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CP
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1 Introduction

After the measurement of the reactor mixing angle θ13 by the Daya Bay [1, 2], RENO [3],

and Double Chooz [4, 5] reactor neutrino experiments, all three lepton mixing angles θ12,

θ23, θ13 and both mass-squared differences ∆m2
sol and ∆m2

atm have been measured to rea-

sonably good accuracy. Yet within the standard framework of three-neutrino oscillations,

the Dirac CP phase and neutrino mass ordering still elude measurement so far. Further-

more, if neutrinos are Majorana particles, there exist two more unknown Majorana CP

– 1 –



J
H
E
P
1
2
(
2
0
1
3
)
0
0
6

phases which may play a role in neutrinoless double-beta decay searches. Thus, determin-

ing the exact neutrino mass ordering and measuring the Dirac and Majorana CP violating

phases are the primary goals of future neutrino oscillation experiments. The CP violation

has been firmly established in the quark sector and it is natural to expect that CP violation

occurs in the lepton sector as well. It is insightful to note that hints of a nonzero δCP have

begun to show up in global analysis of neutrino oscillation data [6–8].

What would we learn from the measurements of the lepton CP violating phases? What

is the underlying physics? These questions are particularly imperative in view of foreseeable

future experimental programs to measure the CP-violation in the neutrino oscillations sec-

tor. In the past years, much effort has been devoted to explaining the structure of the lepton

mixing angles through the introduction of family symmetries. In this scheme, one generally

assumes a non-abelian discrete flavour group which is broken to different subgroups in the

neutrino and charged lepton sectors. The mismatch between these two subgroups leads to

particular predictions for the lepton mixing angles. For recent reviews, see ref. [9, 10] and

ref. [11, 12] for the model building and relevant group theory aspects, respectively. Moti-

vated by this approach one can extend the family symmetry to include a generalised CP

symmetryHCP [13–16] which will allow the prediction of both CP phases and mixing angles.

The possibility of combining a family symmetry with a generalised CP symmetry has

already been discussed in the literature. For example, the simple µ− τ reflection symme-

try, which is a combination of the canonical CP transformation and the µ − τ exchange

symmetry, has been discussed and successfully implemented in a number of models where

both atmospheric mixing angle θ23 and Dirac CP phase δCP were predicted to be max-

imal [17–23]. Additionally in ref. [24], the phenomenological consequences of imposing

both an S4 flavour symmetry and a generalised CP symmetry have been analysed in a

model-independent way. They found that all lepton mixing angles and CP phases depend

on one free parameter for the symmetry breaking of S4 ⋊HCP to Z2 ×CP in the neutrino

sector and to some abelian subgroup of S4 in the charged lepton sector. Concrete S4 family

models with a generalised CP symmetry have been constructed in refs. [25–27] where the

spontaneous breaking of the S4 ⋊HCP down to Z2 ×CP in the neutrino sector was imple-

mented. Other models with a family symmetry and a generalised CP symmetry can also

be found in refs. [28–30]. In addition, there are other theoretical frameworks comprising

both family symmetry and CP violation [31–41].

In this work, we study generalised CP symmetry in the context of the most popular

family symmetry A4
1 (please see ref. [46, 47] for a classification of the A4 models on the

market). The generalised CP transformation compatible with an A4 family symmetry

is clarified, and a model-independent analysis of the lepton mixing matrix is performed

by scanning all of the possible remnant subgroups in the neutrino and charged lepton

sectors. We construct an effective A4 ⋊ HCP model, where non-renormalisable operators

are involved. The lepton mixing is predicted to be trimaximal pattern in the model, and

the Dirac phase is trivial or nearly maximal. Furthermore, this effective model is promoted

to a renormalisable one in which the higher order operators are under control.

1A4 models with spontaneous CP violation are proposed in refs. [42–45], where a CP symmetry is

assumed to exist at a high energy scale.
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The remainder of this paper is organised as follows. In section 2, we present the

general CP transformations consistent with the A4 family symmetry. In section 3, we

perform a thorough scan of leptonic mixing parameters which can be obtained from the

remnant symmetries of the underlying combined symmetry group A4⋊HCP. We find that

only one case out of all possibilities is phenomenologically viable. This case predicts both

Dirac and Majorana phases to be trivial. In section 4 we specify the structure of the

model at leading order, and the required vacuum alignment is justified. In subsection 4.3,

we analyse the subleading Next-to-Leading-Order (NLO) corrections induced by higher

dimensional operators and phenomenological predictions of the model are presented. In

section 5, we address the ultraviolet completion of the model which significantly increases

the predictability of the theory such that all the mixing angles, CP phases and the absolute

neutrino mass scale are fixed. We conclude in section 6. The details of the group theory of

A4 are collected in appendix A and appendices B–D contain the implications of preserving

other subgroups of A4 different than Gν = Z2 and Gl = Z3. Finally, appendix E describes

the diagonalisation of a general 2× 2 symmetric complex matrix.

2 Generalised CP transformations with family symmetry

2.1 General family symmetry group

In general, it is nontrivial to combine the family symmetry Gf and the generalised CP

symmetry together because the definition of the generalised CP transformations must be

compatible with the family symmetry. Thus, the generalised CP transformations are sub-

ject to certain consistency conditions [24, 48, 49]. Namely, for a set of fields ϕ in a generic

irreducible representation r of Gf , it transforms under the action of Gf as

ϕ(x)
Gf−→ ρr(g)ϕ(x), g ∈ Gf , (2.1)

where ρr(g) denotes the representation matrix for the element g in the irreducible repre-

sentation r, the generalised CP transformation is of the form

ϕ(x)
CP−→ Xr ϕ

∗(x′) , (2.2)

where x′ = (t,−x) and the obvious action of CP on the spinor indices is omitted for the case

of ϕ being spinor. Here we are considering the “minimal” theory in which the generalised

CP transforms the field ϕ ∼ r into its complex conjugate ϕ∗ ∼ r∗, and the transformation

into another field ϕ′∗ ∼ r′∗ with r′ 6= r is beyond the present scope since both ϕ and ϕ′

would be required to be present in pair and correlated with each other in that case. Notice

that Xr should be a unitary matrix to keep the kinetic term invariant. Now if we first

perform a CP transformation, then apply a family symmetry transformation, and finally

an inverse CP transformation is followed, i.e.

ϕ(x)
CP−→ Xr ϕ

∗(x′)
Gf−→ Xrρ

∗
r(g)ϕ

∗(x′)
CP−1

−→ Xrρ
∗
r(g)X

−1
r ϕ(x) , (2.3)

the theory should still be invariant since it is invariant under each transformation individ-

ually. To make the theory consistent the resulting net transformation should be equivalent
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to a family symmetry transformation ρr(g
′) of some family group element g′, i.e.

Xrρ
∗
r(g)X

−1
r = ρr(g

′), g′ ∈ Gf , (2.4)

where the elements g and g′ must be the same for all irreducible representations of Gf .

Eq. (2.4) is the important consistency condition which has to be fulfilled in order to im-

pose both generalised CP and family symmetry invariance simultaneously. It also implies

that the generalised CP transformation Xr maps the group element g into g′ and that

the family group structure is preserved under this mapping. Therefore eq. (2.4) defines a

homomorphism of the family symmetry group Gf . Notice that in the case where ρr is a

faithful representation, the elements g and g′ have the same order, the mapping defined

in eq. (2.4) is bijective, and thus the associated CP transformation becomes an automor-

phism [49]. It is notable that both eiθXr and ρr(h)Xr also satisfy the consistency equation

of eq. (2.4) for a generalised CP transformation Xr, where θ is real and h is any element

of Gf . Therefore the possible form of the CP transformation Xr is only determined by the

consistency equation up to an overall arbitrary phase and family symmetry transformation

ρr(h) for a given irreducible representation r. In the following, we investigate the gener-

alised CP transformations consistent with an A4 family symmetry for different irreducible

representations, i.e. Gf = A4.

2.2 A4 family symmetry

The A4 group can be generated by two generators S and T , which are of orders two and

three, respectively (see appendix A for the details of the group theory of A4). To include

a generalised CP symmetry consistent with an A4 family symmetry, it is sufficient to only

impose the consistency condition in eq. (2.4) on the group generators:

Xrρ
∗
r(S)X

−1
r = ρr(S

′), Xrρ
∗
r(T )X

−1
r = ρr(T

′) . (2.5)

To do this, we start with the faithful triplet representation 3. Then the order of S′ and

T ′ will be 2 and 3, respectively. Therefore S′ and T ′ can only belong to certain conjugacy

classes of A4. Namely,

S′ ∈ 3C2, T ′ ∈ 4C3 ∪ 4C2
3 (2.6)

It is remarkable that the consistency condition of eq. (2.4) must hold for all representations

r simultaneously. However, because of the models constructed in later sections, we assume

that our theory contains only one of the nontrivial singlet irreducible representations (either

1′ or 1′′) in the flavon sector and further restrict ourselves to a minimal case where there

exists only one flavon transforming under that nontrivial singlet irreducible representation

(in addition to other flavons transforming under the 1 and 3 representations). However, in

these models there does exist a 1′ and 1′′ in the matter sector. Yet, additional symmetry

forbids the interchanging of these fields under the generalised CP symmetry. Therefore

we have chosen to define a generalised CP symmetry without the interchanging of fields

transforming under conjugate representations, e.g. fields transforming under 1′ and 1′′ rep-

resentations. Then, the element T ′ can further be constrained by these nontrivial singlet
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representations 1′ and 1′′, where the corresponding generalised CP transformations X1′,1′′

are numbers with absolute value equal to 1, and then we have

ρ1′,1′′(T ′) = X1′,1′′ρ∗1′,1′′(T )X−1
1′,1′′ = ρ∗1′,1′′(T ) = ω∓2 (2.7)

Consequently, the element T ′ can only be in the conjugacy class 4C2
3 . In summary, the

consistency equation applied to our “minimal” case restricts S′ and T ′ to

S′ ∈ 3C2, T ′ ∈ 4C2
3 . (2.8)

For the simple case of S′ = S and T ′ = T 2 in the 3-dimensional representation, the

associated CP transformation satisfying eq. (2.4) can be found straightforwardly:

X0 =









1 0 0

0 1 0

0 0 1









≡ 13 , (2.9)

which is the canonical CP transformation. The remaining eleven possible choices for S′

and T ′ lead to different solutions for X3. These solutions are listed in table 1 and can be

neatly summarised in a compact way:

X3 = ρ3(g), g ∈ A4 . (2.10)

For the singlet representations 1, 1′ and 1′′, we take

X1,1′,1′′ = ρ1,1′,1′′(g), g ∈ A4 . (2.11)

Therefore the generalised CP transformation consistent with an A4 family symmetry is of

the same form as the family group transformation, i.e.

Xr = ρr(g), g ∈ A4 . (2.12)

Now that we have found all generalised CP transformations consistent with the A4 family

symmetry,2 we proceed by investigating their implications on lepton masses and mixings.

