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Supersymmetric unifiedmodels inwhich theZ0 couples to theHiggs doublets, as in theE6 class ofmodels,

have large fine tuning dominated by the experimental mass limit on the Z0. To illustrate this, we investigate
the degree of fine tuning throughout the parameter space of the constrained exceptional supersymmetric

standard model (cE6SSM) that is consistent with a Higgs mass mh � 125 GeV. Fixing tan� ¼ 10, and

taking specific values of themass of theZ0 boson,withMZ0 � 2–4 TeV, wefind that theminimumfine tuning

is set predominantly from the mass of Z0 and varies from �200 to 400 as we vary MZ0 from �2 to 4 TeV.

However, this is significantly lower than the fine tuning in the constrainedminimal supersymmetric standard

model, of Oð1000Þ, arising from the large stop masses required to achieve the Higgs mass.
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I. INTRODUCTION

The Large Hadron Collider (LHC) has been accumulating
data since 2009 with no observation of new physics beyond
the standard model so far, placing strong limits on new
colored states in extensions of the standard model. For ex-
ample, in supersymmetric (SUSY) models there are strong
experimental limits on the first- and second-generation
squark and gluino masses [1,2], which imply that they must
be at least an order of magnitude larger than the electroweak
(EW) scale.Within constrained versions of SUSY, where the
stop masses are linked to first- and second-generation squark
masses, this can considerably increase fine tuning, since the
EW scale is very sensitive to stop masses, through the
electroweak symmetry-breaking conditions.

At the same time, Atlas and CMS have recently ob-
served a new state consistent with a standard-model-like
Higgs boson at mh ¼ 125–126 GeV [3,4], which is within
the range for it to be consistent with the lightest Higgs in
supersymmetric models. In the minimal supersymmetric
standard model (MSSM), this introduces further tension
with naturalness, since the light Higgs mass at tree level is

bounded from above by the Z boson mass (MZ). The large
radiative contributions from stops needed to raise it to the
observed value typically imply very large fine tuning. For
example, the constrained MSSM (cMSSM) [5] has been
shown to require fine tuning ofOð1000Þ if it is to contain a
125 GeV Higgs mass [6,7].
Here we consider fine tuning in an alternative class of

constrained SUSY models which involves both an extra

singlet field, denoted S, and an extraUð1Þ gauge symmetry

at low energy (TeV scale). As the singlet acquires a VEV,

denoted s, it produces a � term, denoted �eff , and it

breaks the extra Uð1Þ gauge symmetry, giving rise to a

massive Z0 boson. Such models can increase the tree-level

physical Higgs boson mass above the MZ limit of the

MSSM, due to both F-term contributions of the singlet

and the D-term contributions associated with the Z0, allow-
ing lighter stop masses and hence reducing fine tuning due

to stop loops. The exceptional supersymmetric standard

model (E6SSM) [8,9] is an example of such a model,

inspired by the E6 group. At tree level, the light Higgs

mass is given as
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where tan� ¼ v2

v1
is the ratio between the two Higgs

doublets’ vacuum expectation values (VEVs), � is the
Yukawa coupling of the singlet field to the Higgs doublets,
and �m2

h represents loop corrections.
Indeed, Eq. (1) shows that the E6SSM allows larger tree-

level Higgs masses than the NMSSM [10], which in turn
allows larger tree-level Higgs masses than the MSSM. This
means that the E6SSM does not rely on such a large
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contribution from the radiative correction term �m2
h in

order to reproduce the Higgs mass. As a result, the
E6SSM permits lower stop masses than either the
NMSSM or the MSSM. In addition, the � coupling in
theE6SSM can be larger at low energies (while still remain-
ing perturbative all the way up to the GUT scale) than is the
case in the NMSSM.

One might conclude that this should lead to lower fine
tuning in the E6SSM than either the NMSSM or MSSM,
since the large stop masses are usually the main source of
fine tuning in SUSY models. However, the origin of the
extra term in Eq. (1) is due to D terms arising from the
coupling of the Higgs doublets to the extra Uð1Þ gauge
symmetry, and such D terms also contribute to the mini-
mization conditions of the Higgs doublets. Indeed, as we
shall discuss, one of the minimization conditions of the
E6SSM can be written in the form

c
M2

Z

2
¼ ��2

eff þ
ðm2

d �m2
utan

2�Þ
tan 2�� 1

þ d
M2

Z0

2
; (2)

where c, d are functions of tan� which are of order
�Oð1Þ, m2

d, m
2
u are soft Higgs mass-squared parameters

and �eff arises from the singlet VEV. Written in this form,
it is clear that the D terms are a double-edged sword, since
they also introduce a new source of tree-level fine tuning,
due to the Z0 mass-squared term in Eq. (2), which will
increase quadratically as M2

Z0 , eventually coming to domi-

nate the fine tuning for large enough values of MZ0 . This
tree-level fine tuning can be compared to that due to �eff ,
which typically requires this parameter to be not much
more than 200 GeV, and similar limits also apply to MZ0 .
With the current CMS experimental mass limit for the Z0 in
the E6SSM ofMZ0 * 2:08 TeV [11], it is clear that there is
already a significant, perhaps dominant, amount of fine
tuning due to the Z0 mass limit.

In this paperwe investigate this new and important source
of fine tuning, namely that due to theMZ0 limit, and compare
it to the usual other sources of fine tuning in the framework
of the Constrained E6SSM (cE6SSM) [12–15]. Although
the impact of a SM-like Higgs with mh � 125 GeV on the
parameters has recently been considered in Refs. [16,17],
fine tuning was not considered. In fact, the present study is
the first time that fine tuning has been considered in any
supersymmetric E6 model with a low-energy Z0. To obtain
the required Higgs mass in the cE6SSM, it turns out that the
SM singlet field, S, must have a VEV s � 5 TeV,as pointed
out in Ref. [16]. This corresponds to a mass of the Z0 boson
predicted by themodel of 1.9 TeV,which almost reaches the
experimental bound of 2 TeV [11]. Thus, all the parameter
space we study respects the experimental limit on MZ0 .
Fixing tan� ¼ 10, and taking specific values of the mass
of the Z0 boson, MZ0 , ranging from 1.9 to 3.8 TeV, we find
that the current minimum fine tuning in the cE6SSM, con-
sistent with a Higgs mass mh � 125 GeV, varies from
�200 to 400, and is already dominated by the MZ0 limit.

However, this is significantly lower than the fine tuning in
the cMSSM ofOð1000Þ arising from the large stop masses
required to achieve the Higgs mass.
The rest of the paper is organized as follows: Section II

provides a short overview of the E6SSM. Then, the scalar
Higgs potential and the electroweak symmetry-breaking
(EWSB) conditions are discussed in Sec. III. In Sec. IV we
discuss the fine-tuning measure we use, and derive a fine-
tuning master formula for the E6SSM with a brief descrip-
tion of our seminumerical procedure of calculating fine
tuning. Section V is where we present our results and
discussion, and then we conclude the study in Sec. IV.

II. THE E6SSM

The exceptional supersymmetric standard model
(E6SSM) is a nonminimal supersymmetric extension of
the SM, which provides a low-energy alternative to the
MSSM and NMSSM. It is well motivated, both from more
fundamental theories due to its connection to E6 GUTs,
heterotic and F-string theory [18], and at the same time as a
low-energy effective model, providing solutions to phe-
nomenological problems. For instance, as mentioned in the
Introduction, the E6SSM allows a larger Higgs mass at tree
level than in both the MSSM and the NMSSM, thereby
requiring smaller contributions from loops. In addition, it
also solves the � problem associated with the MSSM by
dynamically producing the � term at the TeV scale, with-
out introducing the domain walls or tadpole problems that
can appear in the NMSSM.
The E6SSM is based on the Exceptional Lie group E6.

