxies: active – galaxies: individual: NGC4051,
3C454.3 – gamma-rays: galaxies – X-rays: binaries – X-rays: individual: CygX-1.

1 IN T RO D U C T I O N

Currently in astrophysics, artificial light curves are usually con-
structed using the procedure of Timmer & Koenig (1995, hereafter
TK95). This method is able to produce ensembles of non-
deterministic, normally distributed time series from a given under-
lying power spectral density (PSD) model, P(f ), which represents
the variability power as a function of temporal frequency, f. Resem-
bling the method proposed by Davies & Harte (1987), it randomizes
correctly both the phase and the amplitude of the Fourier compo-
nents, thus advancing on the previous method of Done et al. (1992),
which randomizes only the phase, assuming a deterministic ampli-
tude which causes a long-term trend in the resulting simulated data
sets.

There are numerous applications of the TK95 procedure in a
plethora of astrophysical fields such as follows.

�E-mail: D.Emmanoulopoulos@soton.ac.uk

(i) Its use in the establishment of statistical confidence intervals
during cross-correlation studies (e.g. Agudo et al. 2011; Bartlett
et al. 2013).

(ii) Its application during microlensing studies (e.g. Ofek &
Maoz 2003; Koptelova et al. 2010; Tewes, Courbin & Meylan 2012).

(iii) The detection of variability in large catalogues and surveys
(Bauer et al. 2009; MacLeod et al. 2010; Villforth, Koekemoer &
Grogin 2010; Primini et al. 2011), as well as for the detection of
the smallest variability time-scales embedded in a data set (e.g.
Aharonian et al. 2007).

(iv) Determination of the detection limits of astronomical instru-
ments for a given type of astrophysical source [e.g. active galactic
nuclei (AGN), gamma-ray bursts (GRBs)] (e.g. Greene et al. 2010;
Primini et al. 2011; Khabibullin, Sazonov & Sunyaev 2012; Doro
et al. 2013).

(v) Its use in the derivation of confidence intervals during the
study of quasi-periodic oscillations of Galactic and extragalactic
objects (e.g. Benlloch et al. 2001; Gierliński et al. 2008; Do et al.
2009), as well as for the statistical characterization of periodic and
pulsed patterns in stellar photometric data (Stanishev et al. 2002;
Grosso et al. 2010; Blomme et al. 2011).
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(vi) Its central role in the estimation of the underlying PSD of ir-
regularly sampled AGN light curves within the procedure proposed
by Uttley, McHardy & Papadakis (2002).

(vii) Its vital use in the study of both the powers and limitations
of a given statistical method (e.g. Zhang et al. 2004; Vaughan 2005;
Emmanoulopoulos, McHardy & Uttley 2010; Góra, Bernardini &
Cruz Silva 2011).

(viii) Its use in the fields of Solar astrophysics (Rajaguru, Hughes
& Thompson 2004) and geophysics (Venema et al. 2006).

At this point, it is very important to note that the above-mentioned
method of TK95 is appropriate for the production of Gaussian arti-
ficial light curves only. This means that the resultant surrogate data
sets1 preserve only the first two statistical moments of the original
data set, i.e. the mean value, μ, and the variance, σ 2, ignoring po-
tential higher order statistical moments, such as skewness, kurtosis,
or multimodes found in the normalized flux distribution of the data,
i.e. probability density function (PDF), corresponding either to the
parent or observed distribution. Thus, Gaussian light curves show on
average the same amplitude variations above and below the mean,
resulting in a zero skewness distribution of data points. Another
characteristic is that since the surrogates are normally distributed,
there is always a finite probability for the artificial data points to
become negative.2 However, the light curve of any astronomical
source must by default remain positive and so must the resulting
PDF.

In this framework, TK95 methodology can be used to simu-
late observed data sets which are Gaussian distributed in the broad
sense, i.e. having a negligible skewness and/or kurtosis. On a large
number of occasions however, light curves exhibit a ‘burst’-like be-
haviour e.g. in X-rays with RXTE and XMM–Newton (e.g. Chitnis
et al. 2009; Vaughan et al. 2011), in γ -rays with the Large Area
Telescope (LAT) onboard Fermi (e.g. Chatterjee et al. 2009; Agudo
et al. 2011), in which the events are distributed following right
heavy-tailed distributions. This implies occurrence probabilities of
high flux values larger than those expected from Gaussian distri-
butions, and thus the Gaussian TK95 products cannot be used for
the establishment of confidence intervals e.g. in cross-correlation
studies.

Furthermore, the rms–flux relation, i.e. the linear scaling of the
fractional root-mean-square (rms) variability amplitude with the
flux, observed in both AGN and X-ray binaries (XRBs; Uttley &
McHardy 2001; Uttley, McHardy & Vaughan 2005; Gandhi 2009;
McHardy 2010), cannot be reproduced by the TK95 algorithm.
Uttley et al. (2005) show that such a behaviour can arise from a
non-linear multiplicative variability process in which the parent dis-
tribution follows a log-normal distribution. The authors therefore
suggest a modification to the TK95 products involving exponen-
tiation (in base e) of the normally distributed artificial data sets,
yielding light curves which both possess a log-normal distribution
and exhibit the rms–flux relation. Although the normalization of the
input PSD, Prescale(f ), is selected in such a way that the variance of
the final products matches that of the observed light curve, the actual
shape of the PSD is distorted from the original one, P(f )δf , in
such a way that the actual variability power within a given frequency
range, Prescale(f )δf , differs from the genuine one, P(f )δf .

1 The term ‘surrogate’ data set (after Theiler et al. 1992) will be used through-
out the paper in exactly the same way as the terms ‘artificial’, ‘simulated’
and ‘synthetic’ data set.
2 For a given point this probability is equal to 0.5 erfc[μ/(σ

√
2)], where erfc

denotes the complementary error function.

Apart from this PSD distortion, the exponentiation transforma-
tion cannot be generalized to arbitrary parent or observed distri-
butions (depending on the type of study). The specification of the
parent distribution requires either very large data set (e.g. for the
case of Cyg X-1 253 144 data points are required to form the parent
log-normal distribution; Uttley et al. 2005) or a theoretical model
(e.g. Kelly, Sobolewska & Siemiginowska 2011). Employment of
the parent distribution is of vital importance in comparing variabil-
ity properties of data sets obtained over a long period of time which
map the complete variability behaviour of the source. Nevertheless,
it is sometimes crucial to establish the detection significance of a
given result coming from a single observed data set. This approach
has been used several times in the field of reverberation studies,
in the form of flux redistribution or random subset selection (e.g.
Peterson et al. 1998), or the detection of time lags in very high
energy Cherenkov astronomy in the framework of Quantum Grav-
ity (Aharonian et al. 2008). For the case of transient phenomena
in particular, e.g. GRBs, in which the concept of a parent distribu-
tion is not applicable, only a single realization is available for each
observation and thus this should be used as the PDF.

In this paper, we put forward a simple method which combines the
routine of TK95 and the iterative amplitude adjusted Fourier trans-
form algorithm of Schreiber & Schmitz (1996, hereafter SS96),
which produces artificial light curves which possess exactly the
same PSD and PDF as the originally observed light curve (or a
theoretical model). Thus, the surrogates will have exactly the same
variability and statistical properties as the observed light curve. Ini-
tially, in Section 2 we describe in detail the method. For illustrative
purposes, in Section 3 we then apply it to the case of the well-studied
type I Seyfert AGN NGC 4051, using XMM–Newton observations.
Following that, in Section 4, we produce artificial light curves for
the γ -ray blazar 3C 454.3, using Fermi-LAT observations, and the
XRB Cyg X-1 using observation obtained by the All Sky Monitor
(ASM), onboard RXTE. In Section 5, we present an application in
cross-correlation analysis, and in Section 6 we reproduce the rms–
flux relation for the case of log-normally distributed light curves.
In Section 7, we discuss which properties of the light curves are
preserved during our simulation process, and finally a discussion
together with a summary of our results can be found in Section 8. In
Appendix A, we give the basic definitions and properties of the vari-
ous quantities, i.e. periodogram, PSD and PDF, as well as the various
fitting procedures that will be used throughout this paper. In Ap-
pendix B, we elucidate the differences between statistical moments
and cumulants, which are commonly confused in the astronomical
literature.

Throughout the paper the error estimates for the various best-
fitting model parameters correspond to the 90 per cent confidence
intervals unless otherwise stated. The error bars of the plot points
in all the figures indicate the 68.3 per cent confidence intervals.

2 M E T H O D O L O G Y

2.1 The algorithm

This method is a combination of TK95 and SS96, with some sig-
nificant alterations and modifications which join the two together.

Consider an observed light curve xobs(t) consisting of N uniformly
sampled observations (sampling rate �t), {ti, xobs(ti)} for i = 1, 2,
. . . , N. The light curve has an underlying PSD, P(f ), and an ob-
served (or ‘parent’, depending on the purpose of the statistical study)
PDF, PDF [0 ≤ xobs(t) < ∞]. Note that both/either PSD and/or PDF
can also originate from a theoretical model which we want to check
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the statistical properties of its products, i.e. time series. Note that if
one wishes to take into account the various spectral distortion effects
(Section 2.3), then one should adjust both the simulation length N
and the time resolution accordingly as described in Section 2.3.

(i) Using the TK95 procedure, a normally distributed time series3

is produced, xnorm(t), consisting of N values and an underlying PSD
identical to P(f ). Then, for each Fourier frequency, fj, the discrete
Fourier transform (DFT), DFTnorm(j ), is estimated and from this
the corresponding amplitudes, Anorm(j ), phases, φnorm(j), and peri-
odogram, Pnorm(fj) (equations A2, A3 and A4, respectively). Note
that since the iteration algorithm aims to produce artificial source
light curves, the input PSD should not contain the Poisson noise
component.