2Had we allowed the flavons to transform under all nontrivial A4 irreducible representations (call them

e.g. φ1′ , φ1′′ and φ3) then the transformation

φ1′ → φ∗

1′′ , φ1′′ → φ∗

1′ , φ3 →









1 0 0

0 0 1

0 1 0









φ∗

3 (2.13)

could generate an alternate set of 12 other generalised CP transformations. We see that this kind of CP

transformation can only be realised if both φ1′ and φ1′′ are present and are interchanged under the CP

transformation.
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X3 S→S′ T →T ′ X3 S→S′ T →T ′

X0=









1 0 0

0 1 0

0 0 1









S

T 2 ρ3(T
2)=









1 0 0

0 ω 0

0 0 ω2









T 2ST

T 2

ρ3(T
2ST )= 1

3









−1 2ω2 2ω

2ω −1 2ω2

2ω2 2ω −1









ST 2 ρ3(T
2S)= 1

3









−1 2 2

2ω −ω 2ω

2ω2 2ω2 −ω2









ST 2

ρ3(TST
2)= 1

3









−1 2ω 2ω2

2ω2 −1 2ω

2ω 2ω2 −1









T 2S ρ3(ST
2S)= 1

3









−1 2ω2 2ω

2ω2 −ω 2

2ω 2 −ω2









T 2S

ρ3(S)=
1
3









−1 2 2

2 −1 2

2 2 −1









ST 2S ρ3(ST
2)= 1

3









−1 2ω 2ω2

2 −ω 2ω2

2 2ω −ω2









ST 2S

ρ3(T )=









1 0 0

0 ω2 0

0 0 ω









TST 2

T 2 ρ3(TS)=
1
3









−1 2 2

2ω2 −ω2 2ω2

2ω 2ω −ω









TST 2

T 2S

ρ3(STS)=
1
3









−1 2ω 2ω2

2ω −ω2 2

2ω2 2 −ω









ST 2 ρ3(ST )=
1
3









−1 2ω2 2ω

2 −ω2 2ω

2 2ω2 −ω









ST 2S

Table 1. The 12 non-trivial generalised CP transformations consistent with an A4 family sym-

metry for the triplet representation 3 in the chosen basis determined by the consistency equation

X3ρ
∗
3
(g)X−1

3
= ρ3(g

′). These CP transformations realise non-trivial outer automorphisms which

change the conjugacy class of T from 4C3 to 4C2
3 . Notice that even though they are outer automor-

phisms they are represented by A4 group elements, e.g. the mapping (S, T ) → (S′, T ′) = (S, T 2) is

acheived via the A4 identity element X0 by X0ρ
∗
3
(S)X−1

0 = ρ3(S) and X0ρ
∗
3
(T )X−1

0 = ρ3(T
2).

3 General analysis of lepton mixing from preserved family and CP sym-

metries

3.1 General family symmetry

To obtain definite predictions for both the lepton mixing angles and CP violating phases

from symmetry, we impose the family symmetry Gf and the generalised CP symmetry

HCP simultaneously at high energies. Then the family symmetry is spontaneously broken

to the Gν and Gl subgroups in the neutrino and the charged lepton sector respectively,

and the remnant CP symmetries from the breaking of HCP are Hν
CP and H l

CP, respectively.

The mismatch between the remnant symmetry groups Gν ⋊Hν
CP and Gl ⋊H l

CP gives rise

to particular values for both mixing angles and CP phases. As usual, the three generations

of the left-handed (LH) lepton doublets are unified into a three-dimensional representation

ρ3 of Gf . The invariance under the residual family symmetries Gν and Gl implies that the

– 6 –
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neutrino mass matrix mν and the charged lepton mass matrix ml satisfy

ρT3 (gνi)mνρ3(gνi) = mν , gνi ∈ Gν ,

ρ†
3
(gli)mlm

†
l ρ3(gli) = mlm

†
l , gli ∈ Gl . (3.1)

where the charged lepton mass matrixml is given in the convention in which the left-handed

(right-handed) fields are on the left-hand (right-hand) side of ml. Moreover, the neutrino

and the charged lepton mass matrices are constrained by the residual CP symmetry via

XT
3νmνX3ν = m∗

ν , X3ν ∈ Hν
CP,

X†
3lmlm

†
lX3l = (mlm

†
l )

∗, X3l ∈ H l
CP . (3.2)

Since there are both remnant family and CP symmetries, the corresponding consistency

equation similar to eq. (2.4) has to be satisfied. Namely, the elements Xrν of Hν
CP and Xrl

of H l
CP should satisfy

Xrνρ
∗
r(gνi)X

−1
rν = ρr(gνj ), gνi , gνj ∈ Gν ,

Xrlρ
∗
r(gli)X

−1
rl = ρr(glj ), gli , glj ∈ Gl. (3.3)

Given a set of solutions Xrν and Xrl, we can straightforwardly check that ρr(gνi)Xrν and

ρr(gli)Xrl are solutions as well. The invariance conditions of eqs. (3.1)–(3.2) allow us to

reconstruct the mass matrices mν and mlm
†
l , and eventually determine the lepton mix-

ing matrix UPMNS . Furthermore, if two other residual family symmetries G′
ν and G′

l are

conjugate to Gν and Gl under the element h ∈ Gf , i.e.

G′
ν = hGνh

−1, G′
l = hGlh

−1 , (3.4)

then the associated residual CP symmetries Hν′

CP and H l′

CP are related to Hν
CP and H l

CP as

Hν′

CP = ρr(h)H
ν
CPρ

T
r (h), H l′

CP = ρr(h)H
l
CPρ

T
r (h) , (3.5)

and the corresponding neutrino and charged lepton mass matrices are of the form

m′
ν = ρ∗3(h)mνρ

†
3
(h), m′

lm
′†
l = ρ3(h)mlm

†
l ρ

†
3
(h). (3.6)

Therefore, the remnant subgroups G′
ν and G′

l lead to the same mixing matrix UPMNS as

Gν and Gl do.

Having completed a general discussion of the implementation of a generalised CP sym-

metry with a family symmetry, we now concentrate on the case of interest in which the

family symmetry Gf = A4 and a generalised CP symmetry HCP consistent with A4 is

imposed. Thus, the theory respects the full symmetry A4⋊HCP. In the following, we per-

form a model independent study of the constraints that these symmetries impose on the

neutrino mass matrix, the charged lepton mass matrix and the PMNS matrix by scanning

all the possible remnant symmetries Gν
CP

∼= Gν ⋊ Hν
CP and Gl

CP
∼= Gl ⋊ H l

CP. We begin

this study with an analysis of the neutrino sector.

– 7 –



J
H
E
P
1
2
(
2
0
1
3
)
0
0
6

3.2 Neutrino sector from a subgroup of A4 ⋊ HCP

As shown in appendix B, the case Gν = K4
∼= Z2 × Z2 is not phenomenologically viable.

To resolve this issue, we assume that the underlying symmetry A4 ⋊ HCP is broken into

Gν
CP

∼= Z2 ×Hν
CP

3 in the neutrino sector [24]. Since the three Z2 subgroups in eq. (A.6)

are related by conjugation as Z(2) = T 2ZS
2 (T

2)−1 and ZTST 2

2 = TZS
2 T

−1, it is sufficient to

only consider Gν
CP

∼= ZS
2 ×Hν

CP, where the element Xrν of Hν
CP should satisfy

Xrνρ
∗
r(S)X

−1
rν = ρr(S) . (3.7)

It is found that only 4 of the 12 non-trivial CP transformations are acceptable,4

Hν
CP =

{

ρr(1), ρr(S), ρr(T
2ST ), ρr(TST

2)
}

. (3.8)

Thus, the neutrino mass matrix is constrained by

ρT3 (S)mνρ3(S) = mν , (3.9)

XT
3νmνX3ν = m∗

ν , (3.10)

where eq. (3.9) is the invariance condition under ZS
2 , and it implies that the neutrino mass

matrix is of the form

mν = α









2 −1 −1

−1 2 −1

−1 −1 2









+ β









1 0 0

0 0 1

0 1 0









+ γ









0 1 1

1 1 0

1 0 1









+ ǫ









0 1 −1

1 −1 0

−1 0 1









, (3.11)

where α, β, γ and ǫ are complex parameters, and they are further constrained by the

remnant CP symmetry shown in eq. (3.10). In order to diagonalise the neutrino mass

matrix mν in eq. (3.11), we first apply the tri-bimaximal transformation UTB to yield

m′
ν = UT

TBmνUTB =









3α+ β − γ 0 −
√
3 ǫ

0 β + 2γ 0

−
√
3 ǫ 0 3α− β + γ









, (3.12)

3As has been shown in previous work [25], if the remnant family symmetry is Z2 = {1, Z} with Z2 = 1,

a consistent CP transformation Xr should satisfy Xrρ
∗

r(Z)X−1
r = ρr(Z

′), Z′ ∈ Z2. For the faithful triplet

representation r = 3, Z′ will be of the same order as Z. Consequently Z′ can only be equal to Z exactly.

Thus the consistency equation is uniquely fixed to beXrρ
∗

r(Z)X−1
r = ρr(Z). This means that the generalised

CP transformation will commute with Z2, and the semidirect product will reduce to the direct product.
4In ref. [24], the authors chose a different basis and proposed that three cases are admissible for

Gν = ZS
2 in A4. Case II of ref. [24] exactly corresponds to Xrν = {ρr(1), ρr(S)} of the present work.

However, the CP transformations for their Cases I and III map (S, T ) to (S, T ) and (S, TS) respectively.

They belong to another 12 CP transformations defined in eq. (2.13). Thererefore, both φ1′ and φ1′′

should be present in the Lagrangian to define these CP transformations. Furthermore, the scenario of

Xrν = ρr(T
2ST ), ρr(TST

2) found in our work was omitted in ref. [24] because the authors required that

the CP transformation should be both unitary and symmetric. Although it only needs to be unitary (not

necessarily symmetric). However, they claimed that non-symmetric CP transformations consistent with

the remnant Z2 flavour symmetry generally implies a partially degenerate neutrino mass spectrum.
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where

UTB =











√

2
3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2











. (3.13)

Now we return to the investigation of the residual CP symmetry constraint of eq. (3.10).

Two distinct phenomenological predictions arise for the different choices of Xrν :

• Xrν = ρr(1), ρr(S)

For this case, we see that we can straightforwardly solve eq. (3.10) and find that all

four parameters α, β, γ and ǫ are real. Then m′
ν can be further diagonalised by

U ′T
ν m′

νU
′
ν = diag(m1,m2,m3), U ′

ν = R(θ)P , (3.14)

where P is a unitary diagonal matrix with entries ±1 or ±i which renders the light

neutrino masses m1,2,3 positive, and

R(θ) =









cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ









(3.15)

is a rotation matrix with

tan 2θ =

√
3 ǫ

β − γ
. (3.16)

This diagonalisation reveals that the light neutrino masses m1,2,3 are given by

m1 =
∣

∣

∣
3α+ sign ((β − γ) cos 2θ)

√

(β − γ)2 + 3ǫ2
∣

∣

∣
,

m2 = |β + 2γ| ,
m3 =

∣

∣

∣
3α− sign ((β − γ) cos 2θ)

√

(β − γ)2 + 3ǫ2
∣

∣

∣
. (3.17)

We conclude that this case is acceptable.

• Xrν = ρr(T
2ST ), ρr(TST

2)

In this case, it can be seen that the α of eq. (3.11) is purely imaginary, and the

remaining parameters β, γ and ǫ are real. Then the hermitian combination m′†
ν m′

ν

turns out to be of the form:

m′†
ν m

′
ν = diag

(

−9α2 + (β − γ)2 + 3ǫ2, (β + 2γ)2,−9α2 + (β − γ)2 + 3ǫ2
)

, (3.18)

which implies m1 = m3. Clearly, this is not consistent with the experimental obser-

vation that the three light neutrinos have different masses. Note that the generalised

CP transformations Xrν = ρr(T
2ST ), ρr(TST

2) are not symmetric in the chosen

basis, and hence we confirm the argument of ref. [24] that non-symmetric CP trans-

formations consistent with the remnant Z2 family symmetry in the neutrino sector

lead to partially degenerate neutrino masses.

– 9 –



J
H
E
P
1
2
(
2
0
1
3
)
0
0
6

Since the remaining choices Gν = ZT 2ST
2 or Gν = ZTST 2

2 are related to the discussed case

Gν = ZS
2 by conjugation, the corresponding remnant CP symmetry is ρr(T

2)Hν
CPρ

T
r (T

2) or

ρr(T )H
ν
CPρ

T
r (T ), respectively, where Hν

CP is given by eq. (3.8). Then their corresponding

neutrino mass matrices are of the form ρ∗
3
(T 2)mνρ

†
3
(T 2) or ρ∗

3
(T )mνρ

†
3
(T ), respectively,

with mν given in eq. (3.11). Now that we have finished a systematic discussion of the

effects of the residual flavour and CP symmetries on the neutrino mass matrix, we turn to

analyse their effects on the charged lepton mass matrix.

3.3 Charged lepton sector from a subgroup of A4 ⋊ HCP

In appendices C and D we consider the cases Gl = Z2 and K4 and show that they are not

phenomenologically viable. Here we consider the successful case that Gl is one of the Z3

subgroups shown in eq. (A.7). Since the four Z3 subgroups are conjugate to each other, i.e.