This contains both SOð10Þ and SUð5Þ as subgroups,
E6 ! SOð10Þ �Uð1Þc (3)

SOð10Þ ! SUð5Þ �Uð1Þ�; (4)

and hence also contains the standard model gauge group,
which is a subgroup of SUð5Þ. A linear combination of the
two extra Uð1Þc and Uð1Þ� groups can survive to low

energies, where it is spontaneously broken by a SM singlet
field, S. This generates the mass of the associated Z0 boson
and the exotic quarks, as well as dynamically producing a
�eff term. The model allows right-handed (RH) neutrinos
to have Majorana masses at some scale between the GUT
and low scales. This is achieved by choosing this linear
combination to be

Uð1ÞN ¼
ffiffiffiffiffiffi
15

p
4

Uð1Þc þ 1

4
Uð1Þ�; (5)

such that the RH neutrinos are not charged under Uð1ÞN;
hence it is possible to explain the tiny neutrino masses via
seesaw mechanisms.
At low energies, the group structure of the model is that

of the SM, along with the additional Uð1ÞN symmetry,

E6 ! SUð5Þ �Uð1ÞN (6)

P. ATHRON, MAIEN BINJONAID, AND S. F. KING PHYSICAL REVIEW D 87, 115023 (2013)

115023-2



SUð5Þ ! SUð3Þc � SUð2Þw �Uð1ÞY: (7)

The matter content of the model is contained in the com-
plete 27-dimensional representation, which decomposes
under SUð5Þ �Uð1ÞN to

27i ! ð10; 1Þi þ ð5�; 2Þi þ ð5�;�3Þi
þ ð5;�2Þi þ ð1; 5Þi þ ð1; 0Þi: (8)

Ordinary quarks and leptons are contained in the represen-
tations (10, 1) and ð5�; 2Þ. The Higgs doublets and exotic
quarks are contained in ð5�;�3Þ and ð5;�2Þ. The singlets
are contained in (1, 5), and finally the right-handed
neutrinos are included in (1, 0).

Moreover, the model requires three 27 representations,
hence i ¼ 1, 2, 3, in order to ensure anomaly cancellation.
This means that there are three copies of each field present
in the model. However, only the third generation (by
choice) of the two Higgs doublets, and the SM singlet
acquire VEVs. The other two generations are called inert.
Furthermore, in order to keep gauge coupling unification,
non-Higgs fields that come from extra incomplete 270, �270
representations are added to the model. As a result, a �0
term, which is not necessary related to the weak scale, is
present in the model.

The full superpotential consistent with the low-energy
gauge structure of the E6SSM contains includes both
E6-invariant terms and E6-breaking terms, the full details
of which are given in Ref. [8]. However, as in the MSSM, it
is necessary to forbid proton decay, and therefore a gen-
eralization of R parity should be imposed, and additionally,
because the E6SSM includes three generations of every

chiral superfield, there needs to be a suppression of
new terms which can induce flavor-changing neutral cur-
rents. To achieve this, we impose either a ZL

2 symmetry1

(Model I) or a ZB
2 symmetry2 (Model II) along with an

approximate ZH
2 symmetry, under which all fields are odd

except for the third-generation Higgs superfields, which
may arise from a family symmetry [19,20].
The ZH

2 -invariant superpotential then reads

WE6SSM � �iŜðĤd
i Ĥ

u
i Þ þ�iŜðD̂i

�̂DiÞ þ f��Ŝ�ðĤdĤ
u
�Þ

þ ~f��Ŝ�ðĤd
�ĤuÞ þ 1

2
MijN̂

c
i N̂

c
j þ�0ðĤ0 ^H0Þ

þ hE4jðĤdĤ
0Þêcj þ hN4jðĤuĤ

0ÞN̂c
j

þWMSSMð�¼ 0Þ; (9)

where the indices �, � ¼ 1, 2 and i ¼ 1, 2, 3 denote the
generations. S is the SM singlet field, Hu, and Hd are the
Higgs doublet fields corresponding to the up and down
types. Exotic quarks and the additional non-Higgs fields
are denoted by D and H0, respectively.
Finally, to ensure that only third-generation Higgs-like

fields get VEVs, a certain hierarchy between the Yukawa
couplings must exist. Defining � � �3, we impose �i,

�i � f��, ~f��, h
E
4j, h

N
4j. Moreover, we do not impose

any unification of the Yukawa couplings at the GUT scale.

III. THE HIGGS POTENTIAL AND THE
EWSB CONDITIONS

The scalar Higgs potential is

VðHd;Hu; SÞ ¼ �2jSj2ðjHdj2 þ jHuj2Þ þ �2jHd:Huj2 þ g22
8
ðHy

d�aHd þHy
u�aHuÞðHy

d�aHd þHy
u�aHuÞ

þ g02

8
ðjHdj2 � jHuj2Þ2 þ g021

2
ðQ1jHdj2 þQ2jHuj2 þQsjSj2Þ2 þm2

s jSj2 þm2
djHdj2

þm2
ujHuj2 þ ½�A�SHd:Hu þ c:c:	 þ �Loops; (10)

where g2, g
0ð¼ ffiffiffiffiffiffiffiffi

3=5
p

g1Þ, and g01 are the gauge couplings of
SUð2ÞL,Uð1ÞY (GUTnormalized), and the additionalUð1ÞN ,
respectively. Q1 ¼ �3=

ffiffiffiffiffiffi
40

p
, Q2 ¼ �2=

ffiffiffiffiffiffi
40

p
, and Qs ¼

5=
ffiffiffiffiffiffi
40

p
are effectiveUð1ÞN charges ofHu,Hd and S, respec-

tively. ms is the mass of the singlet field, and mu;d � mHu;d
.

The Higgs field and the SM singlet acquire VEVs at the
physical minimum of this potential,

hHdi¼ 1ffiffiffi
2

p v1

0

 !
; hHui¼ 1ffiffiffi

2
p 0

v2

 !
; hSi¼ sffiffiffi

2
p ; (11)

It is reasonable to exploit the fact that s � v, which will
help in simplifying our master formula for fine tuning, as
will be seen in Sec. IV. Then, from the minimization
conditions,

@VE6SSM

@v1

¼ @VE6SSM

@v2

¼ @VE6SSM

@s
¼ 0; (12)

the EWSB conditions are

M2
Z

2
¼ � 1

2
�2s2 þ ðm2

d �m2
utan

2�Þ
tan 2�� 1

þ g021
2
ðQ1v

2
1 þQ2v

2
2 þQss

2Þ ðQ1 �Q2tan
2�Þ

tan 2�� 1
;

(13)
2All the exotic quark, lepton and survival Higgs superfields are

odd, while all the other superfields remain even.

1All superfields except the leptons and survival Higgs are
even.
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sin 2� �
ffiffiffi
2

p
�A�s
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2 Qss
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m2
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2
g021 Q2

ss
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2
M2
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where M2
Z ¼ 1

4 ðg02 þ g22Þðv2
2 þ v2

1Þ and M2
Z0 � g021 Q2

ss
2.

Equation (13) can be written in the form

c
M2

Z

2
¼ ��2

eff þ
ðm2

d �m2
utan

2�Þ
tan 2�� 1

þ d
M2

Z0

2
; (16)

where c, d are functions of tan�which are of order�Oð1Þ
and we have written �eff ¼ �sffiffi

2
p . Written in this form, it is

clear that fine tuning will increase as MZ0 increases.
Another source of fine tuning is the large j�effj term as
mentioned in the Introduction, since satisfying Eq. (16)

will require this term to compensate for any increase in
either the second term (term 2: �m2

u, m
2
d) or the last term

(term 3: �M2
Z0).

The increasing experimental limits on MZ0 ð�sÞ result
in constraining the parameter space of the E6SSM such
that only relatively large values of m0 and m1=2 result in

successful solutions to the EWSB conditions (Figs. 1–11).
Moreover, imposing universal boundary conditions,

which is what characterizes the cE6SSM, means that all
low-energy SUSY parameters can be expanded in terms
of a few GUT-scale universal and fundamental input
parameters, namely

m0; m1=2; A; �ið0Þ; �ið0Þ; ht;b;�ð0Þ; (17)

where, m0, m1=2, and A are a universal scalar mass, a

universal gaugino mass, and a universal trilinear coupling,

FIG. 1 (color online). �max (left) and mh (right) in the m0-m1=2 plane for tan� ¼ 10 and s ¼ 5 TeV corresponding to
MZ0 ¼ 1:9 TeV. We also fixed �1;2ð0Þ ¼ 0:1 while scanning over �3 
 �3ð0Þ 
 0 and 0 
 �1;2;3ð0Þ 
 3. The benchmark point

corresponds to m0 ¼ 2020, m1=2 ¼ 1033 GeV.