(ii) From the PDF [0 ≤ xobs(t) < ∞], a series of N pseudo-random
numbers is produced which form a white noise data set, xsim, 1(t).
Then, at each Fourier frequency, the DFT of xsim, 1(t) is estimated,
DFTsim,1(j ), and from that the corresponding amplitudes, Asim,1(j ),
phases, φsim, 1(j), fj and periodogram, Psim, 1(fj).4

(iii) Spectral adjustment. For each frequency, fj, the amplitudes
Asim,1(j ) are replaced with the amplitudes Anorm(j ), whilst keep-
ing the phases φsim, 1(j) unaltered. This yields the adjusted DFT
of xsim, 1(t), DFTsim.adjust,1(j ), on which we then perform an in-
verse discrete Fourier transform (IDFT), yielding the time series,
xsim.adjust, 1(t). This time series has an identical underlying PSD to the
desired one, P(f ), but with a distribution of measurements which
has been altered from that of PDF [0 ≤ xobs(t) < ∞].

(iv) Amplitude adjustment. A new time series is created from the
values of xsim, 1(t) ordered based on the ranking of xsim.adjust, 1(t).
This means that the highest value of xsim.adjust, 1(t) is replaced by the
highest value of xsim, 1(t), the second highest value of xsim.adjust, 1(t)
is replaced by the second highest value of xsim, 1(t), and so on. The
resulting data train, xsim, 2(t), is distributed exactly as PDF [0 ≤
xobs(t) < ∞] but its PSD differs from the target one, P(f ).

(v) The same process is repeated in an iterative fashion κ times,
starting from step (ii), until the resulting products remain the same,
i.e. xsim, k + 1(t) ≡ xsim, k(t) (convergence):

(a) 2nd iteration: xsim, 1(t) is replaced by xsim, 2(t);
(b) 3rd iteration: xsim, 2(t) is replaced by xsim, 3(t);
(c) κth iteration: xsim, κ-1(t) is replaced by xsim, κ (t).

After a given number of iterations, e.g. λ = κ + 1, the synthetic
light-curve products do not change (i.e. convergence) and thus the
xsim, λ(t) iterated product comprises the final artificial light-curve
product. The exact number of iterations depends on the length of
the original data set, the underlying input PSD and the input PDF.
More about the convergence can be found in Sections 3.1.1 and
3.2.2 using Monte Carlo simulations. Note that for the case of a
Gaussian PDF, the iteration process gives exactly equivalent results
with the TK95 products since step (i) yields products which are
already Gaussian distributed. The flowchart of the above-mentioned
method is given in Fig. 1.

3 Actually this is an asymptomatically normally distributed time series. De-
spite the fact that the TK95 procedure corresponds to a realization of a
Gaussian process, individual artificial data set products (of finite length)
may not be necessarily normally distributed since the Gaussianity of the
process limits the asymptotic distribution only, N → ∞.
4 For xsim, 1(t) the periodogram, Psim, 1(f ), corresponds by default to an
underlying PSD with a slope of α = 0 (since it represents a white noise
process).

Figure 1. The flow chart diagram showing the various steps of the method.

2.2 Appropriate treatment of the Poisson noise

The final simulated product, xsim, λ(t), has the desired distribution
and PSD corresponding to the source light curve produced. Since the
observed light curve is a product of a counting detector process, the
observations are affected by Poisson noise, which is imprinted in
the corresponding PSD as a constant component. In order to mimic
this effect, each light-curve point xsim, λ(t) = {xsim, λ(t1), xsim, λ(t2),
. . . , xsim, λ(tN)} is replaced by an appropriate Poisson random
variate

xsim,Pois,λ(ti) ∼ Pois[μ = xsim,λ(ti)�t]

�t
for i = 1, . . . , N, (1)

where Pois[xsim,λ(ti)�t] dictates the probability mass function of
the Poisson distribution with a mean value of xsim, λ(ti)�t.

2.3 Spectral distortions: red noise leak and aliasing

In the case of a non-white noise PSD (as in the case of AGN
light curves), the periodogram estimates tend to be biased due to
‘red noise leak’ (the transfer of variability power from the low to
high frequencies due to the finite length of observations; Deeter
& Boynton 1982; Deeter 1984) and aliasing effects (fold-back of
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variability power from high frequencies to lower frequencies due to
the finite time resolution; Kirchner 2005).

These are two very well understood spectral distortions induced
by the sampling properties of the data set, and they can be taken
into account in the usual manner (e.g. Uttley et al. 2002). In order to
take into account the ‘red noise leak’ effect, we produce surrogate
data sets which are much longer than the observed data set (e.g.
100 times) and then we randomly select a subset having the desired
length.

With respect to the aliasing, since we are dealing with data aver-
aged over time intervals, �tsample, rather than simply sampled data,
its effect is very much reduced (van der Klis 1988). Nevertheless, if
one also wishes to include the aliasing effect in the simulations, for
the case of unbinned data (e.g. count data), then one should increase
the time resolution of the simulations e.g. to 10 per cent of �tsample.

With these two approaches, the dependences in both the Fourier
amplitudes (equation A2) and the Fourier phases (equation A3) are
taken into consideration. However, if one wishes to carry out statis-
tical studies that deal only with the Fourier amplitudes (as in all the
examples shown in this paper), then the length and binning adjust-
ments can be applied during the first step of the above-mentioned
method, i.e. during the application of the TK95 procedure. In this
way, the TK95 artificial light curves, xnorm(t), carry all the spectral
distortion effects that involve only the Fourier amplitudes, which
will then be passed to the final surrogates during the spectral ad-
justment stage (step iii). A major advantage to this is that the whole
process is much faster since the iteration process involves data sets
which have lengths equal to that of the observed data set.

Note once again that for statistical studies that involve Fourier
phases, e.g. phase-lag spectra studies, one should follow the initial
recipe, i.e. carry out the whole simulation for longer and more
finely sampled surrogate data sets, and select a subset which has the
desired length from the final converged iteration product. The effect
of red noise leak on the phases is rarely discussed in the literature
despite the fact that it adds significant dependences to the phases.

For demonstrative purposes, we create an artificial light curve,
using the TK95 procedure, consisting of 106 data points, binned
in 100 s, with an input PSD which has a power-law model of
slope −2.5. We then chop the light curve into 1000 segments each
one consisting of 1000 consecutive points. For each data set and
for each Fourier frequency, fj, we estimate the DFT (equation A1)
and from this its amplitude (via the periodogram, equation A4)
and its phase (equation A3). Finally, for each fj, we average the
periodogram estimates and phases; the results are shown in the top
panels of Fig. 2.

The top-left panel of Fig. 2 shows clearly the effect of red noise
leak for the amplitudes, something that has been extensively dis-
cussed in the literature. The top-right panel of Fig. 2 shows vividly
that the red noise leak also affects the phases in a very distinctive
way. The onset of the effect is around 10−4 Hz (the same as it is for
the amplitudes) and from then on all the phases follow an arched
trend towards negative values. The last point in this plot corresponds
to the phase estimate at the Nyquist frequency, fN/2 = fNyq, for which
the DFT is always a real number (positive or negative). This means
that, for fNyq, we average only the phases corresponding to the neg-
ative values, which are always π, over the total number of points,
since for the positive values the arg is not formally defined (in this
context one could consider it to be equal to 0). On average, one
should get values around 〈φN/2〉 � π/2 � 1.57 (i.e. roughly equal
numbers of positive and negative values).

We repeat the same process but this time with a constant un-
derlying PSD, i.e. a power law with slope 0. As we can see from

the bottom panels of Fig. 2, both the amplitudes (bottom-left panel)
and the phases (bottom-right panel) are not affected by the red noise
leak effect. It is clear that, as in the case of the Fourier amplitudes,
the effect of red noise leak for the Fourier phases depends on the
shape of the input PSD, e.g. the softer the power law of the un-
derlying PSD, the greater is the effect of the red noise leak. As we
discussed previously, our methodology correctly takes this effect
into account by extending the total length of the surrogate data set
and then chopping the converged final synthetic light curve to the
desired length.

2.4 Basic differences and advantages from previous works

Our method is essentially a marriage of TK95 and SS96 algorithms.
The former remains exactly the same during the application of the
method but the latter (i.e. the iterative amplitude adjusted Fourier
transform) contains several key differences, from the SS96, which
makes it suitable particularly for the needs of astronomical data
sets.

(i) We use a pseudo-random data set following the estimated
distribution, rather than a shuffled version of the original observed
data set.

(ii) We replace the Fourier phases of the TK95 products rather
than those of the original data set.

(iii) All the spectral distortion effects due to the finite length
and sampling rate of the observed data set (i.e. red noise leak and
aliasing) are taken into account.

The coupling of the two methods allows us to study not only ob-
served light curves but also theoretical models that give predictions
about the PSD and the PDF of a given astrophysical object. The
TK95 is carrying the spectral information (PSD) and the SS96 is
distributing the various measurements (PDF) accordingly. In this
way, we can produce, based on a theoretical model, realistic and
positively defined non-Gaussian synthetic light curves as opposed
to only Gaussian light curves coming from TK95.

The problem of generating stochastic sequences of numbers with
specified properties is extensively analysed in the literature since
the early 1970s (for a complete reference guide, see Sowey 1986).
In particular, Liu & Munson (1982) proposed a white Gaussian
noise input to a linear digital filter followed by a zero-memory
non-linearity (ZMNL). The ZMNL is chosen so that the desired
distribution is exactly realized and the digital filter is designed so
that the desired autocovariance is closely approximated. Hunter &
Kearney (1983) proposed a method for the generation of random
number sequences with an arbitrarily specified first-order probabil-
ity distribution function (PDF) and an arbitrarily specified first-order
autocorrelation function (ACF). The procedure involves a stochastic
optimization algorithm which minimizes the squared sum between
the desired (output) and the actual (observed) ACF estimates.