(TST 2)ZT
3 (TST 2)−1 = ZST

3 , (T 2ST )ZT
3 (T 2ST )−1 = ZTS

3 , SZT
3 S = ZSTS

3 ,

SZST
3 S = ZTS

S , (T 2ST )ZST
3 (T 2ST )−1 = ZSTS

3 , (TST 2)ZTS
3 (TST 2)−1 = ZSTS

3 , (3.19)

we choose Gl = ZT
3 for demonstration. Then the combined symmetry group A4 ⋊HCP is

broken to Gl
CP

∼= ZT
3 ⋊H l

CP in the charged lepton sector. The element Xrl of H
l
CP should

satisfy the consistency equation5

Xrlρ
∗
r(T )X

−1
rl = ρr(T

2) . (3.20)

It is found that the remnant CP transformation H l
CP can be

H l
CP =

{

ρr(1), ρr(T ), ρr(T
2)
}

. (3.21)

Similar to the neutrino mass matrix, the charged lepton mass matrix ml must respect both

the residual family symmetry ZT
3 and the generalised CP symmetry H l

CP, i.e.

ρ†
3
(T )mlm

†
l ρ3(T ) = mlm

†
l ,

ρ†
3
(1)mlm

†
l ρ3(1) = (mlm

†
l )

∗, (3.22)

where Xrl = ρr(1) from eq. (3.21) has been taken. For the value Xrl = ρr(T ) or Xrl =

ρr(T
2), the resulting constraint is equivalent to eq. (3.22). One can easily see that mlm

†
l

is diagonal in this case,

mlm
†
l = diag(m2

e,m
2
µ,m

2
τ ) , (3.23)

where me, mµ and mτ are the electron, muon and tau masses, respectively. For the other

choices Gl = ZST
3 , ZTS

3 and ZSTS
3 , the corresponding residual CP symmetry and the mass

matrix mlm
†
l follow from the general relations eq. (3.5) and eq. (3.6) immediately with

h = TST 2, T 2ST and S, respectively.

5The alternative Xrlρ
∗

r(T )X
−1
rl = ρr(T ) is ruled out by the singlet representations 1′ and 1

′′ as discussed

below eq. (2.7).
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3.4 Lepton mixing from A4 ⋊ HCP broken to Gν

CP
∼= ZS

2
× Hν

CP
and Gl

CP
∼=

ZT

3
⋊ H l

CP

In the context of family symmetry and its extension of including generalised CP symmetry,

a specific lepton mixing pattern arises from the mismatch between the symmetry breaking

in the neutrino and the charged lepton sectors. In this section, we perform a comprehensive

analysis of all possible lepton mixing matrices obtainable from the implementation of an

A4 family symmetry and its corresponding generalised CP symmetry by considering all

possible residual symmetries Gν
CP and Gl

CP discussed in previous sections.

Immediately we can disregard the cases predicting partially degenerate lepton masses.

Therefore, breaking to the subgroups Gν
CP

∼= K4 ⋊ Hν
CP or Gl

CP
∼= K4 ⋊ H l

CP will be

neglected in the following. Furthermore, in order that the elements of Gν and Gl give rise

to the entire family symmetry group A4, we take Gl to be one of the Z3 subgroups shown

in eq. (A.7). Then, there are 3× 4 = 12 combinations for Gν = Z2 and Gl = Z3. However,

we find that all of these are conjugate to each other.6 As a result, all possible symmetry

breaking chains of this kind lead to the same lepton mixing matrix UPMNS . This important

point is further confirmed by straightforward calculations which are lengthy and tedious.

Without loss of generality, it is sufficient to consider the representative values Gν =

ZS
2 = {1, S} and Gl = ZT

3 =
{

1, T, T 2
}

, and the original symmetry A4 ⋊ HCP is broken

to ZS
2 × Hν

CP in the neutrino sector and ZT
3 ⋊ H l

CP in the charged lepton sector, where

Hν
CP = {ρr(1), ρr(S)}7 and H l

CP =
{

ρr(1), ρr(T ), ρr(T
2)
}

. In this case, mlm
†
l is diagonal

as shown in eq. (3.23). Therefore, no rotation of the charged lepton fields is needed to get

to the mass eigenstate basis, and the lepton mixing comes completely from the neutrino

sector. In the PDG convention [50], the PMNS matrix is cast in the form

UPMNS = V diag(1, ei
α21
2 , ei

α31
2 ), (3.24)

with

V =









c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13









. (3.25)

where we use the shorthand notation cij = cos θij and sij = sin θij , δCP is the Dirac CP

phase, α21 and α31 are the Majorana CP phases. Using this PDG convention we find that

the resulting PMNS matrix is:

UPMNS = UTBR(θ)P =









2√
6
cos θ 1√

3
2√
6
sin θ

− 1√
6
cos θ + 1√

2
sin θ 1√

3
− 1√

6
sin θ − 1√

2
cos θ

− 1√
6
cos θ − 1√

2
sin θ 1√

3
− 1√

6
sin θ + 1√

2
cos θ









P , (3.26)

6For example, the choice G′

ν = ZT2ST
2 , G′

l = ZTS
3 is conjugate to Gν = ZS

2 , Gl = ZT
3 via G′

ν =

(T 2S)Gν(T
2S)−1 and G′

l = (T 2S)Gl(T
2S)−1.

7Xrν =
{

ρr(T
2ST ), ρr(TST

2)
}

leads to degenerate light neutrino masses, and it is ignored here.
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where as shown previously P is a unitary diagonal matrix with entries ±1 or ±i and R(θ)

and UTB are given in eq. (3.13) and eq. (3.15). Hence, the lepton mixing angles and CP

phases are

sin δCP = sinα21 = sinα31 = 0, (3.27)

sin2 θ13 =
2

3
sin2 θ, sin2 θ12 =

1

2 + cos 2θ
=

1

3 cos2 θ13
, sin2 θ23 =

1

2

[

1 +

√
3 sin 2θ

2 + cos 2θ

]

,

which implies the three CP phases δCP , α21, α31 = 0, π, and therefore there is no CP

violation in this case. Note that the same results are found in ref. [24].

To summarise the arguments of the preceding section, if one imposes the symmetry

A4⋊HCP, which is spontaneously broken to certain residual family and CP symmetries in

order to obtain definite predictions for mixing angles and CP phases, then only the symme-

try breaking of A4⋊HCP to Gν
CP

∼= Z2×Hν
CP in the neutrino sector and Gl

CP
∼= Z3⋊H l

CP in

the charged lepton sector can lead to lepton mixing angles in the experimentally preferred

range. However, there is no CP violation in this case. This is consistent with the result

found for S4⋊HCP for the case where Gν
CP

∼= ZS
2 ×Hν

CP with Xrν = {ρr(1), ρr(S)} [25]. For

S4⋊HCP it was possible to achieve maximal CP violation for the case Gν
CP

∼= ZS
2 ×Hν

CP with

Xrν = {ρr(U), ρr(SU)}. This case is not directly accessible for A4⋊HCP since the U gener-

ator is absent, although it is accidentally present at LO in the models that we now discuss.

4 Model with A4 and generalised CP symmetries

Guided by the general analysis of previous sections, we construct an effective model in

this section. The predictions of eq. (3.27) are realised if the remnant CP is preserved

otherwise the Dirac CP phase is approximately maximal. The model is based on A4⋊HCP,

which is supplemented by the extra symmetries Z4×Z6×U(1)R. The auxiliary symmetry

Z4×Z6 separates the neutrino sector from the charged lepton sector, eliminates unwanted

dangerous operators and it is also helpful to produce the mass hierarchy among the charged

leptons. As usual both left-handed (LH) lepton doublets l and the right-handed (RH)

neutrinos νc are embedded into triplet representation 3, while the RH charged leptons ec,

µc and τ c transform as the A4 singlets 1, 1
′′ and 1′, respectively. All the fields of the model

together with their assignments under the symmetry groups are listed in table 2.

It will be seen that in the ensuing model, the A4⋊HCP symmetry is broken to ZS
2 ×Hν

CP

in the neutrino sector and ZT
3 ⋊ H l

CP in the charged lepton sector at leading order. An

accidental ZU
2 symmetry, which is the µ− τ exchange symmetry, arises due to the absence

of flavons transforming as 1′ or 1′′. As a result, the leading order (LO) lepton mixing is

tri-bimaximal. The next-to-leading order (NLO) corrections will subsequently correct the

mixing pattern, bringing it into agreement with experiment. In the following, we begin by

analysing vacuum alignment and Yukawa operators of the model at LO, then turn to the

NLO analysis.
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Field l νc ec µc τ c hu,d ϕT ζ ϕS ξ(ξ̃) χ ρ ϕ0
T ϕ0

S ξ0 χ0 ρ0

A4 3 3 1 1
′′

1
′

1 3 1 3 1 1
′′

1 3 3 1 1
′′

1

Z4 −1 −1 −i 1 i 1 i i 1 1 1 1 −1 1 1 1 1

Z6 ω4
6 ω2

6 ω2
6 ω2

6 ω2
6 1 1 1 ω2

6 ω2
6 ω5

6 ω3
6 1 ω2

6 ω2
6 ω2

6 1

U(1)R 1 1 1 1 1 0 0 0 0 0 0 0 2 2 2 2 2

Table 2. Field content and their transformation rules under the family symmetry A4 × Z4 × Z6

and U(1)R, where ω6 = e2πi/6.

4.1 Vacuum alignment

The vacuum alignment problem can be solved by the supersymmetric driving field method

introduced in ref. [51]. This approach utilises a global U(1)R continuous symmetry which

contains the discrete R-parity as a subgroup. The flavon and Higgs fields are uncharged

under U(1)R, the matter fields have R charge equal to +1 and the so-called driving fields

ϕ0
T , ϕ

0
S , ξ

0, χ0 and ρ0 carry two units of R charge. The most general driving superpotential

wd invariant under the family symmetry A4 × Z4 × Z6 can be written as

wd = wl
d + wν

d , (4.1)

where wl
d is the superpotential for the flavons entering the charged lepton sector at leading

order (LO), i.e.

wl
d = f1

(

ϕ0
TϕT

)

ζ + f2
(

ϕ0
TϕTϕT

)

(4.2)

and wν
d is the superpotential involving the flavon fields of the neutrino sector, i.e.

wν
d = g1ξ̃

(

ϕ0
SϕS

)

+ g2
(

ϕ0
SϕSϕS

)

+ g3ξ
0 (ϕSϕS) + g4ξ

0ξ2 + g5ξ
0ξξ̃ + g6ξ

0ξ̃2

+g7χ
0 (ϕSϕS)

′ + g8χ
0χ2 +M2

ρρ
0 + g9ρ

0ρ2 , (4.3)

where the fields ξ and ξ̃ are defined in such a way that only the latter couples to the combi-

nation
(

ϕ0
SϕS

)

. Notice that (. . .) indicate a contraction to the singlet 1, (. . .)′ a contraction

to the singlet 1′ and (. . .)′′ a contraction to the singlet 1′′. Moreover, all couplings in wd

are real, since we have imposed the generalised CP HCP as a symmetry of the model. In

the SUSY limit, the vacuum alignment is determined by the vanishing of the derivative of

the driving superpotential wd with respect to each component of the driving field, i.e. the

F− terms of the driving fields must vanish. Therefore, the vacuum in the charged lepton

sector is determined by

∂wd

∂ϕ0
T1

= f1ϕT1ζ +
2

3
f2
(

ϕ2
T1

− ϕT2ϕT3

)

= 0 ,

∂wd

∂ϕ0
T2

= f1ϕT3ζ +
2

3
f2
(

ϕ2
T2

− ϕT1ϕT3

)

= 0 ,

∂wd

∂ϕ0
T3

= f1ϕT2ζ +
2

3
f2
(

ϕ2
T3

− ϕT1ϕT2

)

= 0 . (4.4)
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This set of equations admit two inequivalent solutions. The first solution is

〈ζ〉 = 0, 〈ϕT 〉 = vT









1

1

1









, (4.5)

where vT is undetermined, and the second solution is

〈ζ〉 = vζ , 〈ϕT 〉 =









vT

0

0









with vT = −3f1
2f2

vζ . (4.6)