FIG. 2 (color online). The left panel highlights the parameter responsible for the largest amount of fine tuning, �max, in the m0-m1=2

plane for tan� ¼ 10 and s ¼ 5 TeV corresponding toMZ0 ¼ 1:9 TeV. On the right, a coarse scan shows which terms in Eq. (16) give
the largest contribution, with regions where the largest contribution comes from term 2, which is proportional to m2

d �m2
utan

2�,
shown in yellow; and regions where the dominant contribution is from term 3, proportional to M2

Z0 , shown in blue.
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FIG. 3 (color online). �max (left) and mh (right) in the m0-m1=2 plane for tan� ¼ 10 and s ¼ 6 TeV corresponding to
MZ0 ¼ 2:3 TeV. The benchmark point corresponds to m0 ¼ 1951, m1=2 ¼ 1003 GeV.

FIG. 4 (color online). The left panel highlights the parameter responsible for the largest amount of fine tuning, �max, in the m0-m1=2

plane for tan� ¼ 10 and s ¼ 6 TeV corresponding toMZ0 ¼ 2:3 TeV. On the right, a coarse scan shows which terms in Eq. (16) give
the largest contribution, with regions where the largest contribution comes from term 2, which is proportional to m2

d �m2
utan

2�,
shown in yellow; and regions where the dominant contribution is from term 3, proportional to M2

Z0 , shown in blue.

FIG. 5 (color online). �max (left) and mh (right) in the m0-m1=2 plane for tan� ¼ 10 and s ¼ 7 TeV corresponding to
MZ0 ¼ 2:6 TeV. The benchmark point corresponds to m0 ¼ 2186, m1=2 ¼ 1004 GeV.
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FIG. 6 (color online). The left panel highlights the parameter responsible for the largest amount of fine tuning, �max, in the m0-m1=2

plane for tan� ¼ 10 and s ¼ 7 TeV corresponding toMZ0 ¼ 2:6 TeV. On the right, a coarse scan shows which terms in Eq. (16) give
the largest contribution, with regions where the largest contribution comes from term 2, which is proportional to m2

d �m2
utan

2�,
shown in yellow; and regions where the dominant contribution is from term 3, proportional to M2

Z0 , shown in blue.

FIG. 8 (color online). The left panel highlights the parameter responsible for the largest amount of fine tuning, �max, in the m0-m1=2

plane for tan� ¼ 10 and s ¼ 8 TeV corresponding toMZ0 ¼ 3:0 TeV. On the right, a coarse scan shows which terms in Eq. (16) give
the largest contribution, with regions where the largest contribution comes from term 2, which is proportional to m2

d �m2
utan

2�,
shown in yellow; and regions where the dominant contribution is from term 3, proportional to M2

Z0 , shown in blue.

FIG. 7 (color online). �max (left) and mh (right) in the m0-m1=2 plane for tan� ¼ 10 and s ¼ 8 TeV corresponding to
MZ0 ¼ 3:0 TeV. The benchmark point corresponds to m0 ¼ 2441, m1=2 ¼ 1002 GeV.
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FIG. 9 (color online). �max (left) and mh (right) in the m0-m1=2 plane for tan� ¼ 10 and s ¼ 9 TeV corresponding to
MZ0 ¼ 3:4 TeV. The benchmark point corresponds to m0 ¼ 2709, m1=2 ¼ 1001 GeV.

FIG. 10 (color online). The left panel highlights the parameter responsible for the largest amount of fine tuning, �max, in them0-m1=2

plane for tan� ¼ 10 and s ¼ 9 TeV corresponding toMZ0 ¼ 3:4 TeV. On the right, a coarse scan shows which terms in Eq. (16) give
the largest contribution, with regions where the largest contribution comes from term 2, which is proportional to m2

d �m2
utan

2�,
shown in yellow; and regions where the dominant contribution is from term 3, proportional to M2

Z0 , shown in blue.

FIG. 11 (color online). �max (left) and mh (right) in the m0-m1=2 plane for tan� ¼ 10 and s ¼ 10 TeV corresponding to
MZ0 ¼ 3:8 TeV. The benchmark point corresponds to m0 ¼ 2975, m1=2 ¼ 1005 GeV.
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respectively, and (0) means taking the parameter at the
GUT scale [in the Results section, we refer to �3ð0Þ and
�1;2;3ð0Þ as �0 and �0, respectively].

This is accomplished by using the one-loop renormal-
ization group equations of the scalar masses, so that one
can express m2

Hu
at the SUSY scale, MS, as

m2
Hu
ðMSÞ ¼ z1m

2
0 þ z2m

2
1=2 þ z3A

2 þ z4m1=2A: (18)

Then it is possible to write

M2
Z

2
� Xn

i¼1

Fizia
2
i ; (19)

where a denotes the fundamental parameters, and z is
the coefficient corresponding to each parameter and is
calculated numerically. F is some factor, possibly involv-
ing tan�.

Whence one can calculate (analytically or numerically)
the sensitivity of MZ to each fundamental parameter, this
leads us to fine tuning.

IV. FINE TUNING AND THE MASTER FORMULA

To study the degree of fine tuning, a quantitative mea-
sure needs to be applied. Here we use the conventional
fine-tuning measure [21,22], where the fractional change in
the observable is calculated for a given fractional change in
the input parameter,

�a ¼
��������@ lnMZ

@ ln a

��������; (20)

where MZ is the mass of the Z boson3 and a is one of the
fundamental parameters in the set fm0; m1=2; A; �ð0Þ; �ð0Þg.

For example,�a ¼ 10 and 200 correspond to a 10% and
0.5% tuning in the parameter a, respectively. Moreover, for
a given point in the parameter space, fine tuning is the
maximum value of fine tuning in the set f�ag, and is
denoted �max (or simply �).

This measure has been used extensively within the lit-
erature, e.g. Refs. [23–45].

A. Alternative tuning measures

Some concerns have been raised in the literature
regarding the use of this measure, and its use is not universal,
with a number of alternative measures having been intro-
duced and applied [46–60]. The f�agmeasure the sensitivity
of the parameters to the observable, and as such are very
dependent on the parametrization chosen. In particular,
whether one takes pi to be the parameter or instead chooses
a ¼ p2

i introduces a factor-2 difference, and this factor of 2
will then appear for every point in the parameter space.

To remove this global sensitivity one can choose some nor-
malization [46–49] on the �a; however, this then introduces
questions about the bounds on the parameters, and the proba-
bility is not clearly defined or understood.
Additionally, the overall tuning is chosen by taking

� as the maximum of the individual sensitivities f�ag,
but a proposed alternative is to combine them in quad-
rature, like uncorrelated errors [54–57]. Clearly these
measures can differ substantially, but it is not obvious
which should be chosen. A new measure [59] defined
tuning4 as the ratio of the parameter space volume (de-
fined by fixed dimensionless variations in the parameters)
to the same volume with the additional constraint that the
dimensional variations of the observable are no greater
than those of the parameters. As such, this measure
automatically combined the tuning from each parameter
into a single tuning defined in terms of parameter-space
volume. For the simple cases studied, it was shown that
this new measure was in greater agreement with the
conventional measure than the alternative where the sen-
sitivities are combined in quadrature, which might be
understood as being due to large correlations between
the individual sensitivities.
Finally, all the measures described so far define tuning as

a theoretical feature of a point in parameter space, mea-
suring how natural a point is. As such, these measures
quantify how natural phenomenologically acceptable
points are once experimental limits have ruled out points
which were initially favored as being natural (or more
natural). Instead, within Bayesian analyses natural expec-
tations for parameter space points, given by the prior
distribution, are combined with experimental data to
determine the probability defined as a degree of belief. If
one must fine-tune the parameters to get the measured
values of observables correct, then this will correspond to
only a tiny fraction of the total integrated prior volume, and
therefore fine-tuned scenarios should be automatically pe-
nalized. However, in practice, in MSSM studies MZ is
often fixed to its experimental value at the outset, reducing
the dimensionality of the parameter space and missing the
fine tuning. To fix this, one can start off with a full set of
parameters with the chosen prior distribution, uncon-
strained by EWSB requirements and then perform a
Jacobian transformation [7,61–65]. The Jacobian factor
accounts for the missed fine tuning and introduces similar
derivatives to those appearing in the sensitivity criterion, so
it then appears as an effective ‘‘fine-tuning prior.’’
In the MSSM, the conventional measure of fine tuning is

numerically very close to this effective fine-tuning prior
(see e.g. Ref. [7]) and has sometimes been used directly as

3Note that some authors choose M2
Z instead of MZ. Both

measures can be easily linked, since 1
2 �aðM2

ZÞ ¼ �aðMZÞ. Our
choice was made to enable straightforward comparisons with the
results in Ref. [7].

