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ABSTRACT
Quasi-periodic oscillations (QPOs) have been seen in the light curves following several mag-
netar giant flares. These oscillations are of great interest as they probably provide our first
ever view of the normal modes of oscillation of neutron stars. The state of the art lies in the
study of the oscillations of elastic–magnetic stellar models, mainly with a view to relating
the observed frequencies to the structure and composition of the star itself. We advance this
programme by considering several new physical mechanisms that are likely to be important
for magnetar oscillations. These relate to the superfluid/superconducting nature of the stellar
interior and the damping of the modes, both through internal dissipation mechanisms and the
launching of waves into the magnetosphere. We make simple order-of-magnitude estimates
to show that both the frequencies and the damping time of magnetar oscillations can evolve
in time, identifying three distinct ‘pathways’ that can be followed, depending upon the initial
magnitude of the mode excitation. These results are interesting as they show that the informa-
tion buried in magnetar QPOs may be even richer than previously thought, and motivate more
careful examination of magnetar light curves, to search for signatures of the different types of
evolution that we have identified.
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1 IN T RO D U C T I O N

Amongst the various known incarnations of neutron stars, a mag-
netar is undoubtedly one of the most extreme. These objects are
believed to be endowed with the strongest magnetic fields in na-
ture, somewhere in the range of 1014–1015 G (Duncan & Thompson
1992; Thompson & Duncan 1995); this property alone is responsi-
ble for the different astrophysical signature of magnetars that sets
them apart from other neutron stars. In observational parlance, mag-
netars manifest themselves as soft gamma-ray repeaters (SGRs) and
anomalous X-ray pulsars, with high-energy emission in the X- and
gamma-ray wavelengths (see Woods & Thompson 2004 for a re-
view).

Of the two classes, SGRs are the more prolific objects in terms of
high-energy outbursts. The bursts come in many shapes and forms,
but the most spectacular events are the so-called giant flares. These
release an enormous amount of energy (∼1044–1046 erg), several
orders of magnitude higher than the quiescence SGR luminosity.
The only energy reservoir capable of fuelling such costly energy
output is the ultra-strong magnetic field (Thompson & Duncan 1995,
2001).

� E-mail: d.i.jones@soton.ac.uk

Only three such giant flares have been observed to date, all in dif-
ferent objects: SGR 0526−66 (1979 March), SGR 1900+14 (1998
August) and SGR 1806−20 (2004 December). A major discov-
ery that came with these events is the detection of quasi-periodic
oscillations (QPOs) in the signal (Barat et al. 1983; Israel et al.
2005; Strohmayer & Watts 2005, 2006; Watts & Strohmayer 2006;
Hambaryan, Neuhäuser & Kokkotas 2011). Since then, these ob-
servations have triggered a frenzy among neutron star theorists
because they are taken as strong evidence for excited neutron star
oscillations – indeed, the first evidence of this kind (an alterna-
tive interpretation of the QPOs could be based on magnetospheric
physics, but this has attracted much less attention so far).

The early days of the ‘magnetar asteroseismology’ project were
an attempt to explain the observed QPOs as elastic (seismic)
modes excited in the neutron star crust (Duncan 1998; Mes-
sios, Papadopoulos & Stergioulas 2001; Piro 2005; Samuelsson &
Andersson 2007). This scenario was a very attractive one because
(i) giant flares are envisaged as the manifestation of a magnetic field
instability that in the process fractures the crust and (ii) the low-
frequency spectrum (∼ tens of Hz) of the axial-parity crustal modes
is compatible with the presence of several �100 Hz QPOs. How-
ever, it was soon realized that the real system is likely to display a
much more complex behaviour because of the strong magnetic cou-
pling between the crust and the core (Glampedakis, Samuelsson &
Andersson 2006; Levin 2006).
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In effect, this coupling leads to global magnetic oscillations in
which both the core and the crust may participate. To make things
worse, the type of oscillations most relevant to magnetar QPOs
(axisymmetric and axial Alfvén modes) could exist in the form of a
continuum of frequencies, rather than a set of discrete frequencies
(Levin 2007; Sotani et al. 2008; van Hoven & Levin 2008; Cerdá-
Durán, Stergioulas & Font 2009; Colaiuda, Beyer & Kokkotas 2009;
Colaiuda & Kokkotas 2011; Gabler et al. 2011, 2012).

This Alfvén continuum is now known to be very efficient in
redistributing the energy of an initially excited crust mode via reso-
nant absorption (Levin 2007; van Hoven & Levin 2008; Gabler et al.
2011, 2012). On the other hand, for oscillations of different symme-
try (non-axisymmetric, polar, coupled axial-polar modes), the fre-
quency spectrum may be discrete (e.g. Sotani et al. 2008; Lander &
Jones 2011; Colaiuda & Kokkotas 2012).

The participation of the stellar core in the models of QPOs has
highlighted the need for a better understanding of more exotic
properties, such as the presence of superfluid and superconduct-
ing matter. These have an important impact on the mode spec-
trum and should be part of any ‘realistic’ magnetar model (An-
dersson, Glampedakis & Samuelsson 2009b; Gabler et al. 2013;
Passamonti & Lander 2013).

In the recent years significant progress has been achieved with
models that include crust–core coupling, superfluidity and axial-
polar mode couplings (see references above). Although these mod-
els can in principle ‘explain’ many of the QPOs (albeit with some
fine tuning), the truth is that the modern version of magnetar aster-
oseismology is plagued with a high degree of degeneracy because
of the many degrees of freedom associated with the magnetic field
and the superfluid state of matter.

At the same time, all the effort put in this problem so far has
to do with making predictions about the mode frequencies. How-
ever, the actual QPOs offer more potential ‘observables’ than just
the frequencies: for instance, their individual amplitudes and life
spans will reflect properties of the flare and the stellar oscillations
themselves.

This paper adds one more level of complexity to the problem
by considering two important physical mechanisms related to the
superfluid/superconducting nature of the stellar interior, which have
received little attention thus far. Both are made possible by the rather
large amplitude of the oscillations that are expected to be excited
by the magnetar flare events. One concerns the potential destruc-
tion of superfluidity when the oscillation amplitude is sufficiently
large, an effect considered recently by Gusakov & Kantor (2013).
This effect will influence both oscillation decay time-scales and (by
determining the fraction of the stellar inertia that participates in
the oscillation) the frequencies. The other concerns the interaction
between the rotation vortices in the neutron fluid and the magnetic
flux tubes in the proton superconducting fluid. As has been studied
recently (Haskell, Glampedakis & Andersson 2013), a sufficiently
large oscillation can cause one to cut through the other, adding a
strong source of dissipation to the oscillation.

Depending upon the initial amplitude of the excitation, we will
argue that an excited mode could evolve by following three dis-
tinct ‘pathways’, characterized by different frequency evolutions
and damping time-scales. Based on these evolutionary scenarios,
we will argue that extra care must be taken when one attempts to
theoretically identify the observed QPO frequencies and do ‘astero-
seismology’ (i.e. infer the stellar equation of state, the magnetic field
intensity and geometry). We also demonstrate the potential impor-
tance of the launching of magnetic waves into the magnetosphere
as a possible damping mechanism for these oscillations.

Note for the ‘fast-track’ reader: the paper is structured in a way
that allows the independent study of the ‘physics’ sections (results
and conclusions – Sections 2 and 5) without the need of being
exposed to any of the technical details on magnetar oscillations
(these are discussed in Sections 3 and 4).

2 EVO L U T I O NA RY SC E NA R I O S F O R TH E
Q P O S

2.1 Key magnetic field thresholds

A prerequisite for formulating ‘evolutionary paths’ for magnetar
oscillations excited during a flare event is to understand how the
induced magnetic field perturbation δB measures up against two
key magnetic field thresholds. One threshold concerns the breaking
of superfluidity, while the other concerns the breaking of the pinning
between the magnetic flux tubes and the neutron vortices. We will
now estimate the magnetic field perturbation induced by a flare, as
well as these two thresholds. Note that some technical details are
drawn from the following sections.

A magnetar flare is envisaged as a violent event triggered by
the cracking of the neutron star crust as a result of magnetic field
activity (Thompson & Duncan 1995, 2001). This will excite the
star’s normal modes, which can be idealized as falling into two
classes, crustal modes, confined mainly to the crust, and Alfvén
modes, of a more global character, with predominantly elastic and
magnetic restoring forces, respectively.

According to this model, prior to the fracture the evolving mag-
netic field exerts a growing strain on the crust; the crust responds
elastically and the resulting quasi-static balance between the mag-
netic and elastic forces, Fmag and Fel, respectively, takes the form
(see Section 3 for more details)

Fmag ≈ Fel ⇒ BδB

4π
≈ μψ, (1)

where ψ is the dimensionless strain and μ is the crust’s shear mod-
ulus. Instead of using the shear modulus itself (which is a rapidly
varying parameter across the crust), it is much more convenient to
work with the shear speed

v2
s = μ

ρ
, (2)

where ρ is the total density. This quantity has a clear physical mean-
ing (it represents the speed of elastic waves) and remains almost uni-
form throughout the crust (see for instance fig. 1 of Glampedakis &
Andersson 2006).

