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State-of-the-art computations of the gravitational self-force (GSF) on massive particles in black hole

spacetimes involve numerical evolution of the metric perturbation equations in the time domain, which is

computationally very costly. We present here a new strategy based on a frequency-domain treatment of the

perturbation equations, which offers considerable computational saving. The essential ingredients of our

method are (i) a Fourier-harmonic decomposition of the Lorenz-gauge metric perturbation equations and a

numerical solution of the resulting coupled set of ordinary equations with suitable boundary conditions;

(ii) a generalized version of the method of extended homogeneous solutions [L. Barack, A. Ori, and N.

Sago, Phys. Rev. D 78, 084021 (2008)] used to circumvent the Gibbs phenomenon that would otherwise

hamper the convergence of the Fourier mode sum at the particle’s location; (iii) standard mode-sum

regularization, which finally yields the physical GSF as a sum over regularized modal contributions. We

present a working code that implements this strategy to calculate the Lorenz-gauge GSF along eccentric

geodesic orbits around a Schwarzschild black hole. The code is far more efficient than existing time-

domain methods; the gain in computation speed (at a given precision) is about an order of magnitude at an

eccentricity of 0.2, and up to 3 orders of magnitude for circular or nearly circular orbits. This increased

efficiency was crucial in enabling the recently reported calculation of the long-term orbital evolution of an

extreme mass ratio inspiral [N. Warburton, S. Akcay, L. Barack, J. R. Gair, and N. Sago, Phys. Rev. D 85,

061501(R) (2012)]. Here we provide full technical details of our method to complement the above report.
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I. INTRODUCTION

Astrophysical binaries of inspiraling compact objects
are among the most promising sources for current and
future gravitational-waves detector experiments. Their de-
tection will offer insights into the fundamental workings
of gravity in its most extreme regime. The challenges
associated with the detection and interpretation of such
gravitational waves make it necessary to have at hand
accurate theoretical models of the radiative dynamics in
strongly interacting binaries. This need for precision mod-
els has produced a plethora of approaches to solving the
relativistic two-body problem [1–4], each applicable in a
particular domain of the problem. When the masses of the
two components differ by orders of magnitude, the prob-
lem becomes amenable to perturbation theory in the small
mass ratio: At zeroth order the small object moves on a
geodesic in the background spacetime of the larger one,
and finite-mass corrections (due, e.g., to radiation reaction
and internal structure) are accounted for, in principle, order
by order in the mass ratio. In this effective description, the
small object is subject to a gravitational self-force (GSF)
exerted by its own gravitational field, with the latter
thought of as a perturbation on the fixed geometry of the
larger object.

The theoretical foundations for a robust formulation of
the GSF in curved spacetime have been laid in the past
decade and a half [3,5–8]. Actual numerical calculations of

the GSF for orbiting particles in black hole spacetimes
have also been carried out [9–12], often building on the
techniques developed by considering scalar-field analogue
models [13–18]. The state of the art is a code that returns
the GSF along any (fixed) bound geodesic orbit around a
Schwarzschild black hole, and there are some preliminary
attacks on the Kerr problem as well [19,20]. This success
has lead to many fruitful exchanges with other approaches
to the two-body problem [21–25]. For a review see [26].
Much of the work done so far has focused on calculating

the GSF along a fixed geodesic orbit, without taking into
account the backreaction on the orbit. A major priority task
for the self-force program now is to devise a numerically
efficient way of computing the orbital evolution under the
full effect of the GSF. In principle, one could seek to solve
the perturbation field equations and the self-forced equa-
tions of motion as a coupled set, in a self-consistent manner
(as illustrated recently, using a scalar-field toy model,
in Ref. [27]). However, such an approach would need to
rely on computationally expensive time-domain methods.
Currently available time-domain codes run on large com-
puter clusters, typically using hundreds of processors over
a period of weeks, merely to compute a short inspiral of a
few dozen orbits. Astrophysically relevant inspirals are
expected to undergo hundreds of thousands of orbits while
emitting gravitational waves at frequencies detectable by a
LISA-like detector. Computing such long waveforms is a
serious challenge for time-domain techniques, let alone the
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requirement to populate a template bank with tens of
thousands of waveform templates.

An alternative approach, which is much more effective,
is to construct an analytical model for the GSF by inter-
polating numerical GSF data computed along a (dense)
sample of geodesic orbits. With such a model at hand,
the orbital evolution can be computed quickly using the
method of osculating elements [28,29], in which the
inspiral orbit is reconstructed from a smooth sequence of
‘‘momentary’’ tangent geodesics [30]. It may still be
required to produce large amounts of GSF data to inform
the analytic fit, but this needs only be done once, after
which any inspiral (starting with any initial conditions)
may be computed at negligible computational cost. The
main gain here comes from the fact that GSF data along
bound geodesic orbits is relatively cheap to obtain using
frequency-domain (FD) methods. Previous work has dem-
onstrated that FD codes can be faster than time-domain
codes by orders of magnitude [31,32], at least when the
orbital eccentricity is not too large. FD algorithms have
become particularly efficient following the introduction of
the method of extended homogeneous solutions (MEHS)
[33,34], which circumvents Gibbs-phenomenon complica-
tions arising from the finite differentiability of the pertur-
bation field at the particle.

In a recent paper [35] we reported a first computation
of the orbital evolution, in the Schwarzschild case, using
the above scheme of osculating elements with ‘‘geodesic’’
GSF input obtained via an analytic fit to FD data. The
purpose of the current paper is to give full details of our FD
method for computing the GSF. In particular, we will
elaborate on the application of MEHS to the problem of
calculating the GSF in Lorenz gauge (previously, MEHS
has only been applied in calculations of the scalar-field
self-force and the Regge-Wheeler-gauge GSF). This re-
quires a generalization of MEHS to a set of coupled equa-
tions, which we describe here. The present paper may also
be considered an extension ofRef. [12], where a FD-domain
method has been applied to calculate the Lorenz-gaugeGSF
for circular orbits around a Schwarzschild black hole—here
wegeneralize this to generic bound orbits.Various technical
aspects of that work, in particular the construction of the
homogeneous radial fields and their boundary conditions,
carry over to the calculation presented in this work. For that
reason we shall refer to Ref. [12] as Paper I, and, where
appropriate, will refer the reader to it for further details.

The layout of this paper is as follows. In Sec. II we
review relevant background material concerning the pa-
rametrization and characteristics of bound geodesic orbits
in Schwarzschild geometry, write down the corresponding
sourced Lorenz-gauge perturbation equations, and give a
FD reformulation of these equations. In Sec. III we gen-
eralize MEHS to the case of coupled fields, relevant for our
Lorenz-gauge analysis. Section IV reviews relevant results
in GSF physics, and in particular the mode-sum approach

used in our work. Section V gives an algorithmic descrip-
tion of our numerical method, from the construction of
physical boundary conditions for the FD metric perturba-
tion, to the reconstruction of the GSF from a sum over
Fourier-harmonic modes. In Sec. VI we describe a certain
problem that hinders our computation when very low-
frequency modes are encountered and propose a mitigation
method. We present a sample of numerical results in
Sec. VII, and in Sec. VIII give an outlook of foreseeable
extensions of our method.
Throughout this work we use geometrized units such

that the speed of light and the gravitational constant are
equal to unity. We shall denote the mass of the background
Schwarzschild geometry byM and the mass of the orbiting
particle by �, with the assumption �=M � 1. We use
metric signature ð� þþþÞ.

II. PRELIMINARIES: FIELD EQUATIONS AND
FOURIER-HARMONIC DECOMPOSITION

A. Orbital parametrization

We start by reviewing bound geodesic orbits in
Schwarzschild geometry. We shall denote the worldline
of the test body (the point-mass particle) by x� ¼ x�pð�Þ
and its tangent four velocity by u� ¼ dx�p=d�, where � is

the body’s proper time. In the geodesic approximation, the
motion of the test body is governed by

�u�r�u
� ¼ 0; (1)

where the covariant derivative is taken with respect to the
background (Schwarzschild) metric g. Using Schwarzschild
coordinates, Eq. (1) can be written explicitly as

dtp
d�

¼ E
fðrpÞ ;

d’p

d�
¼ L

r2p
; (2)

�
drp
d�

�
2 ¼ E2 � Rðrp;L2Þ;

Rðr;L2Þ � fðrÞ
�
1þL2

r2

�
;

(3)

where E � �ut and L � u’ are the integrals of motion

corresponding to the test body’s specific energy and angular
momentum, respectively, fðrÞ � 1� 2M=r and Rðr;L2Þ is
an effective potential for the radial motion. In this work we
shall be concerned solely with bound geodesic motion and
so we specialize immediately to this case. Such orbits are
specified uniquely, up to initial phase, by their energy and

angular momentum, with 2
ffiffi
2

p
3 < E < 1 andL> 2

ffiffiffi
3

p
M.

Following Newtonian celestial mechanics, it will be
useful to introduce an alternative, more geometrically mo-
tivated, orbital parametrization given by the dimensionless
semilatus rectum, p, and orbital eccentricity, e. Let the
libration region be given by rmin � rp � rmax , with rmin
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and rmax being the periastron and apastron radii. Then
p and e are defined through

p � 2rmax rmin

Mðrmax þ rmin Þ ; e � rmax � rmin

rmax þ rmin

: (4)

Note that e ¼ 0 for circular orbits (when rmax ¼ rmin ) and
e ! 1 as rmax ! 1 (with fixed rmin ). Thus we have
0 � e < 1. The range of p will be constrained below.
Equations (4) can be inverted to give rmax and rmin in
terms of p and e:

rmax ¼ pM

1� e
; rmin ¼ pM

1þ e
: (5)

The (one-to-one) relation between ðp; eÞ and ðE;LÞ is
given by

E2 ¼ ðp� 2� 2eÞðp� 2þ 2eÞ
pðp� 3� e2Þ ;

L2 ¼ p2M2

p� 3� e2
:

(6)

Again in an analogy with Newtonian celestial mechanics,
and following Darwin [36], we introduce a ‘‘relativistic
anomaly’’ parameter �, such that the radial motion is
given by

rpð�Þ ¼ pM

1þ e cos�
: (7)

� ¼ 0 and � ¼ � correspond to periastron and apastron
passages, respectively. Each of the parameters tp, ’p and

� is monotonically increasing along the orbit; the relation
between these parameters is given by [37]

dtp
d�

¼ Mp2

ðp� 2� 2e cos�Þð1þ e cos�Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 2� 2eÞðp� 2þ 2eÞ

p� 6� 2e cos�

s
; (8)

d’p

d�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

p� 6� 2e cos�

s
: (9)

Without loss of generality we shall assume tp ¼ ’p ¼ 0

at � ¼ 0.
The accumulated azimuthal angle over one radial orbit

(between two successive periastra) is found to be

�’ ¼
Z 2�

0

d’p

d�
d� ¼ 4

�
p

p� 6� 2e

�
1=2

K

�
4e

p� 6� 2e

�
;

(10)

where KðkÞ ¼ R�=2
0 ð1� k sin�Þ�1=2d� is the complete

elliptic integral of the first kind. We have �’ � 2�,
and the orbit precesses. The radial period, in terms of
Schwarzschild time t, is given by

Tr ¼
Z 2�

0

dtp
d�

d�; (11)

and the corresponding radial and (average) azimuthal
frequencies are given by

�r ¼ 2�

Tr

; �’ ¼ ��

Tr

: (12)

In the case of circular orbits (e ¼ 0, p � r0=M), the
above orbital frequencies reduce to

�0
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0 � 6MÞM

r40

s
; �0

’ ¼
�
M

r3

�
1=2

; (13)

where hereafter a sub/superscript ‘‘0’’ denotes the circular-
orbit limit of a quantity. The �r frequency of circular
orbits is identified with the radial frequency of an infini-
tesimal eccentricity perturbation. Circular orbits with
r0 > 6M are stable to eccentricity perturbations, while
orbits with 3M< r0 < 6M are unstable. At r0 ¼ 3M
only massless particles can orbit the black hole and this
r0 value is said to be the radius of the light ring. Below the
light ring there are no circular timelike or null geodesics,
stable or unstable. The circular orbit with radius r0 ¼ 6M
is known as the innermost stable circular orbit.
For eccentric orbits, there exists a separatrix in the ðp; eÞ

parameter space between the space of bound stable orbits
and the space of unstable orbits. The value of p at the
separatrix is given by the curve p ¼ 6þ 2e [37]. We plot
the region of stable and unstable orbits in Fig. 1. For orbits
along the separatrix, both �’ and Tr diverge (while �’

remains finite). This is a manifestation of the well-known
zoom-whirl behavior of near-separatrix orbits, where the
particle can orbit (‘‘whirl’’) many times just outside
the periastron radius before ‘‘zooming’’ back out to the
apastron [38].