4This measure also allows one to combine several observables
and has a normalized version of the tuning measure to deal with
global sensitivity in a similar manner to Refs. [46–49], but with a
slightly different normalization and interpretation in terms of
probabilities.
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a fine-tuning prior [32,66], without directly calculating the
Jacobian factor.

Nonetheless, the conventional tuning remains a very
simple and useful measure and has continued to be used
widely with the literature. We will employ it here for the
following reasons:

(1) It is the most widely used tuning measure with
which one can compare.

(2) It gives a good approximation of the effective fine-
tuning prior.

(3) It is simple to understand and apply.
(4) It provides a better match to the more complicated

multiparameter measure [59] than combining sensi-
tivities in quadrature.

In particular, please note that the simplicity andwide use is
very important, since this is thefirst quantitative investigation

into tuning in this model, and therefore comparison to what
has been done in other models is of greater significance.
Applying this measure provides a quantification of the
severity of tuning in the model, and shows which regions
have the least fine tuning and could be used as an ‘‘effective
fine-tuning prior’’ in future Bayesian studies of the model.

B. Master formula

Having concluded the discussion on the motivation and

suitability of this measure, we now proceed to apply it in a

quantitative analysis of fine tuning. To do so, we first derive

and present the master formula which gives the explicit

expression from which the fine tuning is calculated. Using

Eqs. (13)–(15) and (20), we derive this master formula5 for

fine tuning in the E6SSM:

�a � c�1 � a

M2
Zðtan 2�� 1Þ

�ð1� tan 2�Þ
2

@ð�2s2Þ
@a

þ @m2
d

@a
� tan 2�

@m2
u

@a
þ g021

2
ðQ1 � tan 2�Q2Þ

�
�
Qs

@s2

@a
þ 4M2

Z

�g2
@

@a
ðQ1cos

2�þQ2sin
2�Þ

�
� tan�

cos 2�

�
1þ M2

Z

m2
d þm2

u þ �2s2 þ g02
1

2 Qss
2ðQ1 þQ2Þ

�

�
� ffiffiffi

2
p @ð�A�sÞ

@a
� sin 2�

@

@a

�
m2

d þm2
u þ �2s2 þ g021

2
QsðQ1 þQ2Þs2

��	
; (21)

where

c ¼
�
1� 4

ðtan 2�� 1Þ
g021
�g2

ðQ1 � tan 2�Q2Þ � ðQ1cos
2�þQ2sin

2�Þ
�

(22)

and �g2 ¼ ðg02 þ g22Þ. For tan� ¼ 10, c�1 ’ 0:88.
The aim is to expand the low-energy parameters, includ-

ing s, in terms of the GUT-scale universal input parameters
using the E6SSM renormalization group equations as men-
tioned in the previous section. Next, the formula is imple-
mented into a private cE6SSM spectrum generator
(described in Refs. [14,15]), and fine tuning at each point
in the scanned parameter space is calculated. In order to
ensure accuracy of the results, the derivatives in the master
formula for a ¼ �ð0Þ and a ¼ �ð0Þ are calculated numeri-
cally. And in order to calculate

@

@a
s2; (23)

we use

s2 ¼ � 2

g021 Q
2
s

m2
s ; (24)

where, as usual, m2
s is expanded in terms of the GUT

parameters.
Finally, throughout our study, we fix tan� ¼ 10,

since larger and smaller values restrict the availability of
mh � 125 GeV and the parameter space [16].

V. RESULTS AND DISCUSSION

The scans are taken for fixed s ¼ 5–10 TeV correspond-
ing to MZ0 ¼ 1:9–3:8 TeV. We scan over

�3 & �3ð0Þ & 0 and

0 & �1ð0Þ ¼ �2ð0Þ ¼ �3ð0Þ & 3 (25)

while fixing �1;2ð0Þ ¼ 0:1 and tan� ¼ 10. The sign of

� � �3ð0Þ is a free parameter in our convention since we
are setting s and m1=2 > 0. However, as with previous

studies [16], we found that most of the parameter space
is covered with � < 0, while � > 0 covers a much smaller
region of the parameter space. Therefore, we focused on
� < 0 in our study. The other GUT parameters—m0, m1=2

and A0—are obtained as an output so that the EWSB
conditions are satisfied to one-loop order. Then we plot
bothmh and �max in them0-m1=2 plane. The key at the top-

left of all plots corresponding tomh shows the central value

5Note that we have left two terms in the second line of Eq. (21)
written in terms of derivatives of cos 2� and sin 2� with respect
to a. Substituting for soft masses here would unnecessarily
clutter the expression, and we note that these terms are numeri-
cally negligible since their contribution to fine tuning is very
small [<Oð1Þ]. This is due to the fact that they will be multi-
plied by an overall factor of order Oð<10�12Þ.
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in a bin of width�0:5 GeV, while that corresponding to �
shows the central value in a bin of width �50.

Moreover, we select a benchmark point corresponding to
each value of s. These points possess the smallest fine tuning
in the m0-m1=2 plane consistent with a Higgs mass within

the 124<mh < 127 GeV range, andm~g � 850 GeV. They

are denoted with a black dot in Figs. 1–12. These points and
the relevant physical masses are summarized in Table I in
Appendix A

In the left panel of Fig. 1, the results for s ¼ 5 TeV,
corresponding to MZ0 ¼ 1:9 TeV, are shown with fine-
tuning contours, ranging from 100 to above 800 for the
highest m0. For each value of m0 and m1=2, the parameters

�, �, and A take different values. Since the Higgs mass
strongly depends both on stop corrections and on �, it will
also take different values denoted by the Higgs mass con-
tours displayed in the right panel of Fig. 1. Since both fine
tuning and the Higgs mass vary over them0-m1=2 plane, the

mass of the Higgs discovered at the LHC plays a crucial
rule in fixing the level of tuning, though this dependence is
significantly more complicated than in the MSSM. Thus,
although for s ¼ 5 TeV the tuning can in principle be as
low as 100, in order to obtain mh � 124 GeV the fine
tuning must be more than twice as large as this. A bench-
mark representing points with the lowest tuning compat-
ible with data is shown as black dots in Fig. 1 having
�BM ¼ 251 with mh � 124 GeV. Note that mh �
125 GeV is almost impossible to achieve for s ¼ 5 TeV
(represented by the very small green region in the right
panel). In addition, the value MZ0 ¼ 1:9 TeV slightly vio-
lates the CMS limit MZ0 * 2:08 TeV [11], although this
limit does not take into account the presence of lighter
singlet states which increase the Z0 width and reduce the
leptonic branching ratio, weakening this limit as discussed
in Ref. [12].