At the moment of the fracture, ψ attains the value ψbr and we
can obtain a corresponding δBbr:

δBbr

B
≈ ψbr

v2
s

v2
A

⇒ δBbr

B
≈

(
ψbr

0.1

)
ρ14v

2
s,8

B2
15

, (3)

where vA is the Alfvén speed for waves in normal (i.e. non-
superconducting matter), defined by

v2
A = B2

4πρ
. (4)

and vs,8 = vs/108 cm s−1. To produce the second equation, we have
used the scalings B15 = B/1015 G, ρ14 = ρ/1014 g cm−3. In addition,
the breaking strain ψbr has been normalized to the value suggested
by the state-of-the-art simulations of Horowitz & Kadau (2009).
This sudden removal of strain will lead to an unbalanced magnetic
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stress, so we can expect the excitation of magnetic field oscillations
at a level B(0) at around this level:

δB(0) � δBbr. (5)

The perturbation would then decay in time, according to the various
mechanisms considered later in this paper.

The time-evolving magnetic perturbation δB(t) is to be compared
with the threshold, δBpin, which makes contact with the likely pres-
ence of superfluid and superconducting matter in the outer neutron
star core. In that region of the star neutron, vortices are expected to
be pinned on to the much denser array of proton flux tubes (Sauls
1989). The magnetars, being slowly spinning and highly magne-
tized objects, are favoured for harbouring long-term pinned vortices
(Glampedakis & Andersson 2011). A generic core oscillation ex-
cited during a flare will be associated with a non-vanishing velocity
difference w between the neutron and proton fluids (see Section 3
for details). As a result of this velocity difference, there will be a
Magnus force acting on a unit length segment of any individual
pinned vortex, doing work against the pinning force exerted on the
same segment by the flux tubes. Pinning cannot be sustained once
w exceeds a critical lag wpin (see Link 2003 and Section 4.4 for the
detailed form of this quantity).

For a global magnetar mode, the magnetic field provides the main
restoring force; in that case we can use equation (24) (see Section 3)
which is a simple approximate relation between w and δB for global
Alfvén-type oscillations. We can then obtain the threshold δBpin

required for vortex unpinning:

w = wpin ⇒ δBpin

B
∼ wpin

vA
≈ 4 × 10−3, (6)

where now vA is the Alfvén speed appropriate for a wave propagat-
ing in the superconducting proton fluid (of density ρp = xpρ, where
xp is the proton fraction):

v2
A = HcB

4πρp
(7)

and we have used typical values ρ14 = 1, xp = 0.05 and Hc = 1015 G
for the density, the proton fraction and the (lower) critical super-
conductivity field, respectively.

The second magnetic field threshold, δBSF, is related to the pos-
sibility of locally suppressing neutron superfluidity. This can be
achieved once the relative motion between the superfluid and the
normal components exceeds the so-called Landau critical speed.
The destruction of superfluidity has been only recently discussed in
the context of neutron stars by Gusakov & Kantor (2013) and our
own analysis here makes use of their results.

As is described in detail in Section 3.1, the relation between w

and δB is different for oscillations in the crust and in the core (see
equations 24 and 29 below) and so we obtain two such thresholds.
The detailed derivation is carried out in Section 3.2. For global
Alfvén modes in the core, we obtain

δBSF

B
∼ 0.08 wSF,7B

−1/2
15 , (8)

where wSF, 7 = wSF/107 cm s−1 is the normalized critical speed for
the destruction of superfluidity. For elastic modes confined in the
crust, we similarly have

δBSF

B
∼

(
m∗

n/mn

15

)
wSF,7

vs,8
, (9)

where m∗
n is the effective mass of the entrained superfluid neutrons

in the crust.

We observe that according to the above formulae, we should
expect to have

δBpin < δBSF. (10)

As we are about to see in the discussion below, the thresholds
δBpin and δBSF for the perturbed magnetic field play a key role
in understanding the time evolution of magnetar oscillations and
making predictions about their observational signature.

That such large perturbations as these might be excited by a flare
follows naturally from the Thompson & Duncan magnetar model,
coupled with the very large breaking strains for (certain parts of)
the neutron star crust computed using large molecular dynamics
simulations (Horowitz & Kadau 2009). The sudden release of a
breaking strain ψbr ∼ 0.1 will induce non-radial crustal motion
on length-scales of the order of ψbrR ∼ 1 km. From the magnetic
induction equation (see equation 14 below), this would correspond
to a magnetic field perturbation δB/B ∼ 0.1, of the high level
required to break the superfluidity, as given by equation (8) above.
The corresponding crustal displacement for breaking the pinning is
about two orders of magnitude smaller (see equation 6 above), with
amplitude ∼10 m. Observations themselves show very high levels
of fractional modulation of the electromagnetic output, at around the
20 per cent level. As noted by D’Angelo & Watts (2012), it is in fact
difficult to account for such high levels of modulation, even when
beaming of the emission is invoked. A large mode amplitude tends
to reduce this problem, and is certainly consistent with (although
not necessarily implied by) the observations.

2.2 The three evolutionary pathways

There are three key magnetic quantities that are of importance for
magnetar flares. These are (i) δB(0), the initial value of the magnetic
field perturbation, which we expect to be bounded by δB(0) � δBbr;
(ii) δBSF, the critical perturbation above which superfluidity is de-
stroyed; (iii) δBpin, the critical perturbation above which pinning
between vortices and flux tubes is broken, so that the dissipative
process of flux tube cutting occurs. As given above, we expect
δBpin < δBSF, so that there are three possible orderings of the three
quantities, depending upon the value of δB(0) relative to the other
two. The magnetic field perturbation itself, δB(t), will decay in
time, generating three distinct evolutionary pathways, illustrated in
the flowchart of Fig. 1, which we will describe below.

Before doing so, we will mention another important part of this
story – the damping of the modes. We consider damping in detail in
Section 4. There are two main sorts. Modes can be damped by either
external or internal mechanisms. The external damping involves the
launching of Alfvén waves into the magnetosphere, whose energy is
eventually converted into an outward particle flux. This acts on both
Alfvén and crustal modes. The efficiency of this process depends
upon the fraction of the stellar surface which launches such waves.
We consider three possibilities: emission from the entire stellar
surface, emission only from a polar cap defined by the velocity-
of-light cylinder and emission only from a polar cap defined by an
‘Alfvén radius’. The last of these seems to dominate, so is probably
the most relevant. The internal damping includes mutual friction,
which can be due to the cutting of magnetic flux tubes by neutron
vortices as described above, or the more conventional scattering
of electrons off neutron vortices. This applies only to the Alfvén
modes, as this mechanism requires relative motion between the
interior neutron vortices and the charged component of the star.
A summary of our order-of-magnitude estimates of these various
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Figure 1. Flowchart illustrating the three evolutionary scenarios (1, 2, 3).
The various boxes (A, B, C, D) describe different stages of evolution, with
all scenarios beginning in box A, which represents the onset of the flare it-
self. The boxes give the range of magnetic field perturbations δB(t) to which
they apply, the predominant nature of the neutron fluid (normal/superfluid),
information on the interaction between the vortices and flux tubes (pin-
ning/cutting), information on ‘mass loading’ (i.e. whether the full stellar
inertia participates in the Alfvén oscillation or just some fraction) and a
comment on the likely damping mechanisms that apply.

time-scales is given in Table 1. Derivations of all of these results is
given in Section 4.

Having set the scene, we can now describe the three distinct
evolutionary pathways, illustrated in the flowchart of Fig. 1. We
begin by considering only Alfvén modes. As will be explained
below, the story for crustal modes is much simpler. All pathways
start in box A, which simply represents the cracking event itself, at
time t = 0.

In pathway 1, we have, at early times, δBpin < δBSF < δB(t).
In this case, the initial perturbation of the star is large enough to
destroy the superfluidity, as represented by box B. This means that
the neutrons and protons are tightly coupled, so that the Alfvén
modes are ‘mass loaded’, i.e. the full stellar inertia plays a role in
determining the mode frequencies. The Alfvén speed is then given
by

v2
A = HcB

4πρ
, (11)

with the corresponding mode frequencies being ω ∼ vA/L, where
L is the mode’s wavelength (typically this would be comparable to
the stellar radius R). The tight coupling of neutrons to the charged
component eliminates mutual friction as a damping mechanism, so
in this case external damping is likely to dominate, probably with

a time-scale given by the ‘Alfvén radius’ column of Table 1 (i.e.
equation 60). We should also note that the large mode amplitudes of
this regime may mean that mode–mode coupling is important also,
but we have no estimate of this.

After a time ∼tSF, of the order of the magnetospheric decay time
of equation (60), the perturbation has decayed to the point such
that δB(t) is no longer large enough to destroy the superfluidity
at any point in the star. We then have δBpin < δB(t) < δBSF, as
represented by box C. The superfluid nature of the neutrons sup-
presses any microscopic coupling between them and the protons,
such that the Alfvén modes are no longer mass loaded, i.e. only
the inertia of the charged component plays a role in determining
the mode frequency, and the Alfvén speed is given by equation (7),
which amounts to making the replacement ρ → ρp in equation (11).
Simultaneously, cutting occurs between the magnetic flux tubes and
the (newly formed) neutron vortices, opening up mutual friction, a
new and powerful mechanism for damping, probably dominated by
the cutting itself, rather than the scattering of electrons off the flux
tubes, as indicated by the last two columns of the table. We can
therefore expect the frequencies of Alfvén modes to increase at t ∼
tSF, by a factor of ∼ (ρ/ρp)1/2 ≈ x−1/2

p ≈ 4, while their damping
time decreases to a value given by equation (96), which is itself a
function of δB(t).