 0
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FIG. 1. The ðp; eÞ orbital parameter space. The shaded region
bounded by 0 � e � 1 and 6þ 2e � p <1 marks the space of
bound stable orbits. Circular orbits correspond to e ¼ 0, and the
intersection of the separatrix esðpÞ ¼ ðp� 6Þ=2 with the line
e ¼ 0 marks the location of the innermost stable circular orbit.
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B. Lorenz-gauge perturbation equations
and multipole decomposition

We proceed to give an overview of the Lorenz-gauge
perturbation equations and their decomposition in
Schwarzschild spacetime into tensor spherical harmonics.
We follow the notation of Barack and Lousto [39], and
refer the reader to that article for further details.

Let us denote the full spacetime metric by g, which we
shall consider to be the sum of the metric perturbation, h,
and the background Schwarzschild metric, g. We thus have
g ¼ gþ h. Linearizing the Einstein field equations in h
about g yields the perturbation equations

h �h�	 þ 2R�
�
�
	
�h�� ¼ �16�T�	; (14)

where h ¼ r�r� (with r� denoting covariant differen-

tiation with respect to g), R is the Riemann tensor asso-
ciated with g,

�h�	 � h�	 � 1

2
g�	g

��h�� (15)

is the ‘‘trace-reversed’’ metric perturbation, and we have
imposed the Lorenz-gauge condition

r�
�h�	 ¼ 0: (16)

In this work the metric perturbation is sourced by a point
particle of mass �, with energy-momentum

T�	ðx�Þ ¼ �
Z 1

�1
½� det ðgÞ��1=2
4ðx� � x�pÞu�u	d�:

(17)

The gauge equation (16) and field equation (14) are con-
sistent so long as the particle is moving on a geodesic of the
background spacetime (as then r�T

�	 ¼ 0).

The field equation (14) is not easily amenable to direct
numerical treatment, since its physical (retarded) solutions
are singular at the particle (see, however, Refs. [40–43] for
techniques to overcomes this problem). In this work we
choose to decompose the metric perturbation into (tenso-
rial) spherical-harmonic modes. A key motivation is that
the individual modes are everywhere bounded and continu-
ous, thus easier to work with. We then further decompose
the multipoles into Fourier modes (as described in the next
subsection), reducing the system to a set of ordinary dif-
ferential equations (ODEs).

The decomposition of the metric perturbation into multi-
pole modes is achieved by projecting �h�	 onto a basis of

second-rank tensor harmonics defined (in the background
Schwarzschild geometry) on two-spheres with t, r ¼ const.
The spherical symmetry of the background geometry
ensures that the individual multipole harmonics are eigen-
functions of the wave operator on the left-hand side of
Eq. (14). The individual multipole modes hence decouple,
though, in general, the ten tensorial components of each
multipole mode will remain coupled.

We shall use here the tensorial-harmonic basis

YðiÞlm
�	 ð�;’; rÞ (where i ¼ 1; . . . ; 10) defined in [9]. [The

definition involves certain multiplicative factors of r and
fðrÞ introduced in order to balance the dimensions and

simplify the resulting equations.] The YðiÞlm
�	 ’s form a basis

for any second-rank, symmetric tensor field in four dimen-
sions. They are orthonormal in the sense thatZ

�����	ðYðiÞlm
�	 Þ�YðjÞl0m0

�� d� ¼ 
ij
ll0
mm0 ; (18)

where ��� ¼ diagð1; f2; r�2; r�2sin�2�Þ, an asterisk
denotes complex conjugation, and d� ¼ sin �d�d�.
We expand the energy-momentum tensor in Eq. (17) in

the form

T�	 ¼ X
lm

X10
i¼1

TðiÞ
lmðt; rÞYðiÞlm

�	 ; (19)

where the harmonic coefficients are given by

TðiÞ
lmðt; rÞ ¼

Z
d�T�	�

���	�ðYðiÞlm
�� Þ� (20)

¼ �

utr2p
u�u	�

��ðxpÞ�	�ðxpÞðYðiÞlm
�� ð�p;’p;rpÞÞ�
ðr�rpÞ:

(21)

We similarly expand the metric perturbation in the form

�h�	ðt; r; �; �Þ ¼ �

r

X
lm

X10
i¼1

�hðiÞlmðt; rÞYðiÞlm
�	 ð�; ’; rÞ; (22)

and substitute it into the linearized Einstein equation (14),
whereupon individual l,mmodes decouple and the angular
dependence separates out of the equations. The time-radial

scalarlike functions �hðiÞlmðt; rÞ (numbering ten for each l,m)
obey the coupled set of partial differential equations

hsc
l
�hðiÞlm þMðiÞl

ðjÞ �h
ðjÞ
lm ¼ 4���1rfTðiÞlm � SðiÞ

lm
ðr� rpÞ
ði ¼ 1; . . . ; 10Þ; (23)

wherehsc
l is the scalar-field wave operator,

hsc
l ¼ 1

4
½@2t � @2r� þ VlðrÞ�; (24)

with the potential term given by

VlðrÞ ¼ fðrÞ
�
2M

r3
þ lðlþ 1Þ

r2

�
: (25)

We have also introduced the standard tortoise coordinate r�
defined by dr�=dr ¼ fðrÞ�1 giving

r� ¼ rþ 2M ln

�
r

2M
� 1

�
; (26)

where we have specified the constant of integration. The

termsMðiÞl
ðjÞ appearing in Eq. (23) are first-order differential
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operators that couple between the ten components of the

metric perturbation. The explicit formofMðiÞl
ðjÞ can be found

in Appendix B of Ref. [11]. We give the source coefficients

SðiÞ and FD versions of MðiÞl
ðjÞ in Appendix A.

It will be useful to note that the ten field equations (23)
are not all coupled together, but form two disjoint sets
of equations, one for each parity: Basis elements with
i ¼ 1; . . . ; 7 have even parity, remaining unchanged under
the parity operation ð�;’Þ ! ð�� �; ’þ �Þ. Basis ele-
ments i ¼ 8, 9, 10 change sign under parity and hence are
odd. For equatorial orbits one finds

Sði¼1;...;7Þ / ½Ylmð�=2; ’pÞ�� ¼ 0 for lþm ¼ odd; (27)

Sði¼8;9;10Þ / ½@�Ylmð�; ’pÞ���¼�=2¼ 0 for lþm ¼ even:

(28)

As a result, �hði¼1;...;7Þ vanish trivially for lþm ¼ odd, and
�hði¼8;9;10Þ vanish trivially for lþm ¼ even.

C. Fourier decomposition

At this point we depart from the 1þ 1D treatment of
Refs. [9,11], and introduce a decomposition of the field
equations into (Fourier) frequency modes. For bound geo-
desic orbits, the spectrum of the Fourier decomposition is
found to be discrete (see, e.g., Appendix D.2 of Ref. [33]),
with each mode labeled by two integers—the azimuthal
number, m, and the Fourier number, n. The mode fre-
quency is given by

! ¼ m�’ þ n�r; (29)

where �r and �’ are the orbit frequencies given in

Eq. (12). We can, therefore, write the ðt; rÞ dependence
of the trace-reversed metric perturbation as a sum over
discrete Fourier modes,

�hðiÞlmðt; rÞ ¼
X
n

RðiÞ
lmnðrÞe�i!t: (30)

By substituting the above into Eq. (23), one finds that the
radial dependence of the (trace-reversed) metric perturba-
tion completely separates, and the field equations reduce to
a set of ten coupled ODEs (one set for each l, m, n):

d2

dr2�
RðiÞ
lmnðrÞ� ½VlðrÞ�!2�RðiÞ

lmnðrÞ� 4M̂ðiÞl
ðjÞ R

ðjÞ
lmnðrÞ ¼ JðiÞlmn;

(31)

where M̂ðiÞl
ðjÞ are the Fourier-transformed versions ofMðiÞl

ðjÞ ,
and JðiÞlmn are related to the Fourier transforms of SðiÞ

lm. The

explicit form of M̂ðiÞl
ðjÞ and the source terms JðiÞlmn are pre-

sented in Appendix A (generalizing the source terms of
Paper I to eccentric orbits). We note that the separation
under parity of the 1þ 1D field equations carries over to

the FD. Thus Rði¼1;...;7Þ ¼ 0 for lþm ¼ odd and

Rði¼8;9;10Þ ¼ 0 for lþm ¼ even.
The Fourier-harmonic decomposition of the Lorenz-

gauge condition r�
�h�	 ¼ 0 results in four equations

that also separate under parity, with the first three (as
ordered below) involving only even-parity modes and
the fourth involving only odd-parity modes. For each
lmn mode these equations read

i!Rð1Þ þ f

�
i!Rð3Þ þ Rð2Þ

;r þ Rð2Þ

r
� Rð4Þ

r

�
¼ 0; (32)

� i!Rð2Þ � fRð1Þ
;r þ f2Rð3Þ

;r � f

r
ðRð1Þ � Rð5Þ

� fRð3Þ � 2fRð6ÞÞ ¼ 0; (33)

�i!Rð4Þ � f

r
ðrRð5Þ

;r þ 2Rð5Þ þ lðlþ 1ÞRð6Þ � Rð7ÞÞ ¼ 0;

(34)

�i!Rð8Þ � f

r
ðrRð9Þ

;r þ 2Rð9Þ � Rð10ÞÞ ¼ 0; (35)

where for brevity we have dropped the lmn indices.

1. Hierarchical structure of the FD field equations

The gauge conditions can be used to reduce the number
of field equations that need to be solved for simultaneously.
Odd-parity modes have three coupled fields (i ¼ 8, 9, 10)
in general, but we can use the gauge condition (35) (when

! � 0) to obtain Rð8Þ algebraically in terms of Rð9Þ and
Rð10Þ. Since Rð8Þ does not feature in the field equations for

Rð9Þ and Rð10Þ, we may first solve the coupled set for the

latter two, and then obtain Rð8Þ from the gauge condition.
Hence, in the odd sector we face solving a coupled set of
two equations only. In the special case ðl; mÞ ¼ ð1; 0Þ the
function Rð10Þ vanishes trivially, and the system reduces

further to a single field equation for Rð9Þ.
The even-parity sector consists of seven coupled fields

[Rð1Þ; . . . ; Rð7Þ] and three gauge constraint equations
[Eqs. (32)–(34)]. In principle, thus, we need only solve
for four radial fields and we may then construct the remain-
ing three fields using the gauge equations. In practice,
however, it is simpler (following Ref. [11]) to solve the

field equations for the five coupled fields RðiÞ with i ¼ 1, 3,
5, 6, 7, and then make use of Eqs. (33) and (34) to obtain

Rð2Þ and Rð4Þ (neither of the last two functions feature in the
set of five coupled field equations). We can use the remain-
ing gauge equation (32) as a consistency check on our
numerical results. In the special case ðl; mÞ ¼ ð1;�1Þ the
function Rð7Þ vanishes trivially, and the system of field
equations reduces to four equations for i ¼ 1, 3, 5, 6.

For ðl; mÞ ¼ ð0; 0Þ both Rð7Þ and Rð5Þ vanish, and the
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system further reduces to just three coupled equations,
for i ¼ 1, 3, 6.

The static mode m ¼ 0 ¼ n (for each l) is dealt with

differently. In this case, the functions Rð9Þ and Rð10Þ (in the

odd-parity sector) and Rð2Þ and Rð4Þ (in the even-parity
sector) vanish identically, and the above structure changes.
The gauge equation (35) becomes trivial [as does (32)] and

it cannot be used to obtain Rð8Þ; instead, we obtain this
function by solving the i ¼ 8 field equation. In the even
sector, the remaining gauge conditions (33) and (34) can be

used to express Rð6Þ and Rð7Þ algebraically in terms of Rð1Þ,
Rð3Þ and Rð5Þ (and their first derivatives), which in turn can
be used to decouple the subset of field equations with
i ¼ 1, 3, 5 from the rest of the set. One thus solves for
i ¼ 1, 3, 5 and then obtains i ¼ 6, 7 using these algebraic
expressions.

The above hierarchical scheme for constructing the

fields RðiÞ is summarized in Table I. The table shows the
variety of different cases depending on the values of lmn.

2. Low-frequency modes

We have mentioned the special modem ¼ n ¼ 0, which
is static (i.e., has ! ¼ 0). One such mode must be calcu-
lated for each value of l. Our numerical algorithm may
encounter yet another type of static mode, for which m,
n � 0 but! ¼ m�� þ n�r ¼ 0. Such ‘‘resonant’’ modes

[44] occur when the frequency ratio��=�r happens to be

a rational number �n=m where n and m are the indices
of the modes that need to be calculated numerically. (In an
actual numerical implementation one always truncates the
mode sum at some finite values of n and m, so only certain
‘‘low-order’’ resonances are relevant in practice.) Resonant
modes require a special treatment, both in the formulation
of boundary conditions (see the discussion in Sec. II D) and

because the standard basis of homogeneous solutions de-
generates in the resonant case (see Sec. VI).
Orbits for which there exist (low-order) modes that are

precisely resonant constitute a set of measure zero in the
parameter space, so they may be avoided in certain appli-
cations. However, as we discuss in Sec. VI, a substantial
portion of the parameter space is covered by orbits for
which there occur nearly resonant modes: ones with
Mj!j values small enough to cause numerical difficulties.
In fact, all orbits of sufficiently large p are ‘‘near resonant’’
with respect to ðm; nÞ ¼ ð�1;	1Þ, since the difference

�’ ��r decays rapidly (like 
3r�5=2
p ) at large rp.