One also needs to take into account LHC constraints
from squark and gluino searches, which rule out
m1=2 & 1 TeV corresponding to a gluino mass m~g &

850 GeV [16].
In Appendix A we provide a set of benchmark points

corresponding to m1=2 � 1 TeV, and these benchmark

points are denoted by small black dots on the figures. We
emphasize that the cE6SSM has not been studied by any of
the LHC experiments, and that the gluino mass limits in the
E6SSM may differ from those of the MSSM as discussed
recently [67]. Therefore, in choosing our minimum tuning
benchmarks, the limits we assumed are quite conservative.
From the results in Ref. [16], we find that in the cE6SSM,
the gluino mass is approximately given by m~g � 0:85m1=2

and the first- and second-generation squark masses are
given by m~q � ð1:3–1:8Þm0, depending on m1=2. In the

future (for example, when the full 8 TeV data set is
analyzed), the allowed values of m0 and m1=2 are expected

to increase according to these approximate relations.
Therefore, we show in Appendix B (Table II) the minimum

allowed fine tuning associated with gluino mass in
the 1 
 m~g 
 1:5 TeV range, and the usual range for the

singlet VEV s ¼ 5–10 TeV. Clearly, the fine tuning in
the cE6SSM is not as large as that in the CMSSM,
where increasing m~g to 1.5 TeV leads to minimum fine

tuning> 1000 as found in Ref. [7], while it varies between
�600 and 800 the cE6SSM.
At first sight, the distribution of fine tuning in the

m0-m1=2 plane could seem counterintuitive, since one

might expect the region of smaller values of m0 and m1=2

to possess lower fine tuning. However, the variation of
�max can be understood by studying which parameter
contributes the maximum fine tuning at each point in the
parameter space. We show this in Fig. 2 (left panel), where
it is clear that the region of smallm0 andm1=2 is dominated

by large fine tuning in the parameter �0, resulting from a
large j�effj term in this region.
In addition, �0 can contribute to �max, since A� and ms

are strongly dependent on this parameter. The physical
origin of the fine tuning in �0 is due to the loops of exotic
D particles which serve to radiatively drive the singlet mass
squared negative, which triggers electroweak symmetry
breaking. Finally, m0 can be the source of fine tuning for
very large values of m0, which is the region extending
beyond what we show in the plots.
The relative fine tuning in the input parameters

fm0; m1=2; A; �ð0Þ; �ð0Þg does not directly tell us any infor-

mation about the relative importance of the second and
third terms on the right-hand side of Eq. (16), both of
which can independently be large and hence lead to a large
j�eff j which is manifested as large fine tuning in �0. It is
therefore instructive to directly compare the magnitudes of
the second and third terms of Eq. (16), where the former is
proportional to m2

u and m2
d, hence sfermions, and the latter

is proportional to M2
Z0 . In Fig. 2 (right panel), we scan the

parameter space for s ¼ 5 TeV, and for each point we
show which of the two terms is larger. The larger of the
two would be responsible for the fine tuning at the corre-
sponding point. It is clear, then, that MZ0 (blue region) not
only controls the minimum fine tuning allowed, but also is
the dominating source of fine tuning over large regions of
the parameter space. This is true for all the other values
of s. However, some substantial contribution to fine tuning
comes from sfermions as seen in the yellow region.
As we increase s to 6 TeV (shown in Fig. 3), we

simultaneously satisfy the CMS mass limit on the Z0
mass, with MZ0 ¼ 2:3 TeV, and we obtain more points
with the heavier Higgs mass mh ¼ 125 GeV.
Interestingly, the benchmark point in this case has a fine
tuning �BM ¼ 233 for mh � 124 GeV, which is slightly
smaller than for the previous case with s ¼ 5 TeV.
Additionally, in the left panel in Fig. 3, a tiny region of
�max ¼ 200 appears as a small circle inside the �max ¼
300 band. While it is still �0 that is responsible for �max in
that area as seen in the left panel in Fig. 4, this region is
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associated with a slightly smaller j�effj (j�0j) and larger �0

than in the adjacent regions, an effect which was not
present in the results of s ¼ 5 TeV.

Moreover, Fig. 4 shows that the origin of fine tuning
depends on the point in the m0-m1=2 plane consistent with

the Higgs mass and the LHC limits of squark and gluino
masses, estimated above as m~g � 0:85m1=2 and m~q �
ð1:3–1:8Þm0. For example, if the squark and gluino masses
are increased, then it is possible that fine tuning is domi-
nated by fine tuning in m1=2 or in �0 via large j�effj, which
could be due to heavy stop masses rather than large MZ0

according to the right panel in Fig. 4.
For s ¼ 7 TeV, corresponding to MZ0 ¼ 2:6 TeV, the

region with mh � 125 GeV expands in comparison to
s ¼ 5 and 6 TeV, as can be seen by comparing the right
panel in Fig. 5 to the previous plots. In addition, a very
small region withmh � 126 GeV appears for the first time.
In the left panel of Fig. 5, fine tuning starts from 200 and
reaches 600 outside the middle region. In addition, the tiny
circle of points with smaller fine tuning than its surround-
ings in the small m0-m1=2 region, which appeared previ-

ously in the results for s ¼ 6 TeV, now grows a little.
The chosen benchmark point has �BM ¼ 270 for

mh � 125 GeV. Notice how increasing s, hence MZ0 , af-
fects the lowest fine tuning possible in the parameter space,
confirming that it is the MZ0 term in Eq. (16) dominating
fine tuning and defining its lowest value, as can be seen in
the right panel of Fig. 6. As before, this conclusion depends
on the particular point in the m0-m1=2 plane.

For s ¼ 8 TeV, the Higgs mass mh � 125 GeV domi-
nates over most of them0-m1=2 plane, as shown in the right

panel of Fig. 7. Also, the mh � 126 GeV region has be-
come larger. However, fine tuning starts from 300, and the
portion of the parameter space with �max � 500 is now
more apparent than in the s ¼ 7 TeV case. The benchmark

point has �BM ¼ 302 for mh � 125 GeV. The dominance
of the MZ0 term in Eq. (16) for fine tuning can be seen in
the right panel of Fig. 8, with this conclusion dependent on
the particular point in the m0-m1=2 plane.

As we reach s ¼ 9 TeV, corresponding to MZ0 ¼
3:4 TeV, which is shown in Fig. 9, we see that the region
where mh � 125 GeV starts to shrink and is replaced by

mh � 126 GeV. If the Higgs mass is indeed mh �
126 GeV, then there is a preference for s ¼ 9 TeV, espe-
cially for smaller values ofm0 andm1=2. This illustrates the

importance of an accurate determination in the Higgs mass
for selecting the most appropriate value of s. Fine tuning

starts from 200, although a very small region, and quickly
increases to 500 such that a significant portion of the
parameter has �max * 500. The benchmark point has
�BM ¼ 330 for mh � 125 GeV. The dominance of the

MZ0 term in Eq. (16) for fine tuning can be seen in the
right panel of Fig. 10, as usual dependent on the particular
point in the m0-m1=2 plane.

Finally, for s ¼ 10 TeV, corresponding to MZ0 ¼
3:4 TeV, in the left panel of Fig. 11, the fine tuning starts
from 300, and the parameter space is severely restricted in

terms of fine tuning, as it is mostly covered by points with
�max > 500. In addition, the region of mh � 125 GeV has
shrunk and now occupies a smaller portion than the
mh � 126 GeV region. In addition, a small region with

mh � 127 GeV now exists prominently for the first time
(only aminiscule region existed for s ¼ 9 TeV).Moreover,
as seen before, the left panel in Fig. 11 contains short lines
of points in the small m0-m1=2 region with smaller fine

tuning than their surrounding points for the same reason

as before, namely that j�effj can be somewhat smaller.
The benchmark point has fine tuning �BM ¼ 359 and

mh � 125 GeV. The dominance of the MZ0 term in
Eq. (16) for fine tuning can be seen in the right panel of

FIG. 12 (color online). The left panel highlights the parameter responsible for the largest amount of fine tuning, �max, in them0-m1=2

plane for tan� ¼ 10 and s ¼ 10 TeV corresponding toMZ0 ¼ 3:8 TeV. On the right, a coarse scan shows which terms in Eq. (16) give
the largest contribution, with regions where the largest contribution comes from term 2, which is proportional to m2

d �m2
utan

2�,
shown in yellow; and regions where the dominant contribution is from term 3, proportional to M2

Z0 , shown in blue.
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Fig. 12, with the familiar dependence on the particular
point in the m0-m1=2 plane.

