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We propose new predictions from grand unified theories (GUTs) [applicable to both supersymmetric
(SUSY) and non-SUSY models] for the ratios of quark and lepton Yukawa couplings. These new
predictions arise from splitting the masses of the messenger fields for the GUT-scale Yukawa operators by
Clebsch-Gordan factors from GUT symmetry breaking. This has the effect that these factors enter inversely
in the predicted quark-lepton Yukawa coupling ratios, leading to new possible GUT predictions. We
systematically construct the new predictions that can be realized in this way in SU(5) GUTs and Pati-Salam
unified theories and discuss model building applications.
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I. INTRODUCTION

In unified theories of fermion masses and mixings, such
as in SU(5) grand unified theories (GUTs) [1] or Pati-Salam
(PS) models [2], the fermions of the Standard Model (SM)
(plus in the latter case right-handed neutrinos) are unified in
joint representations of the enlarged unified gauge sym-
metry group. When this symmetry gets broken to the SM,
this can result in predictions for the ratios of the entries of
the quark and lepton Yukawa matrices at the unification
scale MGUT. Typical examples for such predictions are
bottom-tau Yukawa coupling unification [1], i.e. yb ¼ yτ, at
MGUT, or the Georgi-Jarlskog relation yμ=ys ¼ 3 [3]. Both
ratios can emerge from renormalizable GUT operators for
Yukawa couplings in the context of SU(5) GUTs or Pati-
Salam models [seen as a step towards SO(10) GUTs]. The
phenomenology of these relations was studied quite exten-
sively; for some recent references, see, for instance, [4–8].
However, in models for fermion masses and mixings

which aim at explaining the hierarchies between the quark
and charged lepton Yukawa couplings of the different
generations, the Yukawa couplings smaller than Oð1Þ are
preferably generated by effective operators, realized by the
exchange of heavy messenger fields in GUT representa-
tions. This applies to the Yukawa couplings of the first and
second generations but also to the bottom and tau Yukawa
couplings in supersymmetric (SUSY) models with small or
moderate tan β or in non-SUSY models. In the case of

SUSY models, we assume that the low energy theory cor-
responds to the minimal supersymmetric Standard Model
(MSSM).
Thenewpossibilitieswhicharise fromsuchoperatorshave

been discussed in the context of SU(5) GUTs in [9] and in
Pati-Salammodelsin[9–11]withdimension6anddimension
5 operators, respectively. For similar studies in SO(10) see,
for instance, [12] or more recently [13]. It has been shown in
[9] that inmanySUSYscenarios the newSU(5) relations like
yτ=yb ¼ − 3

2
or yμ=ys ¼ 9

2
or 6 are often favored compared to

bottom-tau Yukawa unification or the Georgi-Jarlskog rela-
tion.The implicationsof thesenewrelationswere studied, for
instance, in [14–16]. In anycase, towardsmakingprogress in
building SUSY or non-SUSY GUT models of flavor, it is
important to be aware of the full set of possibilities and to
study their phenomenological consequences.
In this paper, we discuss a new way of obtaining

predictions for the GUT-scale ratios of quark and lepton
Yukawa couplings. These new possibilities arise from
splitting the masses of the messenger fields for the
GUT-scale Yukawa operators by Clebsch-Gordan (CG)
factors from GUT symmetry breaking. This has the effect
that these factors enter inversely in the predicted quark-
lepton mass relations, leading to new possible predictions.
We systematically list the new predictions that can be
realized in this way in SU(5) GUTs and Pati-Salam unified
theories and discuss model building applications.

II. PREDICTIONS FROM SU(5) UNIFICATION

In [9] some of the authors considered SU(5) GUT mass
ratios from dimension 5 operators. The approach can be
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most easily explained looking at Fig. 1. In the previous
publication the vacuum expectation value (VEV) of Λ was
not considered or in other words the mass of the messenger
fields pair X and X̄ was assumed to transform trivially as a
gauge singlet. The external fields A, B1, B2 and C (note that
we use here a slightly different notation) were assigned to
various GUT representations. In particular, one was the
five-dimensional matter representation of SU(5):

F ¼ 5̄ ¼
�
dcRd

c
Bd

c
Ge − ν

�
L
; (1)

onewas the ten-dimensional matter representation of SU(5):

T ¼ 10 ¼ 1ffiffiffi
2

p

0
BBBBBB@

0 −ucG ucB −uR −dR
ucG 0 −ucR −uB −dB
−ucB ucR 0 −uG −dG
uR uB uG 0 −ec
dR dB dG ec 0

1
CCCCCCA

L

; (2)

and one was the SU(5) representation containing the Higgs
doublet. This can sit either in a five- or in a 45-dimensional
representation

ðh̄5Þa ¼ 5̄a; hðh̄5Þ5i ¼ v5; (3)

ðh45Þabc ¼ −ðh̄45Þbac ¼ 45abc ;

hðh̄45Þi5j i ¼ v45ðδij − 4δi4δj4Þ; (4)

where a; b ¼ 1;…; 5, α ¼ 1, 2, 3, β ¼ 4, 5 and
i; j ¼ 1;…; 4. The fourth external field of the diagram in
Fig.1wasassigned toaGUTsymmetrybreakingHiggs field,
like the adjoint

ðH24Þab ¼ 24ab;

hðH24Þabi ¼ V24ð2δaαδαb − 3δaβδ
β
bÞ; (5)

where again a; b ¼ 1;…; 5, α ¼ 1, 2, 3 and β ¼ 4, 5.