Low-frequency modes prove difficult to deal with using
our numerical method. In Sec. VI we will discuss this
problem in more detail and propose a way to mitigate it.
In the meantime, through Secs. III, IV, and V, we ignore
this issue.

D. Physical boundary conditions

The FD field equations (31) must be solved subject to
appropriate boundary conditions at r� ! �1. Since we
are interested in constructing the physical, retarded solu-
tions, nonstationary modes (ones with ! � 0) should rep-
resent purely outgoing radiation at infinity, r� ! þ1, and
purely ingoing radiation at the horizon, r� ! �1. At the

level of the time-domain fields �hðiÞ, the conditions are

�hðiÞ 
 e�i!ðt	r�Þ; (36)

where the upper sign corresponds to future null infinity,
and the lower sign corresponds to the future event horizon.
From this we can read

RðiÞðr� ! �1Þ 
 e�i!r� ; (37)

for any l, m, ðiÞ and any ! � 0. For ! ¼ 0 modes these
conditions are replaced with the requirement that the radial
solutions are regular functions at r ¼ 1 and at r ¼ 2M.
In practice we will be solving the field equations nu-

merically, and we cannot place the inner and outer bounda-
ries of our numerical domain at r� ¼ �1. Instead we will
devise approximate boundary conditions at finite (large)
values of jr�j. This will be described in Sec. VA.

III. CONSTRUCTION OF THE INHOMOGENEOUS
FIELDS: METHOD OF EXTENDED

HOMOGENEOUS SOLUTIONS
FOR COUPLED FIELDS

The calculation of the GSF via mode-sum regularization
(see the next section) involves the construction of the time-

domain fields �hðiÞlmðt; rÞ and their first derivatives at the

location of the particle. In the standard FD approach, these
values are to be obtained from an (inverse) Fourier sum

over frequency modes RðiÞ
lmnðrÞ, which are solutions to the

TABLE I. Hierarchical scheme for solving the coupled ODEs

(31) for RðiÞ
lmnðrÞ in each case. Arrows (‘‘!’’) indicate algebraic

construction using the gauge equations (32)–(35). In general, all
tensorial components i ¼ 1; . . . ; 10 are excited (first row of
table), but there are some special modes, specifically the static
m ¼ 0 ¼ n modes and the low multipoles l ¼ 0, 1, for which
some of the tensorial components vanish identically. These
special modes are displayed separately in the table.
‘‘Resonant’’ static modes with ! ¼ 0 but nonzero m, n (when
they occur) require a separate treatment; we discuss these modes
briefly in Sec. II C 2 and in more detail in Sec. VI.

Case lþm ¼ even lþm ¼ odd

l � 2 jmj þ jnj � 0 i ¼ 1; 3; 5; 6; 7 ! 2; 4 i ¼ 9; 10 ! 8

m ¼ 0 ¼ n i ¼ 1; 3; 5 ! 6; 7 i ¼ 8 only

l ¼ 0, m ¼ 0 n � 0 i ¼ 1; 3; 6 ! 2 � � �
n ¼ 0 i ¼ 1; 3 ! 6 � � �

l ¼ 1, m ¼ 0 n � 0 � � � i ¼ 9 ! 8

n ¼ 0 � � � i ¼ 8 only

l ¼ 1, m ¼ �1 i ¼ 1; 3; 5; 6 ! 2; 4 � � �
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inhomogeneous equation (31). In general, the time-domain

modes �hðiÞlmðt; rÞ thought of as functions of t at fixed r are

nonsmooth across the particle’s worldline—their t deriva-
tives are generally discontinuous there (unless the orbit is
circular or one evaluates the derivatives at a radial turning

point). This means that an attempt to construct �hðiÞlmðt; rÞ at
(or near) the particle through a Fourier sum over modes

RðiÞ
lmnðrÞ will be hampered by the Gibbs phenomenon.

Barack et al. [33] proposed a technique for overcoming
this difficulty, named ‘‘method of extended homogeneous
solutions.’’ In Ref. [33] they formulated the method for
the scalar-field equation and worked through a numerical
example in which the monopole contribution to the scalar
field was calculated for a particle in an eccentric orbit
about a Schwarzschild black hole. Later, Hopper and
Evans [46] applied MEHS to the problem of computing
the metric perturbation in the Regge-Wheeler gauge. Their
treatment was based on the Regge-Wheeler-Zerilli master-
function formulation, which reduces the perturbation equa-
tions to two separate scalarlike ODEs, one for each parity.
Most recently Hopper and Evans [34] went on to develop a
variant of MEHS (dubbed ‘‘method of extended particular
solutions’’) that generalizes MEHS to ODEs with non-
compact sources. They used this method to tackle the
(odd-parity sector of the) gauge transformation equations
from the Regge-Wheeler gauge to the Lorenz gauge.
MEHS was also employed in Ref. [32] to compute the
scalar-field self-force on a particle moving in the equatorial
plane of a Kerr black hole.

In this section we generalize MEHS to the case of
multiple coupled fields, relevant to our Lorenz-gauge treat-
ment of the metric perturbation equations. This extension
has already been carried out for the monopole (l ¼ 0) and
the dipole (l ¼ 1) modes by Golbourn [47] and imple-
mented for these modes by Barack and Sago [11]. Here
we present it for a generic lmn mode. We will prescribe,

without proof, the construction of the fields �hðiÞlmðt; rÞ and
their derivatives at the particle via MEHS. A proof would
closely follow the argument given in [33].

For a given lmn mode, the field equations (31) are a set
of k coupled second-order ODEs, where k ¼ 1–5 depend-
ing on the mode in question (cf. Table I). We assume that
there exists a set of k linearly independent homogeneous

solutions RðiÞþ
j (j ¼ 1; . . . ; k) that satisfy the physical

boundary conditions at r ! 1, and another set of k homo-

geneous solutions RðiÞ�
j , linearly independent of each other

and of RðiÞþ
j , that satisfy the physical boundary conditions

at r ! 2M. (Here, and in the following discussion, we omit

the label lmn for brevity.) The combined set RðiÞ�
j form a

complete (2k-dimensional) basis of linearly independent
solutions to the homogeneous part of Eq. (31). That the two

sets RðiÞþ
j and RðiÞ�

j exist for each lmn mode of the metric

perturbation equations will be confirmed in our analysis by

direct construction (the mode l ¼ m ¼ n ¼ 0 is somewhat
exceptional; it will be discussed separately in Appendix B).

Given the basis solutions RðiÞ�
j ðrÞ and their radial de-

rivatives @r�R
ðiÞ�
j ðrÞ, let us construct the 2k� 2k matrix

�ðrÞ ¼ �RðiÞ�
j RðiÞþ

j

�@r�R
ðiÞ�
j @r�R

ðiÞþ
j

0
@

1
A; (38)

where in each k� k quadrant the rows run over i and the
columns run over j. We then define the extended homoge-
neous solutions (EHS) as

~RðiÞ
� ðrÞ ¼ Xk

j¼1

C�
j R

ðiÞ�
j ðrÞ; (39)

where the weighting coefficients C�
j are computed via the

matrix equation

C�
j

Cþ
j

 !
¼
Z rmax

rmin

��1ðrÞ 0

JðjÞðrÞ

 !
fðrÞ�1dr: (40)

Here, the source vector of length 2k is formed of k zeroes

followed by the k FD sources JðjÞðrÞ of Eq. (31) (given
explicitly in Appendix A). The factor of f�1 comes from
the change of integration variable: dr� ¼ f�1ðrÞdr. Note
that the EHS functions ~RðiÞ� ðrÞ constitute a solution to the
inhomogeneous equations (31) only in the vacuum region

r < rmin , and, similarly, ~RðiÞ
þ ðrÞ constitute a solution to the

inhomogeneous equations only in the vacuum region
r > rmax . Both EHS functions fail to solve the inhomoge-
neous equations inside the libration region rmin < r < rmax .
In the final step we define the time-domain EHS fields

~hðiÞlm� ðt; rÞ via the standard Fourier summation

~hðiÞlm� ðt; rÞ ¼ X
n

~RðiÞlmn
� ðrÞe�i!t: (41)

The main result of MEHS is that the true time-domain
solution satisfying the physical boundary conditions is
given simply by

�hðiÞlmðt; rÞ ¼
8<
:

~hðiÞlmþ ðt; rÞ; r > rpðtÞ;
~hðiÞlm� ðt; rÞ; r < rpðtÞ:

(42)

Note that, even though each individual EHS function
~RðiÞ
� ðrÞ fails to be a solution inside the libration region,

their Fourier mode sums recover the correct time-domain
solutions on the corresponding sides of the worldline. The
explanation for this result is a straightforward generaliza-
tion of the argument given in [33].
The main advantage of MEHS is in the fact that the

values �hðiÞlmðt; rpÞ and @r �h
ðiÞlmðt; r�p Þ needed as input for

the GSF calculation are obtained via a sum over smooth,
homogeneous Fourier modes. As a result, one encounters
no complications related to the Gibbs phenomenon.
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As a practical note, we mention that the integral in
Eq. (40) becomes subtle near the ends of the integration

domain, where JðjÞ / 1=ur and the integrand diverges. We
solve this by transforming to � as an integration variable:

C�
j

Cþ
j

 !
¼
Z �

0
��1ð�Þ 0

ĴðjÞð�Þ

 !
d�

dt

dt

d�
ðfðrpð�ÞÞÞ�1d�;

(43)

where ĴðjÞ � JðjÞur is bounded anywhere in the integration
domain. In this expression, dt=d� is given in terms of � in
Eq. (8), and d�=dt ¼ fðrpð�ÞÞ=E, where rpð�Þ is given in

Eq. (7); both factors are bounded anywhere in the integra-
tion domain.

In Appendix B we demonstrate the application of the
above method for a particular mode of the perturbation: the
mode l ¼ m ¼ n ¼ 0, i.e., the static piece of the monopole
perturbation, where the entire construction can be carried
out analytically. We choose to discuss this particular mode
also because its treatment involves certain subtleties that
need to be explained.

IV. THE GRAVITATIONAL SELF-FORCE

Detweiler and Whiting [7] showed that, in a local neigh-
borhood of the particle, the retarded Lorenz-gauge metric
perturbation �h�� can be split in the form

�h�� ¼ �hR�� þ �hS��; (44)

where the ‘‘singular’’ piece �hS�� is a certain solution to the

sourced Lorenz-gauge field equation (14), such that (1)
the ‘‘regular’’ field �hR�� is a smooth vacuum solution, and

(2) the force exerted by �hR�� on the particle is the physical

GSF, as derived by others via rigorous methods
[3,5,6,8,48]. Explicitly, given the field �hR��ðxÞ in the parti-

cle’s neighborhood, the GSF is given by

F�
self ¼ �k���
r


�hR�� (45)

(evaluated on the particle), where

k���
 ¼ 1

2
g�
u�u� � g��u�u
 � 1

2
u�u�u�u


þ 1

4
u�g��u
 þ 1

4
g�
g��: (46)

The operator k���
r
 arises simply from taking the linear-
in-h piece of the connection coefficients and projecting
orthogonally to the particle’s worldline [49]; it is the same
operator as the one describing the ‘‘gravitational force’’
due to a smooth external perturbation (e.g., an incident
gravitational wave) if one projects the motion onto the
background spacetime.

Obtaining the field �hR�� near the particle is the main

computational task of any GSF calculation. A variety of
practical approaches have been proposed (see Ref. [26] for

a review). In this work we make use of the mode-sum
method, first proposed in Ref. [50].