VI. CONCLUSION

Supersymmetric unified models in which the singlet
VEV is responsible simultaneously both for �eff and for
the Z0 mass, as in the E6 class of models, for example, have
relatively large fine tuning which is typically dominated by
the experimental mass limit on the Z0. To illustrate this, we
have investigated the degree of fine tuning throughout the
parameter space of the cE6SSM. In fact, this is the first time
that fine tuning has been studied in any E6 model contain-
ing a TeV scale Z0.

To quantify fine tuning, we have derived a fine-tuning
master formula for the E6SSM and implemented it in a
spectrum generator for the constrained version of the model.
Using this, we scanned the parameter space of the cE6SSM.
The results are presented in the m0-m1=2 plane for fixed

tan� ¼ 10 and various s values corresponding to MZ0 �
2–4 TeV. This value of tan� ¼ 10 is the optimum choice
for achieving a large enough Higgs mass in the cE6SSM, and
sowe have exclusively focused on it here.We selected bench-
mark points corresponding to each value of s which possess
the smallest fine tuning while allowing a Higgs mass within
the 124<mh < 127 GeV range, andm~g � 850 GeV. They

are theblackdot points inFigs. 1–12.These benchmarkpoints
and the relevant physical masses are summarized in Table I
for a gluino mass of about 900 GeV. Table II shows how the
minimum fine tuning changes as the gluino mass limit in-
creases up to 1.5 TeV. As remarked earlier, the fine tuning in
the cE6SSM is always significantly smaller than that in the
cMSSM, for all gluino masses.

It is clear that the Z0 mass (determined by the s VEV
value) has a significant effect on the naturalness of the
cE6SSM model, with higher values leading to increased
fine tuning. Therefore, future improved direct mass limits
on the Z0 mass from the LHC will imply higher fine tuning.
We have also seen an indirect relation between the Higgs
boson mass and the Z0 mass. For example, if the Higgs

mass turns out to be mh * 127 GeV, then we are driven to
s * 10 TeV, corresponding to MZ0 * 3:8 TeV, requiring
higher fine tuning. Conversely, if the Higgs mass turns out
to be mh & 124 GeV, then s * 5 TeV, corresponding to
MZ0 * 1:9 TeV, allowing lower fine tuning.
Given present limits, the results in Figs. 1–12 and Table I

show that the present lowest value of fine tuning in the
cE6SSM, consistent with a Higgs mass mh � 125 GeV,
varies from �� 200 to 400, where the allowed lowest
fine tuning values, taking into account the relevant
experimental bounds, are dominated by MZ0 rather than
the other sources of fine tuning. This is presently signifi-
cantly lower than the fine tuning in the cMSSM of ��
1000 arising from the large stop masses required to achieve
the Higgs mass.
In the future, the LHC lower limits on gluino and squark

masses will improve, along with the Z0 mass limit (or else a
discovery will be made), and the Higgs boson mass will be
more accurately specified. It is not completely clear where
the dominant source of fine tuning in the cE6SSM will
originate from in the future. However, the results in this
paper allow this question to be addressed. The future Z0
mass limit will determine the minimum s value permitted,
while the Higgs mass and gluino and squark mass limits
will determine the allowed regions of the m0-m1=2 plane,

from which the fine tuning may be read off from the
contour plots we provide.
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APPENDIX A: cE6SSM BENCHMARK POINTS

Table I lists the details on the masses and parameters associated with each benchmark (BM) point that was chosen. We
can see that m0 increases significantly as s (MZ0) becomes larger, while m1=2 is roughly constant. Upon choosing a BM

point, we imposed the limit m1=2 > 1 TeV to have gluino mass m~g > 850 GeV. The gluino masses for our benchmark

points are about 900 GeVor close to it; hence if the experimental limits on m~g are to be increased for constrained models,

then fine tuning will increase as well. The lightest stop, ~t1, masses range from 1.7 to 2.4 TeV for the range of s we studied,
and thereby is above the experimental limits.

TABLE I. Parameters and masses for the benchmarks with lowest fine tuning and Higgs
masses in the range of mh ¼ 124–125 GeV in the cE6SSM.

BM1 BM2 BM3 BM4 BM5 BM6

s [TeV] 5 6 7 8 9 10

tan� 10 10 10 10 10 10

�3ðMXÞ �0:2284 �0:2646 �0:25 �0:2376 �0:2260 �0:2171
�1;2ðMXÞ 0.1 0.1 0.1 0.1 0.1 0.1

�1;2;3ðMXÞ 0.1760 0.1923 0.2111 0.2288 0.2452 0.2601

m1=2 [GeV] 1033 1003 1004 1002 1001 1005

m0 [GeV] 2020 1951 2186 2441 2709 2975

A0 [GeV] �83 500 661 781 846 888

m ~D1
ð1; 2; 3Þ [GeV] 2252 2234 2659 3149 3680 4222

m ~D2
ð1; 2; 3Þ [GeV] 3186 3501 3991 4499 5017 5540

�Dð1; 2; 3Þ [GeV] 1782 2238 2752 3279 3812 4347

jm�0
6
j [GeV] 1973 2349 2727 3105 3483 3861

mh3 ’ MZ0 [GeV] 1889 2267 2645 3023 3401 3779

jm�0
5
j [GeV] 1809 2189 2566 2944 3322 3699

msð1; 2Þ [GeV] 2448 2548 2897 3263 3639 4014

mH2
ð1; 2Þ [GeV] 1970 1847 2023 2218 2426.5 2633

mH1
ð1; 2Þ [GeV] 1887 1685 1824 1986 2167 2343

� ~Hð1; 2Þ [GeV] 492 569 642 711 777 841

m~u1 ð1; 2Þ [GeV] 2505 2461 2687 2934 3199 3468

m~u1 ’ m~d1
ð1; 2Þ [GeV] 2553 2507 2729 2973 3235 3501

m~d2
ð1; 2Þ [GeV] 2571 2558 2810 3082 3372 3665

m~e1 ð1; 2; 3Þ [GeV] 2136 2107 2366 2641 2935 3224

m~e2 ð1; 2; 3Þ [GeV] 2267 2271 2550 2848 3159 3468

m~�1 [GeV] 2119 2090 2347 2623 2912 3200

m~�2 [GeV] 2259 2263 2541 2838 3148 3457

m~b1
[GeV] 2202 2151 2340 2549 2777 3009

m~b2
[GeV] 2552 2539 2789 3059 3347 3639

m~t1 [GeV] 1741 1681 1839 2016 2212 2411

m~t2 [GeV] 2215 2166 2354 2561 2787 3018

jm�0
3;4
j ’ jm��

2
j [GeV] 887 1174 1258 1329 1386 1443

mh2 ’ mA ’ mH� [GeV] 1890 2268 2646 3025 3403 3782

mh [GeV] 124 124 125 125 125 125

m~g [GeV] 901 879 887 892 898 906

jm��
1
j ’ jm�0

2
j [GeV] 285 279 279 279 279 280

jm�0
1
j [GeV] 162 157 158 158 158 158

�max 251 233 270 302 330 359
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APPENDIX B: FINE TUNING AND m ~g

As the lower limits on the gluino mass are expected to rise, Table II shows the minimum amount of the fine tuning
corresponding to different values of gluino mass within m~g ¼ 1–1:5 TeV, and for s ¼ 5–10 TeV. The corresponding

Higgs mass is shown in parentheses next to each value of fine tuning.

[1] G. Aad et al. (ATLAS Collaboration), J. High Energy
Phys. 11 (2012) 094.

[2] G. Aad et al. (ATLAS Collaboration), J. High Energy
Phys. 07 (2012) 167.

[3] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1
(2012).

[4] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
716, 30 (2012).

[5] D. J. H. Chung, L. L. Everett, G. L. Kane, S. F. King, J. D.
Lykken, and L.-T. Wang, Phys. Rep. 407, 1 (2005).

[6] S. Cassel and D.M. Ghilencea, Mod. Phys. Lett. A 27,
1230003 (2012).

[7] D.M. Ghilencea, H.M. Lee, and M. Park, J. High Energy
Phys. 07 (2012) 046.

[8] S. F. King, S. Moretti, and R. Nevzorov, Phys. Rev. D 73,
035009 (2006).