An iterative method was developed by Yamazaki & Shinozuka
(1988) which generates Gaussian distributed samples with a given
periodogram which are then mapped into non-Gaussian distributed
numbers. This is achieved by employing the invert expression of
the target PDF (distribution distortion method), and the iteration
process aims to correct the altered periodogram estimates (as they
come out from the mapping process) to match the desideratum pe-
riodogram. The correlation distortion method was used by Johnson
(1994), and consists of a non-linear transformation which is applied
to construct non-Gaussian correlated features from correlated Gaus-
sian random draws. Finally, Gurley, Kareem & Tognarelli (1996)
presented a series of mathematical approaches using Volterra series
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Figure 2. The effect of red noise leak in the Fourier amplitudes and phases. Top-left panel: the averaged periodogram estimates for an input PSD with a
power-law shape of a slope −2.5. Top-right panel: the averaged Fourier phases for an input PSD with a power-law shape of a slope −2.5. Bottom-left panel:
the averaged periodogram estimates for an input PSD with a power-law shape of a slope 0. Bottom-right panel: the averaged Fourier phases for an input PSD
with a power-law shape of a slope 0.

and analytical kernels to achieve bispectral matching. In the same
work, a neural network system identification model is employed
for simulation also demonstrating the ability to match higher order
spectral characteristics.

Besides the above-mentioned differences, our method differs fun-
damentally from all the previous methodologies with respect to the
matching process of the PSD. We are not interested in matching
the individual periodogram estimates (derived from the observed
data set), but instead in the underlying PSD. In this way, at a given
Fourier frequency fj, the various periodogram estimates, P(fj), are
distributed asymptotically around P(fj ) as a gamma distribution,
�[ν/2,P(fj )] (equation A9)5 with ν degrees of freedom (d.o.f.)

5 In the literature this is usually referred to as ‘scaled χ2 distribution’ with
2 d.o.f. (equation A8).

corresponding to ν = 1 for the Nyquist frequency and ν = 2 for all
other frequencies.

2.5 A publicly available code in the form of an active document

In the spirit of Reproducible Results and Active Documents
(Claerbout 1990), we provide an interactive MATHEMATICA notebook
(created with the version: 9.0.1.0) which contains the complete nu-
merical code together with the example presented in Section 3. In
detail the notebook contains

(i) the XMM–Newton data set of the AGN NGC 4051 which is
used in Section 3,

(ii) a version of the TK95 code taking into consideration (if
needed) the spectral distortions described in Section 2.3,

(iii) the iteration algorithm (SS96),
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Figure 3. The XMM–Newton data set of NGC 4051. Left-hand panel: the EPIC pn and MOS combined light curve in the 0.5–10 keV energy band in bins
of 100 s (obs ID: 0109141401, revolution: 0263). Right-hand panel: the corresponding periodogram estimates, Pobs (f ) (grey points), and the underlying
best-fitting PSD model, P(f ; �γbf , cbf ) (black line).

(iv) the addition of the Poisson noise as described in Section 2.2
and

(v) an animation of the simulated products at the various iteration
steps.

It can be found on the web6 as part of this paper (see Support-
ing Information in the online version) or at http://www.astro.soton.
ac.uk/~de1e08/ArtificialLightCurves/. By changing the two random
seeds (used for steps i and ii), the whole document is automatically
updated and a new artificial light curve is produced. The simple nu-
merical code, provided in the MATHEMATICA notebook, can be written
in a much more compact form (i.e. much more computationally ef-
ficient), but for clarity purposes we have split it up into various
programming lines. Due to its simple nature, the code can be im-
plemented in any programming language.

3 A P P L I C ATI O N : T H E C A S E O F N G C 4 0 5 1

3.1 Step-by-step procedure for a single realization

We will now apply the method to a single X-ray data set of the
type I Seyfert galaxy NGC 4051 (z = 0.023 36) obtained by the
European Photon Imaging Camera (EPIC) aboard XMM–Newton
observatory (obs ID: 0109141401, revolution: 0263). The observed
0.5–10 keV light curve of NGC 4051 (sample light curve) is shown
in the left-hand panel of Fig. 3 consisting of N = 1170 data points
in bins of 100 s.

The following process is carried out for illustrative purposes only
and aims to simulate a single artificial light curve with the same
underlying PSD as the sample light curve, and an identical observed
PDF (as opposed to the parent PDF). Nevertheless, depending on
the purpose of the study one can select an appropriate PDF depicting
either the underlying or the observed statistical properties. The
method, of course, can also produce artificial light curves coming
directly from a theoretical model, which specifies an underlying
PDF and PSD, without the requirement of having an actual observed

6 You can also request the MATHEMATICA notebook via e-mail to
D.Emmanoulopoulos@soton.ac.uk.

light curve. Since the PSD and the PDF of the observed data set
are the two input parameters of the method, we first estimate these.
Note that since we will not be performing any studies involving
Fourier phases, the effect of ‘red noise leak’ has been taken into
account during (step i), i.e. by producing a TK95 artificial data set
1000 times longer than the original NGC 4051 data set. For this
particular data set (something which is generally true for XMM–
Newton data sets), the aliasing effect is insignificant since we are
dealing with averaged consecutive measurements.

Initially we derive the periodogram of the sample light curve,
Pobs( f ) (Fig. 3, right-hand panel, grey points), and then we estimate
the underlying PSD by fitting the smoothly bending power-law
model plus a constant, c, representing the Poisson noise level:

P(f ; γ , c) = Af −αlow

1 + (f /fbend)αhigh−αlow
+ c, (2)

in which γ = {A, fbend, αlow, αhigh}, with components as the
source’s PSD model parameters, i.e. normalization, bend fre-
quency, low- and high-frequency slopes, respectively. During the
fit we fix the αlow to 1.1 (as derived from long-term RXTE data;
McHardy et al. 2004) and the best-fitting model parameters are
γ bf = {0.030 ± 0.004 Hz−1, 2.3+1.2

−0.9 × 10−4 Hz, 1.1, 2.20+0.07
−0.04} and

cbf = 9.2+0.7
−0.8 × 10−3 Hz−1 (Fig. 3, right-hand panel, black line).

Note that the derived best-fitting values agree entirely with the ones
given by Vaughan et al. (2011) but that the best-fitting fbend differs
from the value 8+4

−3 × 10−4 Hz estimated by McHardy et al. (2004)
(note that the error estimates correspond to the 90 per cent con-
fidence intervals). This best-fitting model will be the target PSD
which should be matched by the surrogate data sets.

In order to assess the probability distribution of the sample data
set, we then form its probability density function histogram (Fig. 4,
left-hand panel, black line). The latter exhibits two clear modes:
the first narrow mode corresponds to the low-count-rate regimes
(e.g. the regions around 35, 55 and 110 ks in the left-hand panel
of Fig. 3), and the second broader mode to the high source states.
We parametrize the observed distribution of the sample data set by
fitting a probability model. For this particular data set of NGC 4051,
we select a mixture distribution model consisting of a gamma
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Generating artificial light curves 913

Figure 4. (Step ii) Left-hand panel: the PDF histogram of the observed data (black line) together with the best-fitting mixture distribution model, fmix(x; ηbf )
(grey line, equation 3). Right-hand panel: an ensemble of N pseudo-random variates produced from equation (3) and the inset shows its corresponding PDF
histogram.

Figure 5. (Step i) Left-hand panel: a normally distributed simulated light curve created using the original data NGC 4051’s best-fitting PSD (c = 0) and its
PDF histogram (inset). Right-hand panel: the corresponding periodogram estimates (grey points) and the underlying target PSD model, P(f ; γ bf , 0) (black
line).

distribution, �(κ , θ ), with κ and θ being the shape and the scale
parameters, and a log-normal distribution, lnN (μ, σ 2), with μ and
σ 2 being the mean and the variance of the count rate’s (variable
x) natural logarithm (equation 3). Finally, each of these component
distributions contributes to the overall PDF of the mixture distribu-
tion, fmix(x; η), with a weight of w� and wlnN = 1 − w� , respec-
tively, with η being a vector consisting of the model parameters
η = {κ, θ, μ, σ,w�}:

fmix(x; η) = w�

θ−κe−x/θ xκ−1

�(κ)
+ wlnN

e−(ln x−μ)2/(2σ 2)

√
2πxσ

. (3)

The best-fitting PDF model is shown superimposed on the data
sample histogram in the left-hand panel of Fig. 4 (grey line) with
best-fitting model parameters of ηbf = {5.67+0.04

−0.03, 5.96+0.06
−0.04, 2.14 ±

0.06, 0.31+0.05
−0.04, 0.82+0.05

−0.04}. Having as a null hypothesis, H0, that the
data set is drawn from the derived best-fitting model distribution
and an alternative hypothesis, Ha, that it was not drawn from that
distribution, the Anderson–Darling test (Anderson & Darling 1952)
yields a statistic value of 0.34 corresponding to an H0 probability of
0.89 which depicts the good representation of the data by the given
model.

Having defined the best-fitting PSD and PDF we continue to the
actual production of the artificial light curves.

(i) The best-fitting PSD model with c = 0 is then used to create
the normally distributed time series with a periodogram, Pnorm(fj).
A simulated light curve of this kind together with its periodogram
is shown in Fig. 5 (left- and right-hand panels, respectively). By
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Figure 6. (Step iii) Left-hand panel: the spectrally adjusted light curve together with its PDF histogram (inset). Right-hand panel: the corresponding
periodogram estimates (grey points) are by construction identical to those shown in the right-hand panel of Fig. 5, and the underlying target PSD, P(f ; γ bf , 0)
(black line).

Figure 7. (Step iv) Left-hand panel: the amplitude adjusted light curve together with its PDF histogram (inset). Right-hand panel: the corresponding binned
logarithmic periodogram estimates (open circles) and the underlying target PSD model, P(f ; γ bf , 0) (black line), having attached in the bottom of the ratio
plot, data/model.

estimating the DFT of xnorm(t), for each Fourier frequency, fj,
we derive the corresponding amplitudes and phases, Anorm(j ) and
φnorm(j), respectively.

(ii) The best-fitting PDF model is used to generate a list of N
pseudo-random variates, xsim, 1(t), shown in the right-hand panel of
Fig. 4. Then, by estimating for each Fourier frequency the DFT of
xsim, 1(t), DFTsim,1(j ), we derive the corresponding amplitude and
phases, Asim,1(j ) and φsim, 1(j), respectively.