A. GSF via mode-sum regularization

The mode-sum approach is a practical reformulation of
the standard, rigorous GSF formula. Roughly speaking,
in this approach the subtraction of the singular field from
the full (retarded) field is carried out mode by mode in a
multipolar expansion around the large black hole, with the
advantage that each modal contribution to the GSF is
bounded at the particle. At the operational heart of the
method is the mode-sum formula,

F�
self ¼

X1
l¼0

ðF�l� � A��L� B� � C�=LÞ �D�; (47)

which we now explain. The quantities F�l� are the multi-
pole modes (evaluated at the particle) of the ‘‘full force’’
field

F�
full � � �k���
ðxÞr


�h��ðxÞ; (48)

where the field �k���
ðxÞ is defined through a certain
smooth extension of the quantity k���
 off the worldline.
By a ‘‘multipole mode’’ we mean the quantity obtained
by expanding each vectorial component of F�

full in scalar

spherical harmonics, and then adding up all m-mode con-
tributions for a given l. The resulting l modes F�l� (which
depend on the k extension chosen) turn out to be bounded
even at the particle limit, but in general the two radial
limits r ! r�p yield two different values—hence the

subscript �. The other terms in the sum in Eq. (47) are
regularization counterterms, with

L � lþ 1=2: (49)

The coefficients A�, B�,C�,D� are l independent, analyti-
cally given regularization parameters, the values of which
are known for generic orbits in Schwarzschild [50] and
Kerr [51] geometries. In the Schwarzschild case they read

At� ¼ 	 �2ur

r2pfpU
; Ar� ¼ 	�2E

r2pU
; A’

� ¼ 0; (50)

Bt ¼ �2Eur

�r2pfpU
3=2

½�KðwÞ þ 2ð1�UÞEðwÞ�; (51)

Br ¼ � �2

�r2pU
3=2

½ðE2 þ fpUÞKðwÞ

� ½2E2ð1�UÞ � fpUð1� 2UÞ�EðwÞ�; (52)

B’ ¼ �2ur

�Lr2p
ffiffiffiffi
U

p
�
KðwÞ �

�
1� 2

L2

r2p

�
EðwÞ

�
; (53)

C� ¼ 0 ¼ D�; (54)
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where KðwÞ and EðwÞ � R�=2
0 ð1� wsin 2xÞ1=2dx are the

complete elliptic integrals of the first and second kind
respectively, fp � fðrpÞ, and

w ¼ L2

r2p þL2
; U ¼ 1þL2

r2p
: (55)

The values of the regularization parameters depend on the
k extension chosen, and it is essential that the extension
in which the parameters are calculated correspond to that
of the (numerically computed) modes F�l� . The parameter
values we give above correspond to the extension applied
in Ref. [11], which is defined as follows: For a given
particle point xp, take the field �k���
ðxÞ to be given by

Eq. (46), with the metric g�� taking its value at the field
point x, and with u� � u�ðxpÞ for all x (in Schwarzschild

coordinates). Below wewill note the practical advantage of
this particular k extension.

The mode sum in Eq. (47) converges slowly, as
1=l. In
practice, this means that one has to compute many lmodes,
which can be computationally demanding. It is possible to
improve the convergence rate of the mode sum by includ-
ing higher-order counterterms. It is convenient to choose
such terms to have the form

D�;2

ð2l� 1Þð2lþ 3Þ þ
D�;4

ð2l� 3Þð2l� 1Þð2lþ 3Þð2lþ 5Þ þ � � �

¼ XNmax

N¼1

4�ND�;2N

�YN
k¼1

ðL2 � k2Þ
��1

; (56)

in which the sum
P1

l¼0 of each N term vanishes; for

instance,
P1

l¼0½ð2l� 1Þð2lþ 3Þ��1 ¼ 0. The coefficients

D�;2N are ‘‘high-order regularization parameters.’’ The

Nth term is proportional to l�2N at large l, and no odd
powers of 1=L occur [13]. Hence, with the inclusion of
each extra parameter, the convergence rate of the mode-
sum improves by a factor of l�2. Detweiler et al. [13]
derived an analytic expression for D2 for the scalar-field
self-force on a particle in a circular orbit around a
Schwarzschild black hole. Very recently Heffernan et al.
[52,53] were able to derive D2, D4 and D6 for the scalar-
field self-force and D2, D4 for the electromagnetic and
gravitational self-forces, in all cases for generic orbits in
Schwarzschild or Kerr geometry. We will make use of their
results in our computation.

The mode-sum formula (47) requires as input the scalar
spherical-harmonic modes of the components F�

full. These

are to be constructed from numerically computed tensor-
harmonic modes of the metric perturbation. This involves
a projection of the functions F�

fullðt; r; �; ’Þ (for each

Schwarzschild component � treated as a scalar field)
onto a basis of scalar harmonics. The outcome will, of
course, depend on the off-worldline extension chosen for
k���
. Generically, each spherical-harmonic l mode of
F�
full will couple to infinitely many tensor-harmonic modes

of the input perturbation. To minimize the level of coupling
requires a judicious choice of the k extension. With the
choice made above, following Ref. [11], only a finite
coupling occurs: In general, each scalar-harmonic l-mode
F�l� has contributions from only seven tensor-harmonic l0
modes, i.e., l� 3 � l0 � lþ 3 (and there is no coupling
between different m modes). The resulting formula for
F�l� has the form [11]

F�l� ¼�2

r2p

Xl
m¼�l

fF �l�3;m
ð�3Þ þF �l�2;m

ð�2Þ þF �l�1;m
ð�1Þ þF �l;m

ð0Þ

þF �lþ1;m
ðþ1Þ þF �lþ2;m

ðþ2Þ þF �lþ3;m
ðþ3Þ gYlmð�p;’pÞ; (57)

where each quantity F �lþk;m
ðnÞ (with k ¼ �3; . . . 3) is con-

structed from the tensor-harmonic mode �hlþk;m
�� ðt; rÞ of the

metric perturbation and its first derivatives. Explicit ex-
pressions for theF ’s are given in Appendix C of Ref. [11];
we do not repeat them here as they are rather lengthy.

B. Conservative and dissipative
components of the GSF

When analyzing the different physical effects of the GSF
it is physically useful to consider its conservative and dis-
sipative effects separately [26,54]. Splitting the GSF into its
conservative and dissipative components Fcons

� and Fdiss
� is

also practically beneficial, as the two pieces admit l-mode
sums with different convergence properties, which are bet-
ter dealt with independently. In the case of bound orbits
around a Schwarzschild black hole, one may readily extract
the dissipative and conservative pieces of the GSF taking
advantage of the orbital symmetries. As discussed in
Ref. [26], assuming (without loss of generality) that
� ¼ 0 corresponds to a periastron passage, we can write

Fcons
� ð�Þ ¼ 1

2
½Fret

� ð�Þ þ 
ð�ÞFret
� ð��Þ�;

Fdiss
� ð�Þ ¼ 1

2
½Fret

� ð�Þ � 
ð�ÞFret
� ð��Þ�

(58)

(no summation over �), where 
ðt;’Þ ¼ �1 and 
ðrÞ ¼ þ1.

In our analysis we assume the orbit is equatorial, so
Fcons
� ¼ 0 as well as Fdiss

� ¼ 0 from symmetry.

One of the advantages of splitting the GSF in this manner
is that the dissipative piece of the GSF does not require
regularization. The conservative piece, on the other hand, is
regularized with the same regularization parameters as the
complete GSF. Explicitly, the mode-sum formulas for the
conservative and dissipative pieces are given by [26]

Fcons
� ¼ X1

l¼0

½FfullðconsÞ
�l� � A�

�L� B��; (59)

Fdiss
� ¼ X1

l¼0

FfullðdissÞ
�l� ; (60)
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whereFfullðconsÞ
�l� andFfullðdissÞ

�l� are constructed using formulas

analogous to Eqs. (58), andwe have usedC� ¼ 0. The same
higher-order regularization parameters used to improve the
convergence of the complete GSF can also be used to
improve the convergence of Fcons

� .

V. NUMERICAL IMPLEMENTATION

A. Numerical boundary conditions

Our primary numerical task is to solve the radial equa-
tion (31) subject to the boundary conditions given by
Eq. (37). In our numerical implementation we use the
radial coordinate r�, in terms of which the physical
boundaries are located at �1, so integrating strictly
from the physical boundaries is not possible. Instead, we
place approximate boundary conditions at the edges of our
numerical domain, which runs (for a given ! mode) from
r� ¼ rin� � �j!j�1 to r� ¼ rout� 
 !�1 (for static modes,
! ¼ 0, these conditions are replaced with rin� � �M and
rout� 
 M). How we choose rin� and rout� in practice will be
discussed in the next subsection. Approximate boundary

conditions for the homogeneous fields RðiÞ
lm! were devel-

oped in Paper I, and we adopt them here. We will review
here the form of these boundary conditions and refer the
reader to Paper I for further details.

In constructing the numerical boundary conditions it is
assumed, a priori, that the radial fields admit an asymptotic
expansion in 1=r at r ! 1 and an asymptotic expansion
in r� 2M at r ! 2M. Combined with the leading-order
behavior of the physical perturbation given in Eq. (37),
this leads to the ansatz

RðiÞ� ðrinÞ ¼ exp ð�i!rin� Þ
X1
j¼0

bðiÞj ðrin � 2MÞj; (61)

RðiÞ
þ ðroutÞ ¼ exp ðþi!rout� ÞX1

j¼0

aðiÞj
rjout

; (62)

where rin � rðrin� Þ and rout � rðrout� Þ, and we hereafter
suppress the indices lm! for brevity. The above ansatz
turns out to be appropriate for all lm! modes, with the
exception of the even-parity static modes (i.e, lþm ¼
even with ! ¼ 0) of RðiÞ

þ , to be discussed separately below.
By substituting the above ansatz into the field equations (31),

one obtains recursion relations between the aðiÞj ’s and (sepa-

rately) between the bðiÞj ’s. These relations are given in Paper I.

For each lm!, there are preciselyk freely specifiable parame-

ters aðiÞj and k more freely specifiable parameters bðiÞj , where

2k is the dimension of the space of homogeneous solutions
for that mode (cf. Table I). If we arrange these freely speci-
fiable parameters to form vectors ~a ¼ fa1; a2; . . . ; akg and
~b ¼ fb1; b2; . . . ; bkg, then by choosingk linearly independent
vectors ~a ( ~b) we obtain a basis of k linearly independent

homogeneous solutions RðiÞ
þ (RðiÞ� ).

For even-parity static modes, the ansatz in Eq. (62) does
not produce the necessary number of freely specifiable

parameters aðiÞj (k ¼ 3 in this case—recall Table I). For

these modes, one instead uses

RðiÞ
þ ðroutÞ ¼

X1
j¼l

aðiÞj þ �aðiÞj ln ðrout=MÞ
rjout

; (63)

which gives three freely specifiable parameters as required

[these can be taken to be ~a ¼ fað3Þl ; að5Þl ; að5Þlþ2g, which

then determines all the other aðiÞj and �aðiÞj coefficients].

See Paper I for details.

B. Computational algorithm

We now outline the necessary steps in computing the
Lorenz-gauge GSF for a particle on an eccentric orbit, in
our FD approach. The algorithm is similar to that used
in Ref. [32] for the scalar-field self-force.

(1) Orbital parameters. For given orbital eccentricity,
e, and semilatus rectum, p, we calculate relevant
orbital parameters (E,L,�r,�’, Tr, etc.) using the

formulas given in Sec. II A.
(2) Boundary conditions. For a given lmn mode we

derive boundary conditions using Eqs. (61) and (62)
[or, for static modes of even parity, Eq. (63)]. On
the outer boundary we derive k sets of values

fRðiÞ
þ ; @r�R

ðiÞ
þ gjr�out , corresponding to k linearly indepen-

dent choices of ~a; the choice ~a1 ¼ ð1; 0; . . . ; 0Þ,
~a2 ¼ ð0; 1; . . . ; 0Þ; . . . is convenient. We similarly ob-

tain k sets of values fRðiÞ� ; @r�R
ðiÞ� gjr�

in
corresponding to

k linearly independent choices of ~b. On each boundary

there are two control parameters: the value of rin=out�
and the truncation index j ¼ jmax . We choose these
values so as to achieve a relative error <10�14 in the

partial sums for RðiÞ
� ðr�in=outÞ. Since evaluating the

boundary conditions is substantially cheaper than in-
tegrating the field equations, it is advantageous to
place the boundaries as close to the particle as possible,
at the modest cost of increasing jmax . Through experi-
mentation we found that setting rout� ¼ 10=! and
rin� ¼ �50M worked well in most cases we consid-
ered. With these values we usually needed to truncate
the series at jmax & 15 for the outer boundary and at
jmax & 5 for the inner boundary.

(3) Homogeneous fields. For our given lmn, and for
each one of the k sets of boundary values at rout,
we integrate the homogeneous part of the coupled
field equations (31) from r� ¼ r�out inward to rmin� .
Similarly, for each one of the k sets of boundary
values at rin, we integrate the homogeneous ODEs
from r� ¼ r�in outward to rmax� . We use the Runge-

Kutta Prince-Dormand integration routine (rk8pd
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from [55]). (For l ¼ m ¼ n ¼ 0 the homogeneous
solutions are obtained analytically, as prescribed in
Appendix B.) This yields a 2k-dimensional basis of

homogeneous solutions RðiÞ
� ðrÞ. For our purpose it

suffices to record the values of these fields (and
the values of their r� derivatives) in the libration
interval, rmin� � r� � rmax� . In our implementation
we record these values at 5000 radii in this interval,
equally spaced in r�.