[9] S. F. King, S. Moretti, and R. Nevzorov, Phys. Lett. B 634,
278 (2006).

[10] U. Ellwanger, M. Rausch de Traubenberg, and C.A.
Savoy, Phys. Lett. B 315, 331 (1993); Z. Phys. C 67,
665 (1995); Nucl. Phys. B492, 21 (1997); U. Ellwanger,
Phys. Lett. B 303, 271 (1993); P. Pandita, Z. Phys. C 59,
575 (1993); T. Elliott, S. F. King, and P. L. White, Phys.
Rev. D 49, 2435 (1994); S. F. King and P. L. White, Phys.
Rev. D 52, 4183 (1995); F. Franke and H. Fraas, Int. J.
Mod. Phys. A 12, 479 (1997).

[11] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
714, 158 (2012).

[12] P. Athron, S. F. King, D. J. Miller, S. Moretti, and R.
Nevzorov, Phys. Rev. D 84, 055006 (2011).

[13] P. Athron, J. P. Hall, R. Howl, S. F. King, D. J. Miller, S.
Moretti, and R. Nevzorov, Nucl. Phys. B, Proc. Suppl.
200–202, 120 (2010).

[14] P. Athron, S. F. King, D. J. Miller, S. Moretti, and R.
Nevzorov, Phys. Rev. D 80, 035009 (2009).

[15] P. Athron, S. F. King, D. J. Miller, S. Moretti, and R.

Nevzorov, Phys. Lett. B 681, 448 (2009).
[16] P. Athron, S. F. King, D. J. Miller, S. Moretti, and R.

Nevzorov, Phys. Rev. D 86, 095003 (2012).
[17] P. Athron, D. Stockinger, and A. Voigt, Phys. Rev. D 86,

095012 (2012).
[18] J. C. Callaghan and S. F. King, J. High Energy Phys. 04

(2013) 034.
[19] R. Howl and S. F. King, J. High Energy Phys. 05 (2008)

008.
[20] R. Howl and S. F. King, Phys. Lett. B 687, 355 (2010).
[21] J. R. Ellis, K. Enqvist, D.V. Nanopoulos, and F. Zwirner,

Mod. Phys. Lett. A 01, 57 (1986).
[22] R. Barbieri and G. F. Giudice, Nucl. Phys. B306, 63

(1988).
[23] B. de Carlos and J. A. Casas, Phys. Lett. B 309, 320

(1993).
[24] B. de Carlos and J. A. Casas, arXiv:hep-ph/9310232.
[25] P. H. Chankowski, J. R. Ellis, and S. Pokorski, Phys. Lett.

B 423, 327 (1998).
[26] K. Agashe and M. Graesser, Nucl. Phys. B507, 3 (1997).
[27] D. Wright, arXiv:hep-ph/9801449.
[28] G. L. Kane and S. F. King, Phys. Lett. B 451, 113

(1999).
[29] M. Bastero-Gil, G. L. Kane, and S. F. King, Phys. Lett. B

474, 103 (2000).
[30] J. L. Feng, K. T. Matchev, and T. Moroi, Phys. Rev. D 61,

075005 (2000).
[31] B. C. Allanach, J. P. J. Hetherington, M.A. Parker, and

B. R. Webber, J. High Energy Phys. 08 (2000) 017.
[32] B. C. Allanach, Phys. Lett. B 635, 123 (2006).

TABLE II. For different values of the singlet VEV (s ¼ 5–10 TeV) corresponding to
MZ0 � 2–3:8 TeV, the effect of raising the lower limit on the gluino mass between m~g ¼ 1

and 1.5 TeV on fine tuning is shown. Next to every fine-tuning value, the corresponding Higgs
mass (in GeV) is shown between parentheses. An empty cell [ � � � ] means that no
mh � 124–127 GeV is found in the scanned parameter space.

s [TeV] 5 6 7 8 9 10

m~g [TeV] � (mh [GeV])

1 293 (124) 297 (124) 324 (125) 367 (125) 405 (126) 443 (126)

1.1 388 (125) 348 (124) 358 (124) 408 (125) 454 (126) 497 (126)

1.2 474 (124) 440 (125) 400 (124) 448 (125) 500 (126) 550 (126)

1.3 � � � 556 (125) 462 (124) 484 (124) 547 (126) 600 (126)

1.4 � � � 658 (125) 617 (126) 525 (124) 587 (125) 650 (126)

1.5 � � � � � � 767 (125) 635 (125) 628 (125) 699 (126)

P. ATHRON, MAIEN BINJONAID, AND S. F. KING PHYSICAL REVIEW D 87, 115023 (2013)

115023-14

http://dx.doi.org/10.1007/JHEP11(2012)094
http://dx.doi.org/10.1007/JHEP11(2012)094
http://dx.doi.org/10.1007/JHEP07(2012)167
http://dx.doi.org/10.1007/JHEP07(2012)167
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physrep.2004.08.032
http://dx.doi.org/10.1142/S0217732312300030
http://dx.doi.org/10.1142/S0217732312300030
http://dx.doi.org/10.1007/JHEP07(2012)046
http://dx.doi.org/10.1007/JHEP07(2012)046
http://dx.doi.org/10.1103/PhysRevD.73.035009
http://dx.doi.org/10.1103/PhysRevD.73.035009
http://dx.doi.org/10.1016/j.physletb.2005.12.070
http://dx.doi.org/10.1016/j.physletb.2005.12.070
http://dx.doi.org/10.1016/0370-2693(93)91621-S
http://dx.doi.org/10.1007/BF01553993
http://dx.doi.org/10.1007/BF01553993
http://dx.doi.org/10.1016/S0550-3213(97)80026-0
http://dx.doi.org/10.1016/0370-2693(93)91431-L
http://dx.doi.org/10.1007/BF01562550
http://dx.doi.org/10.1007/BF01562550
http://dx.doi.org/10.1103/PhysRevD.49.2435
http://dx.doi.org/10.1103/PhysRevD.49.2435
http://dx.doi.org/10.1103/PhysRevD.52.4183
http://dx.doi.org/10.1103/PhysRevD.52.4183
http://dx.doi.org/10.1142/S0217751X97000529
http://dx.doi.org/10.1142/S0217751X97000529
http://dx.doi.org/10.1016/j.physletb.2012.06.051
http://dx.doi.org/10.1016/j.physletb.2012.06.051
http://dx.doi.org/10.1103/PhysRevD.84.055006
http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.074
http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.074
http://dx.doi.org/10.1103/PhysRevD.80.035009
http://dx.doi.org/10.1016/j.physletb.2009.10.051
http://dx.doi.org/10.1103/PhysRevD.86.095003
http://dx.doi.org/10.1103/PhysRevD.86.095012
http://dx.doi.org/10.1103/PhysRevD.86.095012
http://dx.doi.org/10.1007/JHEP04(2013)034
http://dx.doi.org/10.1007/JHEP04(2013)034
http://dx.doi.org/10.1088/1126-6708/2008/05/008
http://dx.doi.org/10.1088/1126-6708/2008/05/008
http://dx.doi.org/10.1016/j.physletb.2010.03.053
http://dx.doi.org/10.1142/S0217732386000105
http://dx.doi.org/10.1016/0550-3213(88)90171-X
http://dx.doi.org/10.1016/0550-3213(88)90171-X
http://dx.doi.org/10.1016/0370-2693(93)90940-J
http://dx.doi.org/10.1016/0370-2693(93)90940-J
http://arXiv.org/abs/hep-ph/9310232
http://dx.doi.org/10.1016/S0370-2693(98)00060-4
http://dx.doi.org/10.1016/S0370-2693(98)00060-4
http://dx.doi.org/10.1016/S0550-3213(97)00569-5
http://arXiv.org/abs/hep-ph/9801449
http://dx.doi.org/10.1016/S0370-2693(99)00190-2
http://dx.doi.org/10.1016/S0370-2693(99)00190-2
http://dx.doi.org/10.1016/S0370-2693(00)00002-2
http://dx.doi.org/10.1016/S0370-2693(00)00002-2
http://dx.doi.org/10.1103/PhysRevD.61.075005
http://dx.doi.org/10.1103/PhysRevD.61.075005
http://dx.doi.org/10.1088/1126-6708/2000/08/017
http://dx.doi.org/10.1016/j.physletb.2006.02.052


[33] T. Kobayashi, H. Terao, and A. Tsuchiya, Phys. Rev. D 74,
015002 (2006).