After a time tpin, of the order of the flux tube cutting time-scale of
equation (96), the perturbation will decay to the point where δB(t) <

δBpin < δBSF, as represented by box D. Now the pinning has been
re-established. This will not have any effect on mode frequencies,
but will shut off the powerful damping mechanism of flux tube
cutting, so that the decay time of the Alfvén modes will increase,
reverting again to a value determined by the launching of Alfvén
waves into the magnetosphere, as per equation (60).

It is important to note that the transitions in damping and mass
loading between the different regimes will not be perfectly sharp.1

This is because the mode eigenfunctions for the axisymmetric
(m = 0) modes thought to be relevant to magnetar flares vanish
at the origin, so there will always be a small volume around the
origin where the velocity is less than any given critical value. Also,
such modes have a time dependence proportional to sin ωt, so that
there will be oscillation phases where the velocity perturbation of
all points in the star vanishes, so the velocity is again less than any
given critical value. This means that a star in our regime B will
contain points at which the strong mutual friction/non-mass-loaded
conditions of regime C apply, while there will be points for a star in
our regime C where the weak mutual friction conditions of regime
D apply. For stars where the perturbation δB(t) is much greater than
the relevant threshold (δBSF or δBpin), these volumes/times will be
short compared to the total stellar volume/oscillation period, but
will have the effect of smoothing the transitions between the differ-
ent regimes when the perturbation δB(t) exceeds the critical value
by only a small amount.

Intuitively, given the strong damping that applies in box C, we
might expect there to be some significant mutual friction damping
even in the regime of box B, due to superfluid at locations/times
where the perturbation is small, giving a relatively smooth transition
from B to C. Similarly, we might expect there to be a rather abrupt
decrease in the damping rate in the transition C to D, with the weak
damping of D applying only when there are no times/locations
where the velocity exceeds the critical value.

To confirm this intuition concerning damping rates, we have
carried out some investigations of these effects using simple

1 We are grateful to the anonymous referee for alerting us to this issue.
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Table 1. Table of approximate damping times, for both crustal and Alfvén modes. All times in seconds, and relevant equation numbers are given. The
first column labels the type of mode. The second, third and fourth columns give the damping times for magnetospheric damping, assuming emission over
the full surface, over a polar cap defined by the velocity-of-light cylinder and over a polar cap defined by the Alfvén radius, respectively. The fifth and six
columns give the damping times for mutual friction, assuming flux tube cutting and electron scattering, respectively, relevant for Alfvén modes only.

Damping mechanism: Magnetospheric damping Mutual friction

Full surface Velocity-of-light Alfvén radius Flux tube cutting Electron
cylinder scattering

Crustal mode 30 (eqn. 66) 106 (eqn. 67) 30(δB/B)−2/3 (eqn. 68) N/A N/A
Alfvén mode 4 (eqn. 56) 1010 (eqn. 58) 4(δB/B)−4/3 (eqn. 60) 3(δB/δBpin)3/2 (eqn. 96) 103 (eqn. 101)

oscillator toy models. We considered the transverse vibrations of
a one-dimensional string with velocity v(x, t), parametrized by a
maximum amplitude v0, acted upon by a drag force proportional
to −λ>v for |v(x, t)|>vc and proportional to −λ<v for |v(x, t)|<vc.
In the case where λ>/λ< � 1, as describes the transition C → D
above, we do indeed find that the transition is sharp, in the sense that
even when the mode amplitude has fallen to just twice the critical
value (i.e. v0 = 2vc), the damping rate is 85 per cent of the rate
calculated assuming λ = λ> always. In the case where λ>/λ< 	
1, as describes the transition B → C above, we find a more gradual
transition. Setting λ>/λ< = 0.1, we find that when the velocity is
within a factor of 2 of the critical value (again v0 = 2vc), the damp-
ing rate is 17 per cent of the value it would have if λ = λ> at all
times.

Given the strong nature of the damping due to flux tube cutting,
this level of damping should not be neglected in box B, which is
why we use the term ‘weak mutual friction’ there. Extrapolating
the results of the toy model we can quantify the strength of mu-
tual friction in box B. The flux tube cutting time-scale entry in
Table 1 (which represents the mutual friction time-scale in regime
C) should be multiplied by a factor 10−100 for δB ≈ (1.5 − 5)δBSF,
respectively.

We have also carried out some numerical experiments to gain
more insight into the transition in mass loading, using a simpler toy
model of a point oscillator (rather than a string), with mass m = m>

for |v(t)| > vc and mass m = m< for |v(t)| < vc. This represents the
transition from the (mainly) mass-loaded state of regime B to the
non-mass-loaded regime C. We chose the mass ratio m</m> = xp,
equal to the proton mass fraction in the core, as is appropriate for
such a transition. The mode period was calculated as a function of
the ratio of the mode amplitude v0 to the critical velocity, (v0/vc).
As was obviously to be expected, the mode frequency was found
to increase by a factor x−1/2

p as the system transitioned from the
v0/vc � 1 regime to the v0/vc < 1 regime.

Less obviously, we found a rather sharp transition from the higher
frequency oscillation to the lower frequency one, occurring when
v0 was only slightly greater than vc. For example, for v0 ≈ 1.4vc,
the time spent in the m< state is a meagre ≈0.08 fraction of the total
oscillation period. We take this as evidence that the corresponding
transition in a real star might be sharp and that the system in our
box B is essentially mass loaded.

We can now move on to the second of our evolutionary pathways.
In pathway 2, the initial value of the perturbation is assumed to be
smaller than that for pathway 1, such that at early times δBpin <

δB(t) < δBSF, so that box C applies. In this case, the neutrons are
superfluid from the outset, but at early times the perturbation is
large enough to break the pinning, so that the powerful damping
mechanism of flux tube cutting is active. This will shut off after
a time ∼tpin (of the order of the time-scale of equation 96), when
pinning is restored and the Alfvén mode decay time will lengthen

to a value probably determined by the launching of Alfvén waves
into the magnetosphere (equation 60), as represented by box D.

In pathway 3, the initial value of the perturbation is assumed to
be small, such that δB(t) < δBpin < δBSF initially, and therefore
for all later times also, so that box D applies at all times. In this
case, the neutrons are superfluid from the outset, and the vortices
pinned to the flux tubes, so there is no evolution in Alfvén mode
frequencies or damping times; the modes are never mass loaded,
and the damping is always dominated by the launching of waves
into the magnetosphere, as per equation (60).

The story for crustal modes is much simpler. If δB(t) is greater
than δBSF, the crustal superfluidity will be destroyed. The strong
coupling between the neutron and protons (i.e. the crustal lattice)
then ensures that the crustal modes are fully mass loaded, so that
ω ∼ vs/L, with the full (crustal) mass density appearing in the
expression for vs (as in equation 2 above). However, the situation is
very similar in the case δB(t) < δBSF. In this regime, the neutrons
are superfluid, but the strong entrainment believed to apply to the
crustal superfluid effectively couples the neutrons to the protons,
so the dynamics remains essentially unchanged. Meanwhile, the
notion of a critical δBpin does not apply for the crust, as the magnetic
flux tubes open out into ‘classical’ (i.e. non-superconducting) flux
bundles in the crust, so there is no notion of flux tube–vortex cutting.
So, the crustal modes are, to a good approximation, unaffected by
the transitions between the states B, C and D of the flow diagram that
play such an important role for the Alfvén modes. For purely crustal
modes, mutual friction is ineffective (because the crust segment of
each vortex is not magnetized), so that the damping time-scale is
likely to be dominated by the launching of Alfvén waves into the
magnetosphere, as per equation (68).

In summary, for Alfvén modes, we have a rather rich set of
possibilities. Pathway 1 is represented by A → B → C → D in the
flowchart, with changes occurring in both mode frequencies and
damping times as the evolution proceeds. Pathway 2 has the flow
A → C → D, with no frequency changes, but a change in damping
time-scale. Pathway 3 is the simplest, represented by A → D, with
no sudden changes in any mode properties. For crustal modes, there
are no corresponding transitions in mode properties.

In Sections 3 and 4, we provide detailed calculations to esti-
mate the various damping time-scales that feature in the argument
sketched above, leaving our concluding discussion of these ideas to
Section 5.

3 T H E DY NA M I C S O F S U P E R F L U I D
M AG N E TA R S

3.1 Multifluid formalism

The magnetohydrodynamics of magnetars can be formulated on
the basis of a multifluid model for the stellar interior. Mature
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magnetars older than 500 years or so are expected to be cold enough
(Ho, Glampedakis & Andersson 2012) as to primarily consist of su-
perfluid neutrons, superconducting protons and electrons (the pos-
sibility of having exotic types of matter in the inner core is not
considered here). An additional component is the solid lattice in the
crust which can be modelled as a positively charged elastic fluid.
The equations of motion for this system are well known, see for
example Andersson et al. (2009b).