(iii) Spectral adjustments. Asim,1(j ) are replaced by Anorm(j ),
keeping the φsim, 1(j) unaltered, yielding an adjusted version of
DFTsim,1(j ), DFTsim.adjust,1(j ). By performing an IDFT, we obtain
the light curve xsim.adjust, 1(t) (Fig. 6, left-hand panel) with an identi-
cal periodogram to Pnorm(f ) (Fig. 6, right-hand panel, grey points),

but now with measurements which are not longer distributed as
fmix(x; ηbf) (Fig. 6, left-hand panel, inset).

(iv) Amplitude adjustments. Finally, the values of xsim.adjust, 1(t)
are replaced by the values of xsim, 1(t), based on the ranking of the
former. The resulting light curve, xsim, 2(t) (Fig. 7, left-hand panel),
has an identical histogram with the sample light curve, but this time
the periodogram estimates do not correspond to the target underly-
ing PSD, P(f ; γ bf, 0). The right-hand panel of Fig. 7 shows the
binned logarithmic periodogram estimates (in bins of 15 consecu-
tive periodogram estimates) of the amplitude adjusted light curve
together with P(f ; γ bf, 0) and the ratio plot, i.e. data/model. From
the ratio plot it is obvious that particularly the high-frequency peri-
odogram estimates, in particular above 10−3 Hz, are systematically
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Generating artificial light curves 915

larger than the corresponding P(f ; γ bf, 0) values by a factor
of 1.5.

All the above-mentioned procedure is a single iteration step of
the method. Exactly the same process is repeated iteratively from
step (iii), by replacing xsim, 1(t) with the amplitude adjusted light
curve xsim, 2(t), xsim, 2(t) with xsim, 3(t), and so on. For this particular
case, after the 55th iteration the synthetic light curves remain the
same.

3.1.1 Convergence of a single artificial light curve

In order to check the convergence of the method, we fit the bending
power-law model (equation 2) to the corresponding periodogram
estimates of each iteration step. The resulting values for the αlow,
αhigh and fbend are shown in Fig. 87 which we can see form a plateau
after the 55th iteration. Fig. 9 shows the corresponding results for
the 56th iteration; the synthetic light curve (left-hand panel) fol-
lows the exact distribution of the observed data, and the binned
logarithmic periodogram estimates (in bins of 15 consecutive peri-
odogram estimates) as expected follow, within the 68.3 per cent
confidence levels depicted by the error bars, the corresponding
P(f ; γ bf, 0). This means that the 56th synthetic light curve is the
final simulated data set, with all the desired statistical and variabil-
ity properties of the original data set. The best-fitting PSD model
for the 56th surrogate yields αlow = 1.36+0.22

−0.38, αhigh = 2.24+0.08
−0.05 and

fbend = 3.4+1.1
−1.3 × 10−4 Hz, and the resulting histogram is by con-

struction identical to the original one since it is drawn from its
best-fitting PDF model (Fig. 4, right-hand panel).

Finally, in order to take into account the Poisson statistics (Sec-
tion 2.2) we re-sample the 56th surrogate data set according to equa-
tion (1). The resulting artificial light curve is shown in Fig. 10. This
single random synthetic data set encloses all the information of our
initial data set and thus can be used in any sort of statistical study.

3.2 Overall procedure for an ensemble of realizations

3.2.1 Proposed methodology

In this section we repeat the above-mentioned procedure for an en-
semble of 1000 realizations and we compare the statistical prop-
erties of the final products to those of the original data set of
NGC 4051, i.e. the light curve and underlying PSD (Fig. 3). Ini-
tially, we perform a goodness-of-fit Kolmogorov–Smirnov hypoth-
esis test (Press et al. 1992) for the distribution of each artificial light
curve, with H0 that the surrogate data set is drawn from the best-
fitting model distribution of NGC 4051 (Fig. 4, left-hand panel)
and Ha that it was not drawn from that distribution. The mean
Kolmogorov–Smirnov statistic derived from the ensemble of light
curves is Dn = 0.025+0.008

−0.006 and the mean H0 probability derived
is 0.51+0.28

−0.22, depicting the high degree of accordance between the

7 The results of the first iteration are excluded from the panels in order to
cover better the variations of the other iterated products. The omitted values
are αlow = 2.56, αhigh = 3.21 and log10[fbend (Hz)] = −1.90), respectively.
These large deviations result from the fact that the minimization routine
does not localize the minimum (after 500 iteration steps) for the initial
periodogram estimates, Psim, 1(f ), corresponding to a flat PSD (see footnote
4). Naturally, by increasing the number of iterations we can correct for
this artefact, but in this context it is unnecessary since for the next steps
the localization of the minimum occurs in less than 30 iterations as the
degeneracy αhigh = αlow � 0 does not exist any more.

Figure 8. Convergence of the iteration process (the first iteration is not
shown; see footnote 7). The horizontal solid grey lines indicate the cor-
responding target values, i.e. the best-fitting values as derived from the
observed data. The dotted line among the various iterations shows a linear
interpolation intended only to guide the eye. Top panel: the αlow estimates
as a function of the iteration number (in logarithmic scale), stabilizing at
1.36. Middle panel: the αhigh estimates as a function of the iteration number
(in logarithmic scale), stabilizing at 2.24. Bottom panel: the logarithm of
fbend estimates as a function of the iteration number (in logarithmic scale),
stabilizing at −3.47.

distribution of the artificial data sets and that of the original data
set (the error estimates correspond to the 68 per cent confidence
intervals). Thus, this method assures that the resulting simulated
data sets have the same statistical moments as the observed light
curve of NGC 4051.

We then fit the PSD model of equation (2) to the periodogram
estimates of each artificial light curve. The distributions of both the
low- and the high-frequency PSD slopes, as well as the bending
frequency, are shown in the left- and right-hand panels of Fig. 11,
respectively. The sample mean values, together with their 68.3 per
cent confidence limits (i.e. standard deviation of the sample mean)
and the 68.3 per cent confidence intervals of the distributions for
αlow, αhigh and fbend, are given in Table 1. The simulation results,
which come from the proposed method, are entirely consistent with
those derived from the original data set of NGC 4051, indicating that
there are no biases towards the PSD model parameters which could
cause systematic deviations from the targeted values. Thus, the
artificial light curves produced as an ensemble with this algorithm
have the same variability power, as a function of Fourier frequency,
as that of NGC 4051.
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916 D. Emmanoulopoulos, I. M. McHardy and I. E. Papadakis

Figure 9. Step iv for the 56th iteration. Left-hand panel: the amplitude adjusted light curve together with its PDF histogram (inset). Right-hand panel: the
corresponding binned logarithmic periodogram estimates (open circles) and the underlying target PSD model, P(f ; γ bf , 0) (black line), having attached in
the bottom of the corresponding ratio plot, data/model.

Figure 10. The 56th surrogate data set re-sampled from a Poisson distribu-
tion as dictated by equation (1) (�t = 100 s).

3.2.2 Convergence of the ensemble of artificial light curves

The scattering in the various estimated PSD model parameters,
coming from the 1000 simulated light curves, originates from the
asymptotic distribution of the various periodogram estimates, P(fj),
around the input PSD, P(f ; γ bf, 0). As we discussed in Section 2.4
(see for details Appendix A2) at a given Fourier frequency fj, P(fj)
is distributed asymptotically around P(f ; γ bf, 0) as a gamma dis-
tribution, �[ν/2,P(f ; γ bf, 0)] with ν d.o.f. This behaviour is de-
picted in the left-hand panel of Fig. 12 which shows the distribution
of the 1000 periodograms around the target PSD. As a sanity check
for our simulations, we test whether for a given Fourier frequency,

fj, the distribution of their various periodogram estimates is in-
deed in accordance with equation (A9). Thus, we derive for each
fj the distribution of points and we perform an Anderson–Darling
test goodness-of-fit test with H0: the periodogram estimates at a
given fj are drawn from the �[ν/2,P(f ; γ bf, 0)] distribution and
Ha that they are not drawn from this distribution. The mean value
of the statistic is 2.92+0.24

−0.13 yielding a mean H0 probability 0.18+0.09
−0.06

depicting the high degree of accordance between the estimated dis-
tribution of the simulated products and the expected ones (the error
estimates correspond to the 68 per cent confidence intervals).

Finally, depending on the type of the statistical study, it is not
necessary always for each surrogate data set to carry out the iteration
process up to the convergence point (as shown in Fig. 8). Stopping
the process in an intermediate step, e.g. at the 5th iteration step,
will yield surrogate data sets which will still have accurate PSD
parameters (i.e. they will be distributed correctly around the target
values without systematic trends), but the various estimates will
be less precise than those derived from the final converged prod-
ucts (i.e. they will exhibit larger scatter around the target values).
Nevertheless, the differences are very small and for this particular
example (5th iteration step) are on average of the order of 5 per cent.
In the right-hand panel of Fig. 12, we show this effect by plotting
the convergence in the PSD parameter αhigh for 15 synthetic data
sets (as we did in the top panel of Fig. 8). The publicly available
MATHEMATICA notebook (Section 2.5) contains an animation showing
these small differences between all the iteration steps for a single
surrogate.

3.2.3 Exponential light curves

In this section we follow the recipe of Uttley et al. (2005) and ex-
ponentiate (in base e) the TK95 products which are produced by
the renormalized PSD model (using equations 13 and 14 in Utt-
ley et al. 2005). In this case, the artificial data sets always follow
by construction a log-normal distribution which differs intrinsi-
cally from the observed statistical properties (described by equa-
tion 3) which we are interested in reproducing for the given illus-
trative purposes. Thus, we do not need to perform a goodness-of-fit
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Generating artificial light curves 917

Figure 11. Overall simulation results for 1000 artificial light curves. Left-hand panel: the histogram of the best-fitting αlow (grey lines) and αhigh (black lines).
The solid lines correspond to the target values coming directly from the observed data, 1.1 and 2.2, respectively, the dashed line corresponds to the mean
estimate of the distribution, 1.12 and 2.21 respectively, and the dotted line corresponds to the best-fitting value as derived from the 56th surrogate of the single
realization, 1.36 and 2.24, respectively (Fig. 8, top and middle panels, respectively). Right-hand panel: the histogram of the best-fitting logarithms of fbend. The
solid line corresponds to the target value coming directly from the observed data fbend = 2.3 × 10−4 Hz (or −3.64 in log scale with base 10), the dashed line
corresponds to the mean estimate of the distribution, 2.4 × 10−4 Hz (or −3.62 in log scale with base 10) and the dotted line corresponds to the best-fitting
value as derived from the 56th surrogate of the single realization, 3.4 × 10−4 Hz (or −3.47 in log scale with base 10, Fig. 8, bottom panel).