If we identify A and C with the matter representations F
and T, then there are new possible Yukawa coupling
relations beyond the renormalizable ones. With the VEV
of the additional GUT Higgs field H24 pointing in the
hypercharge direction we found, for instance, the new GUT
predictions ðYeÞij=ðYdÞij ¼ −3=2, 9=2 and 6, depending
on which representation the H24 field couples to and on
which representation contains the SM Higgs doublet. In the
SUSY case the fields A and C would be fermionic
components and the fields B1, B2 and Λ scalar components
of the respective superfields. As already noted, our results
also apply to the non-SUSY case.
In this work we want to extend the above approach to

include the case that the mass of the messenger pair X and
X̄ is not generated by a gauge singlet Λ1 but by a GUT non-
singlet, e.g. by a field in the adjoint representation of SU(5),
Λ24. In this particular case the masses of the components of
the messenger fields are proportional to their respective
hypercharges. More generally, when the heavy messenger
fields (which in general have masses split by CG factors
according to our approach) are integrated out, these CG
factors will enter inversely in the considered down-type
quark and charged lepton Yukawa matrix elements, which
can lead to new GUT predictions for the ratios
ðYeÞij=ðYdÞij beyond the ones considered in [9]. Note that
in the diagram of Fig. 1 the field Λ, which acquires a VEV,
should not be viewed as an external field of an effective
operator. When Λ acquires its VEV, it generates the mass
term for the messenger pair X and X̄ and only then the
messengers can be integrated out to obtain an effective
operator. Consequently, the VEV hΛi will appear inversely
in the effective operator.
In general, when Λ is not a singlet but e.g. in the adjoint

representation, the components of the messenger pair X and
X̄ receive masses (around the GUT scale in size), which are
split by CG coefficients. Below this scale, since the GUT
symmetry is now already spontaneously broken, also the
fields in the matter and Higgs representations are split into
their SM representations and, furthermore, the Higgs fields
B1 and B2 acquire their VEVs which are smaller than the
VEV of Λ. One of the fields B1 and B2 contains the SM
Higgs field and the other one may either be a GUT singlet
or in a 24- or 75-dimensional representation. If the field is
not a GUT singlet, it introduces another CG factor. In total,
we obtain a prediction for the ratio ðYeÞij=ðYdÞij of the
considered charged lepton and down-type quark Yukawa
matrix element.
For illustration, let us study an instructive example:

suppose A ¼ F, B1 ¼ H1, B2 ¼ h̄5 and C ¼ T. H1 is a
GUT singlet acquiring a heavy VEV satisfying
hH1i < MGUT. In a flavor model this could be for example
a flavon. If the messenger masses have a trivial mass
proportional to hΛ1i, we get the ordinary bottom-tau
Yukawa coupling unification. But we assume now that
the symmetries are such that the pair X and X̄, which are

FIG. 1. Diagrammatic representation of the operators giving
Yukawa coupling ratios at the GUT scale. A and C are matter
fields while B1 and B2 are Higgs fields. hΛi represents the
messenger mass term. If Λ is a total singlet, one could directly
write down a mass like in [9]. Otherwise Λ should transform as an
adjoint of the GUT symmetry splitting the masses of the
components of the messenger fields.
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five-dimensional representations of SU(5), get their mass
from hΛ24i. To be more precise, when the down-type
quarklike components of X and X̄ obtain a mass −2M, then
the leptonic components have the mass 3M (withM around
MGUT). At the GUT scale we therefore get in the
Lagrangian the effective operators

L⊃ Yij
hH1i
M

�
1

3
Liēcj − 1

2
Qjd̄ci

�
hd þ H:c:; (6)

which we have written down in terms of Standard Model
fields and where i, j are family indices. Taking the ratio
now yields ðYeÞij=ðYdÞij ¼ −2=3, which is a new result not
contained in [9].
In Table I we have collected all the ratios we have found

using this approach where we have restricted Λ to be not
larger than the adjoint and X not to be larger than the 50 of
SU(5). The relations which are new compared to the
previous publication are highlighted in bold. The involved
fields can be read off from Table II where we give the
explicit representations for A, B1, B2, C, X and Λ from
Fig. 1 and their prediction for ðYeÞij=ðYdÞij.
There are a few more comments in order. First of all, in

Table II we give only the cases where the messenger fields
connect the pairs ðA; B1Þ and ðC;B2Þ because only in this
case the messengers are matterlike and we get new relations.
The other case is given in the Appendix; see especially
Fig. 4. In that case the messengers act as effective Higgs
fields which obtain an induced VEV and we only get the
well-known dimension 4 results for the Yukawa couplings.
Then we also want to mention the case where X and X̄

are not in conjugated representations to each other. For
example X ¼ 5 and X̄ ¼ 4̄5 is possible if Λ is the adjoint of
SU(5). In this case 40 of the 45 components of X̄ remain
massless which should not be the case to avoid light
exotics. In principle one might add a X0 ¼ 45 field to
overcome this problem but this might introduce a different
Yukawa coupling ratio and hence spoil the clean prediction

for ðYeÞij=ðYdÞij so that we do not discuss this case here
any further.
Furthermore, it can happen that the product of X with X̄

contains more than one adjoint representation. To be more
precise this happens in SU(5) if the messengers are in 40- or
45-dimensional representations and their products contain
two different adjoint representations. Evaluating the effective
operator then might yield two different ratios ðYeÞij=ðYdÞij
depending on how you contract the indices. For example, the
combination ðA;B1Þ¼ðF;H75Þ with ðC;B2Þ¼ðT;h̄5Þ and
X ¼ 45 yields the two different ratios ðYeÞij=ðYdÞij ¼ 2 and
ðYeÞij=ðYdÞij ¼ 12. Hence, in these cases no proper pre-
diction is possible and we discard them from our tables.
Nevertheless, for the 40-dimensional messengers the ratio
does not depend on the SU(5) index contraction so that the
ratio remains unique and we list it in the tables.1

TABLE I. Summary of possible SU(5) predictions for the GUT-
scale Yukawa coupling ratios ðYeÞij=ðYdÞij. The new relations
compared to [9] are shown in bold. For more details about which
operator gives which ratio, see Table II.