There are two Euler equations, one for the neutrons and one for
the ‘protons’, the latter component is identified either with the actual
protons in the core or with the crustal lattice (plus the electrons in
both regions).

In this paper, we are exclusively interested in fluid motion (to
be more precise, oscillations) which is accompanied by negligible
perturbations in the fluid density and pressure with respect to their
background values. This category of oscillations includes the modes
that are typically invoked as the most likely interpretation behind
the QPOs seen in magnetar flares (i.e. axisymmetric axial-parity
modes and non-axisymmetric polar-parity modes, both of which
are nearly incompressible).

For this kind of motion, the linearized Euler equations in the
stellar rotating frame take the form:

∂t (vn + εnw) + 2� × vn = 1

ρn
(Fmf + Fn) (12)

∂t (vp−εpw)+2� × vp = 1

ρp

(
Fmag + Fel − Fmf + Fvisc

)
, (13)

where vx (x = n, p) is the fluid velocity with respect to the back-
ground rigid body rotation with angular frequency � = 	 ẑ (we
ignore any small spin lag that could be present between the various
components), w = vp − vn is the proton–neutron velocity differ-
ence and ρx is the individual fluid density. The coupling due to the
entrainment effect is encoded in the parameters εx. These are related
to the effective particle masses m∗

x as εx = 1 − m∗
x/mx (Prix 2004).

The proton fluid in the core experiences a magnetic force Fmag

which represents the macroscopically averaged tension of the quan-
tized flux tubes. A magnetic force Fn is also exerted on the neutron
superfluid in the core, as a result of the contribution of the entrained
neutrons to the flux tube tension (see Glampedakis, Andersson &
Samuelsson 2011 for details). In the region of the crust, Fmag is
replaced by the usual Lorentz force and Fel is the elastic force ex-
erted on the crustal lattice. The neutron–proton fluids are coupled
through the mutual friction force Fmf; this represents any coupling
between the fluids mediated through the neutron vortices. Finally,
the proton fluid experiences a frictional force Fvisc arising from
shear and bulk viscosity.

The additional dynamical equations are the continuity equations
which for incompressible flow (as assumed here) take the form
∇ · vx = 0, and the magnetic induction equation

∂t δB = ∇ × (vp × B), (14)

where δB is the perturbed magnetic field.
We can re-write the pair of the Euler equations in an equivalent

form in terms of the velocity difference w and the average velocity
v = xpvp + (1 − xp)vn, where ρ = ρn + ρp is the total density and
xp = ρp/ρ is the ‘proton’ fraction.

The resulting ‘average’ and ‘difference’ Euler equations are, re-
spectively,

∂tv + 2� × v = 1

ρ

(
Fmag + Fn + Fel

)
(15)

and

(1 − ε̄)∂tw + 2� × w = 1

ρp

(
Fmag + Fel + Fvisc

)
− 1

ρn
Fn − 1

xpρn
Fmf, (16)

where we have defined ε̄ = εn + εp and used the property
ρnεn = ρpεp (Prix 2004).

In this work, we consider two idealized types of oscillations:
(i) ‘Alfvén’ modes, where the restoring force is predominantly
magnetic, and which involve fluid motion in the bulk of the core;
(ii) ‘crustal’, where the restoring force is predominantly elastic, and
which are confined mainly in the crust. Real magnetar oscillations
may be some sort of hybrid, with properties intermediate between
these two extremes.

Our analysis will require mode solutions at a level of the order
of magnitude precision. For the modes we consider, the continuity
equations are trivially satisfied and we can safely ignore the Coriolis
force term because mature magnetars are slow rotators. The mag-
netic force can be approximated as (see Mendell 1991; Glampedakis
et al. 2011 for the exact expression for this force)

Fmag ∼ Hc δB

4πL
, (17)

where L is the mode’s characteristic length-scale and Hc ≈ 1015 G
is the (lower) critical field for superconductivity (Tilley & Tilley
1990). If Fmag is taken to be the magnetic force in the crust (or, more
generally, the magnetic force in the absence of superconductivity),
we can still use (17) after making the replacement Hc → B. From
the general expression for Fn (Glampedakis et al. 2011), we can
also deduce that this force is smaller than Fmag,

Fn

Fmag
∼ xp

ρ

m∗
p

∂m∗
p

∂ρ
	 1, (18)

where m∗
p is the effective mass of the entrained protons. This is a

slowly varying function of density, see for example Chamel (2008).
Moreover, a plane-wave analysis as in Andersson et al. (2009b)
reveals that Fn does not lead to any modification to the propagation
speed of Alfvén waves (see equation 7).

For the elastic force, we have

Fel = μ∇2ξp → Fel ∼ ρv2
s

ξp

L2
, (19)

where μ is the crustal shear modulus, v2
s = μ/ρ is the shear speed

and ξp is the displacement of the crustal lattice (it is related to
the strain in the crust as ξ p ∼ ψL). The displacement vector can
be eliminated with the help of the induction equation (14), i.e.
ξ p ∼ LδB/B, leading to

Fel ∼ ρv2
s

L

δB

B
. (20)

The standard method for calculating modes of dissipative systems
is to find a mode solution without initially including the frictional
forces (in our case Fmf and Fvisc). The dissipative action of these
forces is subsequently accounted for by using the inviscid mode
solution in suitable energy integral expressions. This will be our
approach too in the calculation of the damping of magnetar oscilla-
tions (see Section 4).

The mode property most relevant for our analysis is the rela-
tive proton–neutron velocity w. A simple inspection of the differ-
ence Euler equation (16) reveals that this countermoving degree of
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1528 K. Glampedakis and D. I. Jones

freedom is a generic property of the modes considered here. From
the same equation, we estimate

w ∼ (1 − ε̄)−1 Frestore

ωxpρ
, (21)

where ω is the mode’s angular frequency and Frestore = {Fmag, Fel}
is the main restoring force.

Applying this formula to a global Alfvén mode (for which the
entrainment prefactor is of order unity and Frestore = Fmag), we
obtain

w ∼ v2
A

Lω

δB

B
, (22)

where we have used the Alfvén speed:

v2
A = HcB

4πρxp
. (23)

To the accuracy we are working, we can also approximate vA ∼ ωL
to obtain

w ∼ vA
δB

B
. (24)

Inserting the explicit form of vA and parametrizing, we finally ob-
tain

w ∼ 108

(
H15B15

x5ρ14

)1/2
δB

B
cm s−1, (25)

where we have introduced the scalings ρ14 = ρ/1014 g cm−3,
H15 = Hc/1015 G, x5 = xp/0.05.

For crustal modes, Frestore = Fel and we have

w ∼ (1 − ε̄)−1 v2
s

Lxpω

δB

B
. (26)

In this case, we have retained the entrainment factor; detailed cal-
culations suggest that the effective mass of the entrained superfluid
neutrons could be much higher than the bare neutron mass, i.e.
m∗

n � mn (Chamel 2005, 2012). We can then approximate (recall
that xp 	 1 in the inner crust)

1 − ε̄ = 1 − εn

xp
≈ 1

xp

m∗
n

mn
. (27)

Then

w ∼ mn

m∗
n

v2
s

Lω

δB

B
. (28)

If we make the approximation vs ∼ ωL, we finally obtain

w ∼ mn

m∗
n

vs
δB

B
. (29)

Inserting numerical values

w ∼ 7 × 106vs,8

(
15

m∗
n/mn

)
δB

B
cm s−1, (30)

where we have introduced the scaling vs,8 = vs/(108 cm s−1) (re-
call that vs stays almost uniform throughout the crust). The value
of m∗

n/mn in neutron star crusts is discussed in Andersson et al.
(2009b); according to their fig. 1, which is in turn based on the cal-
culations of Chamel (2005, 2012), a value of m∗

n/mn ≈ 15 is typical
throughout much of the crust.

The above expressions for the velocity lag w will provide the
key input for the calculations underpinning the evolutionary paths
of Section 2.2.

Apart from these, we will also need an estimate for the mode’s
kinetic energy Emode in order to compute damping time-scales in
Section 4. For our two-fluid system, this energy receives contribu-
tions from both the comoving and countermoving degrees of free-
dom (see for instance Andersson, Glampedakis & Haskell 2009a),

Emode = 1

2

∫
dV ρ

[
v2 + xp(1 − xp)

(
1 − εn

xp

)
w2

]
. (31)

From the Euler equations, it also follows (after eliminating Frestore)
that

v ≈ xp(1 − ε̄)w. (32)

An Alfvén-type mode would then represent a mainly countermoving
oscillation,

v ≈ xp

m∗
p

mp
w 	 w. (33)

Note that a typical range for the entrained proton mass is 0.3 <

m∗
p/mp < 0.8 (Chamel 2008). The mode energy (31) is dominated

by the second, countermoving, term. We can easily obtain

Emode ≈ 1

2

∫
dV ρxp

m∗
p

mp
w2. (34)

In the case of crustal modes, and as a result of the strong entrainment
coupling, we find a dominantly comoving character:

v ≈ m∗
n

mn
w. (35)

This time the mode energy is dominated by the first term, and
the energy formula becomes essentially that of a single-component
system,

Emode ≈ 1

2

∫
dV ρv2, (36)

where, for a crustal mode, the integral should be taken over the
region of the crust.