Note that the phase of vζ can be absorbed into the lepton fields. Therefore we can take

vζ to be real without loss of generality, and then the VEV vT is real as well. Since the

couplings f1 and f2 naturally have absolute values of O(1), the vacuum expectation values

(VEVs) vζ and vT are expected to be of the same order of magnitude. In the present work,

we choose this solution and shall show that the mass hierarchies among the charged lepton

masses can be naturally produced for

vT
Λ

∼ vζ
Λ

∼ O(λ2) , (4.7)

where λ is of the order of Cabibbo angle θc ≃ 0.23. Similarly the F− term conditions for

the flavon fields ξ, ξ̃, ϕS and χ are

∂wd

∂ϕ0
S1

= g1ξ̃ϕS1 +
2

3
g2
(

ϕ2
S1

− ϕS2ϕS3

)

= 0 ,

∂wd

∂ϕ0
S2

= g1ξ̃ϕS3 +
2

3
g2
(

ϕ2
S2

− ϕS1ϕS3

)

= 0 ,

∂wd

∂ϕ0
S3

= g1ξ̃ϕS2 +
2

3
g2
(

ϕ2
S3

− ϕS1ϕS2

)

= 0 ,

∂wd

∂ξ0
= g3

(

ϕ2
S1

+ 2ϕS2ϕS3

)

+ g4ξ
2 + g5ξξ̃ + g6ξ̃

2 = 0 ,

∂wd

∂χ0
= g7

(

ϕ2
S3

+ 2ϕS1ϕS2

)

+ g8χ
2 = 0 . (4.8)

Disregarding the ambiguity caused by A4 family symmetry transformations, we find the

solution

〈ξ〉 = vξ, 〈ξ̃〉 = 0, 〈ϕS〉 = vS









1

1

1









, 〈χ〉 = vχ , (4.9)

where the VEVs vξ, vS and vχ are related by

v2S = − g4
3g3

v2ξ , v2χ =
g4g7
g3g8

v2ξ , (4.10)
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where vξ is undetermined and generally complex. Consequently the VEVs vS and vχ are

complex as well. Since all couplings are real due to the invariance under the generalised

CP symmetry HCP, the three VEVs vξ, vS and vχ share the same phase, up to the phase

difference 0, π or ±π/2 determined by the sign of g3g4 and g7g8.
8

Finally, the minimisation equation for the vacuum of ρ is

∂wd

∂ρ0
= M2

ρ + g9ρ
2 = 0 , (4.11)

which leads to

〈ρ〉 = vρ, with v2ρ = −M2
ρ/g9 . (4.12)

Obviously the VEV vρ can only be real or purely imaginary depending on the coupling g9
being negative or positive, respectively. As we shall see, agreement with the experimental

data (in particular the measured sizeable θ13) can be achieved if

vξ
Λ

∼ vS
Λ

∼ vχ
Λ

∼ vρ
Λ

∼ O(λ) . (4.13)

Thus, there is a moderate hierarchy of order λ between the VEVs of the flavon fields in

the neutrino and the charged lepton sectors. This hierarchy can be accommodated since

the two sets of VEVs are determined by different minimisation conditions. Now that we

have studied the vacuum alignments possible in this model, we proceed by constructing

the explicit charged lepton and neutrino mass matrices.

4.2 The model at leading order

From table 2, it is seen that the effective superpotential for the charged lepton masses is

given by

wl =
yτ
Λ

(lϕT )
′′ τ chd +

yµ1

Λ2
(lϕTϕT )

′ µchd +
yµ2

Λ2
(lϕT )

′ ζµchd +
ye1
Λ3

(lϕT ) (ϕTϕT ) e
chd

+
ye2
Λ3

(lϕT )
′ (ϕTϕT )

′′ echd +
ye3
Λ3

(lϕT )
′′ (ϕTϕT )

′ echd +
ye4
Λ3

(

(lϕT )3S (ϕTϕT )3S

)

echd

+
ye5
Λ3

(

(lϕT )3A (ϕTϕT )3S

)

echd +
ye6
Λ3

(lϕTϕT ) ζe
chd +

ye7
Λ3

(lϕT ) ζ
2echd + . . . , (4.14)

where dots represent the higher dimensional operators which will be discussed later, and

all coupling constants are constrained to be real by the generalised CP symmetry. Due to

the auxiliary Z4 symmetry, the relevant electron, muon and tau mass terms involve one

flavon, two flavons and three flavons, respectively. Substituting the VEVs of ϕT and ζ in

eq. (4.6), a diagonal charged lepton mass matrix is generated with

me =

(

ye1 +
4

9
ye4 +

2

3
ye6

vζ
vT

+ ye7
v2ζ
v2T

)

v3T
Λ3

vd ,

mµ =

(

2

3
yµ1 + yµ2

vζ
vT

)

v2T
Λ2

vd , mτ = yτ
vT
Λ

vd , (4.15)

8Note that it is possible to obtain more complicated phase differences by coupling more flavons together

in the flavon potential [40, 41]. Consequently the corresponding driving superpotential becomes non-

renormalisable. For example, if eq. (4.10) instead appeared schematically as v3S ∼ v3ξ , then phase differences

of 2kπ
3

and (2k−1)π
3

with k = 1, 2, 3 could be obtained. More generally, if one obtains a relation like vpS ∼ vpξ ,

then phase differences of 2kπ
p

and (2k−1)π
p

with k = 1, 2, . . . , p could be realised.
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where vd = 〈hd〉. The VEVs of the flavons ϕT and ζ are responsible for the spontaneous

breaking of both family symmetry and generalised CP symmetry here. Furthermore, it

is obvious that the A4 family symmetry is broken to the ZT
3 subgroup in the charged

lepton sector. As was pointed out in the vacuum alignment of section 4.1, both vT and

vζ can be set to be real. Therefore the generalised CP symmetry is broken to H l
CP =

{

ρr(1), ρr(T ), ρr(T
2)
}

in the charged lepton sector. It is remarkable that the observed

charged lepton mass hierarchies are naturally reproduced for vT /Λ ∼ vζ/Λ ∼ λ2. In the

following, we turn to discuss the neutrino sector. Neutrino masses are generated by the

seesaw mechanism [52–58], and the LO superpotential for the neutrino masses, which is

invariant under the imposed family symmetry A4 × Z4 × Z6, is of the form

wν = y (lνc)hu + y1 (ν
cνc) ξ + ỹ1 (ν

cνc) ξ̃ + y3 (ν
cνcϕS) , (4.16)

where all couplings are real because of invariance under the generalised CP transformations

defined in section 2. We can straightforwardly read out the Dirac neutrino mass matrix,

mD = y









1 0 0

0 0 1

0 1 0









vu , (4.17)

where vu = 〈hu〉 is the VEV of the Higgs field hu. Given the vacuum configuration of

eq. (4.9), which breaks the A4 family symmetry to Gν = ZS = {1, S}, the Majorana

neutrino mass matrix mM for the heavy RH neutrinos is

mM =









y1vξ + 2y3vS/3 −y3vS/3 −y3vS/3

−y3vS/3 2y3vS/3 y1vξ − y3vS/3

−y3vS/3 y1vξ − y3vS/3 2y3vS/3









. (4.18)

Notice that this mass matrix also has an accidental ZU
2 symmetry, which is the µ − τ

exchange symmetry, arising due to the absence of flavons transforming as 1′ or 1′′. It is

exactly diagonalised by the tri-bimaximal mixing matrix UTB, i.e.

UT
TBmMUTB = diag(y1vξ + y3vS , y1vξ,−y1vξ + y3vS) . (4.19)

Then, the light neutrino mass matrix follows from the seesaw formula

mν = −mDm
−1
M mT

D = UTBdiag(m1,m2,m3)U
T
TB , (4.20)

where

m1 = − y2v2u
y1vξ + y3vS

, m2 = −y2v2u
y1vξ

, m3 =
y2v2u

y1vξ − y3vS
(4.21)

Note that these masses obey the mass sum rule

1

m1
− 1

m3
=

2

m2
. (4.22)

However the sum rule will be violated by NLO corrections.
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x α21 α31 |m1|(meV) |m2|(meV) |m3|(meV) |mββ |(meV) mass order

0.79 0 π 5.83 10.44 50.07 7.36 NO

1.19 0 0 4.43 9.73 49.93 6.20 NO

−2.01 π 0 51.50 52.22 17.33 16.93 IO

Table 3. The LO predictions for the Majorana phases α21 and α31, the light neutrino masses

|mi|(i = 1, 2, 3) and the effective mass |mββ | of the neutrinoless double-beta decay, where x =

y3vS/(y1vξ). Note that δCP is undetermined due to vanishing θ13 at LO.

Recalling that the charged lepton mass matrix is diagonal, therefore lepton flavour

mixing is predicted to be of the tri-bimaximal form at LO. Since the common phase of

vξ and vS can always be absorbed by a redefinition of the fields, we can take the product

y1vξ to be real without loss of generality. Then y3vS will be either real or purely imaginary

depending on g3g4 being negative or positive, as shown in eq. (4.10). For the case that y3vS
is imaginary, we can easily check that the remnant CP symmetry in the neutrino sector

is Hν
CP = {ρr(T 2ST ), ρr(TST

2)}, and we have |m1| = |m3| from eq. (4.21), which implies

the light neutrino masses are degenerate. Therefore this case is not phenomenologically

viable, and it will be disregarded in the following.

Hence we are left with the case that vξ and vS are of the same phase up to relative

sign, and then the generalised CP symmetry is broken to Hν
CP = {ρr(1), ρr(S)} at LO. The

neutrino mass-squared differences are given by

∆m2
sol ≡ |m2|2 − |m1|2 =

(

y2v2u
y1vξ

)2
x2 + 2x

(1 + x)2
,

∆m2
atm ≡ |m3|2 − |m1|2 =

(

y2v2u
y1vξ

)2
4x

(1− x2)2
, for NO ,

∆m2
atm ≡ |m2|2 − |m3|2 =

(

y2v2u
y1vξ

)2
x2 − 2x

(1− x)2
, for IO , (4.23)

where x = y3vS/(y1vξ) is real. Furthermore, the effective mass parameter |mββ | for the

neutrinoless double-beta decay is given by

|mββ| =
∣

∣

∣

∣

y2v2u
y1vξ

∣

∣

∣

∣

∣

∣

∣

∣

3 + x

3 (1 + x)

∣

∣

∣

∣

. (4.24)

Since the solar neutrino mass squared difference ∆m2
sol is positive, we need x > 0 or x < −2.

The neutrino spectrum is normal ordering (NO) for x > 0 and inverted ordering (IO) for

x < −2. Imposing the best fit values for the mass splittings ∆m2
sol = 7.50× 10−5eV2 and

∆m2
atm = 2.473(2.427)× 10−3eV2 for NO (IO) spectrum [8], we find three possible values

for the ratio x:

x ≃ 0.792, 1.195,−2.014 , (4.25)

where the first two correspond to NO, while the last one corresponds to IO spectrum. The

corresponding predictions for Majorana phases, the light neutrino masses and |mββ| are
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listed in table 3. Note that the Dirac phase can not be fixed uniquely in this case because

of the vanishing θ13.

Recall that for S4 ⋊HCP it was possible to achieve δCP = ±π/2 for the case Gν
CP

∼=
ZS
2 ×Hν

CP with Xrν = {ρr(U), ρr(SU)} [25]. Although this case is not directly accessible

for A4⋊HCP since the U generator is absent, we note that at LO the neutrino mass matrix

in eq. (4.18) has an accidental Xrν = {ρr(U), ρr(SU)} CP symmetry. This leads to the

same prediction for Majorana phases α21 = 0, π and α31 = 0, π as in the S4 ⋊HCP model.