Operator dimension ðYeÞij=ðYdÞij
4 1

−3
5 1=6

−1=2
−2=3
1

�3=2
−3
9/2
6

−18

TABLE II. Resulting predictions for the SU(5) GUT-scale
Yukawa coupling ratios ðYeÞij=ðYdÞij from the diagram in Fig. 1;
for more details see main text.

(A, B1) (C, B2) X Λ ðYeÞij=ðYdÞij
(F, h̄5) (T, H1) 10 Λ1 1
(F, h̄45) (T, H1) 10 Λ1 −3
(F, h̄5) (T, H24) 10 Λ1 6
(F, h̄5) (T, H24) 15 Λ1 0
(F, h̄5) (T, H75) 10 Λ1 −3
(F, h̄45) (T, H24) 10 Λ1 −18
(F, h̄45) (T, H24) 40 Λ1 0
(F, h̄45) (T, H75) 10 Λ1 9
(F, h̄45) (T, H75) 40 Λ1 0
(F, H1) (T, h̄5) 5 Λ1 1
(F, H1) (T, h̄45) 5 Λ1 −3
(F, H24) (T, h̄5) 5 Λ1 −3=2
(F, H24) (T, h̄5) 45 Λ1 3/2
(F, H75) (T, h̄5) 45 Λ1 −3
(F, H24) (T, h̄45) 5 Λ1 9/2
(F, H24) (T, h̄45) 45 Λ1 −1=2
(F, H75) (T, h̄45) 45 Λ1 1
(F, H75) (T, h̄45) 50 Λ1 0
(F, h̄5) (T, H1) 10 Λ24 1/6
(F, h̄45) (T, H1) 10 Λ24 −1=2
(F, h̄5) (T, H24) 10 Λ24 1
(F, h̄5) (T, H24) 15 Λ24 0
(F, h̄5) (T, H75) 10 Λ24 −1=2
(F, h̄45) (T, H24) 10 Λ24 −3
(F, h̄45) (T, H24) 40 Λ24 0
(F, h̄45) (T, H75) 10 Λ24 3/2
(F, h̄45) (T, H75) 40 Λ24 0
(F, H1) (T, h̄5) 5 Λ24 −2=3
(F, H1) (T, h̄45) 5 Λ24 2
(F, H24) (T, h̄5) 5 Λ24 1
(F, H24) (T, h̄45) 5 Λ24 −3
(F, H75) (T, h̄45) 50 Λ24 0

1We want to thank Vinzenz Maurer for bringing this point to
our attention.
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At this point we would like to make another remark.
There may of course be corrections to the predicted ratios,
coming for example from further operators at a higher level
in the operator expansion, from GUT threshold corrections
or from the effect of possible large GUT representations on
the gauge coupling evolution. The size of such corrections
has to be estimated when an explicit model is constructed,
as was done, for instance in an SO(10) model [17].

III. PREDICTIONS FROM PATI-SALAM
UNIFICATION

For the case of PS models we followed in principle the
same approach as for SU(5); see the previous section.
Therefore we will not describe the approach here again in
detail but instead just define all the fields and representa-
tions of the matter, Higgs and Λ fields involved.
The PS group SUð4ÞC × SUð2ÞL × SUð2ÞR is left-right

symmetric and the matter fields of the Standard Model are
contained in two representations

Ri
αa ¼ ð4; 2; 1Þi ¼

 
uRL uBL uGL νL

dRL dBL dGL e−L

!
i

; (7)

R̄iαx ¼ ð4̄; 1; 2̄Þi ¼
 
d̄RR d̄BR d̄GR eþR
ūRR ūBR ūGR ν̄R

!
i

; (8)

where α ¼ 1;…; 4 is an SUð4ÞC index, a; x ¼ 1; 2 are
SUð2ÞL;R indices and i ¼ 1, 2, 3 is a family index. The
fields in Ri form SUð2ÞL doublets and the fields in R̄i

SUð2ÞR doublets as indicated by the indices L and R.
The MSSM Higgs doublets are contained in the bidoub-

let representation

ðh1Þax ¼ ð1; 2̄; 2Þ ¼
�
hþu h0d
h0u h−d

�
; (9)

where the components h0u and h0d acquire the electroweak
symmetry breaking VEVs. To get the Georgi-Jarlskog
relation at the renormalizable level the Higgs doublets
are contained in the h15 ¼ ð15; 2̄; 2Þ field where the VEV
points into the direction of B − L due to the tracelessness of
the adjoint of SUð4ÞC.
The PS symmetry is broken by the two Higgs fields

Hαb ¼ ð4; 1; 2Þ ¼
�
uRH uBH uGH νH

dRH dBH dGH e−H

�
; (10)

H̄αx ¼ ð4̄; 1; 2̄Þ ¼
�
d̄RH d̄BH d̄GH eþH
ūRH ūBH ūGH ν̄H

�
; (11)

where the GUT symmetry breaking VEV points in the
directions hνHi and hν̄Hi. We have also considered the
cases where adjoints of PS acquire GUT-scale VEVs

ϕþ
1 ¼ ð1; 1; 1Þ; ϕþ

15 ¼ ð15; 1; 1Þ; (12)

ϕ−
1 ¼ ð1; 1; 3Þ; ϕ−

15 ¼ ð15; 1; 3Þ; (13)

which would not break PS to the Standard Model.
However, in a more complete theory, one could regard
them as effective combinations ofHH̄, as discussed in [11].
In the PS case we have more possibilities for the Λ fields

because we can take adjoints of SUð4ÞC and SUð2ÞR and
combinations of them

Λþ
1 ¼ ð1; 1; 1Þ; Λþ

15 ¼ ð15; 1; 1Þ; (14)