3.2 Destruction of superfluidity

In a recent publication, Gusakov & Kantor (2013) have argued that
a sufficiently large velocity difference between the superfluid and
non-superfluid components can destroy the superfluidity in neu-
tron stars – a phenomenon also seen in laboratory systems. More
accurately, the superfluid energy gap � is not only a function of tem-
perature T, but is also a function of the relative velocity between the
superfluid and the normal components. The gap is suppressed when
this relative motion increases. In our case, the normal component
is identified with the electrons which in turn are nearly comoving
with the proton fluid. Therefore, the relevant relative velocity is w

and � = �(T, w).
The main result of Gusakov & Kantor (2013) is their equation

12 which gives an expression for the critical relative velocity wSF

between the superfluid and normal components above which super-
fluidity is destroyed:

wSF = 107

(
�(T , 0)

109K

) (
ρ0

ρ

)1/3

cm s−1, (37)

where ρ0 = 0.16 fm−3 is the nuclear density and the neutron pairing
gap has been normalized to a canonical value.

Clearly, it is interesting to compare this velocity with the w

defined above, which gives the superfluid–charged particle ve-
locity difference for an Alfvén-type oscillation. Comparison with
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equation (25) above shows that, for Alfvén modes, we can expect the
actual velocity difference w to exceed the critical value for destroy-
ing the superfluidity for δB/B ∼ 0.1, indicating that the larger flare
events may well push the star over this critical threshold. Compar-
ing instead with equation (30) above we see that, for crustal modes,
somewhat larger perturbations in the magnetic field are required to
break the superfluidity, with δB/B ∼ 1. This is large, but, given
the order-of-magnitude nature of our estimates, the possibility of
crustal modes also breaking the superfluidity cannot be excluded.

As discussed in Section 2.1 above, for the purposes of describing
the evolution of a magnetar flare, it is convenient to recast our results
in terms of δB/B, the critical (fractional) perturbation in magnetic
field above which superfluidity is destroyed. To do so, for Alfvén
modes, we set w = wSF in equation (24) above and invert to give

δBSF

B
∼ wSF

vA
. (38)

Parametrizing:

δBSF

B
∼ 0.08

(
x5ρ14

H15B15

)1/2

wSF,7, (39)

where wSF, 7 = wSF/107 cm s−1. For crustal modes, we similarly set
w = wSF in equation (29) to give

δBSF

B
∼ m∗

n

mn

wSF

vA
. (40)

Parametrizing:

δBSF

B
∼

(
m∗

n/mn

15

)
wSF,7

vs,8
. (41)

4 DA M P I N G O F M AG N E TA R O S C I L L AT I O N S

4.1 Magnetospheric damping: formalism

A stellar oscillation that involves motion of the stellar surface will
also ‘shake’ the magnetic field lines, launching Alfvén waves in the
magnetosphere. These waves effectively remove energy from the
oscillation and dissipate it as they propagate out across the magne-
tosphere. This process could be relevant for dissipating magnetar
oscillations excited during flare events and it is the purpose of this
section to assess its efficiency.

Following the analysis of Ho & Lai (2000), we consider a typical
fluid displacement ξ0 on the stellar surface; the induced Alfvén wave
will travel a distance ∼c/ω in the magnetosphere in one oscillation
period. The resulting wave amplitude will be δB ∼ Bωξ 0/c – this
is much smaller than magnetic field perturbation ∼ξ 0B/L induced
in the stellar interior (see equation 14).

The radiated power is given by the following Poynting flux sur-
face integral

PA ≈ c

8π

∫
dS

ω2

c2
|B̂ · r̂| |ξ0 × B|2 , (42)

where B̂ and r̂ are unit vectors along the magnetic field and the
radial direction, respectively. This can be approximated as

PA ∼ 4πR2c
(δB)2

8π
∼ 1

2c
(ωξ0BR)2. (43)

These formulae allow for emission over the entire stellar surface.
However, this is not necessarily a good assumption. First, it only
really makes sense to talk of Alfvén waves on field lines whose
total length is significantly longer than the wavelength of the Alfvén

waves. Secondly, as discussed in Thompson & Blaes (1998), it is
likely that this flux only represents an energy loss for those field
lines which are open. The idea is that Alfvén waves on open field
lines propagate out far from the star and at some point become
non-linear and radiate their energy away as electromagnetic waves
and/or particles. The upshot of this effect is to suppress the flux
as calculated by an all-surface integral by a factor, so as to allow
for energy loss only from the polar cap, i.e. from on a patch of
angular radius θ cap, centred on the magnetic axis, defined to be
the surface region from which open field lines emanate. In the
following calculations, we will make the small-angle approximation
sin θ cap ≈ θ cap, although there are situations where the polar cap can
occupy a significant fraction of the stellar surface. Given the order-
of-magnitude accuracy of other parts of our calculation, such an
approximation is acceptable.

It is useful to relate θ cap to the (cylindrical) radius of the last
closed field line. To do so, note that a dipolar magnetic field line is
given by the polar relation r(θ ):

sin2 θ

r(θ )
= 1

r(π/2)
, (44)

assuming a dipole axis along θ = 0. Suppose the last closed field
line cuts the equatorial θ = π/2 plane at a radius Rc. Then this field
line is defined by the equation

sin2 θ

r(θ )
= 1

Rc
. (45)

It follows that this field line cuts the stellar surface r = R at θ = θ cap

given by sin θcap = √
R/Rc. We can therefore approximate

θcap ≈
√

R

Rc
� 1. (46)

The precise value of Rc then depends upon which physical mecha-
nism is responsible for determining the last closed field line. This
argument will hold up to geometric factors of order unity for non-
aligned dipoles, i.e. dipole whose symmetry axes do not lie along
θ = 0. Note that the polar cap will always be centred on the magnetic
dipole axis, not the rotation axis.

It is standard practice in modelling neutron star magnetospheres
(especially those of radio pulsars) to place the last open field line
at the location (or thereabouts) where the rotational velocity of the
field lines equals the speed of light, i.e. the location of the light
cylinder RL = c/	 (e.g. Goldreich & Julian 1969). We then have,
using equation (46),

θL ≈
√

2πR

cP
≈ 0.015 R

1/2
6

(
P

1 s

)−1/2

. (47)

In addition to the finite rotation of the system, there is another mech-
anism that can cause the lines to become open, active only in dy-
namically perturbed (rather than rigidly rotating) magnetospheres.
This mechanism has been discussed by Thompson & Blaes (1998).
Consider a ‘tube’ of Alfvén waves propagating out along the field
lines that originate from the polar cap. The magnetic pressure from
the (background) dipolar field scales as B2, which is a steeply de-
caying function of distance from the star (∼r−6). The Alfvén wave
pressure is a less steep function [recall that δB ∼ B1/2 for the trav-
elling Alfvén wave (Blaes et al. 1989)]. Thompson & Blaes (1998)
argue that there then exists a critical ‘Alfvén radius’ at which the
Alfvén stresses dominate the magnetic dipole ones, thus opening
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1530 K. Glampedakis and D. I. Jones

up the field lines. Thompson & Blaes (1998) calculate a polar cap
angular radius

θA ≈
(

δB

B

)1/3

, (48)

where both B and δB are to be evaluated at the stellar surface.
The dependence on δB makes this cap radius dependent upon the
amplitude of the perturbation.

To gain some insight, we can easily calculate the ranges in po-
lar cap radius corresponding to the various stages in evolution of
Alfvén modes discussed in Section 2.2. For the evolutionary stage
represented by box B in the flowchart of Fig. 1, we can combine
equations (3), (8) and (48) to obtain

δBSF < δB < δBbr ⇐⇒ 0.4 � θA � 1. (49)

For the evolutionary stage represented by box C in the flowchart,
we can also use equation (6) to obtain

δBpin < δB < δBSF ⇐⇒ 0.16 � θA � 0.4. (50)

For crustal modes, the threshold δBpin is irrelevant, while the value of
δBSF is given by equation (9), which, when combined with equation
(48), gives a corresponding polar cap radius of order unity.

Comparing the above results with equation (47) above, we see
that for both Alfvén and crustal modes, the polar cap radius in the
present case can be much larger than the one in the light-cylinder
model. More quantitatively, this opening of field lines due to Alfvén
pressure will be the determining factor in fixing θ cap when θA > θL.
Combining equations (47) and (50), we see that this is the case
when P > 0.02R

1/2
6 s. This is clearly well satisfied for magnetars.