Table 1. Global simulation results for the PSD parameters.

Model parameter Target valuesa Proposed methodb Exponential function methodb

αlow 1.1 (fixed) 1.123+0.002
−0.007 [0.87, 1.20] 0.973+0.004

−0.006 [0.86, 1.03]

αhigh 2.20+0.07
−0.04 2.213+0.002

−0.001 [2.15, 2.26] 2.063 ± 0.002 [2.00, 2.10]

fbend (×10−4 Hz) 2.3+1.2
−0.9 2.4 ± 0.1 [2.1, 3.3] 3.9 ± 0.1 [3.2, 5.0]

aThese are the values of NGC 4051 derived in Section 3.1.
bThe first value is the sample mean together with its 68.3 per cent confidence limits, and the
second value in the square brackets corresponds to the 68.3 per cent confidence intervals of the
distribution around the mean.

hypothesis test for the distributions, since we know a priori that
they are by construction different.

In the next step, we repeat the PSD model fitting procedure for the
periodogram estimates of the exponential light curves. The results
for the distribution of the best-fitting parameters of αlow, αhigh and
fbend are shown in Fig. 13. Finally, as above, the sample mean values
together with their 68.3 per cent confidence limits (i.e. the standard
deviation of the sample mean) and the 68.3 per cent confidence
intervals of the distributions for αlow, αhigh and fbend are given in
Table 1. We can see that the PSD becomes systematically softer
by around 8 per cent something which is also shown in fig. B1
in Uttley et al. (2005). Most importantly for this particular case
the most noticeable distortion appears in the bend frequency which
systematically shifts towards higher frequencies, deviating in this
way by 70 per cent from the target value.

Using these simulated data sets for the recovery of the bend
frequency of an irregularly sampled light curve (using the procedure
of Uttley et al. 2002) will yield systematic deviations from the true
underlying value. Note that the degree of the various PSD distortions
of the exponential light curves depends on the particular variability
properties of the light curves, as well as the actual values of the
underlying PSD model.

A potential solution to these spectral alterations could be the fol-
lowing: to consider the logarithm of the observed data set (which
is Gaussian distributed for the case of a log-normal distribution)
and estimate its PSD which is then going to be used as the input
PSD for the TK95 simulation. The exponentially transformed TK95
products should follow the original PSD of the observed data set
which is log-normally distributed. Before following this recipe, fur-
ther investigation of this approach should be carried out, something
which is out of the scope of this paper.

4 C OMPLI MENTA RY APPLI CATI ONS: FERMI
A N D RXTE DATA SETS

In order to show the wide applicability of our newly proposed
method, we further apply it to two radically different looking data
sets: a γ -ray Fermi-LAT data set for the blazar 3C 454.3, an X-ray
RXTE data set for the XRB Cyg X-1.

4.1 The γ -ray blazar 3C 454.3

We use the weekly Fermi-LAT light curve of 3C 454.3 consisting
of 236 points between 546 84 and 563 34 MJD in the 0.1–300 GeV
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Figure 12. Distribution and convergence of the ensemble periodogram estimates. Left-hand panel: the distribution of the 1000 periodograms (grey points),
originating from the 1000 synthetic light curves, around the underlying PSD, P(f ; γ bf, cbf ) (black, solid line). Note that the synthetic light curves contain
Poisson noise. Right-hand panel: convergence of the PSD parameter αhigh as estimated from fitting the periodogram estimates of the 15 synthetic data sets for
all the iteration steps.

Figure 13. Overall results for 1000 exponential light curves. Left-hand panel: the histogram of the best-fitting αlow (grey lines) and αhigh (black lines). The
solid lines correspond to the target values coming directly from the observed data, 1.1 and 2.2, respectively, the dashed line corresponds to the mean estimate
of the distribution, 0.97 and 2.06, respectively. Right-hand panel: the histogram of the best-fitting logarithms of fbend. The solid line corresponds to the target
value coming directly from the observed data fbend = 2.3 × 10−4 Hz (or −3.64 in log scale with base 10) and the dashed line corresponds to the mean estimate
of the distribution, 3.9 × 10−4 Hz (or −3.41 in log scale with base 10).

energy range.8 The light curve is shown in the left-hand panel
of Fig. 14 with the black points corresponding to the actual flux
measurements and the grey points (around 20 and 90–130 Ms) to the
90 per cent confidence upper limits. For the purposes of this study,
we have simply used the upper limits as actual flux measurements

8 The Fermi-LAT data have been retrieved from http://fermi.gsfc.
nasa.gov/ssc/data/access/lat/msl_lc/.

but more precise treatment using survival analysis techniques will
be presented in a future work.

To remind the readers that the two basic components for the
method are the distribution of the data and the corresponding PSD.
The PDF histogram of the data is shown in the left-hand panel
of Fig. 14 (left inset) and as we can see it is characterized by a
long right tail which becomes zero at much higher flux values from
those expected by a simple exponential distribution. Note that if
we were about to fit an exponential distribution PDF model to this
data set, it would yield a best-fitting inverse scale of 4.25 ± 0.06
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Figure 14. The Fermi-LAT data set of the blazar 3C 454.3. Left-hand panel: the weekly averaged γ -ray light curve in the energy range of 0.1–300 GeV with
black points corresponding to actual flux measurements and grey points to the 90 per cent confidence upper limits. The left and right insets show the PDF
histogram and the periodogram estimates (grey points) together with the best-fitting power-law model (black line), respectively. Right-hand panel: a single
artificial light curve coming after 22 iterations (convergence).

having a very poor fit quality, with the Anderson–Darling test
statistic value of 30.21 and an H0 probability (i.e. the data set is
drawn from a population with the fitted distribution) of 0. The
right inset in the same plot shows the periodogram estimates of
the light curve together with the best-fitting bending power-law
model (equation 2), αlow = αhigh = 1.3+0.4

−0.1 and c = 2.4 ± 0.3 Hz−1

(fbend = 7.8+2.1
−1.9 × 10−8 Hz), implying that a simple power-law

model is enough to describe the data. Using these two data compo-
nents, we apply our method and we produce an artificial light curve
(convergence occurs after 22 iterations) which conserves all the sta-
tistical and variability properties of the original data set (Fig. 14,
right-hand panel). Thus, ensembles of such artificial light curves
can be used in any sort of statistical analysis that requires estab-
lishment of confidence intervals e.g. in cross correlation function
(CCF) analysis during multiwavelength campaigns.

4.2 The XRB Cyg X-1

We use the daily averaged RXTE-ASM light curve of Cyg X-1
consisting of 5000 points between 501 35.4 and 554 22.6 MJD in
the 2–10 keV energy range.9 The light curve is shown in the left-
hand panel of Fig. 15 and contains a small number of gaps (289
in total), which we have filled up with linearly interpolated values.
Appropriate treatment, using bootstrapping, should be performed
in order to check the effects of the gaps during the following PSD
estimation, but for the purposes of this study we ignore this step.10

9 The RXTE-ASM data have been retrieved from http://xte.mit.
edu/ASM_lc.html.
10 The frequency domain bootstrap methodologies are used to estimate the
distribution of the re-sampled periodogram estimates. The main difficulty
is to select appropriate statistical estimators whose variance fits that of the
re-sampled periodogram estimates (at a given frequency). Useful analyses
on this topic have been performed by several authors (e.g. Franke & Härdle
1992; Dahlhaus & Janas 1996; Kreiss & Paparoditis 2003).

The PDF histogram of the data is shown in the left-hand panel
of Fig. 15 (left inset) having a characteristic bimodal shape,
depicting the high and the low flux states of the source. As-
suming that no artefacts are induced to the periodogram esti-
mates, due to the interpolation, the best-fitting PSD model yields
αlow = 0.49+0.12

−0.21, αhigh = 1.58+0.14
−0.16, fbend = 1.32+2.6

−0.43 × 10−8 Hz
and c = 3692+18

−12 Hz−1 (Fig. 15, left-hand panel, right inset). After
applying our method (convergence occurs after 267 iterations), the
resulting artificial light curve (Fig. 15, right-hand panel) resembles
remarkably the original data set of Cyg X-1 which was chosen as
an example of extreme ‘bursticity’.

5 A P P L I C AT I O N TO C C F A NA LY S I S

CCF analysis is one the most common method used for analysing
multiwavelength light curves obtained in a simultaneous fashion.
There are several different flavours and implementations of the CCF,
e.g. discrete correlation function (DCF; Edelson & Krolik 1988),
interpolated CCF (Gaskell & Sparke 1986), modified CCF (Li et al.
2004) and z-transform DCF (Alexander 1997) that are used within
the astronomical community. Particularly for the case of irregularly
sampled light curves, estimation of the confidence levels, in both
the CCF values and/or time delays, is usually done by performing
Monte Carlo simulations. Application of a given CCF method to an
ensemble of paired random artificial light curves, which have the
same PSD as the observed data sets, yields the probability of getting
a given CCF estimate purely by chance coincidence. At present, the
simulated light curves are produced using the TK95 formalism.