Λ−
1 ¼ ð1; 1; 3Þ; Λ−

15 ¼ ð15; 1; 3Þ: (15)

The results for PS are summarized in Table III and the
detailed operators are listed in Tables IVand V. Also for the
PS case we find new relations compared to the previous
study [9]; for example we find the ratio ðYeÞij=ðYdÞij ¼
3=2 which is a promising ratio for the third generation as it
was noted in [9] but where (with a singlet Λ) this ratio only
appeared in the SU(5) case.
We note that there are certain possible combinations of

external fields which are not contained in the tables. There
are four possible reasons for this. The first reason is that we
have put into the Appendix again the cases where the
messenger fields are Higgs-like and are thus not giving any
new results beyond the renormalizable dimension 4 oper-
ators. The second reason is that, as in SU(5), the fields X
and X̄ are not conjugated to each other introducing an extra
model building complication which we do not want to
discuss here. The third reason also appeared already in SU
(5), namely the case when the product of the messengers
contains more than one adjoint representation. In PS this
happens for the 15-, 20- and 36-dimensional representation
of SUð4ÞC. We have again dropped the nonunique

TABLE III. Summary of possible PS predictions for the
GUT-scale Yukawa coupling ratios ððYeÞij=ðYdÞij; ðYuÞij=
ðYdÞij; ðYνÞij=ðYuÞijÞ. The new relations compared to [9] are
shown in bold. For more details about which operator gives which
ratio, see Tables IV and V. Partial results for dimension 6
operators can be found in [10] where Λ was also taken to be
a singlet.

Operator dimension ððYeÞij=ðYdÞij;ðYuÞij=ðYdÞij;ðYνÞij=ðYuÞijÞ
4 (1, 1)

ð−3; 1Þ
5 ð0;�1Þ

ð−1=3;�1Þ
ð1;�1Þ

ð3=2;�1Þ
ð−3;�1Þ
ð9;�1Þ
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TABLE IV. Resulting predictions for the PS GUT-scale Yukawa coupling ratios ððYeÞij=ðYdÞij, ðYuÞij=ðYdÞij,
ðYνÞij=ðYuÞijÞ from the diagram in Fig. 1; for more details see main text.

(A, B1) (C, B2) X Λ ððYeÞij=ðYdÞij; ðYuÞij=ðYdÞij; ðYνÞij=ðYuÞijÞ
(R, h1) (R̄, ϕþ

1 ) ð4̄; 1; 2̄Þ Λ�
1

ð1;�1; 1Þ
(R, h1) (R̄, ϕþ

1 ) ð4̄; 1; 2̄Þ Λ�
15

ð−1=3;�1;−1=3Þ
(R, h1) (R̄, ϕ−

1 ) ð4̄; 1; 2̄Þ Λ�
1

ð1;∓1; 1Þ
(R, h1) (R̄, ϕ−

1 ) ð4̄; 1; 2̄Þ Λ�
15

ð−1=3;∓1;−1=3Þ
(R, h1) (R̄, ϕþ

15) ð4̄; 1; 2̄Þ Λ�
1

ð−3;�1;−3Þ
(R, h1) (R̄, ϕþ

15) ð4̄; 1; 2̄Þ Λ�
15

ð1;�1; 1Þ
(R, h1) (R̄, ϕ−

15) ð4̄; 1; 2̄Þ Λ�
1

ð−3;∓1;−3Þ
(R, h1) (R̄, ϕ−

15) ð4̄; 1; 2̄Þ Λ�
15

ð1;∓1; 1Þ
(R, h15) (R̄, ϕþ

1 ) ð4̄; 1; 2̄Þ Λ�
1

ð−3;�1;−3Þ
(R, h15) (R̄, ϕþ

1 ) ð4̄; 1; 2̄Þ Λ�
15

ð1;�1; 1Þ
(R, h15) (R̄, ϕ−

1 ) ð4̄; 1; 2̄Þ Λ�
1

ð−3;∓1;−3Þ
(R, h15) (R̄, ϕ−

1 ) ð4̄; 1; 2̄Þ Λ�
15

ð1;∓1; 1Þ
(R, h15) (R̄, ϕþ

15) ð4̄; 1; 2̄Þ Λ�
1

ð9;�1; 9Þ
(R, h15) (R̄, ϕþ

15) ð4̄; 1; 2̄Þ Λ�
15

ð−3;�1;−3Þ
(R, h15) (R̄, ϕ−

15) ð4̄; 1; 2̄Þ Λ�
1

ð9;∓1; 9Þ
(R, h15) (R̄, ϕ−

15) ð4̄; 1; 2̄Þ Λ�
15

ð−3;∓1;−3Þ
(R, h15) (R̄, ϕþ

15) ð2̄0; 1; 2̄Þ Λ�
1

ð0;�1; 0Þ
(R, h15) (R̄, ϕþ

15) ð2̄0; 1; 2̄Þ Λ�
15

ð0;�1; 0Þ
(R, h15) (R̄, ϕ−

15) ð2̄0; 1; 2̄Þ Λ�
1

ð0;∓1; 0Þ
(R, h15) (R̄, ϕ−

15) ð2̄0; 1; 2̄Þ Λ�
15

ð0;∓1; 0Þ
(R, h15) (R̄, ϕþ

15) ð3̄6; 1; 2̄Þ Λ�
1

ð3=2;�1; 3=2Þ
(R, h15) (R̄, ϕ−

15) ð3̄6; 1; 2̄Þ Λ�
1

ð3=2;∓1; 3=2Þ

TABLE V. Resulting predictions for the PS GUT-scale Yukawa coupling ratios ððYeÞij=ðYdÞij, ðYuÞij=ðYdÞij,
ðYνÞij=ðYuÞijÞ from the diagram in Fig. 1; for more details see main text.