(4) Extended homogeneous solutions. For our given

lm!, we construct the EHS ~RðiÞ
� ðrÞ using Eqs. (39)

and (43). We find it important that the integration in
Eq. (40) is performed to a high accuracy, a some-
what challenging task due to the oscillatory nature
of the integrand. We achieve sufficiently high accu-
racy by coupling a standard adaptive integrator rou-
tine from the GNU Scientific Library (GSL) [55] to
the ODE solver. When the integrator requests the
value of the integrand at a particular value of r�,
the ODE solver is loaded with information from the
nearest of the 5000 points stored in the previous
step, and then it integrates the homogeneous fields
from that point up to the requested r� value. (We find
that simply interpolating the data stored in the pre-
vious step does not produce sufficiently accurate
results.) For modes with very small values of j!j,
the matrix � becomes nearly singular and thus
difficult to invert. Such modes are dealt with sepa-
rately as discussed in Sec. VI below. Finally, follow-
ing the hierarchical scheme illustrated in Table I, we
use the gauge equations (32) to (35) to construct any
remaining EHS fields that have not been computed
via integration of the field equations [e.g., for l � 2
with ! ¼ 0, we use the gauge conditions to con-

struct ~Rð6;7Þ
� out of ~Rð1;3;5Þ

� ].
(5) Sum over ! modes. Steps 2 through 4 are repeated

for sufficiently many n modes, and then the time-

domain EHS fields ~hðiÞlm� ðt; rÞ are constructed via
Eq. (41). The n-mode sum converges exponentially
fast, since each of the modes is a homogenous
(smooth) solution—this is the main advantage of
the EHS method. To decide where to truncate the
sum over n, we take advantage of the fact that the

EHS fields ~RðiÞ
� are not solutions of the inhomoge-

neous FD field equations in the libration region,

while the time-domain field ~hðiÞlmðt; rÞ defined in
Eq. (42) is everywhere a solution of the correspond-
ing inhomogeneous time-domain equations. In

particular, the functions ~RðiÞ
� generally fail to match

continuously on the particle’s worldline, while their

time-domain counterparts ~hðiÞlm� do match there.
Similarly, the jump in the derivatives of the� fields
at the worldline is consistent with the distributional
source of the field equations only upon summation

over n. Therefore, for a given partial sum
Pnmax

n¼0 ,

the residuals ½ ~RðiÞ�rp � ~RðiÞ
þ ðrpðtÞÞ � ~RðiÞ� ðrpðtÞÞ or

½ ~RðiÞ
;r �rp � ~RðiÞ

þ;rðrpðtÞÞ � ~RðiÞ�;rðrpðtÞÞ [as compared

to the expected jump in ~hðiÞlm] can serve as measures
of the truncation error. We may control this error
by thresholding on these residuals. In our implemen-
tation we set a threshold of 10�12 on the relative

difference between ½ ~RðiÞ
;r �rpðtÞ and the expected jump

maximized in t over an entire radial period. Once the

threshold is reached, we record ~hðiÞlmðt; rpÞ and the

two-sided values of ~hðiÞlm;r ðt; rpÞ along the worldline.

These will be used as input for the GSF calculation
in the last step.
The necessary number of modes nmax (for a given
threshold) is a function of l; m and of the orbital
parameters; it depends particularly strongly on the
eccentricity e. In Sec. VII below we will provide
some indicative information about the number of
modes required in practice.

(6) Sum over lm modes, and the GSF. Step 5 is repeated
for sufficiently many l, m modes (note that there is
no need to compute the lm modes in any particular
order—in Sec. VD we discuss how this element of
the computation can be parallelized. Using Eq. (57)
and the expressions from Appendix C of Ref. [11]

we compute FlðfullÞ
� , the l-mode contribution to the

full force. Recall that, owing to the coupling
between scalar and tensor modes, if we wish to
calculate a given lmax number of scalar l modes
we must calculate lmax þ 3 tensor modes [see
Eq. (57)]. The different convergence properties of
the conservative and dissipative components of the

GSFmake it beneficial to split each modeFlðfullÞ
� into

these two components using (the l-mode version of)
Eq. (58). The two pieces Fcons

� and Fdiss
� are then

obtained using the mode-sum formulas (59) and (60),
with the regularization parameters given in
Eqs. (50)–(53). To improve the convergence of the
mode sum for the conservative piece, we also use the
high-order parameters D2 and D4 from Heffernan
et al. [52].
In the case of Fdiss

� the mode-sum converges exponen-
tially fast in l, and we find that lmax ¼ 15 typically
suffices to obtain the dissipative GSF to within our
target relative accuracyof10�6. In the case ofFcons

� the
convergence is slower (see below), and it is in some
cases necessary to estimate the contribution from
the truncated large-l tail. Our method for doing so is
detailed in the next subsection.

C. Contribution from truncated large-l tail

In practice, for moderate eccentricities, it is computa-
tionally prohibitive to numerically calculate modes with l
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much larger than 
20. We estimate the contribution from
the large-l modes by a fitting scheme. Let us focus on the
conservative component of the GSF, for which the issue
becomes a problem. We write this component as a sum of
two pieces, a numerically computed partial sum and a
large-l tail:

Fcons
� ¼ Fl�lmax

� þ Fl>lmax
� : (64)

Here

Fl�lmax
� �Xlmax

l¼0

FlðregÞ
� and Fl>lmax

� � X1
l¼lmaxþ1

FlðregÞ
� ; (65)

where the ‘‘regularized’’ modes in our implementation are
given by

F
lðregÞ
� ¼ FlðfullÞ

� � A�L� B�

� X2
N¼1

4�ND�;2N

�YN
k¼1

ðL2 � k2Þ
��1

: (66)

Recall L ¼ lþ 1=2, and fD�;2; D�;4g are the high-order

parameters computed analytically in [52]. We expect FlðregÞ
�

to fall off as
L�6 at large l, so the truncation tail Fl>lmax
� is

expected to fall off like 
l�5
max for large lmax .

The large-l contribution Fl>lmax
� can be computed by

extrapolating the last few numerically calculated l modes.
In our code we use a standard least-squares algorithm from
the GSL [55] to fit for the coefficients D�;2N (with N > 2)
using our numerical data for l modes with lmax � 6 � l �
lmax , i.e., the last seven data points from the set of available
numerically computed lmodes. When selecting a subset of
l modes for the fit, one has, on one hand, to sample from
the large-l portion of the data (where the behavior is an
approximate L�6 dropoff), and on the other hand to be
mindful of the fact that large-l modes carry a large relative
error. We have experimented with fitting to different sub-
sets of data points and found that the smallest variance (in
the magnitude of the fitted tail) was obtained when fitting
the last five to ten points. We quote here results for a seven-
point fit and use the said variance as a rough measure of the
fitting error.

Given the (numerically fitted) regularization parameters
D�;2N , we estimate the high-l contribution using the

formula

Fl>lmax
� ¼ XNmax

N¼3

D�;2Nð�4Þ�N�ð�1Þlmaxþ1ðlmaxþ1Þ
ð2N�1Þ�ðN�lmax�1=2Þ�ðNþlmaxþ3=2Þ;

(67)

where�ðxÞ is the standard gamma function.With lmax ¼ 15
we find it sufficient to take Nmax ¼ 4 (i.e., fit for D�;6 and

D�;8 only) to reach our target accuracy of 10�6 relative to

the magnitude of Fcons
� . The residual overlooked by this

two-parameter fit is of the order of l�9
max , which isOð10�12Þ

for lmax ¼ 20. WereD�;6 andD�;8 to be computed analyti-

cally it would no longer be necessary to estimate the large-l
tail to reach our desired accuracy goal.

D. Code parallelization

Since each tensorial lm mode of the metric perturbation
is calculated independently from the others, our computa-
tional problem is amenable to parallelization in an obvious
manner. Our code is written to run on multiple CPUs,
either within a single machine or on a cluster using the
message passing interface. We also make use of dynamic
load balancing whereby the root processor forks a thread
that keeps record of the lm modes that have already been
computed. Once a processor has been assigned an lm
mode, it begins computing the n modes in the order
n ¼ 0;�1; 1;�2; 2 . . . and continues until a convergence
criterion is met as discussed above. After a given processor
completes an lm mode computation, it contacts the thread
on the root processor to request a new mode to work on.
Each processor records its calculated contribution to the
total GSF, and once all necessary lm modes have been
computed the results are combined. This simple parallel
algorithm allows us to calculate the GSF rapidly on a
cluster of computers—see Fig. 4.

VI. PROBLEM OF LOW-FREQUENCY
MODES AND ITS MITIGATION

In our discussion so far we have assumed that the code
does not encounter nonstatic modes of very small fre-
quency, j!j ¼ jm�’ þ n�rj � M�1. In reality, modes

of j!j small enough to cause numerical difficulties (for
reasons described below) will be encountered in a wide
portion of the parameter space. Figure 2 shows ! ¼ const
contours in the e,p space around four sample ‘‘resonances’’
corresponding to�r=�’ ¼ jm=nj ¼ 2

3 ,
4
7 ,

1
2 and

4
11 . Around

each resonance, the wider band marks orbits with
Mj!j< 10�3, and the narrower band marks orbits with
Mj!j< 10�4. The bands generally become wider for

smaller jmj þ jnj, larger p and larger e. Since�’ ��r 

3p�5=2 at large p, we find that all orbits with p * 25
(* 62) lie within the Mj!j< 10�3 (< 10�4) band for
ðm; nÞ ¼ ð�1;	1Þ. We have found through experimenta-
tion that our code cannot solve accurately for modes with
Mj!j & 10�3. We have devised a partial remedy to this
problem, allowing us to compute modes with frequency as
low asMj!j � 10�4. The gain, in terms of accessibility to a
larger portion of the parameter space, can be appreciated
from Fig. 2. In this section we will diagnose the root causes
for the numerical problem at low frequency and describe
the partial cure we have devised to mitigate it.
The low-frequency problem lies in the numerical task

of accurately inverting the matrix � of EHS fields [recall
Eq. (40)]. The matrix becomes ill-conditioned at very
small Mj!j, for two independent reasons. First, the
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dimension of the space of homogeneous solutions that
make up � is smaller on the resonance than it is off the

resonance: As ! ! 0, some of the functions fRðiÞ; @rRðiÞg
in � become linearly dependent through the gauge con-
ditions (32)–(35). In consequence, the matrix � degener-
ates in the limit ! ! 0. When ! is finite but small, �
retains its full off-resonance dimensionality but may be-
come ill-conditioned.

We have found, however, that the singular behavior of�
at low ! is dominated by yet another effect, which can be
described as follows. When j!j is very small, the transition
to a ‘‘wave-zone’’ (oscillatory) behavior occurs at very
large values of r. Between the libration region and the
distant wave zone (where we set our outer boundary rout)
there is a very wide domain, mostly located in the weak-

field regime, in which the fields RðiÞ decay (essentially)

with power laws. It turns out that each RðiÞ is a combination
of power-law terms of different decay rates, so that certain

linear combinations of RðiÞ can exhibit different power-law
behavior. When we integrate our ODEs inward from rout
over the large span of space down to the libration region,
different power-law tails will develop very different am-
plitudes. As a result, we will have certain linear combina-

tions of RðiÞ solutions that are much smaller than the

functions RðiÞ themselves. This manifests itself with large
condition numbers and an ill-conditioned matrix �. (We
will illustrate this behavior below with an example.)

Left untreated, the above problem restricts severely the
portion of the parameter space in which our code can work
reliably.We find that even-paritymodes withMj!j & 10�3

cannot be computed even at a moderate accuracy, and, in
practice, this leaves a very significant portion of the pa-
rameter space out of our reach. We have devised a partial
remedy to this situation, addressing the second of the above
problems, though not the more fundamental problem of
matrix degeneracy. This, however, already allows us to
extend the range of computable frequencies down to
Mj!j � 10�4, permitting access to a much larger portion
of the parameter space. To improve this further, Ref. [56]
describes an idea for a systematic solution to the matrix
degeneracy problem, which is based on a perturbative treat-
ment of the ODEs with! as a small parameter. The details
of this method are yet to be worked out and implemented.
In what follows we first illustrate the low-frequency

problem and our suggested partial cure in the particular
example of l ¼ 1 ¼ m. We then generalize to modes of
arbitrary l, m.