[34] R. Dermisek and J. F. Gunion, Phys. Rev. Lett. 95, 041801
(2005).

[35] R. Barbieri and L. J. Hall, arXiv:hep-ph/0510243.
[36] R. Barbieri, L. J. Hall, and V. S. Rychkov, Phys. Rev. D 74,

015007 (2006).
[37] B.Gripaios and S.M.West, Phys. Rev. D 74, 075002 (2006).
[38] R. Dermisek, J. F. Gunion, and B. McElrath, Phys. Rev. D

76, 051105 (2007).
[39] M. Perelstein and B. Shakya, arXiv:1208.0833.
[40] S. Antusch, L. Calibbi, V. Maurer, M. Monaco, and M.

Spinrath, J. High Energy Phys. 01 (2013) 187.
[41] T. Cheng, J. Li, T. Li, X. Wan, Y. k. Wang, and S.-h. Zhu,

arXiv:1207.6392.
[42] M.W. Cahill-Rowley, J. L. Hewett, A. Ismail, and T. G.

Rizzo, Phys. Rev. D 86, 075015 (2012).
[43] G. G. Ross, K. Schmidt-Hoberg, and F. Staub, J. High

Energy Phys. 08 (2012) 074.
[44] T. Basak and S. Mohanty, Phys. Rev. D 86, 075031 (2012).
[45] Z. Kang, J. Li, and T. Li, J. High Energy Phys. 11 (2012)

024.
[46] G.W. Anderson and D. J. Castano, Phys. Lett. B 347, 300

(1995).
[47] G.W. Anderson and D. J. Castano, Phys. Rev. D 52, 1693

(1995).
[48] G.W. Anderson and D. J. Castano, Phys. Rev. D 53, 2403

(1996).
[49] G.W. Anderson, D. J. Castano, and A. Riotto, Phys. Rev.

D 55, 2950 (1997).
[50] P. Ciafaloni and A. Strumia, Nucl. Phys. B494, 41 (1997).

[51] K. L. Chan, U. Chattopadhyay, and P. Nath, Phys. Rev. D
58, 096004 (1998).

[52] R. Barbieri and A. Strumia, Phys. Lett. B 433, 63 (1998).
[53] L. Giusti, A. Romanino, and A. Strumia, Nucl. Phys.

B550, 3 (1999).
[54] J. A. Casas, J. R. Espinosa, and I. Hidalgo, J. High Energy

Phys. 01 (2004) 008.
[55] J. A. Casas, J. R. Espinosa, and I. Hidalgo, arXiv:hep-ph/

0402017.
[56] J. A. Casas, J. R. Espinosa, and I. Hidalgo, J. High Energy

Phys. 11 (2004) 057.
[57] J. A. Casas, J. R. Espinosa, and I. Hidalgo, Nucl. Phys.

B777, 226 (2007).
[58] R. Kitano and Y. Nomura, Phys. Lett. B 631, 58 (2005).
[59] P. Athron and D. J. Miller, Phys. Rev. D 76, 075010

(2007).
[60] H. Baer, V. Barger, P. Huang, A. Mustafayev, and X. Tata,

Phys. Rev. Lett. 109, 161802 (2012).
[61] B. C. Allanach, K. Cranmer, C. G. Lester, and A.M.

Weber, J. High Energy Phys. 08 (2007) 023.
[62] M. E. Cabrera, J. A. Casas, and R. Ruiz de Austri, J. High

Energy Phys. 03 (2009) 075.
[63] D.M. Ghilencea and G.G. Ross, Nucl. Phys. B868, 65

(2013).
[64] S. Fichet, Phys. Rev. D 86, 125029 (2012).
[65] M. E. Cabrera, J. A. Casas, and R. Ruiz de Austri, J. High

Energy Phys. 05 (2010) 043.
[66] C. Balazs, A. Buckley, D. Carter, B. Farmer, and M.

White, arXiv:1205.1568.
[67] A. Belyaev, J. P. Hall, S. F. King, and P. Svantesson, Phys.

Rev. D 86, 031702 (2012); 87, 035019 (2013).

FINE TUNING IN THE CONSTRAINED EXCEPTIONAL . . . PHYSICAL REVIEW D 87, 115023 (2013)

115023-15

http://dx.doi.org/10.1103/PhysRevD.74.015002
http://dx.doi.org/10.1103/PhysRevD.74.015002
http://dx.doi.org/10.1103/PhysRevLett.95.041801
http://dx.doi.org/10.1103/PhysRevLett.95.041801
http://arXiv.org/abs/hep-ph/0510243
http://dx.doi.org/10.1103/PhysRevD.74.015007
http://dx.doi.org/10.1103/PhysRevD.74.015007
http://dx.doi.org/10.1103/PhysRevD.74.075002
http://dx.doi.org/10.1103/PhysRevD.76.051105
http://dx.doi.org/10.1103/PhysRevD.76.051105
http://arXiv.org/abs/1208.0833
http://dx.doi.org/10.1007/JHEP01(2013)187
http://arXiv.org/abs/1207.6392
http://dx.doi.org/10.1103/PhysRevD.86.075015
http://dx.doi.org/10.1007/JHEP08(2012)074
http://dx.doi.org/10.1007/JHEP08(2012)074
http://dx.doi.org/10.1103/PhysRevD.86.075031
http://dx.doi.org/10.1007/JHEP11(2012)024
http://dx.doi.org/10.1007/JHEP11(2012)024
http://dx.doi.org/10.1016/0370-2693(95)00051-L
http://dx.doi.org/10.1016/0370-2693(95)00051-L
http://dx.doi.org/10.1103/PhysRevD.52.1693
http://dx.doi.org/10.1103/PhysRevD.52.1693
http://dx.doi.org/10.1103/PhysRevD.53.2403
http://dx.doi.org/10.1103/PhysRevD.53.2403
http://dx.doi.org/10.1103/PhysRevD.55.2950
http://dx.doi.org/10.1103/PhysRevD.55.2950
http://dx.doi.org/10.1016/S0550-3213(97)00138-7
http://dx.doi.org/10.1103/PhysRevD.58.096004
http://dx.doi.org/10.1103/PhysRevD.58.096004
http://dx.doi.org/10.1016/S0370-2693(98)00577-2
http://dx.doi.org/10.1016/S0550-3213(99)00153-4
http://dx.doi.org/10.1016/S0550-3213(99)00153-4
http://dx.doi.org/10.1088/1126-6708/2004/01/008
http://dx.doi.org/10.1088/1126-6708/2004/01/008
http://arXiv.org/abs/hep-ph/0402017
http://arXiv.org/abs/hep-ph/0402017
http://dx.doi.org/10.1088/1126-6708/2004/11/057
http://dx.doi.org/10.1088/1126-6708/2004/11/057
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.024
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.024
http://dx.doi.org/10.1016/j.physletb.2005.10.003
http://dx.doi.org/10.1103/PhysRevD.76.075010
http://dx.doi.org/10.1103/PhysRevD.76.075010
http://dx.doi.org/10.1103/PhysRevLett.109.161802
http://dx.doi.org/10.1088/1126-6708/2007/08/023
http://dx.doi.org/10.1088/1126-6708/2009/03/075
http://dx.doi.org/10.1088/1126-6708/2009/03/075
http://dx.doi.org/10.1016/j.nuclphysb.2012.11.007
http://dx.doi.org/10.1016/j.nuclphysb.2012.11.007
http://dx.doi.org/10.1103/PhysRevD.86.125029
http://dx.doi.org/10.1007/JHEP05(2010)043
http://dx.doi.org/10.1007/JHEP05(2010)043
http://arXiv.org/abs/1205.1568
http://dx.doi.org/10.1103/PhysRevD.86.031702
http://dx.doi.org/10.1103/PhysRevD.86.031702
http://dx.doi.org/10.1103/PhysRevD.87.035019