4.3 Next-to-Leading-Order corrections

In the following, we study the subleading NLO corrections to the previous superpotentials,

which are essential to bring the model into agreement with data. As will be seen, these

corrections will produce a non-zero reactor angle θ13 whose relative smallness with respect

to θ12 and θ23 is naturally explained by its generation at NLO. The subleading corrections

are indicated by higher dimensional operators which are compatible with all symmetries of

the model. The NLO contribution to the driving superpotential wν
d is suppressed by one

power of 1/Λ with respect to the LO terms in eq. (4.3), and it is of the form

δwν
d =

s

Λ

(

ϕ0
SϕS

)′
χρ+

r1
Λ
ρ0 (ϕSϕSϕS) +

r2
Λ
ρ0 (ϕSϕS) ξ +

r3
Λ
ρ0 (ϕSϕS) ξ̃ +

r4
Λ
ρ0ξ3

+
r5
Λ
ρ0ξ2ξ̃ +

r6
Λ
ρ0ξξ̃2 +

r7
Λ
ρ0ξ̃3 , (4.26)

where the coupling s and ri(i = 1 . . . 7) are real due to the generalised CP symmetry. The

LO vacuum configuration is modified to

〈ξ〉 = vξ, 〈ξ̃〉 = δvξ̃, 〈ϕS〉 =









vS + δvS1

vS + δvS2

vS + δvS3









, 〈χ〉 = vχ+ δvχ, 〈ρ〉 = vρ+ δvρ , (4.27)

where the VEV of ξ remains undetermined. The new vacuum configuration is determined

by the vanishing of the first derivative of wν
d + δwν

d with respect to the driving fields ϕ0
S ,

ξ0, χ0 and ρ0. Keeping only the terms linear in the shift δv and neglecting the term δv/Λ,

we find

δvS1 = δvS2 = δvS3 =
sg5
6g1g3

vξ
vS

vχvρ
Λ

≡ δvS ,

δvξ̃ = − s

g1

vχvρ
Λ

, δvχ = − sg5g7
2g1g3g8

vξvρ
Λ

, δvρ =
g4r2 − g3r4

2g3g9

v3ξ
Λvρ

. (4.28)

We see that the three components of ϕS are shifted by the same amount. This implies that

the vacuum alignment of ϕS is not changed. The reason for this is that only the neutrino

flavon fields ϕS , ξ, ξ̃, χ and ρ instead of ϕT enter into the NLO operators of eq. (4.26).

Hence, the remnant family symmetry ZS
2 = {1, S} in the neutrino sector is still preserved.

This implies 〈ϕS〉 ∝ (1, 1, 1). Furthermore, eq. (4.28) indicates that δvS , δvξ̃, δvχ and δvρ
are of order λ2Λ, i.e. the shifts of the flavon fields in the neutrino sector are of relative

order λ with respect to the LO VEVs. For the driving superpotential wl
d, the nontrivial
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subleading operators, whose contributions can not be absorbed via a redefinition of the LO

parameters, are of the form:

(

ϕ0
Tϕ

2
Tϕ

3
ν

)

/Λ3,
(

ϕ0
TϕTϕ

3
ν

)

ζ/Λ3,
(

ϕ0
Tϕ

3
ν

)

ζ2/Λ3,
(

ϕ0
Tϕ

2
Tϕν

)′′
χ2/Λ3,

(

ϕ0
TϕTϕν

)′′
χ2ζ/Λ3,

(

ϕ0
Tϕν

)′′
χ2ζ2/Λ3 , (4.29)

where ϕν = {ϕS , ξ, ξ̃} denotes the flavon involved in the neutrino sector at LO. There-

fore subleading contributions to the F−terms of the driving field ϕ0
T are suppressed by

〈ϕν〉3/Λ3 ∼ λ3 with respect to the LO renormalisable terms in wl
d. As a result, the vacuum

alignment of ϕT acquires corrections of order λ3:

〈ϕT 〉 = vT









1 + ǫ1λ
3

ǫ2λ
3

ǫ3λ
3









, (4.30)

where ǫi(i = 1, 2, 3) are complex numbers with absolute value of O(1). Inserting this mod-

ified vacuum of ϕT into the LO expression of wl in eq. (4.14), the off-diagonal elements of

the charged lepton mass matrix become non-zero and are all suppressed by λ3 with respect

to the diagonal entries. Consequently, the corrected charged lepton mass matrix has the

following structure:

ml =









me λ3mµ λ3mτ

λ3me mµ λ3mτ

λ3me λ3mµ mτ









, (4.31)

where only the order of magnitude of each non-diagonal entry is reported. Therefore the

lepton mixing angles receive corrections of order λ3 from the charged lepton sector. These

can be safely neglected. Another source of correction to the charged lepton mass matrix

comes from adding the product ϕ3
ν or ϕνχ

2 in all possible ways to each term of wl. How-

ever, the introduction of these additional terms changes the charged lepton mass matrix in

exactly the same way as the corrections induced by the VEV shifts of ϕT . Therefore, the

general structure of ml shown in eq. (4.31) remains.

Now we turn to study the corrections to the neutrino sector. The higher order correc-

tions to the neutrino Dirac mass are given by9

(

lνcϕ3
ν

)

hu/Λ
3 + (lνcϕν)

′′ χ2hu/Λ
3 , (4.32)

where all possible A4 contractions should be considered, and we have suppressed all real

coupling constants. The resulting contributions are of relative order λ3 with respect to the

LO term y (lνc)hu in eq. (4.16) and therefore negligible. The NLO corrections to the RH

Majorana neutrino mass are

δwν = ỹ1 (ν
cνc) δξ̃ + y3 (ν

cνcδϕS) + y4 (ν
cνc)′ χρ/Λ , (4.33)

9The operator (lνc) ρ2hu/Λ
2 is omitted here, since its contribution can be absorbed by redefining the

LO parameter y of eq. (4.16).
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where δξ̃ and δϕS indicate the shifted vacua of the flavons ξ̃ and ϕS . They lead to additional

contributions to mM as follows:

δmM =









ỹ1δvξ̃ + 2y3δvS/3 −y3δvS/3 + y4vχvρ/Λ −y3δvS/3

−y3δvS/3 + y4vχvρ/Λ 2y3δvS/3 ỹ1δvξ̃ − y3δvS/3

−y3δvS/3 ỹ1δvξ̃ − y3δvS/3 2y3δvS/3 + y4vχvρ/Λ









. (4.34)

Notice that this mass matrix breaks the accidental ZU
2 symmetry, which is the µ − τ

exchange symmetry, arising due to the presence of the χ flavon transforming as 1′′, al-

lowing a non-zero reactor angle. It also breaks the accidental Xrν = {ρr(U), ρr(SU)} CP

symmetry. In fact, since we have fewer parameters in the neutrino mass matrix than in

the S4 case, we cannot preserve an accidental Xrν = {ρr(U), ρr(SU)} CP symmetry whilst

breaking the accidental ZU
2 family symmetry. It will therefore lead to different predictions

for Majorana phases α21 6= 0, π and α31 6= 0, π compared to the S4 ⋊HCP model, however

with θ13 6= 0 we will allow the possibility that δCP = ±π/2 which can be understood from

the discussion below eq. (4.10).

As shown in eq. (4.12), the VEV vρ is real for g9 < 0 and imaginary for g9 > 0.

Eq. (4.10) implies that the phase difference between vχ and vξ is 0, π or ±π/2 for the

product g3g4g7g8 > 0 or g3g4g7g8 < 0, respectively. Hence the combination vχvρ is real or

purely imaginary once the phase of vξ is absorbed by redefining the fields.

First, we consider the case that vχvρ is real,
10 i.e. the phase difference between vχvρ and

vξ is 0 or π, and then both δvξ̃ and δvS will be also real from eq. (4.28). Further recalling

that vξ and vS should have a common phase to avoid degenerate light neutrino masses,

the NLO contributions carry the same phase (up to relative sign) as the LO contribution

from eq. (4.18) in this case. The corrections due to shifted vacuum of ξ̃ and ϕS can be

absorbed by a redefinition of the couplings y1 and y3 respectively. Thus the RH neutrino

mass matrix mM including NLO contributions can be parametrised as

mM =









ŷ1vξ + 2ŷ3vS/3 −ŷ3vS/3 + y4vχvρ/Λ −ŷ3vS/3

−ŷ3vS/3 + y4vχvρ/Λ 2ŷ3vS/3 ŷ1vξ − ŷ3vS/3

−ŷ3vS/3 ŷ1vξ − ŷ3vS/3 2ŷ3vS/3 + y4vχvρ/Λ









, (4.35)

where ŷ1 = y1+ ỹ1δvξ̃/vξ and ŷ3 = y3(1+δvS/vS) are real. The light neutrino mass matrix

is given by the seesaw relation

mν = −mDm
−1
M mT

D

= α









2 −1 −1

−1 2 −1

−1 −1 2









+ β









1 0 0

0 0 1

0 1 0









+ γ









0 1 1

1 1 0

1 0 1









+ ǫ









0 1 −1

1 −1 0

−1 0 1









. (4.36)

10We could choose g9 < 0 and g3g4g7g8 > 0 such that vχ and vξ have a common phase up to relative sign

and vρ is real. Consequently the symmetry A4 ⋊HCP is broken down to Gν
CP = ZS

2 ×Hν
CP in the neutrino

sector with Hν
CP = {ρr(1), ρr(S)}. On the other hand, this case can also be realised by taking g9 > 0 and

g3g4g7g8 < 0 such that vρ is imaginary and the phase difference of vχ and vξ is ±π/2.
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It is the most general neutrino mass matrix consistent with the residual family symmetry

Gν = ZS
2 = {1, S}, as is shown in eq. (3.11). The parameters α, β, γ and ǫ can be regarded

as real and are given by

α =
ŷ3vS

3
(

ŷ21v
2
ξ − ŷ23v

2
S − ŷ1y4vξvχvρ/Λ + y24v

2
χv

2
ρ/Λ

2
) ,

β =
−3ŷ21v

2
ξ + ŷ23v

2
S

3
(

ŷ31v
3
ξ − ŷ1ŷ23vξv

2
S − ŷ23y4v

2
Svχvρ/Λ + y34v

3
χv

3
ρ/Λ

3
) ,

γ =
2ŷ23v

2
S + 3ŷ1y4vξvχvρ/Λ− 3y24v

2
χv

2
ρ/Λ

2

6
(

ŷ31v
3
ξ − ŷ1ŷ23vξv

2
S − ŷ23y4v

2
Svχvρ/Λ + y34v

3
χv

3
ρ/Λ

3
) ,

ǫ =
y4vχvρ/Λ

2
(

ŷ21v
2
ξ − ŷ23v

2
S − ŷ1y4vξvχvρ/Λ + y24v

2
χv

2
ρ/Λ

2
) , (4.37)

where the overall factor y2v2u has been omitted. We note that the ǫ term in eq. (4.36),

which is induced by the last term of the NLO corrections in eq. (4.33), is responsible for

the non-zero reactor angle θ13. It is suppressed by λ with respect to the tri-bimaximal

mixing preserving contributions α, β and γ terms. Neglecting the small contributions from

the charged lepton sector, the PMNS matrix is of the form shown in eq. (3.26), and the

predictions for lepton mixing angles and CP phases are given in eq. (3.27). Notice that

in this case both Dirac and Majorana CP phases are trivial, and there is no CP violation

because the neutrino mass matrix is real except for an overall phase.

In this case, the parameters α, β and γ are real, and ǫ is also real instead of imag-

inary, as would be required in order to have an accidental Xrν = {ρr(U), ρr(SU)} CP

symmetry, therefore it leads to different predictions from the S4 ⋊ HCP model where

Xrν = {ρr(U), ρr(SU)} CP symmetry was preserved [25].

The lepton mixing is predicted to be the so-called trimaximal mixing pattern. All the

three mixing angles depend on one parameter θ which is of order λ and related to the

model parameters via eq. (3.16). Consequently, the reactor angle θ13 is of order λ as well

in the present model. For the best fit value sin2 θ13 = 0.0227 [8], the rotation angle θ is de-

termined to be θ ≃ ±0.186. Consequently we have the solar mixing angle sin2 θ12 ≃ 0.341

and the atmospheric mixing angle sin2 θ23 ≃ 0.393 or sin2 θ23 ≃ 0.607, which are in the

experimentally preferred regions.