(A, B1) (C, B2) X Λ ððYeÞij=ðYdÞij; ðYuÞij=ðYdÞij; ðYνÞij=ðYuÞijÞ
(R, ϕ−

1 ) (R̄, h1) ð4̄; 2̄; 3Þ Λþ
1

ð1;−1; 1Þ
(R, ϕ−

1 ) (R̄, h1) ð4̄; 2̄; 3Þ Λþ
15

ð−1=3;−1;−1=3Þ
(R, ϕ−

1 ) (R̄, h15) ð4̄; 2̄; 3Þ Λþ
1

ð−3;−1;−3Þ
(R, ϕ−

1 ) (R̄, h15) ð4̄; 2̄; 3Þ Λþ
15

ð1;−1; 1Þ
(R, ϕ−

15) (R̄, h1) ð4̄; 2̄; 3Þ Λþ
1

ð−3;−1;−3Þ
(R, ϕ−

15) (R̄, h1) ð4̄; 2̄; 3Þ Λþ
15

ð1;−1; 1Þ
(R, ϕ−

15) (R̄, h15) ð4̄; 2̄; 3Þ Λþ
1

ð9;−1; 9Þ
(R, ϕ−

15) (R̄, h15) ð4̄; 2̄; 3Þ Λþ
15

ð−3;−1;−3Þ
(R, ϕþ

1 ) (R̄, h1) ð4̄; 2̄; 1Þ Λþ
1

(1, 1, 1)
(R, ϕþ

1 ) (R̄, h1) ð4̄; 2̄; 1Þ Λþ
15

ð−1=3; 1;−1=3Þ
(R, ϕþ

1 ) (R̄, h15) ð4̄; 2̄; 1Þ Λþ
1

ð−3; 1;−3Þ
(R, ϕþ

1 ) (R̄, h15) ð4̄; 2̄; 1Þ Λþ
15

(1, 1, 1)
(R, ϕþ

15) (R̄, h1) ð4̄; 2̄; 1Þ Λþ
1

ð−3; 1;−3Þ
(R, ϕþ

15) (R̄, h1) ð4̄; 2̄; 1Þ Λþ
15

(1, 1, 1)
(R, ϕþ

15) (R̄, h15) ð4̄; 2̄; 1Þ Λþ
1

(9, 1, 9)
(R, ϕþ

15) (R̄, h15) ð4̄; 2̄; 1Þ Λþ
15

ð−3; 1;−3Þ
(R, ϕþ

15) (R̄, h15) ð2̄0; 2̄; 1Þ Λþ
1

(0, 1, 0)
(R, ϕþ

15) (R̄, h15) ð2̄0; 2̄; 1Þ Λþ
15

(0, 1, 0)
(R, ϕ−

15) (R̄, h15) ð2̄0; 2̄; 3Þ Λþ
1

ð0;−1; 0Þ
(R, ϕ−

15) (R̄, h15) ð2̄0; 2̄; 3Þ Λþ
15

ð0;−1; 0Þ
(R, ϕþ

15) (R̄, h15) ð3̄6; 2̄; 1Þ Λþ
1

(3/2, 1, 3/2)
(R, ϕ−

15) (R̄, h15) ð3̄6; 2̄; 3Þ Λþ
1

ð3=2;−1; 3=2Þ
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predictions which affected here only the 36-dimensional
representations.
Apart from these three reasons, in the case of PS models

another reason has emerged from our analysis, namely that
it can happen that even if X and X̄ are in conjugated
representations to each other, some messenger components
remain massless if Λ is a non-singlet. For the SUð2ÞR part
this can be understood easily as follows: Remembering that
the adjoint is a traceless tensor we have

hΛ−
1 i ¼ Λ

�
1 0

0 −1
�
: (16)

Suppose now X and X̄ are adjoints of SUð2ÞR as well with

X ¼
�
X0 Xþ

X− −X0

�
; (17)

and similar for X̄. The mass term generated by the VEVof
Λ−
1 is then

W ⊃ TrðXhΛ−
1 iX̄Þ ¼ ΛðXþX̄− þ X−X̄þÞ; (18)

which implies that there is no mass term for X0 and X̄0.
Similar to the case where X and X̄ are not conjugated to
each other this deficit might be fixed by introducing an
extra field (in this case another Λ field) which might
however spoil the clean prediction so that we decided not to
list such cases as well.

IV. GENERALIZATION TO HIGHER
ORDER OPERATORS

So far we have discussed only relations coming from
diagrams with only one messenger pair X and X̄.
Nevertheless, these results can be generalized to diagrams
with additional external heavy fields and additional inser-
tion of (nontrivial) messenger masses. Indeed, in such a
way it is possible to realize new CG factors, which can be
understood as products of the CG factors appearing at
lower orders. There are basically three effects which have
an influence on the Yukawa coupling ratio predicted by the
respective diagram, as expounded in the following bullet
points.

(i) Already at the renormalizable level the Yukawa
coupling ratio depends on which representations

contain the electroweak symmetry breaking Higgs
doublets. In SU(5) these are h̄5 and h̄45 [and h5 and
h45 which do not matter here because the up-type
quark Yukawa couplings are not related to any other
Yukawa couplings in SU(5)]. And in PS these are the
fields h1 and h15. While h̄5 and h1 give unification of
Yukawa couplings, h̄45 and h15 give a relative factor
of −3 between leptons and quarks (the VEV points
in the direction of B − L).