A. An example: Even-parity dipole mode

Consider the mode l ¼ 1 ¼ m, for which one has to
solve the (homogeneous part of the) coupled set (31) for
~R � ðRð1Þ; Rð3Þ; Rð5Þ; Rð6ÞÞT . For ! � 0 there are two

remaining nontrivial functions, Rð2Þ and Rð4Þ, which are

then obtained algebraically, given ~R, using the gauge con-
ditions (33) and (34), respectively. However, for! ¼ 0 the

functions Rð2Þ and Rð4Þ no longer feature in the gauge
conditions (33) and (34), and these equations then form
nontrivial linear relations (at each given r) between the

functions f ~R; ~R;rg. As a result, the corresponding eight-

dimensional matrix � degenerates—this is the ‘‘matrix
degeneracy’’ problem discussed above. Since we have
two nontrivial linear relations, we expect the null space
of � to be two dimensional, and det� / !2 at small !.
We have confirmed the expected scaling numerically with
our code.
Let us now turn to the second problematic effect of a

low frequency, which (left untreated) we have found to be
even more restrictive than the matrix degeneracy problem.
For ! � M�1 we have a large domainM � r � 1=!, in
which the behavior is both weak field and nonoscillatory.
In this domain, the set of l ¼ 1 ¼ m ODEs (31) takes the
(approximate) weak-field form

~R00ðrÞ þ r�2A1
~RðrÞ ¼ 0; (68)

where a prime denotes d=dr, and

A1 ¼

�4 2 2 2

2 �4 �2 �2

4 �4 �6 �4

2 �2 �2 �4

0
BBBBB@

1
CCCCCA: (69)

se
pa

ra
tr

ix
m

, n
4,

11

m
, n

1,
2

m
, n

4,
7

m
, n

2,
3

6 7 8 9 10 11 12 13
0.0

0.2

0.4

0.6

0.8

p

e

FIG. 2 (color online). Regions of strong-field parameter space
where low-frequency modes are encountered, showing just a
sample of low-order ðm; nÞ ‘‘resonances.’’ The broader (light/
violet) bands mark regions where j!j ¼ jm�’ þ n�rj<
10�3M�1, and the narrower (dark/red) bands mark regions
where j!j< 10�4M�1. Relevant resonances are those for which
the frequency ratio ��=�r is a rational number jn=mj, where n
and m are the indices for the modes that need to be calculated
numerically (usually small integers). ‘‘Near-resonant’’ modes
are difficult to deal with numerically, as discussed in the text.
Our current code incorporates a method to mitigate this problem,
which allows us access to all points in the parameter space
except those for which there occur low-order harmonics with
j!j & 10�4M�1 (narrower bands in the figure).
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The matrix A1 can be diagonalized using D1 ¼ Q�1
1 A1Q1

with

Q1 ¼

1 1 1 �1

1 0 0 1

0 0 1 2

0 1 0 1

0
BBBBB@

1
CCCCCA (70)

and

D1 ¼ diagð�2;�2;�2;�12Þ: (71)

In terms of the ‘‘rotated’’ basis ~Rrot � Q�1
1

~R, the set (68)
decouples, reading

~R00
rotðrÞ þ r�2D1

~RrotðrÞ ¼ 0: (72)

The relevant ‘‘external’’ solution is

~Rrot ¼
�
c1
r
;
c2
r
;
c3
r
;
c4
r3

�
T
; (73)

where ci are arbitrary amplitudes. We see that, over the

domain M � r � 1=!, three of the decoupled fields ~Rrot

behave as / 1=r while the fourth has a much steeper tail
of / 1=r3. If we integrate the ODEs inward starting in the
wave zone with similar initial amplitudes ci for all four
fields (as we effectively do in practice), then the fourth
(/1=r3) field will reach a much higher amplitude in the
libration region, making � ill-conditioned. This situation

is irrespective of whether we are integrating the original ~R

equations or the rotated ~Rrot equations, since the condition
number of � is invariant under rotations in the solution
space. We expect the condition number to scale as 
r2out
(and hence roughly as 
!�2) due to this effect.

The above diagnosis suggests an obvious way to miti-
gate the problem: We need only rescale the initial ampli-
tude of the / r�3 basis vector, in such a way that once the
fields are integrated down to the libration region they all

reach similar magnitudes. In terms of the ~Rrot variables, if

we choose our initial amplitudes fað1Þ0 ; að3Þ0 ; að5Þ0 ; að6Þ0 g [recall
Eq. (62)] to be f1; 0; 0; 0g, f0; 1; 0; 0g, f0; 0; 1; 0g and

ðM!Þ2f0; 0; 0; 1g, we find that the solutions RðiÞ will all
reach similar amplitudes in the libration region, as desired.
Of course, we need not actually reexpress our ODEs in

terms of the ~Rrot variables to implement this fix: We may
continue to work with the original ODEs, simply adjusting
the initial amplitudes to be ðQ1Þi1, ðQ1Þi2, ðQ1Þi3 and
ðM!Þ2ðQ1Þi4, namely f1; 1; 0; 0g, f1; 0; 0; 1g, f1; 0; 1; 0g
and ðM!Þ2f�1; 1; 2; 1g. With this choice of initial ampli-
tudes we find that � becomes much better conditioned.
Even though this simple technique does not address the
fundamental problem of degeneracy, we find that it allows
us access to frequencies smaller by at least an order of
magnitude. This level of accuracy sufficed for the orbital-
evolution application considered in Ref. [35].

B. Modes of general l, m

The above analysis generalizes to arbitrary l, m. For
odd-parity modes with l � 1 we need to solve for the basis
~Rodd � ðRð9Þ; Rð10ÞÞT (in the case l ¼ 1 the set of ODEs
reduces to a single equation). ForM � r � 1=! the set of
ODEs reduces to a form similar to that of Eq. (68), with the
matrix A1 replaced with

Aodd
l ¼ �ð�þ 4Þ 2

2�� 4 �ð�� 2Þ

 !
; (74)

where � � lðlþ 1Þ. Aodd
l is diagonalized using Dodd

l ¼
ðQodd

l Þ�1Aodd
l Qodd

l , with

Qodd
l ¼

1
lþ2 � 1

l�1

1 1

 !
(75)

and

Dodd
l ¼ diagð�lðl� 1Þ;�ðlþ 2Þðlþ 1ÞÞ: (76)

Wefind that the two odd-parity eigensolutions ðQodd
l Þ�1 ~Rodd

decay as r�lþ1 and r�l�1. Again we have a difference of 2
powers of r in the decay rates, which is problematic. We
cure this by taking ðQodd

l Þi1 and ðM!Þ2ðQodd
l Þi2 as our two

initial amplitudes.
For even-parity modes with l � 2 we need to solve

for the basis ~R � ðRð1Þ; Rð3Þ; Rð5Þ; Rð6Þ; Rð7ÞÞT (the l ¼ 0
mode is obtained analytically—see Appendix B). For
M � r � 1=!, the ODEs again become analogous to
Eq. (68), now with A1 replaced with

Aeven
l ¼

�ð�þ 2Þ 2 2 2 0

2 �ð�þ 2Þ �2 �2 0

2� �2� �ð�þ 4Þ �2� 2

2 �2 �2 �ð�þ 2Þ 0

0 0 2�� 4 0 �ð�� 2Þ

0
BBBBBBBB@

1
CCCCCCCCA
: (77)

We have
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Qeven
l ¼

1
ðlþ2Þðlþ1Þ � 1

ðlþ2Þðl�1Þ 1 1 1
lðl�1Þ

� 1
ðlþ2Þðlþ1Þ 0 0 1 � 1

lðl�1Þ
2

lþ2 � 1
ðlþ2Þðl�1Þ 0 0 � 2

l�1

� 1
ðlþ2Þðlþ1Þ 0 1 0 � 1

lðl�1Þ
1 1 0 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
(78)

and

Deven
l ¼ diagð�ðl� 1Þðl� 2Þ;��;��;��;

� ðlþ 2Þðlþ 3ÞÞ: (79)

We find that three of the eigensolutions decay like r�l and
the other two like r�l�2 and r�lþ2, respectively. Here the
problem is most acute, since the power-law variation is
over four factors of r. We cure this by choosing our initial
amplitudes to be ðM!Þ�2ðQeven

l Þi1, ðQeven
l Þi2, ðQeven

l Þi3,
ðQeven

l Þi4 and ðM!Þ2ðQeven
l Þi5.

VII. SAMPLE RESULTS

We present here a small sample of numerical GSF
results from our code. Our sole purpose is to illustrate
the correctness, accuracy and efficacy of our method—a
physical application was presented in Ref. [35]. The

TABLE II. Sample results for circular orbits: comparison with the literature. The second column shows numerical values from our
code for the radial component of the GSF. The third and fourth columns show equivalent results from Barack and Sago [9] (Fr

BS) and

Berndtson [57] (Fr
B). Entries were left empty where there is no published data available. A parenthetical figure indicates the estimated

error in the last displayed decimal (Berndtson and Barack and Sago present only significant figures). The error bars we quote
correspond to the difference in the GSFs computed using the inner and outer radial derivatives. Data points in column 2 were computed
with lmax ¼ 50 and took less than a minute each to produce on a 12-core 3 GHz cluster—a few hundred times less CPU time than the
time-domain computation of [9].

r0=M ðM=�Þ2Fr
ðthis workÞ ðM=�Þ2Fr

BS ðM=�Þ2Fr
B

6 2:446 649 93ð3Þ � 10�2 2:446 61� 10�2 2:446 649 7� 10�2

10 1:338 946 95ð7Þ � 10�2 1:338 95� 10�2 1:338 947 0� 10�2

20 4:157 055 03ð2Þ � 10�2 4:157 06� 10�2 4:157 055 0� 10�2

50 7:449 485 94ð7Þ � 10�4 7:449 49� 10�4 7:449 486 0� 10�4

150 8:682 744 62ð5Þ � 10�5 8:682 74� 10�5 8:682 744 7� 10�5

500 7:944 106 4ð8Þ � 10�6 � � � 7:944 105 8� 10�6

800 3:111 344 3ð3Þ � 10�6 � � � 3:111 344 3� 10�6

10 000 1:998ð2Þ � 10�8 � � � 1:999 300 0� 10�8

TABLE III. Sample GSF data for a geodesic orbit with parameters ðp; eÞ ¼ ð7; 0:2Þ, showing separately the dissipative and
conservative components. The GSF is sampled at a selection of radial phases � along the orbit. The displayed error bars are
computed by comparing results with lmax ¼ 15 and lmax ¼ 20. The F’ component can be constructed using the orthogonality relation
u�F

� ¼ 0, and recall F� ¼ 0 by symmetry. The data presented in this table took approximately 12 min to generate on 64 cores of a
cluster.

� ðM=�Þ2Ft
cons ðM=�Þ2Ft

diss ðM=�Þ2Fr
cons ðM=�Þ2Fr

diss

0 0 �4:063 301 7ð3Þ � 10�3 3:357 605 5ð4Þ � 10�2 0

�=4 8:647 15ð3Þ � 10�4 �2:156 922 6ð1Þ � 10�3 2:909 881 3ð5Þ � 10�2 4:734 955 8ð2Þ � 10�3

�=2 8:286 105ð1Þ � 10�4 �2:516 802 6ð1Þ � 10�4 2:125 034 3ð6Þ � 10�2 3:204 190 3ð1Þ � 10�3

3�=4 4:607 495ð2Þ � 10�4 �1:124 091 6ð2Þ � 10�5 1:590 148 8ð1Þ � 10�2 9:633 733 5ð3Þ � 10�4

� 0 �3:461 416 4ð4Þ � 10�5 1:408 877 0ð1Þ � 10�2 0

TABLE IV. Same as Table III, this time for ðp; eÞ ¼ ð10; 0:3Þ. The displayed error bars are computed by comparing results with
lmax ¼ 12 and lmax ¼ 15. The data presented in this table took approximately 24 min to generate on 64 cores of a cluster.

� ðM=�Þ2Ft
cons ðM=�Þ2Ft

diss ðM=�Þ2Fr
cons ðM=�Þ2Fr

diss

0 0 �1:024 248 8ð1Þ � 10�3 2:303 161ð2Þ � 10�2 0

�=4 1:161 566ð4Þ � 10�3 �3:678 558 2ð2Þ � 10�4 1:985 394ð1Þ � 10�2 1:177 853ð1Þ � 10�3

�=2 1:087 278ð2Þ � 10�3 3:343 395 6ð4Þ � 10�5 1:362 199ð2Þ � 10�2 5:654 576ð2Þ � 10�4

3�=4 5:122 832ð1Þ � 10�4 1:104 180 4ð3Þ � 10�5 8:810 067ð1Þ � 10�2 1:063 751 6ð1Þ � 10�4

� 0 2:836 182 5ð7Þ � 10�7 7:110 898ð1Þ � 10�2 0

FREQUENCY-DOMAIN ALGORITHM FOR THE LORENZ- . . . PHYSICAL REVIEW D 88, 104009 (2013)

104009-15



Lorenz-gauge GSF was calculated previously by Barack
and Sago [9], Berndtson [57] and Akcay [12] for circular
orbits, and by Barack and Sago [11] for eccentric orbits
(the latter using a time-domain method). We find results
from our code to be in good agreement with published
numerical data.