Since the TK95 synthetic data sets are distributed normally by
construction, the method is appropriate to yield CCF confidence
levels only for Gaussian light curves. In order to show that devi-
ations in the CCF levels can occur for the case of non-Gaussian
light curves, for illustrative purposes, we create two ‘bursty’ light
curves in the following way. Using the TK95 procedure, we produce
two artificial light curves having different bending PSDs, xG(t) and
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Figure 15. The RXTE-ASM data set of the XRB Cyg X-1. Left-hand panel: the daily averaged X-ray light curve in the energy range of 2–10 keV. The left
and right insets show the PDF histogram and the periodogram estimates (grey points) together with the best-fitting bending power-law model (black line),
respectively. Right-hand panel: a single artificial light curve coming after 267 iterations (convergence).

yG(t), 200 ks long with a bin size �t = 100 s, using the same ran-
dom seed (in order to be correlated). During the production of yG(t),
we multiply the imaginary part with a random number in the range
[−0.15, 0). This will slightly modify the final flare profiles, i.e. am-
plitudes and phases (equations A2 and A3) yielding an asymmetric
CCF profile around the zero time delay. Finally, the resulting nor-
mally distributed numbers are used as exponents for the bases 2 and
1.5, respectively, in order to produce two ‘bursty-like’ light curves,
x(t) and y(t) (Fig. 16, left-hand panel), having of course different
underlying PSD parameters from the initial ones. The initial PSD
parameters, used for the TK95 methodology, together with the final

PSD parameters, estimated after fitting the periodogram estimates
of the exponentiated light curves (in bases 2 and 1.5, respectively),
are given in Table 2. Note that in both light curves we have added
Poisson noise following the recipe described in Section 2.2. For the
purposes of this study, these two ‘bursty’ light curves will be used
as two simultaneously obtained observations of the same object, in
different energy bands, for which we will perform CCF analysis.

Initially, we estimate the DCF for the two ‘bursty’ light curves
(Fig. 16, right-hand panel, black points). Then, in order to assess
the confidence level of the correlation, we produce two ensembles
of 1000 pairs of artificial light curves: one following the classical

Figure 16. Establishment of the statistical significance on the DCF estimates. Left-hand panel: the two artificially produced ‘bursty’ light curves x(t) and
y(t) having the same random seed. Right-hand panel: the black points correspond to the DCF estimates of x(t) and y(t), separated by 0.1 ks (100 s). The grey
and black horizontal lines correspond to the 90 per cent confidence bands as derived from the synthetic data sets of TK95 and the newly proposed method,
respectively.
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Table 2. PSD model parameters for the CCF simulations.

Model parameter Initial PSD Final PSDa

xG(t), yG(t) x(t),y(t)

αlow 0.9, 1.8 0.91+0.09
−0.08, 0.96+0.08

−0.07

αhigh 2.3, 2.8 2.58+0.08
−0.05, 2.67 ± 0.06

fbend (×10−4 Hz) 2.6, 10 14+1
−2, 18+3

−2

a These are the values used in the simulations.

Figure 17. Correlated events for the toy simulation. The black line corre-
sponds to the distribution of the correlated events for the case of positive–
negative triangular unit pulses. The grey line corresponds to the same dis-
tribution for the case of positive triangular unit pulses.

procedure of TK95 and another one using the proposed methodol-
ogy described in Section 2. Then, for each method we estimate the
DCFs between all the pairs, and for each time delay, τ , we estimate
the 0.025 and 0.975 quantiles corresponding to the upper and lower
limits of the 90 per cent confidence bands.

As we can see from the right-hand panel of Fig. 16 (TK95: grey
lines, new method: black lines), a realistic representation of the non-
Gaussian light curves yields in general an increase in the confidence
level range of the order of 25 per cent which reduces the detection
significance of the DCF peak. The reason is that Gaussian light
curves have on average the same number of flares above (positive
direction) and below (negative direction) the mean, in contrast to
the ‘bursty’ light curves which exhibit flares only in the positive
direction. This means that between two ‘bursty’ light curves it is
much more likely to get a fake correlation by chance coincidence
since there is only one possible flare direction.

This can be very well understood with the following toy simu-
lation. We produce a series of 2000 pairs of time series each one
consisting of 100 positive and negative triangular positive pulses
(the simplified analogue of a Gaussian light curve) occurring at
uniformly random non-repetitive integer numbers, and we measure
the number of simultaneous pulse occurrences by chance coinci-
dence between all the pairs. Then, we repeat the simulation but
now the time series consists only of positive triangular unit pulses
(the simplified analogue of a ‘bursty’ light curves). As we can see
from Fig. 17 the mean occurrence of chance coincidence corre-
lated events is almost doubled for the case of the positive triangular

pulses due to the flare directionality property. This shows that, for
non-Gaussian light curves, the TK95 procedure underestimates the
chance coincidence occurrences of correlated events and thus yields
erroneous smaller estimates for the confidence intervals, i.e. yield-
ing an overestimation of the CCF’s peak significance.

6 T H E R M S – F L U X R E L AT I O N

In the special case of a parent log-normal distribution, the rms–flux
relation (see Section 1) may be sometimes of vital importance for the
needs of a statistical study or a theoretical model. The surrogate data
sets, following a parent log-normal distribution, have embedded this
property in a natural way without the need for further adjustments
or tuning.

To show that our method automatically produces the rms–flux re-
lationship, we first create a sample light curve which inherently has
the rms–flux relation by following a parent log-normal distribution.
Using the TK95 procedure (with initial PSD parameters: αlow = 1.5,
αhigh = 2.8 and fbend = 1 × 10−3 Hz), we produce a synthetic data
set, being 200 ks long in bins of 100 s, and then we exponentiate the
resultant data set [having final PSD parameters: αlow = 1.11+0.05

−0.04,
αhigh = 2.48+0.09

−0.06 and fbend = (2.2 ± 0.6) × 10−4 Hz (Fig. 18, left-
hand panel)]. This light curve will be used as the observed light
curve that we want to simulate.

We produce 1000 artificial light curves using our proposed
method and then for each one of them we estimate the rms–flux
relation using the prescription of Uttley et al. (2005). We select
three different length segments of 0.5, 1.5 and 5 ks consisting of
5, 15 and 50 bins, respectively. Under a given binning scheme, for
each flux value we estimate an average rms and its standard de-
viation coming from the 1000 surrogate data sets. The results are
shown in the right-hand panel of Fig. 18 and as we can readily
see the simulated light curves follow remarkably well the linear
rms–flux relation for a variety of time-scales below and above the
fbend, corresponding approximately to 4.55 ks. This widely observed
variability property is embedded in our artificial light curves in a
natural way depicting in a vivid way the fact that our artificial light
curves are exact replicas of the observed light curves.

This flare directionality, which is actually mapped on the his-
togram of the ‘bursty’ light curves in the form of their positive
skewness, is taken automatically into account during this newly
proposed light-curve simulation method. This means that for the es-
tablishment of confidence intervals, it is of great importance to take
correctly into consideration the distribution of the measurements
since this can affect significantly the level of chance coincidence
occurrences. Note, that for the case of Gaussian light curves (i.e.
with minuscule skewness), the method automatically is in accor-
dance with the confidence intervals derived by TK95.

7 IN VA R I A N T QUA N T I T I E S A N D
STATI STI CAL DEPENDENCES

During any simulation process, it is very important to understand
which light-curve properties are preserved and which are not. The
TK95 procedure preserves only the underlying PSD of the observed
data set, assuming a Gaussian distribution of measurements for all
the cases. Our method preserves both the underlying PSD and the
PDF (observed or parent).

The preservation of the PDF means that all the statistical mo-
ments of a given data set, i.e. mean (μ), variance (σ 2), skewness
(γ 1), kurtosis (γ 2), and so on, are identical between the observed
and the surrogate data sets. Since all these quantities are included
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Figure 18. The rms–flux relation. Left-hand panel: the exponentiated light curve together with its binnned logarithmic periodogram and final PSD model
(inset). Right-hand panel: the average rms–flux estimates coming from the 1000 simulated light curves using three different binning schemes, i.e. 0.5, 1.5 and
5 ks, respectively.

in the input PDF (they describe its shape e.g. asymmetry, peaked-
ness), they are conserved by construction; during the last iteration
step (ranking, step iv) all the measurements are redistributed based
on the input PDF (the insets in the right-hand panel of Fig. 4 and
the left-hand panel of Fig. 9 are identical). The fact that all the sta-
tistical moments are conserved does not mean that all the statistical
dependences of the measurements (e.g. non-linear interactions) are
preserved. These are two completely different statistical quantities.

The various statistical dependences of the measurements are
characterized only by the Fourier transform of the joint cumulant
functions, known as polyspectra, e.g. autospectrum, bispectrum,
trispectum, and so on (Appendix B). Our method preserves only
the second-order joint cumulant (i.e. the covariance) of the input
data set, and thus its Fourier transform, autospectrum (and thus its
squared amplitude, the PSD), is the only spectral quantity which
is preserved in the final converged synthetic light curve. Thus, the
only dependences that are preserved are those corresponding to the
covariance – all the higher order dependences are ignored.

A very common source of confusion and misunderstandings is
that there is a notion that preservation of higher order statistical
moments (e.g. γ 1, γ 2, and so on) means preservation of the higher
order spectra. The statistical moments characterize only the shape
of the PDF, whilst existence of potential dependences between the
data points is mapped only on the polyspectra. As we can see in
Appendix B, this confusion originates from the fact that σ 2 and
γ 1 (depicting the shape of the PDF) are equal to the zero delayed
joint cumulants [C2(0), C3(0, 0)] (i.e. for s1 = s2 = 0); however,
polyspectra are the Fourier transform of the joint cumulants, i.e.
summed over all si.

A simple example to demonstrate this is the following. We con-
sider a genuine non-linear process similar to the one given in Proven-
zale et al. (1992) (also used by Vio et al. 1992):

x ′(t) = 1 − x(t)1/5 + x(t)3wn(t) (4)

in which wn(t) is a Gaussian white noise process with mean value of
0 and standard deviation of 1. We solve this equation for x(0.01) =
1 in t ∈ [0.01, 50] with a �t = 0.01 and then we scale the time axes
from 1 to 5000 time units (t.u.) in steps of 1 t.u. One realization of

the corresponding process, xnl(t), is shown in the left-hand panel of
Fig. 19. Then, we shuffle randomly the data of this process (having
an equal probability among all the numbers) yielding a white noise
process, xsfl(t), and we plot the data in the right of Fig. 19. In this
way, none of the initial dependences between the data points are
preserved, but the two data sets still have identical PDFs, since they
consist of exactly the same data points (Fig. 20). This PDF has non-
zero higher order statistical moments, i.e. skewness and kurtosis of
γ 1 = 2.57 and γ 2 = 12.77, respectively.