For the remaining case in which the phase difference between vχvρ and vξ is ±π/2,11

eq. (4.28) implies that the shifts δvξ̃ and δvS will be imaginary after extracting the overall

phase carried by vξ. Then, the RH neutrino mass matrix mM can be parametrised as

mM = y1vξ

[

(1+iaλ)









1 0 0

0 0 1

0 1 0









+(x+ibλ)









2/3 −1/3 −1/3

−1/3 2/3 −1/3

−1/3 −1/3 2/3









+icλ









0 1 0

1 0 0

0 0 1









]

, (4.38)

11This scenario could be realised by taking g9 < 0, g3g4g7g8 < 0 or g9 > 0, g3g4g7g8 > 0. In this case, the

LO residual CP symmetry Hν
CP = {ρr(1), ρr(S)} is broken completely by the VEVs vχ and vρ, although

the residual family symmetry Gν = ZS
2 is still preserved.
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with

a = − i

λ

ỹ1δvξ̃
y1vξ

, x =
y3vS
y1vξ

, b = − i

λ

y3δvS
y1vξ

, c = − i

λ

y4vχ
y1vξ

vρ
Λ

, (4.39)

where x, a, b and c are O(1) real parameters. To first order in λ, the light neutrino mass

matrix followed by a tri-bimaximal transformation is of the form

m′
ν = UT

TBmνUTB = −y2v2u
y1vξ









2+2x−i(2a+2b−c)λ
2(1+x)2

0 i
√
3 cλ

2(1−x2)

0 1− i (a+ c)λ 0
i
√
3 cλ

2(1−x2)
0 −2+2x+i(2a−2b−c)λ

2(1−x)2









.

(4.40)

Following the procedure presented in appendix E, this matrixm′
ν can be diagonalized. After

lengthy and tedious calculations, we find that the lepton mixing parameters are modified to

sin θ13≃
∣

∣

∣

∣

c

2
√
2 x

∣

∣

∣

∣

λ, sin2 θ12=
1

3
+O(λ2), sin2 θ23=

1

2
+O(λ2) , (4.41)

|sin δCP|=1 +O(λ2), |sinα21|≃
∣

∣

∣

∣

3c−2b+2x(a+c)

2(1 + x)

∣

∣

∣

∣

λ,
∣

∣sinα′
31

∣

∣≃
∣

∣

∣

∣

x (2a−c−2xb)

1− x2

∣

∣

∣

∣

λ ,

where α′
31 = α31 − 2δCP, and the parameter α′

31 has been redefined to include the Dirac

CP phase δCP. This parametrisation turns out to be very useful and convenient for the

analysis of neutrinoless double-beta decay and leptonic CP violation [59]. We note that

the higher order contributions to both θ12 and θ23 are suppressed such that they are rather

close to the tri-bimaximal values. The reactor angle θ13 is predicted to be of order λ, and

thus experimentally preferred value can be achieved. In particular, the Dirac CP violation

is approximately maximal with δCP ≃ ±π
2 .

In order to see more clearly the predictions for the lepton mixing parameters, we per-

form a numerical analysis. The expansion parameter λ is fixed at the indicative value 0.15,

and the parameters x, a, b and c are treated as random real numbers of absolute value

between 1/2 and 2. The resulting lepton mixing angles and the mass-squared differences

∆m2
sol and ∆m2

atm are required to lie in their 3σ ranges [8]. Correlations among the lep-

ton mixing angles and the CP phases are plotted in figure 1. Obviously we have almost

maximal Dirac CP phase δCP , and the numerical results are consistent with the analytical

estimates of eq. (4.41).

5 Ultraviolet completion of the effective model

In the previously discussed effective model, non-renormalisable terms allowed by the sym-

metries are included in the superpotential wl of eq. (4.14) and the subleading correction

terms. It is generally believed that these effective terms arise from a fundamental renor-

malisable theory at high energies by integrating out the heavy degree of freedom. In this

section, we present a ultraviolet (UV) completion of the effective model, which in general

has the advantage of improving the predictability of the effective model. In such UV com-

pleted models, the non-renormalisable terms of the previously discussed effective model
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Figure 1. The correlations of different flavour mixing parameters, where the horizontal lines and

the vertical ones correspond to the 3σ bound for the mixing angles, which are taken from [8].
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Field Ω1 Ω2 Ω3 Ω4 Ωc
1 Ωc

2 Ωc
3 Ωc

4 Σ Σc

A4 3 1′′ 1 1 3 1′ 1 1 3 3

Z4 −1 i i 1 −1 −i −i 1 −1 −1

Z6 ω2
6 ω2

6 ω2
6 ω2

6 ω4
6 ω4

6 ω4
6 ω4

6 ω5
6 ω6

U(1)R 1 1 1 1 1 1 1 1 1 1

Table 4. The transformation rules of the messenger fields under the family symmetry A4×Z4×Z6

and U(1)R.

hd ϕT

l τ c

Ω1 Ω
c
1

l
µc

hd ϕT ξ′

Ω1 Ω
c
1 Ω2 Ω

c
2

hd ϕT ξ′ ξ′

l ec

Ω1 Ω
c
1 Ω3 Ω

c
3 Ω4 Ω

c
4

Figure 2. The diagrams which generate the effective operators for the charged lepton masses,

where crosses indicate the mass insertions for fermions.

arise from integrating out heavy messenger fields, and some terms included at the effective

level will be eliminated if no messenger field exists to mediate them. It is well-known that

the UV completion of a low energy effective theory is generally not unique. In this sec-

tion, we shall present the “minimal” completion of the above effective model in the sense

of having the least number of extra messenger fields and the least number of associated

(renormalisable) couplings.

To begin, the driving superpotential wd of eq. (4.1) is already renormalisable, and

therefore the vacuum alignment given in eqs. (4.6), (4.9), (4.12) is kept intact. The effec-

tive terms for the charged lepton masses in wl of eq. (4.14) is non-renormalisable. Thus

in order to reproduce these terms through the combination of renormalisable terms, we

minimally increase the field content to introduce four pairs of messenger fields Ωi and

Ωc
i (i = 1, 2, 3, 4). The transformation properties of the all the messenger fields under the

family symmetry A4×Z4×Z6 are listed in table 4. Notice that these messengers are chiral

superfields with non-vanishing hypercharge +2(−2) for Ωi (Ω
c
i ). We can straightforwardly

write down the renormalisable charged lepton superpotential

wl = z1 (lΩ1)hd + z2 (Ω
c
1ϕT )

′′ τ c + z3 (Ω
c
1ϕT )

′Ω2 + z4Ω
c
2ζµ

c + z5 (Ω
c
1ϕT ) Ω3 + z6Ω

c
3Ω4ζ

+z7Ω
c
4ζe

c +MΩ1 (Ω
c
1Ω1) +MΩ2Ω

c
2Ω2 +MΩ3Ω

c
3Ω3 +MΩ4Ω

c
4Ω4 ,
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where all the coupling constants zi (i = 1 . . . 7) and the messenger masses MΩi
(i = 1 . . . 4)

are real because of the imposed generalised CP symmetry. Integrating out the heavy mes-

senger fields Ωi and Ωc
i , the corresponding Feynman diagrams are shown in figure 2, we

obtain the effective superpotential for the charged lepton masses

weff
l = − z1z2

MΩ1

(lϕT )
′′ τ chd +

z1z3z4
MΩ1MΩ2

(lϕT )
′ ζµchd −

z1z5z6z7
MΩ1MΩ3MΩ4

(lϕT ) ζ
2echd . (5.1)

Taking into account the vacuum alignments 〈ϕT 〉 = (0, vT , 0) and 〈ζ〉 = vζ of eq. (4.6), we

obtain a diagonal charged lepton mass matrix with

me = −z1z5z6z7
vT v

2
ζ

MΩ1MΩ3MΩ4

vd, mµ = z1z3z4
vT vζ

MΩ1MΩ2

vd, mτ = −z1z2
vT
MΩ1

vd . (5.2)

For the neutrino sector, we introduce the messenger fields Σ and Σc which are chiral su-

perfields carrying zero hypercharge. The renormalisable superpotential relevant to the

neutrino masses reads

wν = wLO
ν + wΣ

ν , (5.3)

with

wLO
ν = y (lνc)hu + y1 (ν

cνc) ξ + ỹ1 (ν
cνc) ξ̃ + y3 (ν

cνcϕS) , (5.4)

wΣ
ν = x1 (ν

cΣ)′ χ+ x2 (ν
cΣc) ρ+MΣ (ΣcΣ) , (5.5)

where all couplings and the mass MΣ are real due to the generalised CP invariance. The

first term of wLO
ν gives rise to the Dirac neutrino mass matrix

mD = y









1 0 0

0 0 1

0 1 0









vu . (5.6)

The RH neutrino masses receive contributions from both wLO
ν and wΣ

ν , as shown in figure 3.

Integrating out the messenger fields Σ and Σc leads to the NLO effective operator

wNLO
ν = −x1x2

MΣ
(νcνc)′ χρ , (5.7)

which corresponds to the last term of the NLO corrections δwν in eq. (4.33) with y4 =

−x1x2Λ/MΣ. However, the corrections from the shifted vacuum of ξ̃ and ϕS disappear in

the present renormalisable model. The reason is that the messenger fields introduced do not

affect the driving superpotential, and thus the vacuum alignment is preserved. Combining

the contributions from both wLO
ν and wNLO

ν , the RH neutrino mass matrix mM is given by

mM =









y1vξ + 2y3vS/3 −y3vS/3− x1x2vχvρ/MΣ −y3vS/3

−y3vS/3− x1x2vχvρ/MΣ 2y3vS/3 y1vξ − y3vS/3

−y3vS/3 y1vξ − y3vS/3 2y3vS/3− x1x2vχvρ/MΣ









.

(5.8)
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νc νc

ξ, ξ̃, ϕS

νc νc

Σ Σ
c

χ ρ

Figure 3. The diagrams for the RH neutrino masses, where crosses indicate the mass insertions

for fermions.

Being similar to the effective model, the VEVs vξ and vS should have the same phase up

to relative sign otherwise the light neutrino masses will be degenerate at LO. Furthermore,

the phase difference between vχvρ and vξ is 0, π or ±π/2, as previously emphasised.

For the former cases, i.e. the phase difference is 0 or π, the light neutrino mass matrix

is real once the common phase of vξ, vS and vχvρ is absorbed by field redefinition. The

resulting PMNS matrix is of the trimaximal form shown in eq. (3.26). Therefore lepton

mixing angles compatible with the experimental data can be achieved, and CP is conserved.

For the remaining case in which the phase difference of vχvρ and vξ is ±π/2, mM can be

parametrised as in eq. (4.38) with

mM = y1vξ

















1 0 0

0 0 1

0 1 0









+ x









2/3 −1/3 −1/3

−1/3 2/3 −1/3

−1/3 −1/3 2/3









+ iz









0 1 0

1 0 0

0 0 1

















, (5.9)

where z = ix1x2
y1

vχvρ
MΣvξ

. We can straightforwardly obtain the light neutrino mass matrix

from the seesaw formula [52–58] and then apply a tri-bimaximal transformation, i.e.

m′
ν = −UT

TB

(

mDm
−1
M mT

D

)

UTB = m0









2−2x−iz
2(1−x2−z2−iz)

0 i
√
3 z

2(1−x2−z2−iz)

0 1
1+iz 0

i
√
3 z

2(1−x2−z2−iz)
0 −2−2x+iz

2(1−x2−z2−iz)
,









(5.10)

with m0 ≡ −y2v2u/(y1vξ). Notice that the neutrino sector is described by three real param-

eters m0, x and z at low energy, and therefore this model is rather predictive. As shown

in appendix E, the mass matrix m′
ν can be diagonalised exactly as

U ′T
ν m′

νU
′
ν = diag(m1,m2,m3) , (5.11)

where the unitary matrix U ′
ν is of the form

U ′
ν =









ei(π/4+φ1/2) cos θ 0 ei(π/4+φ3/2) sin θ

0 eiφ2/2 0

−e−i(π/4−φ1/2) sin θ 0 e−i(π/4−φ3/2) cos θ









, (5.12)

where the angle θ satisfies

tan 2θ =

√
3z

2x
, (5.13)
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and the phases φ1,2,3 are given by

φ1 = −arg

(

z + i(2− 2x cos 2θ −
√
3 z sin 2θ)

1− x2 − z2 − iz

)

,

φ2 = arg (1 + iz) ,

φ3 = −arg

(

z + i(2 + 2x cos 2θ +
√
3 z sin 2θ)

1− x2 − z2 − iz

)

. (5.14)

where the overall phase of m0 has been omitted. Therefore the PMNS matrix is of the form

UPMNS = UTBU
′
ν (5.15)

=













2√
6
cos θei(π/4+φ1/2) 1√

3
eiφ2/2 2√

6
sin θei(π/4+φ3/2)

(

− 1√
6
cos θ − i√

2
sin θ

)

ei(π/4+φ1/2) 1√
3
eiφ2/2

(

− 1√
6
sin θ + i√

2
cos θ

)

ei(π/4+φ3/2)

(

− 1√
6
cos θ + i√

2
sin θ

)

ei(π/4+φ1/2) 1√
3
eiφ2/2

(

− 1√
6
sin θ − i√

2
cos θ

)

ei(π/4+φ3/2)













.