(ii) The second effect is associated with external fields
receiving a GUT-scale VEV. Let us consider for
example the SU(5) diagram from Fig. 1 with
ðA;B1Þ ¼ ðF;H24Þ with ðC;B2Þ ¼ ðT; h̄5Þ and
X ¼ 5. Then ðYeÞij=ðYdÞij ¼ −3=2 which is noth-
ing else than the ratio of hypercharges of the fields
contained in the 5 of SU(5) because the VEVof H24

points into the hypercharge direction. Looking at
Fig. 2 it is straightforward to see how this result
generalizes: inserting an additional H24 (as a Bj in
Fig. 2) coupling to five-plet messenger fields con-
tributes a factor of −3=2 to the resulting CG factor.
The analogous consideration can be done for an
additionalH24 coupling to ten-plet messenger fields.
This yields an additional factor of 6. For the PS case
similar arguments apply.

(iii) Thirdly, the resulting CG factor can be affected
when the messenger masses arise from VEVs of Λi
fields which are not gauge singlets. This leads to
split masses for the component fields of the mes-
sengers, and thus to inverse CG factors as we
discussed in the previous sections. As shown in
Fig. 2, also this mechanism can be generalized. In
the SU(5) case, this generalization is particularly
simple because the mass terms we consider are
either universal or coming from an adjoint giving the
inverse of the hypercharge ratio for the Yukawa
coupling ratio. For each nontrivial messenger mass
from an adjoint, we therefore obtain a factor of
ð−3=2Þ−1 for five-dimensional messengers and a
factor of ð1=6Þ−1 for ten-dimensional messengers.
Again, similar considerations can be done for the
PS case.

Based on these considerations, one can construct new
diagrams which effectively generate products of CG
factors. Instead of going through all possibilities at higher

FIG. 2. Generalization of Fig. 1 with jmessenger pairs, j insertions of Λ VEVs and jþ 1 external B fields from which one receives an
electroweak VEV and j receive high scale VEVs.
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order, let us consider an explicit example (which we then
also apply in the next section). Figure 3 shows a diagram
which illustrates how a CG factor of 4=9 can be realized.
The two split messenger masses from the VEVs of adjoint
representations each contribute a factor of ð−3=2Þ−1, such
that the resulting CG factor is ð−3=2Þ−2 ¼ 4=9.

V. APPLICATIONS

The novel CG factors found in the previous sections open
up new possibilities for GUTmodel building. In this section,
we will discuss some of these possibilities. In particular,
the new CG factors allow for alternative textures for the
GUT-scale Yukawa matrices, especially regarding the first
two families. Let us briefly discuss the situation in SU(5) as
an example (following [18,19]), where we have neglected
the sign of the CG coefficients for the sake of simplicity.
In SU(5) GUTs, Ye is related to YT

d , and without loss of
generality we can write for the upper 1-2 block describing
the first two families in the 2 × 2 Yukawa matrices

Yd ¼
�
d b

a c

�
⇒ Ye ¼

�
cdd cbb

caa ccc

�T

¼
�
cdd caa

cbb ccc

�
;

(19)

wherewehave introduced theCG factorsca,cb,cc andcd for
the respective matrix elements. We assume here that each of
the matrix elements arises dominantly from one GUT
operator and that the 1-3 and 2-3 mixing effects in Yd and
Ye can be neglected for discussing the mass relations for the
first two families. PossibleGUToperators and their predicted
CG factors have been discussed in the previous sections.
With a, b, c and d all being nonzero complex numbers, this
obviously results in a large number of possibilities.
Many of these possibilities are however constrained by

phenomenology. For instance in the context of SUSY
GUTs, to check the validity of such a texture, one has
to compute the renormalization group evolution of the mass
eigenvalues from the GUT scale to low energies (or vice
versa), taking into account the radiative threshold effects at
the SUSY scale. In a recent study [20], the following
constraints for the GUT-scale values of the diagonal
Yukawa couplings have been derived:

ð1þ η̄lÞyμ
ð1þ η̄qÞys

≈ 4.36� 0.23;
ð1þ η̄lÞye
ð1þ η̄qÞyd

≈ 0.41þ0.02−0.06 ;

(20)

where the η̄i are threshold correction parameters and where
the ranges indicate the 1σ uncertainties. The η̄i enter both
relations and they drop out in the following constraint
equation for the effective CG factors ce ¼ ye=yd and
cμ ¼ yμ=ys, where ye, yμ, yd and ys are the Yukawa
couplings of the electron, the muon, the down quark and
the strange quark, respectively [20]:

yμ
ys

�
ye
yd

�−1
¼ cμ

ce
≈ 10:7þ1.8−0.8 : (21)

From this constraint, one can easily check the validity of
the possible GUT textures for the masses of the first two
families.
Another interesting consequence of these GUT textures

is that, when embedded into a full flavor GUT model,
they give different 1-2 mixing contributions in the charged
lepton sector, as discussed systematically for the CG factors
of [9] in [18,19]. In small mixing approximation, it is given
as θe12 ≈

caa
ccc

. Its value (and phase) is important for selecting
possibly viable textures of the neutrino mass matrix and for
calculating the predictions for the leptonic mixing angles.
For example, in combination with a neutrino mass matrix
with zero 1-3 mixing and negligible 1-3 mixing in Ye, the
size of θe12 controls the leptonic 1-3 mixing angle as
θPMNS
13 ≈ sinðθPMNS

23 Þθe12 ≈ θe12=
ffiffiffi
2

p
. For possible choices

of CG factors, which relate θe12 to the Cabibbo angle θC,
the resulting predictions for θPMNS

13 have been studied in
[18,19]. The specific relation θPMNS

13 ≈ θC=
ffiffiffi
2

p
, which is

close to the measured value, has been discussed recently in
the context of GUTs in [21,22].

A. Example 1: Alternative textures
with zero ðYeÞ11 and ðYdÞ11

With a; b; c, and d all nonzero complex numbers, there
are in general no predictions for the quark-lepton mass
ratios. Probably the most popular predictive texture in SU
(5) GUT model building uses the Georgi-Jarlskog CG
factor cc ¼ 3 and ca ¼ cb ¼ 1 while d ¼ 0, i.e.