Let us consider circular orbits first. Our code can take as
input e ¼ 0 without modification, so this simple case al-
ready tests many of the program’s routines. In Table II we
show the radial component of the GSF for a sample of
orbital radii r0, alongside equivalent results from [9,12,57].
We find a good agreement as far out as r0 ¼ 10 000M.

We next turn to eccentric orbits. Here the time-domain
code by Barack and Sago [11] provides the only compari-
son point. In Tables III and IV we present sample GSF data
for two geodesic orbits, one with ðp; eÞ ¼ ð7; 0:2Þ and
the other with ðp; eÞ ¼ ð10; 0:3Þ, showing separately the
conservative and dissipative pieces. Data for these orbits
were also presented in Ref. [11], and we find agreement in
most cases to all significant figures. Our results for these
two orbits are about an order of magnitude more accurate
than those presented in Ref. [11], taking an order of
magnitude less CPU time to compute. In Fig. 3 we plot
Ft and Fr along the same two orbits, showing the variation
of the GSF with the radial phase �.

Figure 4 explores the computational performance of our
code. The results illustrate the rapid increase in the com-
putation burden with increasing eccentricity, as also found
previously in calculations of the scalar-field self-force [32]
and of the metric perturbation in the Regge-Wheeler gauge
[46]. As discussed in Sec. VD our code is written to run on
a computer cluster. By utilizing 64 processors, we are able
to compute the GSF along an eccentric geodesic with given
e; p (at a relative accuracy of one part in 106) in a matter
of minutes—so long as the eccentricity was not larger than

0:3. For eccentricities <0:05 the computation takes
under 2 min. As the eccentricity increases the runtime

grows approximately linearly up to e
 0:2. For higher
eccentricities the runtime grows more rapidly. This in-
crease in runtime is primarily due to the broadening of
the Fourier spectrum as the orbital eccentricity increases.
As an example, to reach our accuracy goal for p ¼ 7, we
require 6479 Fourier modes at e ¼ 0:1, 9289 Fourier
modes at e ¼ 0:2, and as many as 15 066 modes at e ¼ 0:3.
For orbits with e � 0:2, our code is capable of comput-

ing the GSF at six-figure accuracy in under 12 h on a
standard (3 GHz, dual core) desktop machine. This is an
order of magnitude faster than comparable time-domain
codes [11]. We have not obtained detailed timing data for
eccentricities much above 0.3 (it becomes increasingly
hard to avoid the low-! problem at large eccentricities),
but expect our code to remain competitive with
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FIG. 3 (color online). The total GSF (r component on the left panel, t component on the right) over a full radial period, for eccentric
orbits with parameters ðp; eÞ ¼ ð7; 0:2Þ and ðp; eÞ ¼ ð10; 0:3Þ. The radial phases � ¼ 0 and � ¼ �� correspond to periastron and
apastron, respectively.
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FIG. 4 (color online). Computational performance. The plot
shows the computation time for orbits with p ¼ f7; 20; 50g using
a cluster of 64 processors with a target relative accuracy of 10�6

in the GSF. In each such ‘‘computation’’ all GSF components are
obtained along an entire libration cycle of a fixed geodesic orbit
with given p, e.
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time-domain implementations up to at least e
 0:5.
This ability of our code to produce large quantities of
data for low eccentricity orbits was a crucial prerequisite
is enabling the orbital-evolution calculation presented in
Ref. [35].

VIII. OUTLOOK

We described here a computational framework for
Lorenz-gauge GSF calculations in Schwarzschild space-
time. The framework allows efficient computations of
the GSF along strong-field (p & 50) bound orbits of small
and moderate eccentricities (e & 0:3). In the context of the
ongoing GSF program there are several high-priority im-
provements and extensions of our code, which we now
briefly survey.

First, it is important to extend the reach of our method
in parameter space, in two ways: farther out into the
weak-field (large p) regime, and tighter around ! ¼ 0
‘‘resonances.’’ The weak-field extension will allow
interesting comparisons with post-Newtonian results and
the calibration of post-Newtonian parameters using eccen-
tric orbits, in much the same way as was done recently
using circular orbits [24,58]. As a reference for compari-
son, one could utilize the eccentric-orbit generalization
of Detweiler’s ‘‘redshift’’ invariant [10] proposed in
Ref. [59]. The near-resonances extension is necessary to
reduce/remove a troubling restriction on the range of
strong-field orbits computable by our code. Both exten-
sions require a better method for dealing with modes of
very low frequency. Such a method is sketched in Ref. [56]
but it is yet to be worked out in full and implemented.

Second, it is a high-priority task to extend the computa-
tional framework to the Kerr case. There are several possible
avenues of approach to this problem. The most straightfor-
ward (but lacking elegance and computationally tedious)
would follow closely our treatment in Schwarzschild: One
would write down the Lorenz-gauge perturbation equations
on a Kerr background and decompose them into Fourier-
harmonic modes using standard tensorial-harmonic func-
tions. The equations will couple between different l
multipoles (in addition to the usual coupling between tenso-
rial components), and one would have to solve the resulting
coupled set. Such an approach could prove either practical or
not depending on the strength of the l-mode coupling.

A second possibility (if one insists on working in the
Lorenz gauge) is to derive a basis of ‘‘tensorial spheroidal
harmonics’’—a generalization of both spin-2 spheroidal
harmonics 2Slm!ð�Þ [60] and tensorial spherical harmonics—

that would fully separate the angular dependence in the
linearized Einstein’s equation (14) on a Kerr background.
If this can be achieved, the Kerr problem could be tackled
in much the same way as the Schwarzschild problem.
(Such a useful basis of angular functions would have a
wide range of applications in black hole perturbation
theory beyond the GSF problem.)

A third option involves a departure from the pure-
Lorenz-gauge strategy, as advocated in a series of papers
by Friedman and co-workers [19,61–63] (and see also an
early proposal in Ref. [64] and the recent Ref. [65]). The
idea is to construct the GSF in some locally regular gauge
(i.e., a gauge related to Lorenz’s via a sufficiently regular
transformation), which is at the same time related to a
radiation gauge [66] via a simple, analytically given trans-
formation. Since there is a known procedure for recon-
structing the radiation-gauge perturbation from curvature
scalars (solutions to the spin-2 Teukolsky equation)
[66,67], we would reduce the numerical task to the solution
of fully separable scalarlike equations. It is possible to
make this idea work in practice by obtaining a modified
version of the mode-sum formula (47), in which the nu-
merical input is (essentially) modes of the radiation-gauge
metric perturbation (and their derivatives), and the regu-
larization parameters are modified to account for the
local gauge transformation to Lorenz gauge. The details
of this method, which we consider a most promising
approach to the Kerr problem, will be presented in a forth-
coming paper [68].
Third, as an even more ambitious extension of our

method, consider the problem of computing second-order
GSF effects. Several formulations of the GSF at second
order in the mass ratio have been presented recently
[69–72]. Reference [72], in particular, proposes a practical
method for computing the regularized second-order metric
perturbation; this can be used, e.g., to compute Detweiler’s
redshift variable through second order in the mass ratio.
At the practical level, the numerical task reduces to the
solution of the linearized Einstein’s equation (14) sourced
by a certain extended ‘‘effective source’’ constructed from
the (regularized) first-order perturbation and its deriva-
tives, as prescribed in [72]. This problem can be tackled
using a suitably modified version of our existing FD code.
Work is in progress to implement this method numerically
for circular orbits around a Schwarzschild black hole.
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APPENDIX A: COUPLING TERMS IN THE FIELD
EQUATIONS, AND SOURCE FUNCTIONS

We give here the explicit form of the terms M̂ðiÞl
ðjÞ and

JðiÞlmn appearing in the FD field equations (31). Omitting the

modal indices lmn for simplicity, the M̂ðiÞl
ðjÞ are given by
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M̂ð1Þ
ðjÞR

ðjÞ ¼ M

r2
fRð3Þ

;r� þ
f

2r2

�
1� 4M

r

�
ðRð1Þ � Rð5Þ � fRð3ÞÞ

� f2

2r2

�
1� 6M

r

�
Rð6Þ; (A1)

M̂ð2Þ
ðjÞR

ðjÞ ¼ 1

2
ff0Rð3Þ

;r� þ
1

2
f0½i!ðRð1Þ �Rð2ÞÞ þRð2Þ

;r� �Rð1Þ
;r� �

þ f2

2r2
ðRð2Þ �Rð4ÞÞ þ ff0

2r
ðRð1Þ

�Rð5Þ � fRð3Þ � 2fRð6ÞÞ; (A2)

M̂ð3Þ
ðjÞR

ðjÞ ¼ � f

2r2

�
Rð1Þ � Rð5Þ �

�
1� 4M

r

�
ðRð3Þ þ Rð6ÞÞ

�
;

(A3)

M̂ð4Þ
ðjÞR

ðjÞ ¼ 1

4
f0½i!ðRð5Þ � Rð4ÞÞ þ Rð4Þ

;r� � Rð5Þ
;r� �

� 1

2
lðlþ 1Þ f

r2
Rð2Þ � ff0

4r
ð3Rð4Þ þ 2Rð5Þ

� Rð7Þ þ lðlþ 1ÞRð6ÞÞ; (A4)

M̂ð5Þ
ðjÞR

ðjÞ ¼ f

r2

��
1� 9M

2r

�
Rð5Þ � lðlþ 1Þ

2
ðRð1Þ � fRð3ÞÞ

þ 1

2

�
1� 3M

r

�
ðlðlþ 1ÞRð6Þ � Rð7ÞÞ

�
; (A5)

M̂ð6Þ
ðjÞR

ðjÞ ¼ � f

2r2

�
Rð1Þ � Rð5Þ �

�
1� 4M

r

�
ðRð3Þ þ Rð6ÞÞ

�
;

(A6)

M̂ð7Þ
ðjÞR

ðjÞ ¼ � f

2r2
ðRð7Þ þ �Rð5ÞÞ; (A7)

M̂ð8Þ
ðjÞR

ðjÞ ¼ 1

4
f0½i!ðRð9Þ � Rð8ÞÞ þ Rð8Þ

;r� � Rð9Þ
;r� �

� ff0

4r
ð3Rð8Þ þ 2Rð9Þ � Rð10ÞÞ; (A8)

M̂ð9Þ
ðjÞR

ðjÞ ¼ f

r2

�
1� 9M

2r

�
Rð9Þ � f

2r2

�
1� 3M

r

�
Rð10Þ; (A9)

M̂ð10Þ
ðjÞ R

ðjÞ ¼ � f

2r2
Rð10Þ � f�

2r2
Rð9Þ; (A10)

where recall f ¼ 1� 2M=r, f0 ¼ @f=@r and � ¼
ðlþ 2Þðl� 1Þ.

The FD source functions JðiÞlmn � JðiÞlmnðrÞ appearing in

Eq. (31) are derived from the time-domain source func-

tions SðiÞ
lm � SðiÞ

lmðt; rÞ of Eq. (23) using

JðiÞlmn ¼ � 4

Tr

Z Tr=2

�Tr=2
SðiÞ
lm
ðr� rpÞei!tdt; (A11)

where Tr is the radial period of Eq. (11). The functions S
ðiÞ
lm

themselves are given by [11]

Sð1Þ
lm ¼ �

4�f2p

Er3p
ð2E2r2p � fpr

2
p �L2fpÞY�

lmð�=2; ’pÞ;

(A12)

Sð2Þ
lm ¼ ��

8�f2p
rp

urY�
lmð�=2; ’pÞ; (A13)

Sð3Þ
lm ¼ �

4�

Er3p
f2pðr2p þL2ÞY�

lmð�=2; ’pÞ; (A14)

Sð4Þ
lm ¼ �

8�imf2pL

r2p
Y�
lmð�=2; ’pÞ; (A15)

S ð5Þ
lm ¼ ��

8�imf2pu
rL

r2pE
Y�
lmð�=2; ’pÞ; (A16)

Sð6Þ
lm ¼ �

4�f2pL2

r3pE
Y�
lmð�=2; ’pÞ; (A17)

Sð7Þ
lm ¼ ½lðlþ 1Þ � 2m2�Sð6Þ

lm ; (A18)

Sð8Þ
lm ¼ �

8�f2pL

r2p
Y�
lm;�ð�=2; ’pÞ; (A19)

Sð9Þ
lm ¼ ��

8�f2pu
rL

r2pE
Y�
lm;�ð�=2; ’pÞ; (A20)

Sð10Þ
lm ¼ �

8�imf2pL2

r3pE
Y�
lm;�ð�=2; ’pÞ: (A21)