From this, we can immediately extract the lepton mixing angles and CP phases:

sin2 θ13 =
1

3
(1− cos 2θ) , sin2 θ12 =

1

2 + cos 2θ
=

1

3 cos2 θ13
, sin2 θ23 =

1

2
,

δCP = sign(xz)
π

2
, α21 = φ2 − φ1 −

π

2
, α31 = φ3 − φ1 + sign(xz)π . (5.16)

It is remarkable that this model predicts maximal Dirac CP violation δCP = ±π
2 and max-

imal atmospheric neutrino mixing in this case. For the measured values sin2 θ13 = 0.0227,

the solar mixing angle is predicted to be sin2 θ12 ≃ 0.341 which is compatible with the

experimentally allowed regions. Finally, we remark that the light neutrino masses m1,2,3

are given by

m1 = |m0|
√

1 + x2 + z2 − sign(x cos 2θ)
√
4x2 + 3z2

(1− x2 − z2)2 + z2
,

m2 =
|m0|√
1 + z2

,

m3 = |m0|
√

1 + x2 + z2 + sign(x cos 2θ)
√
4x2 + 3z2

(1− x2 − z2)2 + z2
. (5.17)

As a result, the solar and atmospheric mass-squared splittings are predicted to be

∆m2
sol =

(

x2 − 3
) (

x2 + z2
)

+ sign(x cos 2θ)(1 + z2)
√
4x2 + 3z2

(1 + z2) [(1− x2 − z2)2 + z2]
|m0|2 ,

∆m2
atm =

2
√
4x2 + 3z2

(1− x2 − z2)2 + z2
|m0|2, for NO ,

∆m2
atm =

(

x2 − 3
) (

x2 + z2
)

+ (1 + z2)
√
4x2 + 3z2

(1 + z2) [(1− x2 − z2)2 + z2]
|m0|2, for IO . (5.18)

When we impose the best fit values for the reactor mixing angle sin2 θ13 = 0.0227 and the

mass-squared differences ∆m2
sol = 7.50 × 10−5eV2 and ∆m2

atm = 2.473(2.427) × 10−3eV2
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(x, z) δCP α21 α31 m1 m2 m3 |mββ| mass order

(0.97, 0.44) π/2 0.17π 0.47π
5.43 10.22 50.02 6.37 NO

(0.97,−0.44) 3π/2 1.83π 1.53π

(0.81, 0.36) π/2 0.14π 0.73π
5.95 10.51 50.08 7.76 NO

(0.81,−0.36) 3π/2 1.86π 1.27π

(−2.17, 0.98) 3π/2 1.13π 1.84π
53.46 54.15 22.49 18.90 IO

(−2.17,−0.98) π/2 0.87π 0.16π

Table 5. The predictions for the leptonic CP phases, the light neutrino masses mi(i = 1, 2, 3) and

the effective mass |mββ | of the neutrinoless double-beta decay in the UV completion of the effective

model, where the unit of mass is meV.

for normal (inverted) ordering, we find six possible solutions to the parameters x and z:

(x, z) ≃ (0.97,±0.44), (0.81,±0.36), (−2.17,±0.98) , (5.19)

where the first four cases correspond to a normally ordered neutrino mass spectrum, while

latter two correspond to inverted ordering. The corresponding predictions for the light

neutrino masses and the lepton mixing parameters are presented in table 5.

6 Conclusions

A promising and attractive approach to the well-known family puzzle is to invoke (spon-

taneously broken) discrete family symmetry to describe the observed patterns. The lepton

mixing angles and CP violating phases can be predicted simultaneously from a family

symmetry Gf combined with a generalised CP symmetry HCP, which is broken to dif-

ferent remnant symmetries in the neutrino and charged lepton sectors. In this work, we

have focused on the most popular A4 family symmetry. For the faithful representation

3, we find that the generalised CP symmetry is S4 which is the automorphism group of

A4. However, only half of these 24 generalised CP transformations are consistent with

the nontrivial singlet representations 1′ and 1′′. We performed a comprehensive study of

lepton mixing angles and CP phases which can be produced from the original symmetry

A4 ⋊HCP breaking to different remnant symmetries. Of all the possibilities, we find that

only the case with Gν
CP = Z2 ×Hν

CP and Gl
CP = Z3 ⋊H l

CP is phenomenologically viable,

in which the second column of the corresponding lepton mixing matrix is proportional to

(1, 1, 1)T . Furthermore, there is no CP violation in this case, namely δCP = 0, π, with

Majorana phases α21 = 0, π and α31 = 0, π.

Motivated by this general analysis, we have constructed an effective SUSY model for

leptons based on the A4 ⋊HCP symmetry with auxiliary Z4 ×Z6 symmetries. This model

reproduces the correct mass hierarchies among the three charged leptons. At LO, the lep-

ton mixing is of the tri-bimaximal form, which is further reduced to trimaximal mixing by

the NLO contributions. Consequently the reactor mixing angle arises as a NLO correction,

and thus it is of the correct order of magnitude. It is notable that the Dirac phase is
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predicted to be trivial or approximately maximal, namely δCP = 0, π or δCP = ±π/2, with

Majorana phases α21 and α31 being more general. For the case δCP = 0, π, the residual

symmetry in the neutrino sector is Gν
CP = Z2 × Hν

CP with Hν
CP = {ρr(1), ρr(S)}. While

for the nearly maximal CP violation case, i.e. δCP ≃ ±π
2 , the generalised CP symmetry is

broken completely in the neutrino sector.

Furthermore, we have promoted this effective model to a renormalisable one, where

the non-renormalisable terms arise from integrating out heavy messenger fields and some

higher dimensional operators included at the effective level are eliminated. As a result, the

model becomes rather predictive, and the light neutrino mass matrix depends on only three

real parameters which are fixed to reproduce the observed values of ∆m2
sol, ∆m2

atm and θ13.

Then all the other observables including θ12, θ23, Dirac phase δCP, Majorana phases and the

absolute neutrino mass scale are related, leading to the definite predictions shown in table 5.

In particular, both the atmospheric mixing angle θ23 and Dirac phase δCP are maximal.
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A Group theory of A4

A4 is the even permutation group of four objects. As such, it has 12 elements. Geomet-

rically, it is isomorphic to the symmetry group of a regular tetrahedron. The elements of

A4 can be generated by two generators S and T satisfying the relation:

S2 = T 3 = (ST )3 = 1 . (A.1)

The 12 elements of A4 are obtained as 1, S, T , ST , TS, T 2, ST 2, STS, TST , T 2S, TST 2

and T 2ST . Without loss of generality, we can choose

S = (14)(23), T = (123) , (A.2)

where the cycle (123) represents the permutation (1, 2, 3, 4) → (2, 3, 1, 4) and (14)(23)

means (1, 2, 3, 4) → (4, 3, 2, 1). The A4 elements belong to 4 conjugacy classes:

1C1 : 1

4C3 : T = (123), ST = (134), TS = (142), STS = (243)

4C2
3 : T 2 = (132), ST 2 = (124), T 2S = (143), ST 2S = (234)

3C2 : S = (14)(23), T 2ST = (12)(34), TST 2 = (13)(24) . (A.3)
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S T

1 1 1

1′ 1 ω2

1′′ 1 ω

3 1
3









−1 2 2

2 −1 2

2 2 −1

















1 0 0

0 ω2 0

0 0 ω









Table 6. The representation matrices for the A4 generators S and T in different irreducible

representations, where ω = e2πi/3 is the cube root of unit.

In the above, we have adopted Schoenflies notation in which mCk
n denotes a conjugacy class

of m elements of rotations by an angle 2πk
n . A4 has four inequivalent irreducible representa-

tions: three singlet representations 1, 1′, 1′′ and one triplet representation 3 which is a faith-

ful representation of A4. The representation matrices of the generators S and T are listed in

table 6. The Kronecker products between various irreducible representations are as follows:

1⊗R = R, 1′ ⊗ 1′′ = 1, 1′ ⊗ 1′ = 1′′, 1′′ ⊗ 1′′ = 1′,

3⊗ 1′ = 3, 3⊗ 1′′ = 3, 3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3S ⊕ 3A , (A.4)

where R denotes any A4 representation, and the subscript S (A) denotes symmetric (anti-

symmetric) combinations. For two A4 triplets α = (α1, α2, α3) ∼ 3 and β = (β1, β2, β3) ∼
3, the irreducible representations obtained from their product are:

1 ≡ (αβ) = α1β1 + α2β3 + α3β2 ,

1′ ≡ (αβ)′ = α3β3 + α1β2 + α2β1 ,

1′′ ≡ (αβ)′′ = α2β2 + α1β3 + α3β1 ,

3S ≡ (αβ)3S =
1

3









2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1









, 3A ≡ (αβ)3A =
1

2









α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3









,

(A.5)

where we have followed the same convention of ref. [51].

Finally A4 has three Z2 subgroups, four Z3 subgroups and one K4
∼= Z2×Z2 subgroup,

which can be expressed in terms of the generators S and T as follows:

• Z2 subgroups

ZS
2 = {1, S} , ZT 2ST

2 =
{

1, T 2ST
}

, ZTST 2

2 =
{

1, TST 2
}

. (A.6)

• Z3 subgroups

ZT
3 =

{

1, T, T 2
}

, ZST
3 =

{

1, ST, T 2S
}

,

ZTS
3 =

{

1, TS, ST 2
}

, ZSTS
3 =

{

1, STS, ST 2S
}

. (A.7)
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• K4 subgroup

K4 =
{

1, S, T 2ST, TST 2
}

. (A.8)

We note that K4 is the normal subgroup of A4, all Z3 subgroups are conjugate to each

other, and all Z2 groups are conjugate to each other as well.

B Implication of Gν = K4
∼= Z2 × Z2

We first show that the remnant subgroup Gν = K4 in the neutrino sector can not lead to

phenomenologically acceptable lepton mixing angles even if we only impose the A4 family

symmetry. In order to be able to uniquely fix the mixing pattern from the group structure,

the residual family symmetry in the charged lepton sector is taken to be Z3 abelian sub-

groups. Thus, there are four possible choices for the preserved charged lepton subgroup Gl

of A4 with Gν = K4, i.e. Gl = ZT
3 , Gl = ZST

3 , Gl = ZTS
3 or Gl = ZSTS

3 . All four of these

combinations lead to the same mixing parameters:

sin2 θ13 = 1/3, sin2 θ12 = sin2 θ23 = 1/2, | sin δCP| = 1 . (B.1)

The same results have also been found in refs. [60, 61]. Obviously this mixing pattern is

not consistent with the present data. This result confirms that it is impossible to gener-

ate tri-bimaximal mixing by preserving the complete Klein symmetry group of A4 in the

neutrino sector. In order to produce tri-bimaximal mixing in A4, one should use flavons

transforming as 3 not 1′ or 1′′ to break the family symmetry such that only the ZS
2 sub-

group together with another accidental Z2 µ − τ symmetry is preserved in the neutrino

sector. Moreover, if we choose Gl = K4, the resulting mixing matrix will be the identity

matrix up to permutation of rows and columns. This case is clearly not viable.