For each data set, we then estimate the normalized squared am-
plitudes of its bispectrum, known as bicoherence, following Kim
& Powers (1979), for the frequencies inside the inner triangle of
the principal domain (Hinich & Messer 1995). We have divided
each data set into 100 segments, each one consisting of 50 t.u. (i.e.
50 consecutive data points), and for the estimation of the bicoher-
ence, we have averaged the corresponding Fourier transforms and
biperiodograms.

As we can see from Fig. 21, the two data sets have genuinely
different bicoherences, i.e. genuinely different bispectra. The left-
hand panel of Fig. 21 exhibits a great deal of structure for various
combinations of (f1, f2) depicting the non-linear dependences for
the data set xnl(t). In contrast, the right-hand panel of Fig. 21 shows
(as expected) a rather quiescent behaviour for the shuffled data set,
xsfl(t), despite the fact that it shares exactly the same PDF with the
previous data set.

This simple example shows vividly that despite the fact that the
two data sets share exactly the same PDF, i.e. have the same high-
order statistical moments, they do not share the same bispectra, i.e.
the various dependences between the measurements are genuinely
different.

8 SU M M A RY A N D D I S C U S S I O N

We have presented a new algorithm able to produce artificial light
curves which are distributed based on a given PDF (parent or
observed) and a given underlying PSD. Our publicly available algo-
rithm combines and enhances the methods of TK95 and SS96. The
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Figure 19. A time series process. Left-hand panel: a realization of the non-linear process (equation 4), xnl(t), with the times rescaled in the range t ∈ [1, 5000]
t.u. and �t = 1 t.u. Right-hand panel: a random shuffle of the xnl(t), xsfl(t).

Figure 20. The PDF of the time series process shown in Fig. 19 which has
a skewness and a kurtosis of γ 1 = 2.57 and γ 2 = 12.77, respectively.

new method improves significantly on the widely used procedure of
TK95 which is able to produce artificial light curves which are only
normally distributed. Thus, for any sort timing studies, in which
simulated data sets are needed, our algorithm preserves all the gen-
uine variability and statistical source properties yielding ensembles
of truly random artificial data sets.

The merits of our method can be summarized as follows.

(i) It reproduces the exact variability properties of the observed
data, since the synthetic light curves follow the input PSD. The input
PSD can originate either from an actual observation or a theoretical
model.

(ii) It reproduces the exact statistical properties of the observed
data/theoretical model since it uses their/its PDF. Thus, the surrogate
light curves carry all the statistical moments and depending on the

nature of the statistical study, the PDF corresponds either to the
observed or the parent PDF.

(iii) Introduction of higher statistical moments (other than mean
value and variance that characterize completely only the normal
distribution) and definition of genuinely positively probability dis-
tributions allow the construction of realistic ‘bursty’ light curves
which cannot be created by TK95.

(iv) For the special case of Gaussian light curves, the method
yields synthetic data sets which are by construction equivalent to
those of TK95.

(v) For the special case of a parent log-normal distribution, the
simulated light curves exhibit the rms–flux relation.

Particularly for the case of ‘bursty’ light curves, having by def-
inition non-Gaussian positively defined PDFs which can be even
sometimes described by right heavy-tailed PDFs, representative for
extreme flaring states, this new method is the most appropriate for
the correct establishment of confidence intervals of a given method,
e.g. CCF analysis.

Due to its generality, the method can be employed to a vast vari-
ety of statistical analysis purposes involving light curves obtained
across the electromagnetic spectrum for any object. The Monte
Carlo simulation studies, which are currently performed using the
TK95 products, can now be extended to statistically much more ac-
curate synthetic light curves, thus providing us with robust results
with respect to e.g. cross-correlation analysis, establishment of de-
tection significance for future missions (e.g. LOFT, CTA), detection
and characterization of variability, understudying of the effects of
irregular sampling.
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Figure 21. Bispectrum analysis. Left-hand panel: the bicoherence of the non-linear data set, xnl(t) (Fig. 19, left-hand panel). Right-hand panel: the bicoherence
of the shuffled data set, xsfl(t) (Fig. 19, right-hand panel).
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A P P E N D I X A : D E F I N I T I O N S A N D
N O M E N C L ATU R E

Below we briefly describe the DFT, the calculation of the peri-
odogram, the PSD estimation and the derivation of the PDF.

A1 The periodogram

Consider a light curve x(t) consisting of N equidistant observations:
{tk, x(tk)} for k = 1, 2, . . . , N with a sampling period tbin, a mean
value of μ and a standard deviation of σ . The DFT of the data set
is defined following Press et al. (1992):11

DFT(j ) =
N∑

k=1

x(tk)e2πi(k−1)j/N (A1)

yielding N estimates for j = 0, . . . , N − 1, each one corresponding
to a Fourier frequency fj depending on the parity of N (i.e. even or
odd).

At f0 = 0 (j = 0) the zero Fourier frequency component, DFT(0),
corresponds always to the sum of the light-curve estimates.

For even N:

(i) positive: f +
j = j/(Ntbin) for j = 1, . . . , N/2 − 1;

(ii) negative: f −
j = −(N − j)/(Ntbin) for j = N/2 + 1, . . . , N − 1;

(iii) Nyquist: fN/2 = fNyq = 1/(2tbin) for j = N/2.

Note that the negative frequencies are mirrored versions of
the positive frequencies with opposite signs (around fNyq), e.g.
−f −

N/2−1 = f +
N/2+1, . . . , −f −

1 = f +
N−1.

For odd N:

(i) positive: f +
j = j/(Ntbin) for j = 1, . . . , (N − 1)/2;

(ii) negative: f −
j = −(N − j)/(Ntbin) for j = (N + 1)/2, . . . , N −

1;
(iii) Nyquist: there is no Nyquist frequency estimate.

Note again that the negative frequencies are mirrored versions
of the positive frequencies with opposite signs, e.g. −f −

(N−1)/2 =
f +

(N+1)/2, . . . , −f −
1 = f +

N−1.

11 In this case, the exponential function contains as a running index k − 1
instead of k since the data start for k = 1 and not for k = 0.

At a given frequency fj, DFT(j ) is a complex number of the form12

q + wi and which carries information about the amplitude and the
phase of the corresponding sinusoidal component. The amplitude
of the sinusoid at a frequency, fj, is given by

Aj = 1

N

√
Re[DFT(j )]2 + Im[DFT(j )]2 (A2)

and its phase is given by

φj = arg[DFT(j )] = arctan {Im[DFT(j )], Re[DFT(j )]} (A3)

taking values in the closed-open interval (−π, π]. For the complex
number 0, one may use φ = 0 but formally its phase angle is
indeterminate.

The periodogram of x(t) at a given Fourier frequency fj, P(fj), is
defined as the squared amplitude (equation A2) of the corresponding
sinusoid component

P (fj ) = A 2
j = 1

N2

{
Re[DFT(j )]2 + Im[DFT(j )]2

}
for j = 0, . . . , N − 1. (A4)

Since the light curve consists only of real measurements, x(tk) ∈ R,
there is a symmetry between the positive and the negative DFT
estimates: DFT(j−) = [DFT(j+)]∗, where j− and j+ represent the
indices for the negative and positive frequencies, respectively, and
the asterisk denotes complex conjugation. Thus, the amplitudes of
the corresponding positive and negative components are equal and
the periodogram is estimated as

P (fj ) = 2

N2

{
Re[DFT(j )]2 + Im[DFT(j )]2

}
even N: j = 0, . . . , N/2

odd N: j = 0, . . . , (N − 1)/2 (A5)

with fj = j/(Nttbin). There is a plethora of normalization factors that
can be applied to the periodogram (e.g. Vaughan et al. 2003). In this
work, we employ the fractional rms normalization Ntbin/μ

2, and the
periodogram (equation A5) becomes

P (fj ) = 2tbin

μ2N

{
Re[DFT(j )]2 + Im[DFT(j )]2

}
. (A6)

With this normalization, the square root of the integral of the under-
lying PSD between two frequencies f1 and f2 yields the contribution
to the fractional rms squared variability (i.e. σ 2/μ2). Thus, integra-
tion between f1 and fNyq (even) or f(n − 1)/2 (odd) yields the total rms
squared variability.

A2 PSD estimation

The ‘statistical natural’ estimator of the underlying PSD, P(f ), is
the periodogram, P(f ). In the manner of Priestley (1981), assume
that the light curve, xt, originates from a linear process of the form

xt =
∞∑
0

guεt−u, (A7)

where εt is a purely random Gaussian process and gu is a given se-
quence of constants satisfying

∑∞
u=0 g2

u < ∞. At a given frequency,

12 For the case of even N, the DFT(N/2) (i.e. at Nyquist frequency) is a real
number since, from equation (A1), the exponential function for j = N/2 is
equal to 1 (for odd k) or −1 (for even k).
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fj, P(fj) is then asymptotically distributed around the P(fj ) as

P (fj ) =
{ 1

2 χ2
2 P(fj ) j = 1, . . . , N/2−1 (even N)

(N−1)/2 (odd N)

1
2 χ2

1 P(fNyq) j = N/2 (even N ),

where χ2
ν represents the χ2 distribution with ν d.o.f. This means that,

for a given frequency, the standard deviation of the periodogram
estimates is 100 per cent, automatically making the ensemble of
periodogram estimates an inconsistent estimator of the underlying
PSD.