There is another modification of the Poynting flux due to the
open field lines that has to do with the nature of the oscillation
mode itself. For most classes of modes, we would expect that the
fluid displacement in the cap would be ξ cap ≈ ξ 0. However, for
magnetic Alfvén modes, the mode eigenfunction will vanish on the
magnetic axis, and we would expect ξ cap ≈ ξ 0θ in the vicinity of
the magnetic axis. We will therefore estimate the Alfvén flux as

PA ≈ R2

4c
θ2

cap(ωξcapB)2, (51)

with

ξcap ≈ ξ0θcap for Alfvén modes, (52)

ξcap ≈ ξ0 for other modes. (53)

We will proceed by first evaluating the Poynting fluxes and magne-
tospheric damping times by performing a naive full-surface integral
for crustal modes and Alfvén modes, making use of equation (43).
The damping time-scale τA will be calculated with the help of the
standard formula

τA = Emode

PA
, (54)

where Emode is the mode energy. We will then calculate damping
times in the case where the location of the magnetospheric light
cylinder defines the last closed field line, making use of equations
(51) and (47). We will then repeat this procedure for the case where
the Alfvén radius defines the last closed field line, again making
use of equation (51), this time combined with equation (48). Of
course, this is just a rough estimate; a more accurate calculation
would solve for the integral in equation (42) over the appropri-
ate range in θ , inserting the correct inclined-dipole geometry and
mode eigenfunction. This, however, seems an overkill given that we

are looking for approximate indications of what are the important
damping mechanisms for magnetar oscillations.

In the calculations that follow, we first present the damping as-
suming emission over the full surface, which we are then able to
easily modify to allow for emission only over a polar cap, defined
either by the last closed field line or balance between the magnetic
and Alfvén pressures. It is these last two results that we consider to
be the realistic ones, so it is the shorter of these two that we expect
to be relevant in a magnetar. (This in fact proves to be the result
obtained by balancing the magnetic and Alfvén pressures; compare
columns 3 and 4 of Table 1.)

4.2 Magnetospheric damping: Alfvén modes

As we have already discussed, the Alfvén-type modes are assumed
to be global oscillations, extending over the bulk of the neutron star
core. The mode energy has been given in (34). For the purposes
of the present calculation, we can approximate that expression by
assuming that ξ 0 is comparable to the fluid displacements in the
core, that is, w ∼ ωξ 0. Then

Emode ∼ 1

2
xpρω2ξ 2

0 V∗, (55)

where V∗ is the stellar volume.
Combining the mode energy with the Poynting flux (43) for the

entire surface, we obtain the following estimate for the damping
time-scale:2

τA ∼ xpMc

B2R2
∼ 4x5M1.4R

−2
6 B−2

15 s, (56)

where M1.4 = M/1.4 M
.
We will now re-evaluate the Alfvén fluxes assuming energy losses

only along open field lines, assuming that the last closed field line
is defined by the velocity-of-light cylinder. Using equations (43)
and (52) we obtain new, longer, damping times. The flux PA now
contains a factor of θ4

L:

PA ∼ π2 R4

c3P 2
(ωξ0B)2. (57)

The mode energy is the same as before, and we thus obtain the
(much longer) time-scale

τA ∼ xp

2π2

Mc3P 2

R4B2
≈ 1010x5

(
P

10 s

)2
M1.4

R4
6B

2
15

s. (58)

For the case where the polar cap radius is determined by the mag-
netic pressure, we can again use (43) and (52) with θ cap = θA:

PA ∼
(

δB

B

)4/3
R2

4c
(ωξ0B)2 . (59)

This time the damping time-scale is

τA ∼
(

δB

B

)−4/3
xpMc

B2R2
∼ 4

(
δB

B

)−4/3
x5M1.4

B2
15R

2
6

s. (60)

Using the polar cap sizes of equations (49) and (50), we find that in
the range δBSF < δB < δBbr,

τA ∼ (0.05 − 150) x5M1.4R
−2
6 B−2

15 s, (61)

2 We note that a more rigorous calculation for the damping of axial and
axisymmetric Alfvén modes in a uniform density fluid sphere coupled with
the Poynting flux (42) leads to a similar result.
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and

τ ∼ (150 − 5 × 103) x5M1.4R
−2
6 B−2

15 s, (62)

in the range δBpin < δB < δBSF. (Note that these time-scales, in
common with some others that will follow below, depend upon
the size of the perturbation itself. This non-exponential damping
is characteristic of non-linear damping processes. Such time-scales
are physically meaningful, having the interpretation of the time it
takes for the mode to decay by a factor of order unity.)

As expected these time-scales lie somewhere between the full-
surface and light-cylinder results, equations (56) and (58), respec-
tively. It is also clear that the full-surface time-scale (56) and the
(perhaps more realistic) polar cap-modified time-scale (61) are suf-
ficiently short as to play a role in the evolutionary pathways dis-
cussed earlier in Section 2.2. On the other hand, the light-cylinder
time-scale (58) is too long to have any bearing on our analysis.

4.3 Magnetospheric damping: crustal modes

The second class of oscillations under consideration is that of crustal
elastic modes. For these modes, the fluid motion is confined inside
the crust.

As before, we will compute the damping time-scale τA by first
using the full-surface Poynting flux (43), making no effort to account
for the polar cap suppression factor. The mode energy is given by
equation (36) and we can approximate that by assuming that v ∼
ωξ 0. Then

Emode ≈ 1

2
ρ(ωξ0)2Vcrust, (63)

where Vcrust is the volume of the crust.
We obtain

τA ∼ cρ
Vcrust

B2R2
≈ 3c

M�

B2R3
, (64)

where � is the thickness of the crust (we have also used
ρ ≈ 3M/4πR3 for the density in the inner crust). Choosing a typical
thickness � = 0.1R, we find3

τA ∼ 0.3
Mc

B2R2
, (65)

or equivalently

τA ≈ 26 M1.4R
−2
6 B−2

15 s. (66)

If the magnetospheric damping is limited to the open field lines,
then we have the revised time-scale [through equation (43) and the
light-cylinder correction factor θ2

L]:

τA ∼ 0.05
Mc2P

B2R3
≈ 106

(
P

10 s

)
M1.4R

−3
6 B−2

15 s. (67)

Lastly, if the open line region is determined by the magnetic pres-
sure, the time-scale is modified by a factor θ 2

A:

τA ∼ 0.3

(
δB

B

)−2/3
Mc

B2R2
∼ 30

(
δB

B

)−2/3
M1.4

B2
15R

2
6

s. (68)

For the amplitude range δBSF < δB < δBbr, we have

τA ∼ (26 − 160) M1.4R
−2
6 B−2

15 s, (69)

3 This result is of the same order of magnitude as the more rigorous time-
scale calculated for axial and axisymmetric crustal modes of a uniform crust
coupled with the flux (42).

while for the range δBpin < δB < δBSF,

τA ∼ (160 − 103) M1.4R
−2
6 B−2

15 s. (70)

Apart from the light-cylinder result, all other damping time-scales
are rather short and are potentially relevant in the analysis of the
evolution of crustal modes.

4.4 Internal damping: friction due to flux tube cutting

The co-existing and possibly intersecting neutron vortices and pro-
ton flux tubes in the outer core of neutron stars can lead to a sub-
stantial mutual friction force Fmf between the fluids. The basic
reason behind the strong vortex–flux tube interaction is their intrin-
sic (mesoscopic) magnetic fields. The force at a single intersection
site is given by the ratio of the local magnetic interaction energy
Eint to the range of the magnetic forces, which can be taken to be
the London penetration length �. That is, after ignoring geometric
factors of order unity (Ruderman, Zhu & Chen 1998),

Fint ≈ Eint

�
≈ �2BnBp, (71)

where Bn and Bp are the magnetic fields carried by individual vor-
tices and flux tubes, respectively. The force exerted per unit vortex
length is

fpin ≈ Fint

dp
, (72)

where dp ≈ 95 B
−1/2
15 fm is the typical distance between flux tubes.

In the unperturbed system, the vortex array is expected to be
pinned to the much more numerous flux tubes, but an oscillation
with a sufficiently large amplitude may cause large-scale vortex
unpinning. In that case, the vortices will be able to move by ‘cut-
ting’ through the flux tubes. In both cases, fpin represents the pin-
ning/interaction force.

The process of cutting is dissipative: part of the fluid’s ki-
netic energy is transformed into short-wavelength ‘kelvon’ exci-
tations induced along each vortex (see Link 2003 for a discussion).
Each kelvon has an effective mass μ, wavenumber k and energy
Ek = �

2k2/2μ. If the relative flux tube–vortex velocity is

urel = up − un, (73)

then the interaction at each vortex–flux tube intersection lasts a time
interval tint ∼ �p/urel. From the uncertainty principle, we also get
Ek ≈ �/tint and this leads to

k ≈
(

2μ

��
urel

)1/2

≡ 1

�

(
urel

v�

)1/2

, (74)

where we have defined

v� = �/2μ� ≈ 109 cm s−1. (75)

This qualitative analysis is in agreement with the more detailed
discussion of Link (2003). Proceeding, we can note that for unpin-
ning to occur, urel should exceed the fluid velocity lag threshold
wpin above which the Magnus force exceeds the pinning force and
drives vortex unpinning.4 This critical lag is (Link 2003)

wpin ∼ fpin

ρnκ�
→ wpin ∼ 5 × 105 ρ−1

14 B
1/2
15 cm s−1, (76)

4 In a state of pinning, un ≈ up ≈ vp and hence the velocity difference
appearing in the Magnus force is un − vn ≈ w.
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where κ = h/2m ≈ 2 × 10−3 cm2 s−1 is the quantum of circulation
for individual vortices (we have also set � = 106 cm as a represen-
tative value for the cylindrical radial coordinate in the outer core).
Comparing with equation (25) giving our estimates of the value of
fluids’ relative velocity excited by the flare event, we see that larger
flares can easily satisfy wpin < urel, so it would seem that the vortices
can indeed unpin.