As an academic exercise to further convince the reader that Gν can not beK4 subgroup

when consideringGf = A4, it is insightful to investigate the constraints that the residual CP

and family symmetries impose on the mass matrices. Considering the K4 family symmetry

first, the following constraints are found on mν :

ρT3 (S)mνρ3(S) = mν ,

ρT3 (TST
2)mνρ3(TST

2) = mν , (B.2)

because K4 =
{

1, S, TST 2, T 2ST
}

can be generated by S and TST 2. Then, the most

general neutrino mass matrix satisfying these equations has the form

mν =









m11 m12 m13

m12 m13 m11

m13 m11 m12









, (B.3)

where m11, m12 and m13 are complex parameters. It can be diagonalised by the unitary

transformation

UK =
1√
3









1 ω ω2

1 ω2 ω

1 1 1









, (B.4)
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where ω = e2πi/3. Thus,

UT
KmνUK = diag(m1,m2,m3) , (B.5)

where

m1 = m11+m12+m13, m2 = ω2m11+m12+ωm13, m3 = ωm11+m12+ω2m13 . (B.6)

The light neutrino mass matrix mν of eq. (B.3) is further constrained by the remnant CP

symmetry Hν
CP , as shown in eq. (3.2), and the associated consistency equations are

Xrνρ
∗
r(S)X

−1
rν = ρr(S

′), Xrνρ
∗
r(TST

2)X−1
rν = ρr(g

′), S′, g′ ∈ K4 . (B.7)

By considering all possible values for S′ and g′, we find that all twelve CP transformations

of A4 in eq. (2.12) are acceptable, i.e.

Xrν = ρr(g), g ∈ A4 , (B.8)

where g is any group element of A4. We further find that Hν
CP can be classified into three

cases:

• Xrν = ρr(1), ρr(S), ρr(TST
2), ρr(T

2ST )

In this case, m11, m12 and m13 are constrained to be real, and thus we have the

degeneracy |m2|2 = |m3|2. The mass-squared splittings ∆m2
sol ≡ |m2|2 − |m1|2 and

∆m2
atm ≡

∣

∣|m3|2− |m1|2(|m2|2)
∣

∣ have been precisely measured to be non-zero,12 con-

sequently the three light neutrinos should be of different masses. Moreover, partially

degenerate light neutrino masses are disfavoured by the recent Planck results [62].

Therefore this case is not viable.

• Xrν = ρr(T ), ρr(ST ), ρr(TS), ρr(STS)

In this case, the parameters m11, ωm12 and ω2m13 are required to be real. There-

fore, it leads to the degeneracy |m1|2 = |m3|2, which is not compatible with the

experimental data.

• Xrν = ρr(T
2), ρr(ST

2), ρr(T
2S), ρr(ST

2S)

The parameters m11, ω
2m12 and ωm13 have to be real in this case. Therefore, the

degeneracy |m1|2 = |m2|2 is produced. This scenario is also not in accordance with

three distinct neutrino masses.

As a result, if both the K4 subgroup and the associated generalised CP symmetry are pre-

served in the neutrino sector, the neutrino mass matrix is strongly constrained such that

the resulting light neutrino mass spectrum is partially degenerate, and the PMNS matrix

cannot be determined uniquely. Thus, as determined before from mixing considerations,

Gν = K4 is not phenomenologically viable.

12The atmospheric mass-squared difference ∆m2
atm ≡ |m3|

2−|m1|
2 for the normal ordered neutrino mass

spectrum and ∆m2
atm ≡ |m2|

2 − |m3|
2 for the inverted ordering.
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C Implication of Gl = Z2

In this appendix, we consider the possibility that Gl is a Z2 subgroup of A4. It is sufficient

to discuss the representative case Gl = ZS
2 . As shown in eq. (3.8), the CP symmetry H l

CP

consistent with ZS
2 is

H l
CP =

{

ρr(1), ρr(S), ρr(T
2ST ), ρr(TST

2)
}

. (C.1)

The hermitian combination mlm
†
l is constrained by the remnant symmetry Gl

CP
∼= ZS

2 ×
H l

CP as

ρ†
3
(S)mlm

†
l ρ3(S) = mlm

†
l ,

X†
3lmlm

†
lX3l = (mlm

†
l )

∗ , (C.2)

which allows us to straightforwardly reconstruct mlm
†
l . There are two possible scenarios:

• Xrl = ρr(1), ρr(S)

The mass matrix mlm
†
l fulfilling eq. (C.2) is of the form

mlm
†
l = α̃









2 −1 −1

−1 2 −1

−1 −1 2









+ β̃









1 0 0

0 0 1

0 1 0









+ γ̃









0 1 1

1 1 0

1 0 1









+ ǫ̃









0 1 −1

1 −1 0

−1 0 1









, (C.3)

where α̃, β̃, γ̃ and ǫ̃ are real parameters. After performing a tri-bimaximal transfor-

mation, we have

U †
TBmlm

†
lUTB =









3α̃+ β̃ − γ̃ 0 −
√
3 ǫ̃

0 β̃ + 2γ̃ 0

−
√
3 ǫ̃ 0 3α̃− β̃ + γ̃









, (C.4)

which can be further diagonalised by a (1,3) rotation R(ϑ),

R(ϑ) =









cosϑ 0 sinϑ

0 1 0

− sinϑ 0 cosϑ









, (C.5)

with tan 2ϑ =
√
3 ǫ̃/(β̃ − γ̃). The squared charged lepton masses are given by

m2
e = 3α̃−

√

(β̃ − γ̃)2 + 3ǫ̃2,

m2
µ = β̃ + 2γ̃,

m2
τ = 3α̃+

√

(β̃ − γ̃)2 + 3ǫ̃2 . (C.6)

In order to account for the observed hierarchies among the charged lepton masses

me, mµ and mτ , a moderate fine-tuning of the parameters α̃, β̃, γ̃ and ǫ̃ is needed.
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• Xrl = ρr(T
2ST ), ρr(TST

2)

In this case, mlm
†
l is of the form

mlm
†
l =









R11 R12 R12

R12 R11 R12

R12 R12 R11









, (C.7)

where R11 and R12 are real. After applying a tri-bimaximal transformation, it be-

comes

U †
TBmlm

†
lUTB = diag(R11 −R12, R11 + 2R12, R11 −R12) , (C.8)

which implies m2
e = m2

τ . This is obviously not viable.

In the cases of Gl = ZT 2ST
2 and Gl = ZTST 2

2 , we can immediately obtain the correspond-

ing consistent CP transformations and the mass matrix with the aid of the relations in

eqs. (3.5), (3.6).

Assuming that Gν
CP

∼= Z2 × Hν
CP (the only viable possibility for the neutrino sector)

and Gl
CP

∼= Z2×H l
CP (as discussed in this appendix) then the corresponding PMNS matrix

is of the form

UPMNS = R†(ϑ)U †
TBρ

m
3 (T )UTBR(θ), m = 0,±1 . (C.9)

For m = 0, which corresponds to the remnant Z2 symmetry in Gν
CP and Gl

CP being the

same, the lepton mixing angles are

sin2 θ13 = sin2(θ − ϑ), sin2 θ12 = sin2 θ23 = 0 . (C.10)

For the case m = ±1, where the Z2 factors in Gν
CP and Gl

CP are different, the lepton mixing

angles are

sin2 θ13 = 1/4, sin2 θ12 = sin2 θ23 = 2/3 . (C.11)

Obviously the predictions in both eq. (C.10) and eq. (C.11) are disfavoured by experimental

data. Therefore we exclude the possibility that Gl = Z2.

D Implication of Gl = K4

In this appendix, we discuss the last possibility Gl = K4, which implies that

ρ†
3
(S)mlm

†
l ρ3(S) = mlm

†
l ,

ρ†
3
(TST 2)mlm

†
l ρ3(TST

2) = mlm
†
l . (D.1)

Then, the mass matrix mlm
†
l is determined to be of the form

mlm
†
l =









m̃11 m̃12 m̃∗
12

m̃∗
12 m̃11 m̃12

m̃12 m̃∗
12 m̃11









, (D.2)
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where m̃11 is real and m̃12 is complex. It is diagonalised by the unitary transformation UK

of eq. (B.4),

U †
Kmlm

†
lUK = diag(m2

e,m
2
µ,m

2
τ ) , (D.3)

with

m2
e = m̃11 + m̃12 + m̃∗

12,

m2
µ = m̃11 + ωm̃12 + ω2m̃∗

12,

m2
τ = m̃11 + ω2m̃12 + ωm̃∗

12 . (D.4)

The hermitian combination mlm
†
l also respects the CP symmetry H l

CP. As shown in

eq. (B.8), all twelve CP transformations are consistent with the K4 subgroup, i.e.,

Xrl = ρr(g), g ∈ A4 , (D.5)

where Xrl is the element of H l
CP. It is clear that invariance under the action of H l

CP yields

X†
3lmlm

†
lX3l = (mlm

†
l )

∗ , (D.6)

which further constrains the parameter m12 of eq. (D.2) in various ways for different pre-

served CP subgroups as follows:

• Xrl = ρr(1), ρr(S), ρr(TST
2), ρr(T

2ST )

In this case, the parameter m12 is real, which leads to mµ = mτ .

• Xrl = ρr(T ), ρr(ST ), ρr(TS), ρr(STS)

ωm12 is constrained to be real, and thus the degeneracy me = mτ arises.

• Xrl = ρr(T
2), ρr(ST

2), ρr(T
2S), ρr(ST

2S)

ω2m12 is real in this case, and the relation me = mµ follows immediately.

Therefore the symmetry breaking Gl
CP

∼= K4⋊H l
CP leads to partial degeneracy among the

charged lepton masses. Hence, it is not viable.

E Diagonalisation of a 2 × 2 symmetric complex matrix

If neutrinos are Majorana particles, their mass matrix is symmetric and generally complex.

In the following, we present the result for the diagonalisation of a general 2× 2 symmetric

complex matrix, which is of the form

M =

(

a11e
iφ11 a12e

iφ12

a12e
iφ12 a22e

iφ22

)

, (E.1)

where aij and φij (i, j =, 1, 2) are real. It can be diagonalised by a unitary matrix U via

UTMU = diag(λ1, λ2) , (E.2)
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where the unitary matrix U can be written as

U =

(

cos θei(φ+̺)/2 sin θei(φ+σ)/2

− sin θei(−φ+̺)/2 cos θei(−φ+σ)/2

)

, (E.3)

with the rotation angle θ satisfying

tan 2θ =
2a12

√

a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)

a222 − a211
. (E.4)

The eigenvalues λ1 and λ2 can always set to be positive with

λ2
1 =

1

2

{

a211+a222+2a212−S
√

(a222−a211)
2+4a212

[

a211+a222+2a11a22 cos(φ11+φ22−2φ12)
]

}

,

λ2
2 =

1

2

{

a211+a222+2a212+S
√

(a222−a211)
2+4a212

[

a211+a222+2a11a22 cos(φ11+φ22−2φ12)
]

}

,

where S = sign
( (

a222 − a211
)

cos 2θ
)

. Finally the phases φ, ̺ and σ are given by

sinφ =
−a11 sin(φ11 − φ12) + a22 sin(φ22 − φ12)

√

a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)
=

Im (M∗
11M12 +M22M∗

12)

|M∗
11M12 +M22M∗

12|
,

cosφ =
a11 cos(φ11 − φ12) + a22 cos(φ22 − φ12)

√

a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)
=

Re (M∗
11M12 +M22M∗

12)

|M∗
11M12 +M22M∗

12|
,

sin ̺ = −
(

λ2
1 − a212

)

sinφ12 + a11a22 sin(φ11 + φ22 − φ12)

λ1

√

a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)
,

cos ̺ =

(

λ2
1 − a212

)

cosφ12 + a11a22 cos(φ11 + φ22 − φ12)

λ1

√

a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)
,

sinσ = −
(

λ2
2 − a212

)

sinφ12 + a11a22 sin(φ11 + φ22 − φ12)

λ2

√

a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)
,

cosσ =

(

λ2
2 − a212

)

cosφ12 + a11a22 cos(φ11 + φ22 − φ12)

λ2

√

a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)
. (E.5)
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