In order to retrieve the P(fj ), one can use either binning or max-
imum likelihood methodologies. For the former, the binned loga-
rithmic periodogram has been proposed by Papadakis & Lawrence
(1993) ensuring that the logarithmic periodogram estimates are nor-
mally distributed within each geometric mean frequency bin. Thus,
PSD models can be fitted to the logarithmic periodogram estimates
using a simple least-squares method, requiring Gaussianity within
each bin. The latter should include at least 10 periodogram esti-
mates, a fact which partially limits the usefulness of the method for
small data sets. Another approach is to fit a PSD model directly to
the ensemble of periodogram estimates by performing maximum
likelihood estimation which makes direct use of the underlying dis-
tribution at a given Fourier frequency (equation A8). This is the
approach used in this work, and detailed references can be found in
e.g. Anderson et al. (1990), Vaughan (2005) and Barret & Vaughan
(2012).

Consider an underlying PSD model, P(fj ; γ ), in which γ =
{γ1, γ2, . . . , γn} is a vector consisting of the unknown model pa-
rameters such as normalization, break/bend frequency, low/high-
frequency slopes, etc. The probability of obtaining a given single
periodogram estimate P(fj) for the given PSD model P(fj ; γ ) is

λj

[
P (fj )|P(fj ; γ )

] =
⎧⎪⎨
⎪⎩

e−P (fj )/P(fj ;γ )

P(fj ;γ ) j = 1, . . . , N/2−1 (even N)
(N−1)/2 (odd N)

e−P (fNyq)/P(fNyq;γ)
[πP (fNyq)P(fNyq;γ )]1/2 j = N/2 (even N ),

The constituent functions of the above piecewise expression are usu-
ally referred to as ‘scaled χ2 distributions’ with 2 and 1 d.o.f. for
the top and lower branch, respectively. More precisely, these func-
tions are special forms of the gamma distribution �[ν/2,P(fj ; γ )],
where ν corresponds to the d.o.f., i.e. ν = 1 corresponds only to the
Nyquist frequency, fNyq (j = N/2, even N), and ν = 2 to all other
frequencies (for either even or odd N).13

The joint probability of obtaining the ensemble of periodogram
estimates for the given PSD model is

L =
N/2−1 (even N)
(N−1)/2 (odd N)∏

i=1

λj

[
P (fj )|P (

fj ; γ
)]

(A10)

since asymptotically (i.e. N → ∞) the various periodogram esti-
mates are strictly independent at the Fourier frequencies fj (Priestley
1981) (this is the reason why the periodogram is estimated only for
these frequencies and not for intermediate values). The maximum
likelihood estimate of the model function parameters, a, is obtained
by maximizing the above probability, or equivalently by minimizing

13 An even more general representation can be obtained through the Pear-
son’s Type III distribution (p. 930 in Abramowitz & Stegun 1972) for α =
0, β = P(fj ; γ ) and p = ν/2.

the log-likelihood function C = −2 ln L which is equal to

C =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
2

∑j=N/2−1
j=1

{
ln

[
P(fj ; γ )

] + P (fj )

P(fj ;γ )

}}
+

ln[πP (fNyq)P(fNyq; γ )] + 2 P (fNyq)

P(fNyq;γ ) (even N )

2
∑j=(N−1)/2

j=1

{
ln

[
P(fj ; γ )

] + P (fj )

P(fj ;γ )

}
(odd N ).

(A11)

In this work, we have employed two minimization routines (see
for details Press et al. 1992): a direct search method, Nelder–Mead
(Nelder & Mead 1965) and a stochastic function minimizer, simu-
lated annealing (Kirkpatrick, Gelatt & Vecchi 1983). The PSD mod-
els, P(fj ; γ ), which are usually fitted to the data have a power-law
form (e.g. broken power law, continuous bending power law, etc.)
and, for these type of minimization problems, both methods have
identical results.

The joint confidence intervals for q model parameters from a total
of n components of a, {α1, α2, . . . , αq, αq + 1, αq + 2, . . . , αn} can be
estimated using the method of Cash (1979), based on the theorem
of Wilks (1938). Initially, a global minimum is found by varying
all the n model parameters yielding (Cmin)n. The q parameters of
interest are fixed to their best-fitting values and the rest, q + 1, q +
2, . . . , n, then are varied until a global minimum is reached corre-
sponding to (Cmin)n−qbf . The quantity �C = (Cmin)n−qbf − (Cmin)n is
then distributed as a χ2 distribution with q d.o.f. Thus, the 68.3 and
90 per cent single confidence intervals for one parameter (q = 1)
correspond to �C of 1 and 2.71, respectively. Similarly, the 68.3 and
90 per cent joint confidence intervals for one parameter (q = 2) cor-
respond to �C of 2.30 and 4.61, respectively. In general, for a given
confidence interval p and a given value of q, the corresponding value
of �C is given by 2Q−1(ν/2, 0, p), where Q−1 corresponds to the
inverse of the generalized regularized incomplete gamma function
(definitions for Q−1 can be found in Chaudhry & Zubair 1994).

A3 Probability density function estimation

The probability density function (PDF) of the observations should
always be represented by a positive real-valued distribution and,
depending on the purpose of the statistical study, should correspond
either to the parent or the observed distribution. The PDF is used in
the proposed method (Section 2) to produce a sample of independent
and identically distributed random variates.

In general, there are three ways to derive the probability density
function (parent or observed) from a given data set. Note that for
the case of the parent distribution, we need very large data sets
to be able to match the overall variability profile of the source
under study. One approach is to fit a probability density function
model, f(xi ; η), to the histogrammed data (where η is a vector con-
sisting of the unknown distribution’s model parameters), using the
maximum likelihood method in a similar fashion to that described
above in Appendix A2, i.e. maximizing the log-likelihood func-
tion

∑
i ln f(xi ; η). For pathological cases of histogrammed obser-

vations exhibiting e.g. highly skewed, non-zero kurtosis in conjunc-
tion with extreme long-tailed distributions, one can use appropriate
methodologies developed for such purposes, such as the method
of generalized moments (Wooldridge 2001), the method of cumu-
lants (Frisken 2001) and the method of factorial moments (Bialas
& Peschanski 1986), the latter being particularly useful in the pres-
ence of low count rates, i.e. high Poisson noise (de Wolf, Dremin
& Kittel 1996).
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Another approach is to use directly a piecewise constant repre-
sentation of the unknown PDF (Knuth 2006), using directly the data
set consisting of xi observations (i = 1, . . . , N):

h(x) =
M∑

k=1

Nk

Nυk

�(ξk−1, x, ξk), (A12)

where Nk is the number of data points in the kth bin, υk is the
width of the kth bin, ξ k − 1 and ξ k are the edges of the kth bin, and
�(ξα , x, ξβ ) is the boxcar function being equal to 1 for ξα ≤ x ≤
ξβ and 0 otherwise.

Finally, instead of using the PDF representation of the data set,
one can use a cumulative distribution function by employing the
empirical distribution function of the data set consisting of xi obser-
vations (i = 1, . . . , N). This can be done by estimating the following
quantity (after Owen 2001):

H(y) = 1

N

N∑
i=1

�(−∞, xi , y). (A13)

This can then be used directly in order to produce random numbers,
which is the primary reason why we need to estimate the distribution
of the data points.

APPENDIX B: STATISTICAL MOMENTS,
C U M U L A N T S A N D P O LY S P E C T R A

In the manner of Priestley (1981), let X be a random variable with
moment generating function M(t), then the cumulant generating
function, K(t) is defined as

K(t) = ln [M(t)] . (B1)

By expanding the above expression in a power series we get

K(t) = k1t + k2
t2

2!
+ · · · + kr

t r

r!
. (B2)

The coefficient of tr/(r!) is called the rth cumulant. Only, the first
three cumulants coincide with the first three statistical moments
(mean, variance, skewness) and all the other are given by more
complicated polynomial expressions, i.e k1 = μ, k2 = σ 2, k3 = γ 1,
k4 = γ 2 − 3σ 4, etc.

Generalizing the above to more random variables, let Xt be a
process stationary up to order k and let C(s1, s2, . . . , sk − 1) de-
note the joint cumulant of order k of the set of random variables,
{Xt, Xt+s1 , . . . , Xt+sk−1} is the coefficient of (z1, z2, . . . , zk) in the
expansion of the joint cumulant generating function

K(z1, z2, . . . , zn) = ln [M(z1, z2, . . . , zn)] (B3)

in which M(z1, z2, . . . , zn) is the joint moment generating function.

The second-order joint cumulant, C2(s1), is simply the covari-
ance, cov(Xt,Xt+s1 ) and the third-order joint cumulant, C3(s1, s2),
is identical to the third-order joint moment, γ 1(s1, s2) (sometimes
in economics this is called co-skewness and the next joint cumulant
co-kurtosis; e.g. Hwang & Satchell 1999),

C2(s1) = 〈
(Xt − μ)(Xt+s1 − μ)

〉
(B4)

C3(s1, s2) = 〈
(Xt − μ)(Xt+s1 − μ)(Xt+s2 − μ)

〉
; (B5)

for s1 = s2 = 0 these two quantities are directly related to the
variance and the skewness, C2(0) = σ 2 and C3(0) = γ 1σ

3 and these
are two properties that are mapped on the PDF.

The Fourier transforms of the corresponding higher order cumu-
lants are called polyspectra,

hk(f1, f2, . . . , fn) =
∞∑

s1=−∞
· · ·

∞∑
sk−1=−∞

C(s1, . . . , sk−1)e−2π(f1s1+···+fk−1sk−1). (B6)

The second-order polyspectrum is the autospectrum and its squared
amplitude is the PSD, |h2(f )|2 ≡ P(f ). The third- and the fourth-
order polyspectra are known as bispectrum and trispectrum, respec-
tively. These are the quantities that characterize the various depen-
dences between the various measurements. The fact that two data
sets have e.g. the same variance and skewness [i.e. C2(0), C3(0, 0)]
does not mean that they have the same covariance and third-order
joint cumulant, C2(s1) and C3(s1, s2), respectively. Thus, data sets
which have the same statistical moments (i.e. same PDFs) does not
mean that they have the same polyspectra.
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