Yd ¼
�
0 b
a c

�
⇒ Ye ¼

�
0 b
a 3c

�
T
¼
�
0 a
b 3c

�
;

(22)

often combined with the assumption of a symmetric matrix.
This texture results (in leading order small mixing approxi-
mation) in diagonal Yukawa couplings yd ≈ ab=c, ys ≈ c,
ye ≈ ab=ð3cÞ, yμ ≈ 3c and hence ratios of diagonal
Yukawa couplings ce ¼ ye

yd
and cμ ¼ yμ

ys
given by

FIG. 3. Example for a generalization of Fig. 1 (of the form shown
in Fig. 2) which leads to a CG factor of 4=9. The messenger pairs
X5 and X̄5 are five-dimensional representations of SU(5). The
notation for the other fields and further details can be found in the
main text. A possible application is discussed in Sec. V.
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cμ ≈ cc ¼ 3; ce ≈
cacb
cc

¼ 1

3
⇒

cμ
ce

≈ 9: (23)

In addition, assuming jθd12j ≈ θC (which implies a ≈ b), it
leads to a small charged lepton mixing contribution of
about θe12 ≈

caa
ccc

≈ θC=3.
An alternative texture, with jθe12j ≈ θC, and better

agreement with the experimental data, was highlighted
in [22]:

Yd ¼
�
0 b
a c

�
⇒ Ye ¼

�
0 1

2
b

6a 6c

�
T
¼
�

0 6a
1
2
b 6c

�
;

(24)

which implies diagonal Yukawa couplings yd ≈ ab=c,
ys ≈ c, ye ≈ ab=ð2cÞ, yμ ≈ 6c and hence ratios of diagonal
Yukawa couplings ce ¼ ye

yd
and cμ ¼ yμ

ys
given by

cμ ≈ cc ¼ 6; ce ≈
cacb
cc

¼ 1

2
⇒

cμ
ce

≈ 12: (25)

In this texture ca ¼ cc and thus (taking jθd12j ≈ θC which
implies a ≈ b) one obtains jθe12j ≈ θC. The texture has been
applied recently to construct predictive flavor GUT models
in [23,24]. In Table II we have presented a new way to
obtain the CG factor 1

2
using an “inverse CG factor.”

With the new possible CG factor of 4
9
from a higher-

dimensional operator as discussed in Sec. IV there is
another potentially interesting option which is in good
agreement with the data, namely

Yd ¼
�

0 b

a c

�
⇒ Ye ¼

�
0 4

9
b

9
2
a 9

2
c

�T

¼
�

0 9
2
a

4
9
b 9

2
c

�
:

(26)

It implies diagonal Yukawa couplings yd ≈ ab=c, ys ≈ c,
ye ≈ 4ab=ð9cÞ, yμ ≈ 9c=2 and hence ratios of diagonal
Yukawa couplings ce ¼ ye

yd
and cμ ¼ yμ

ys
given by

cμ ≈ cc ¼
9

2
; ce ≈

cacb
cc

¼ 4

9
⇒

cμ
ce

≈ 10: (27)

B. Example 2: Alternative textures
with diagonal Ye and Yd

Another highly predictive situation is the case that Ye
and Yd are both diagonal, i.e. a ¼ b ¼ 0 in the above
notation,

Yd ¼
�
d 0

0 c

�
¼
�
yd 0

0 ys

�
⇒

Ye ¼
�
cdd 0

0 ccc

�
¼
�
ye 0

0 yμ

�
: (28)

Then, the ratios of diagonal Yukawa couplings ce ¼ ye
yd
and

cμ ¼ yμ
ys
are simply given by

ce ¼ cd; cμ ¼ cc ⇒
cμ
ce

¼ cc
cd

: (29)

The new CG factor of 1
3
, available in Pati-Salam models,

can be used in the combination cc ¼ 3 and cd ¼ 1
3
to obtain

the same prediction for the mass relations as from the
Georgi-Jarlskog texture, with (as above) cμ

ce
≈ 9. In contrast

to the Georgi-Jarlskog texture it yields no charged lepton
1-2 mixing, θd12 ≈ 0, which is interesting in the context
of neutrino mass textures which generate all lepton
mixing (including θPMNS

13 ) already in the neutrino sector,
e.g. [25,26].
A viable option for SU(5) is the combination of CG

factors cc ¼ 6 and cd ¼ 1
2
. It yields

cμ ¼ cc ¼ 6; ce ¼ cd ¼
1

2
⇒

cμ
ce

¼ 12.0: (30)

In Table II we have presented a new way to obtain the CG
factor 1

2
using an inverse CG factor.

The CG factor 4
9
from a higher-dimensional operator (cf.

Sec. IV) can also be used for the first family with diagonal
Ye and Yd, such that ce ¼ cd ¼ 4

9
directly. In combination

with cc ¼ 9
2
, we obtain

cμ ¼ cc ¼
9

2
; ce ¼ cd ¼

4

9
⇒

cμ
ce

¼ 10.1; (31)

in good agreement with experiments.