However, Link’s calculation treats the vortex–flux tube intersec-
tions as widely separated in relation with the kelvon wavelength,
thus ensuring that the excitations do not add up coherently. Math-
ematically this requirement means that kdp � 1, from which we
obtain a lower limit on the relative velocity, above which we can
trust the damping calculation:

ulow ≈ 6.5 × 108 B15 cm s−1. (77)

Link’s flux tube cutting model would then be valid for urel � ulow.
We can see that for magnetar-strong magnetic fields ulow is quite
large and we should expect ulow � wpin. We should also expect
that for any reasonable oscillation amplitude, we would have urel 	
ulow. In other words, a magnetar oscillation capable of forcing vortex
unpinning in the first place would be expected to lead to a vortex–
flux tube relative velocity somewhere in the range

wpin � urel � ulow. (78)

Unfortunately, this range lies outside the validity of Link’s flux tube
cutting model. For lack of a better alternative, we opt for ‘abusing’
Link’s analysis and assume that it remains reliable in the above
kinematical range, at least as an order-of-magnitude estimate. This
assumption is clearly debatable and this issue should be addressed
by more detailed future work. We can note, however, that as long as
the kelvon wavelength is microscopically short, kR � 1 (which is
always the case in the relevant parameter range), some dissipation
should take place.

The energy penalty for cutting through a single vortex–flux tube
intersection is (Link 2003)

�E = 2

π

F 2
int

ρnκ
(v�urel)

−1/2. (79)

The resulting dissipation rate per unit volume can then be written
as

Ecut = Nnurel

d2
p

�E, (80)

where Nn ≈ 2	/κ is the number of vortices per unit area. Combin-
ing the previous expressions,

Ėcut = 4	f 2
pin

πρnκ2

(
urel

v�

)1/2

. (81)

The next step is to relate the vortex/flux tube velocities with the fluid
ones. Based on the high conductivity of the system, we can safely
assume that the flux tubes move together with the proton fluid, i.e.
up ≈ vp. It is not so easy to make a similar statement for the vortices
and the neutrons. The simplest assumption is to set un ≈ vn; this
could be accurate in the range urel � wpin where cutting is strong
and the relative motion of vortices is almost that of free vortices.
With these identifications, we then have

urel = w. (82)

The dissipation rate (81) can be also expressed as the work done
by the mutual friction force Fmf. To this end, we first consider the
drag force per unit vortex length of the general form

f D = ρnκRurel. (83)

The (dimensionless) drag coefficient R is velocity dependent,

R = R0

(
urel

v�

)−3/2

, (84)

and R0 is a constant parameter [the −3/2 exponent is dictated by
equation (86) below].

We can subsequently define the mutual friction force (per unit
volume):

Fmf = Nn f D → Fmf = 2	ρnR0

(
urel

v�

)−3/2

urel. (85)

We then have

Ėcut = Fmf · urel, (86)

which fixes

R0 = 2

π

(
fpin

ρnκv�

)2

→ R0 ≈ 10−7B15. (87)

The above equations allow the calculation of a mutual friction
damping rate

Ėfm =
∫

dV Fmf · urel ≈
∫

dV Fmf · w. (88)

This becomes (assuming ρ ≈ constant)

Ėfm ≈ 16	

ρκ2

f 2
pin

v
1/2
�

∫ R

Rin

drr2 w1/2, (89)

where the radial integral is taken over the region of the outer core.
We can apply the above analysis to the case of magnetar Alfvén

oscillations. As we have seen in Section 3.1, we can approximate
the mode’s kinetic energy as (given the other uncertainties in this
calculation, we can ignore the entrainment correction)

Emode ≈ 1

2
ρp

∫
dV w2 = 2πxpρ

∫ R

0
drr2 w2. (90)

The mutual friction damping time-scale can be estimated with the
help of the standard formula:

τmf = Emode

|Ėmf |
. (91)

From this

τmf ≈ πκ2ρ2xp

4	

v2
�

f 2
pin

∫ R

0 drr2 w2∫ R

Rin
drr2 w1/2

. (92)

Given the order-of-magnitude precision of our calculation, we can
assume w ≈ uniform and arrive at the simpler result

τmf ∼ πxp

4	

v
1/2
�

w2
pin

w3/2, (93)

where we have also used (76). This result can be cast in a more
transparent form if we express w in terms of the magnetic field
perturbation δB. Using equation (24) from Section 3.1, we have

τmf ∼ 1

8
xpP

v
1/2
� v

3/2
A

w2
pin

(
δB

B

)3/2

. (94)

The key unknown in this expression is the perturbed magnetic field
δB. Given that flux tube cutting operates for a mode amplitude
above the threshold required by vortex unpinning, it makes sense to
normalize δB to its value δBpin, see equation (6) (obviously in the
flux tube cutting regime δB > δBpin).
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We can then obtain our ‘final’ result for the mutual friction time-
scale,

τmf ∼ 1

8
xpP

(
v�

wpin

)1/2 (
δB

δBpin

)3/2

, (95)

≈ 3 x5ρ
−1/2
14

(
P

10 s

) (
δB

δBpin

)3/2

B
−1/4
15 s. (96)

This result implies that a global magnetar oscillation will experience
strong damping once the amplitude exceeds the one required for
vortex unpinning (δB > δBpin). The cutting mechanism shuts down
for any δB < δBpin.

4.5 Internal damping: vortex–electron friction

There is a second type of mutual friction operating in our two-fluid
system, arising from the dissipative scattering of electrons by the
magnetized neutron vortices in the core. In fact, this is the mutual
friction mechanism usually considered in the superfluid neutron star
literature (see Alpar, Langer & Sauls 1988; Andersson, Sidery &
Comer 2006). It corresponds to a force exerted on unit vortex length

f D = ρnκR(vp − un) (97)

when the vortex moves with respect to the electrons. Note that the
drag coefficient R appearing in this expression is constant.

Assuming that this is the only frictional force exerted on the
vortex, we can arrive at the mutual friction force (for details see
Hall & Vinen 1956; Andersson et al. 2006),

Fmf = −2	n

[B { ẑ × ( ẑ × w)} + B′( ẑ × w)
]
, (98)

where B = R/(1 + R2) and B′ = R2/(1 + R2). The detailed cal-
culation of R (Alpar et al. 1988; Andersson et al. 2006) suggests
that R ≈ 4 × 10−4 and therefore

B ≈ R 	 1, B′ ≈ B2 	 B. (99)

We can estimate the damping time-scale of Alfvén modes as a
result of electron mutual friction by following the same logic as in
the preceding section. The damping rate is (we note that theB′-piece
of Fmf is not dissipative)

Ėmf ∼ 2	ρB
∫ R

0
drr2 w2. (100)

This leads to the damping time-scale

τmf ∼ 1

2

xpP

B ≈ 630 x5

(
P

10 s

) (
4 × 10−4

B
)

s. (101)

This is significantly longer than the time-scale associated with flux
tube cutting, but short enough to be relevant for the evolution of
magnetar QPOs.

As we have pointed out, the derivation of (101) assumes that no
other frictional force acts on individual vortices. The vortices in
the real system are likely to experience a mutual friction that is a
combination of electron friction and of the force due to flux tubes.
Both mechanisms operate when the vortices can move with respect
to the flux tubes (which are frozen in the proton–electron fluid)
and their relative strength would depend on the specific geometry
between the vortex and flux tube arrays (see for example Sidery &
Alpar 2009). In that case, the mutual friction damping should be
given by the shortest time-scale between (96) and (101).

4.6 Internal damping: other mechanisms

The stellar interior allows for additional dissipation channels – the
most conventional ones are standard shear and bulk viscosity (these
are represented by the viscous force Fvisc in the Euler equations
of Section 3.1). However, it is easy to see that in the temperature
regime where the observed magnetars are expected to reside (i.e.
core temperature T ∼ 108 K, see for instance Ho et al. 2012), none
of these mechanisms is of any importance. To see this, we can
use approximate, back-of-the-envelope, viscous time-scales derived
from Fvisc as in, for example, Cutler & Lindblom (1987). These are

τsv ∼ ρL2

η
, τbv ∼ ρL2

ζ
, (102)

where η and ζ are the coefficients of shear and bulk viscosity, respec-
tively. For the former parameter, we use the value appropriate for
superfluid matter, associated with electron collisions (Andersson,
Comer & Glampedakis 2005) η = 1.6 × 1019 x

3/2
5 ρ

3/2
14 T −2

8 . For the
bulk viscosity coefficient, we use Sawyer’s standard normal-matter
formula (Sawyer 1989). (This overestimates the damping rate be-
cause it does not account for the suppression of the beta-equilibrium
chemical reactions due to neutron and proton superfluidity).