Here, recall that the subscript ‘‘p’’ denotes the value of a
quantity at the particle and E and L are given by Eq. (6).
The integral in Eq. (A11) is readily evaluated. For

example, for i ¼ 5 we have

Jð5Þlmn¼� 4

Tr

Z Tr=2

�Tr=2
Sð5Þ
lm
ðr�rpÞei!tdt

¼�
32�imYlm

TrE

Z Tr=2

�Tr=2

f2pu
r

r2p
eið!t�m’pÞ
ðr�rpÞdt

¼��
64�mYlm

TrE

Z Tr=2

0

f2pu
r

r2p
sinð!t�m’pÞ
ðr�rpÞdt;

(A22)

where we have introduced Ylm � Ylmð�=2; 0Þ. In moving
from the first line to the second we have substituted from
Eq. (A16), leaving inside the integral all t-dependent quan-
tities [like fp ¼ 1� 2M=rpðtÞ]. In moving to the third

line, we have made use of the orbital symmetries: Taking
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t ¼ ’ ¼ 0 at some periastron passage, we have that rpðtÞ is
an even function while urðtÞ and’pðtÞ are odd, and it follows
that the real part of the integrand [ / cos ð!t�m’Þ] is an
odd function of t while the imaginary part [/i sin ð!t�
m’Þ] is even. Performing the integration we finally obtain

Jð5Þlmn ¼ ��
64�mutf2pL

TrEr2p
Ylm sin ð!mntp �m’pÞ: (A23)

The other FD source functions are evaluated in a similar
fashion. We obtain

Jð1Þlmn ¼ ��
32�utf2p

TrEr3pjurj
ð2E2r2p � fr2p �L2fpÞ

�Ylm cos ð!mntp �m’pÞ; (A24)

Jð2Þlmn ¼ �
64�iutf2p

Trrp
Ylm sin ð!t�m’pÞ; (A25)

Jð3Þlmn ¼ ��
32�utf2p

TrEr3pjurj
ðr2p þL2ÞYlm cos ð!mntp �m’pÞ;

(A26)

Jð4Þlmn ¼ ��
64imutf2pL

Trr
2
pjurj

Ylm cos ð!t�m’pÞ; (A27)

Jð6Þlmn ¼ ��
32�utf2pL2

TrEr3pjurj
Ylm cos ð!mntp �m’pÞ; (A28)

Jð7Þlmn ¼ �½lðlþ 1Þ � 2m2�Jð6Þlmn ; (A29)

Jð8Þlmn ¼ ��
64�utLf2p

Trr
2
pjurj

Ylm;� cos ð!t�m’pÞ; (A30)

Jð9Þlmn ¼ �
64i�f2pu

tL

TrEr2p
Ylm;� sin ð!mntp �m’pÞ; (A31)

Jð10Þlmn ¼ ��
64i�mutL2f2p

TrEr3pjurj
Ylm;� cos ð!mntp �m’pÞ;

(A32)

where Ylm;� � Ylm;�ð�=2; 0Þ.

APPENDIX B: STATIC PIECEOF THEMONOPOLE
MODE (THE ‘‘MASS PERTURBATION’’)

The static, spherically symmetric mode of the metric
perturbation l ¼ m ¼ n ¼ 0 is, up to a gauge piece, simply
a mass variation of the background Schwarzschild geome-
try caused by the mass-energy �E of the particle.
Detweiler and Poisson [73] derived this mode analytically,
in the Lorenz gauge, for a particle in circular geodesic

motion (see [39] for an explicit expression). Barack and
Sago [11] later generalized this to eccentric orbits, but their
report did not contain full details of the calculation. Here
we take the opportunity to complete these details, while
also demonstrating the application of MEHS.
For l ¼ m ¼ 0, the FD Lorenz-gauge field equations

(31) reduce to three equations, for i ¼ 1, 3, 6; the other i
modes vanish identically. Of the four FD gauge conditions
(32)–(35), the only nontrivial is (33), which expresses

Rð6Þ algebraically in terms of Rð1Þ and Rð3Þ (and their radial
derivatives). The system thus reduces to a set of two
coupled second-order ODEs. Therefore, the complete basis
of homogeneous static monopole solutions (in the Lorenz
gauge) is four dimensional.
Let us denote by

H � ðM=�Þfhtt; hrr; r�2h�� ¼ ðr sin �Þ�2h’’g
¼ M

4
ffiffiffiffi
�

p
r
fRð1Þ þ fRð6Þ; f�2ðRð1Þ � fRð6ÞÞ; Rð3Þg (B1)

the metric perturbation corresponding to a homogeneous

solution RðiÞ ¼ fRð1Þ; Rð3Þ; Rð6Þg to the set (31) for l ¼ m ¼
n ¼ 0 (other components of the perturbation vanish).
The inverse relations are

Rð1Þ ¼ 2
ffiffiffiffi
�

p
��1rðhtt þ f2hrrÞ; (B2)

Rð3Þ ¼ 4
ffiffiffiffi
�

p
��1r�1h��; (B3)

Rð6Þ ¼ 2
ffiffiffiffi
�

p
��1 r

f
ðhtt � f2hrrÞ: (B4)

In terms of H, a complete basis of linearly independent
homogeneous solutions is given by [74]

HA ¼ f�f; f�1; 1g; (B5)

HB ¼
�
� fM

r3
PðrÞ; f

�1

r3
QðrÞ; f

r2
PðrÞ

�
; (B6)

HC ¼
�
�M4

r4
;
M3f�2ð3M� 2rÞ

r4
;
M3

r3

�
; (B7)

HD¼
�
M

r4
½WðrÞþrPðrÞf lnf�8M3 lnðr=MÞ�;

f�2

r4
½KðrÞ�rQðrÞf lnf�8M3ð2r�3MÞ lnðr=MÞ�;

1

r3
½3r3�WðrÞ�rPðrÞf lnfþ8M3 lnðr=MÞ�

�
;

(B8)

where P, Q, W, K, are polynomials in r:
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PðrÞ ¼ r2 þ 2rMþ 4M2;

QðrÞ ¼ r3 � r2M� 2rM2 þ 12M3;

WðrÞ ¼ 3r3 � r2M� 4rM2 � 28M3=3;

KðrÞ ¼ r3M� 5r2M2 � 20rM3=3þ 28M4:

(B9)

The solutionsHA andHB are regular at the event horizon
(as can be checked by moving to horizon-regular coordi-
nates) but they fail to fall off at r ! 1, instead approach-
ing finite nonzero values. On the other hand, the solutions
HC and HD are regular at infinity, but they are singular on
the horizon. Therefore, it is tempting to select fHA;HBg as
our ‘‘internal’’ pair of basis functions and take fHC;HDg as
our ‘‘external’’ pair. We would then take

~H�¼CAHAþCBHB; ~Hþ¼CCHCþCDHD (B10)

as our internal and external extended homogeneous solu-
tions, with coefficientsCj to be determined as prescribed in

Eq. (43), i.e.,

ðCA CB CC CDÞT ¼
Z �

0
��1ð0 0 Ĵð1Þ Ĵð3ÞÞT d�

dt

dt

d�
f�1d�;

(B11)

with

� ¼

�Rð1Þ
A �Rð1Þ

B Rð1Þ
C Rð1Þ

D

�Rð3Þ
A �Rð3Þ

B Rð3Þ
C Rð3Þ

D

�Rð1Þ
A;r� �Rð1Þ

B;r� Rð1Þ
C;r� Rð1Þ

D;r�

�Rð3Þ
A;r� �Rð3Þ

B;r� Rð3Þ
C;r� Rð3Þ

D;r�

0
BBBBBBB@

1
CCCCCCCA; (B12)

where we denoted the RðiÞ functions corresponding to

HA; . . . ; HD by RðiÞ
A ; . . . ; RðiÞ

D . In the vacuum outside the

libration region, the homogeneous solutions ~H� coincide
with a particular inhomogeneous solution to the l ¼ m ¼
n ¼ 0 equations—call it Hih—such that Hih ¼ ~H� for
2M< r < rmin and Hih ¼ ~Hþ for r > rmax . As we now
explain, the solution Hih associated with the choice (B10)
of EHS does not represent a physical mass perturbation,
which makes the choice (B10) physically inappropriate.

To see this, let us first recall that, if the perturbation Hih

is to represent a physical mass perturbation, then (i) in
the vacuum region 2M< r < rmin it must be pure gauge,
and (ii) in the vacuum region r > rmax it must be given
(up to a gauge piece) by a mass variation of the
Schwarzschild background with an amplitude of precisely
�E. Reference [43] discusses a practical way to ‘‘mea-
sure’’ the gauge-invariant mass-energy content of a given
perturbation, and in particular it is found that the solution
HA represents a mass perturbation with mass energy 1=2,
while HB is pure gauge and carries no mass energy.
It follows that the solution HA must not feature in 2M<
r < rmin . However, in practice one generally finds CA � 0,
which implies that our EHS ~H� does feature the mass-full

mode HA in the interior. Hence, the corresponding inho-
mogeneous solution Hih is not pure gauge in 2M< r <
rmin and cannot represent a physical mass perturbation.
The difference between the nonphysical solutionHih and

the desired physical mass-perturbation solution—call it
H
M

ih —must be given as a certain linear combination

of homogeneous solutions HA; . . . ; HD. We now aim to
find this ‘‘mass fixing’’ correction,

�Hih � H
M
ih �Hih: (B13)

First, we note that �Hih cannot contain HC or HD, since
both these basis functions are singular at the event horizon
(and note that no linear combination of HC or HD is
horizon regular). Of the two remaining solutions, only
HA possesses mass energy, so the only way to guarantee
that the mass energy in the region 2M< r < rmin vanishes
is to subtract CAHA off Hih. However, this introduces an
irregularity at infinity—which can only be regulated by
adding a suitable multiple of HB. Noting the asymptotic
forms HA ! f�1; 1; 1g and HB ! f0; 1; 1g as r ! 1, we
see that we may at best achieve ‘‘asymptotic flatness’’ in
the spatial part of the metric, by making the choice

�Hih ¼ �CAðHA �HBÞ: (B14)

This results in a perturbation H
M
ih whose tt component

approaches a nonzero constant ( ¼ CA) at infinity. This
minor peculiarity of the Lorenz gauge is well known [39],
and it is easily remedied with a simple rescaling of the t
coordinate [formally an Oð�Þ gauge transformation away
from Lorenz gauge], as discussed in [22,43,75] (for circu-
lar orbits) and in [11] (for eccentric orbits).
The above construction yields

H
M
ih ¼Hihþ�Hih

¼
8<
:ðCAþCBÞHB; 2M<r<rmin ;

�CAðHA�HBÞþCCHCþCDHD; r>rmax :

(B15)

It remains to verify that the perturbation H
M
ih has the

correct mass-energy content (i.e., �E) in the domain
r > rmax . Since HA has mass energy of 1=2 and HD has
mass energy of 3=2 (HB and HC are pure gauge), we need

3

2
CD � 1

2
CA ¼ �E: (B16)

We prove this relation by direct calculation, as follows.
From Eq. (B11) we have

3

2
CD � 1

2
CA ¼

Z tð�¼�Þ

tð�¼0Þ
1

2
½ð3��1

43 ���1
13 ÞĴð1Þ

þ ð3��1
44 ���1

14 ÞĴð3Þ�
d�

dt
f�1dt; (B17)

where the relevant elements of ��1 work out as
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��1
13 ¼ 1

4f2�1=2
; ��1

14 ¼ 0;

��1
43 ¼ 4� r=M

24f2�1=2
; ��1

44 ¼ � ðr=MÞ
24�1=2

;

(B18)

and the source terms Ĵð1;3Þ [or rather Jð1;3Þ ¼ Ĵð1;3Þ=ur] are
given in Eqs. (A24) and (A26). A line of algebra then shows
that the integrand in Eq. (B17) reduces to 2�E=Tr, and

Eq. (B16) follows by virtue of 2
Rtð�¼�Þ
tð�¼0Þ dt ¼ Tr.

We have thereby constructed a (unique) physical mass
perturbation in the Lorenz gauge. The form of this pertur-
bation in the vacuum region outside the libration domain is
described in Eq. (B15). Our extended homogeneous solu-
tions must coincide with this perturbation in the vacuum

region. Hence, we must take [reverting to the RðiÞ notation,
as in the main text]

~RðiÞ� ¼ ðCA þ CBÞRðiÞ
B ;

~RðiÞ
þ ¼ �CAðRðiÞ

A � RðiÞ
B Þ þ CCR

ðiÞ
C þ CDR

ðiÞ
D ;

(B19)

where recall the coefficients CA; . . . ; CD are those calcu-
lated using Eq. (B11).
In summary, to construct the EHS for the mode l ¼ m ¼

n ¼ 0, one starts with the analytic solutions (B5) and (B8),
and from them constructs the corresponding functions

RðiÞ
A ; . . . ; RðiÞ

D via Eqs. (B2) and (B4). One then constructs
thematrix� and computes the coefficientsCA; . . . ; CD using
Eq. (B11). The desired EHS are then given by Eqs. (B19).
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