VI. CONCLUSIONS

We have proposed new GUT predictions for the ratios of
quark and lepton Yukawa couplings arising from splitting
the masses of the messenger fields for the GUT-scale
Yukawa operators by CG factors from GUT symmetry
breaking. The effect is that the CG factors enter inversely in
the predicted quark-lepton mass relations. This allows new
fractional CG factors for the ratios of charged lepton to
down-type quark Yukawa couplings such as 1

6
, − 2

3
in SU(5)

or − 1
3
, 3

2
in Pati-Salam, leading to new possible GUT

predictions.
We have systematically constructed the new predictions

that can be realized this way in SU(5) GUTs and Pati-Salam
unified theories. The new predictions all arise from the
types of diagrams in Fig. 1 and their generalization to
higher orders in Fig. 2, in other words, diagrams in which
the messenger fields are matterlike and receive their masses
from non-singlet GUT representations getting VEVs. The
resulting possible new predictions are indicated in bold in
Tables I and III.
Note that the diagrams of the type shown in Fig. 4,

where the messengers are Higgs-like fields, always lead to
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the usual CG relations, even when the messenger fields
receive masses from non-singlet GUT representations
getting VEVs. This is because in these types of diagrams,
one may think of all such diagrams as giving an effective
VEV for the Higgs coupling directly to the quarks and
leptons.
We have also discussed some possible new model

building applications involving the new CG coefficients
in the case of both SU(5) GUTs and Pati-Salam unified
theories. For example the new fractional CG coefficient of 4

9
opens up some new interesting possibilities for SU(5) and
the coefficient of − 1

3
for Pati-Salam unified theories.
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CASES WITH HIGGS-LIKE MESSENGERS

As discussed already in the main text we have put our
main focus in this publication on diagrams like in Fig. 1
where A and C are GUT matter representations. For these
diagrams the messengers are matterlike [they would carry a
Uð1ÞR charge if we would introduce an R symmetry]. In
fact, only this class of diagrams generates new relations
beyond the renormalizable ones.

Nevertheless, for completeness we have collected here
in the Appendix also the other cases. They are described
by the diagram in Fig. 4. In this case the messengers
are Higgs-like (X would carry no R charge) and their

TABLE VII. Resulting predictions for the PS GUT-scale
Yukawa coupling ratios ððYeÞij=ðYdÞij, ðYuÞij=ðYdÞij, ðYνÞij=
ðYuÞijÞ from the diagram in Fig. 4; for more details see main text.
If the messenger representation X has an index, there is more than
one way to combine the fields A and C or B1 and B2 to form this
representation.

(A, C) (B1, B2) X Λ
ððYeÞij=ðYdÞij, ðYuÞij=ðYdÞij,

ðYνÞij=ðYuÞijÞ
(R, R̄) (h1, ϕ

þ
1 ) ð1; 2̄; 2Þ Λ�

1
ð1;�1; 1Þ

(R, R̄) (h1, ϕ−
1 ) ð1; 2̄; 2Þ Λ�

1
ð1;∓1; 1Þ

(R, R̄) (h15, ϕ
þ
15) ð1; 2̄; 2Þ Λ�

1
ð1;�1; 1Þ

(R, R̄) (h15, ϕ−
15) ð1; 2̄; 2Þ Λ�

1
ð1;∓1; 1Þ

(R, R̄) (h15, ϕ
þ
1 ) ð15; 2̄; 2Þ Λ�

1
ð−3;�1;−3Þ

(R, R̄) (h1, ϕ
þ
15) ð15; 2̄; 2Þ Λ�

1
ð−3;�1;−3Þ

(R, R̄) (h1, ϕ−
15) ð15; 2̄; 2Þ Λ�

1
ð−3;∓1;−3Þ

(R, R̄) (h15, ϕ−
1 ) ð15; 2̄; 2Þ Λ�

1
ð−3;∓1;−3Þ

(R, R̄) (h15, ϕ
þ
15) ð151; 2̄; 2Þ Λ�

1
ð−3;�1;−3Þ

(R, R̄) (h15, ϕ
þ
15) ð152; 2̄; 2Þ Λ�

1
ð−3;�1;−3Þ

(R, R̄) (h15, ϕ−
15) ð151; 2̄; 2Þ Λ�

1
ð−3;∓1;−3Þ

(R, R̄) (h15, ϕ−
15) ð152; 2̄; 2Þ Λ�

1
ð−3;∓1;−3Þ

FIG. 4. Variation of Fig. 1 with a different topology where the
messenger fields are “Higgs-like.”

TABLE VI. Resulting predictions for the SU(5) GUT-scale Yu-
kawa coupling ratios ðYeÞij=ðYdÞij from the diagram in Fig. 4; for
more details see main text. If the messenger representation X has
an index, there is more than one way to combine the fields A and
C or B1 and B2 to form this representation.

(A, C) (B1, B2) X Λ ðYeÞij=ðYdÞij
(F, T) (h̄5, H24) 5̄ Λ1 1
(F, T) (h̄5, H24) 45 Λ1 −3
(F, T) (h̄5, H75) 45 Λ1 −3
(F, T) (h̄45, H24) 5̄ Λ1 1
(F, T) (h̄45, H24) 451 Λ1 −3
(F, T) (h̄45, H24) 452 Λ1 −3
(F, T) (h̄45, H75) 5̄ Λ1 1
(F, T) (h̄45, H75) 451 Λ1 −3
(F, T) (h̄45, H75) 452 Λ1 −3
(F, T) (h̄5, H1) 5̄ Λ24 1
(F, T) (h̄45, H1) 45 Λ24 −3
(F, T) (h̄5, H24) 5̄ Λ24 1
(F, T) (h̄5, H24) 45 Λ24 −3
(F, T) (h̄5, H75) 45 Λ24 −3
(F, T) (h̄45, H24) 5̄ Λ24 1
(F, T) (h̄45, H24) 451 Λ24 −3
(F, T) (h̄45, H24) 452 Λ24 −3
(F, T) (h̄45, H75) 5̄ Λ24 1
(F, T) (h̄45, H75) 451 Λ24 −3
(F, T) (h̄45, H75) 452 Λ24 −3
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representation determines the Yukawa coupling ratio. But
since the product of the matter fields A and C allows only
two possible representations containing a Higgs doublet we
end up again with the two renormalizable Yukawa coupling

ratios. For completeness we have collected the results for
SU(5) in Table VI and for PS in Table VII.
Note again that we do not consider cases here where

components of themessenger pairsX and X̄ remainmassless.
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