We then obtain

τsv ∼ 6 × 106 ρ
−1/2
14 x

−3/2
5 L2

6T
2

8 s. (103)

The bulk viscosity time-scale is even longer so we do not write it
explicitly. These results clearly show that neither mechanism is a
factor in the evolution of magnetar oscillations.

There is a third possible damping mechanism, most commonly
known in the context of the r-mode instability (Andersson &
Kokkotas 2001): the viscous boundary layer formed at the base
of the crust due to the discontinuity in the mode’s velocity field.
This mechanism is rather important for r modes, severely limiting
their ‘instability window’ in the temperature regime where neither
shear nor bulk viscosity is efficient. However, we can show that
the boundary layer poses no threat to magnetar oscillations simply
because it is not formed.

This can be deduced by studying a simple plane-parallel model
of the crust–core interface (as in Bildsten & Ushomirsly 2000) or
by using the results of Mendell (2001). It is then found that the
magnetic field can seriously modify the physics of the layer and,
among other things, make the layer thicker (in the radial direction).
For this to happen, the magnetic field must satisfy v2

A/ων � 1,
where ν = η/ρp and vA is the superconducting Alfvén speed (7).
We find

v2
A

νω
∼ 108 x

−5/2
5 ρ

−3/2
14 H15B15T

2
8

(
100 Hz

fmode

)
. (104)

Clearly, the boundary layer is dominated by the magnetic field. Its
thickness is given by (Mendell 2001)

δVBL ≈ 2v3
A

ω2ν
. (105)

We should obviously have δVBL 	 R for the notion of the layer to
make sense. Inserting numbers in this formula,

δVBL ∼ 1014 x−3
5 (H15B15)3/2T 2

8 ρ−2
14

(
100 Hz

fmode

)2

cm. (106)

This length is much bigger than the stellar radius throughout the
relevant parameter space. We therefore conclude that a boundary
layer does not form during magnetar oscillations.
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4.7 Gravitational waves: emission and damping

Gravitational wave emission from the excited modes is of interest
for two reasons. First, the gravitational waves will themselves damp
the oscillations, so we need also to estimate the decay time-scale for
gravitational radiation damping. Secondly, the gravitational wave
emission may be detectable, and so could provide independent mea-
surements of frequencies and damping times.

Gravitational wave measurements of the damping times would
be particularly useful, as the lifetime of the QPOs as observed via
X-rays is probably not a good indicator of the lifetime of the stellar
oscillation itself. This is made clear by the fact that certain QPOs
appear briefly only in the middle of the X-ray burst, whereas the
modes themselves are presumably excited once, at the beginning of
the event. Also, the X-ray QPOs are visible as the modulations of
the light curve produced by the relativistic fireball created by the
initial event, so that once the fireball has faded and the X-ray flux
fallen, the X-ray modulations will no longer be detectable, even
if the star itself continues to oscillate. The lifetime of the X-ray
QPOs should therefore be taken as lower limits on the lifetimes of
the modes themselves. A ‘direct’ gravitational wave observation of
the modes would suffer no such selection effect, and give a robust
measure of the mode decay time-scale.

We will begin by estimating the gravitational wave damping time-
scale. The modes we consider here are all of low frequency, in the
sense of having frequencies well below the dynamical fundamental
f-mode frequency of ∼1–2 kHz. As such, they induce very small
density perturbations, consistent with the neglect of such pertur-
bations in Section 3, and to this level of approximation will not
radiate mass quadrupole radiation. However, the modes have sig-
nificant non-zero velocity perturbations, and so there will be mass
current quadrupole radiation, the luminosity of which we can easily
estimate.

Using the formalism of Thorne (1980), the energy flux for mass
current quadrupole radiation is (to order-of-magnitude precision)
Ė ∼ (ω3S)2, where S denotes the mass current quadrupole, which
can be approximated by a simple volume integral over the mass
current ρv over the star:

S ∼
∫

|r × (ρv)r| dV . (107)

These will be contributions from both the proton mass current ρpvp

and the neutron mass current ρnvn.
In the case of Alfvén modes, it is easy to show using the results of

Section 3.1 that there is a partial cancellation between the two mass
currents, with a net current of ∼ ρpvpm

∗
p/mp. We can insert this into

the equation above for S and then computing the gravitational wave
luminosity. Combing with the mode energy of equation (34) leads
to a damping time

τGW ∼ 1

xpMR4ω6
∼ 107x−1

5 M−1
1.4 R−4

6

(
fmode

100 Hz

)−6

s. (108)

The corresponding time-scale for the damping of crustal oscillations
is very similar. Comparing with the various internal and external
damping time-scales calculated previously, we see that gravitational
radiation is not a significant source of damping for our magnetar
QPOs.

The detectability of gravitational waves from magnetar flares
has already been considered in the literature. Some optimistic up-
per limits were obtained by looking at how much energy could
be channelled into modes (see e.g. Corsi & Owen 2011). Prob-
ably more realistically, detailed numerical simulations have also

been performed; see e.g. Zink, Lasky & Kokkotas (2012), who did
indeed find excitation of low-frequency modes. A key uncertainty
was the damping times of these modes, something which the (short-
duration) numerical simulations were unable to compute. Scaling
the results of fig. 3 of Zink et al. (2012) to a damping time of,
say, 100 s, typical for some of the damping mechanisms considered
above, we see that detection by a third-generation detector is possi-
ble, and detection by a second-generation (advanced) detector can-
not be ruled out, although a large magnetic field strength ∼1016 G
would be required.

5 C O N C L U D I N G D I S C U S S I O N

Our three ‘evolutionary pathways’ make several predictions with a
bearing on the observational signature of magnetar QPOs. These
were discussed in Section 2.2 and can be summarized as follows.

(i) The damping time-scale due to the combined action of su-
perfluid vortex mutual friction and magnetospheric Alfvén flux can
move both up and down during the evolution. The observed lifetimes
of X-ray QPOs range from tens to hundreds of seconds (Strohmayer
& Watts 2006; Hambaryan et al. 2011). Our calculated time-scales
can accommodate such a range, although we emphasize that the
observed X-ray lifetimes may not accurately reflect the lifetime of
the stellar oscillation itself.

(ii) The frequency of the Alfvén spectrum can only be shifted
upwards to higher frequencies during the evolution as a result of
the restoration of neutron superfluidity in the stellar core.

Clearly, our work suggests that analysis of the observational data
should allow for the possibility of both frequency and damping
time-scale variations for the QPOs. On the theoretical side, our work
indicated that a realistic ‘magnetar asteroseismology’ programme
should involve many more elements than the mere identification
of the observed frequencies with a ‘fixed’ theoretical oscillation
spectrum.

Our model can be (and should be) improved in many ways. An
obvious missing ingredient is the connection between the oscilla-
tion amplitude in the star and that of the emitting region outside
the star (the ‘fireball’). Apart from the obvious need of improving
the existing magnetar oscillation models, special attention must be
given to the damping mechanisms discussed here, i.e. vortex mutual
friction and electromagnetic losses into the magnetosphere. Non-
linear mode couplings (not considered here) could be an important
part of the story too, especially in the early post-flare stages when
the mode amplitudes are presumably largest. Another key unknown
is that of the initial conditions: which modes are excited and what
are their relative amplitudes? Answering these kinds of questions
goes hand in hand with understanding the detailed nature of the
flare’s trigger mechanism.

On a more technical level, while we were able to confirm the
reliability of our simple estimates for the magnetospheric damping
time-scales of Sections 4.2 and 4.3, using full-surface integrals for
the flux and volume integrals for the mode energy, our estimates for
mutual friction damping time-scales of Sections 4.4 and 4.5 were
done only in a simpler order-of-magnitude fashion. More detailed
calculations, using the full mode eigenfunctions, are needed to test
the reliability of our estimates.

Another interesting and novel problem that needs attention con-
cerns computing mode frequencies and damping rates when there
are sharp transitions in time and space between superfluid/non-
superfluid phases, and between pinned/non-pinned phases. We have
provided some simple toy model estimates of how these might tend
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to smooth out the transitions between the three regimes of interest
to us, but full mode calculations that incorporate such transitions
are clearly needed to properly understand this issue.

It is clear that the topical area of magnetar flares is a very challeng-
ing one but also one that offers a unique insight into these extreme
objects, potentially offering information on both the processes in-
ternal to the star and the star’s interaction with its magnetosphere.
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Gabler M., Cerdá-Durán P., Stergioulas N., Font J. A., Müller E., 2012,

MNRAS, 421, 2054
Gabler M., Cerda-Duran P., Font J. A., Müller E., Stergioulas N., 2013,

MNRAS, 430, 1811

Glampedakis K., Andersson N., 2006, Phys. Rev. D, 74, 044040
Glampedakis K., Andersson N., 2011, ApJ, 740, L35
Glampedakis K., Samuelsson L., Andersson N., 2006, MNRAS, 371, L74
Glampedakis K., Andersson N., Samuelsson L., 2011, MNRAS, 410, 805
Goldreich P., Julian W. H., 1969, ApJ, 157, 869
Gusakov M. E., Kantor E. M., 2013, MNRAS, 428, L26
Hall H. E., Vinen W. F., 1956, Proc. R. Soc. Lond. A, 238, 215
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