
1 of 14 
 

 

Gradient Term Filtering for Stable Sound Propagation 

with Linearized Euler Equations 

Xin Zhang
1
, Xiaoxian Chen

2
 and James Gill

3
 

Faculty of Engineering and the Environment  

University of Southampton, Southampton, SO16 7QF, UK. 

Xun Huang
4
 

Department of Aeronautics and Astronautics 

Peking University, Peking 10087, China 

A new, stable gradient term filtering (GTF) method is applied to time-domain linearised 

Euler equations (LEE) to compute sound propagation problems.  The method employs a 

Laplace operator as a filter to obtain acoustic wave components. Through the filtering 

process, both the Kelvin-Helmholtz and the Rayleigh–Taylor instabilities can be removed 

from the solution process. Stability analysis confirms the stable behaviour of the solution in 

the presence of a sheared background mean flow, as against the conditional stability of LEE 

and gradient term suppression (GTS) methods. In accounting for vortical wave propagation, 

a curl operator can be conventionally utilised to obtain two-dimensional vortical wave 

components. Several benchmark test cases are studied to validate the proposed methods. 

Tests show that the proposed method can obtain stable solutions for acoustic wave 

propagation and is capable of modeling vortical interactions. 
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      = non-dimensional axial, normal and span-wise components in Cartesian coordinates 

      = non-dimensional axial, normal and azimuthal components in cylindrical polar coordinates 

 

Greek symbols 

ρ = density 

δ = divergence          

  = velocity potential 

  = vortical velocity potential 

   =   frequency (Hz) 

  = gradient operator 

   = Laplace operator 

      = divergence operator 

      = curl operator 

 

Superscripts and subscripts 

()0 = background flow value in duct 

()’ = perturbation value 

 

Abbreviations 

GTF = LEE employing gradient term filtering 

GTS = LEE employing gradient term suppression 

LDE-1 = first type of linearised divergence equation 

LEE = linearised Euler equations 

2.5D = two-and-half dimensional 

 

I. Introduction 

HE influence of noise on the environment and aircraft cabin attracts more and more attention when pushed by 

strict design requirements for future civil transport aircraft. There is an increasing demand to compute flow 

generated noise and sound propagation accurately, efficiently and robustly, for an aero-engine and for airframe noise 

applications specifically, and also for transport problems in general.  

To predict the far-field noise radiation, an efficient approach is to use a version of the linearised Euler equations 

(LEE) as the governing equations for near-field sound propagation,
1
 and then to use a direct integral solution of 

noise radiation equations, e.g. Ffowcs Williams – Hawkings equation (FW-H)
2 

for the prediction of far-field 

directivity. However, in the time-domain, a solution based on LEE can suffer from instabilities due to background 

mean flow velocity or density gradients. The background mean aerodynamic flow often contains regions of local 

sheared flow (for airframe and engine applications) and regions of high temperature gradients (for engine 

applications). Of the various equations either currently being used in, or being developed by, industry and academia, 

the widely used LEE represent a class of acoustic approximation equations for sound propagation.
3
 They have 

advantages over various convected wave equations, in terms of physics, and also in terms of scalability for three-

dimensional computations. Therefore, they have a place in engineering computations. 

T 
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These linearised sound propagation equations, when used in the time-domain, can suffer from stability issues if 

the mean shear flow contains non-zero velocity or density gradients.
4,5

 Several methods have been developed to 

suppress these instabilities. A simplified version of LEE,
4, 5

 using a gradient term suppression (GTS) method, was 

found to be able to suppress the Kelvin-Helmholtz instability by ignoring certain terms related to mean flow 

vorticity. However, such treatment may cause an imbalance in the energy transfer process and it also does not 

address the Rayleigh–Taylor instabilities that are likely to be present in background mean flows with density 

gradient. There is evidence that the gradient terms of the mean flow have a negligible effect on the sound pressure 

level (SPL) and the directivity pattern.
6,7

 Although GTS is often used in practice due to its simplicity and 

effectiveness
4,5,7

, it does suffer from a lack of physical justification. The GTS method also does not suppress 

Rayleigh–Taylor instability, since the pressure gradient term is not specifically treated.  

Acoustic perturbation equations (APE)
8 

are another class of sound propagation equations that are derived from 

the Navier-Stokes equations using acoustic velocity components in the convective terms, and by filtering source 

terms with a Laplace operator. The high computing cost incurred by solving a Poisson equation is still a practical 

issue for time-domain CAA methods. The practical version (variant 4) of APE is also constrained by restrictive 

physical assumptions that require excessive user intervention, and is therefore difficult to use. A first type of 

linearised divergence equation (LDE-1) model
9
 was developed for stable computations in situations with sheared 

background mean flows where time-domain LEE computations could be unstable. Furthermore, both the APE and 

the LDE-1 methods are only suitable for modelling the propagation of acoustic waves. They are unable to admit 

vortical disturbances, and therefore cannot be used in stochastic turbulence simulations, which are important for 

potential broadband noise studies. 

In this work a new gradient term filtering (GTF) model is proposed to allow stable acoustic propagation 

computations in the time-domain. It is based on a fundamental theorem of vector calculus
10

 which states that any 

sufficiently smooth, rapidly decaying vector field can be resolved into the sum of an irrotational (curl-free) vector 

field and a solenoidal (divergence-free) vector field. From a physical point of view it is easy to understand that the 

acoustic wave (irrotational) is directly generated by flow expansion and contraction. In terms of formulation, the 

three linearised momentum equations can be written equivalently as one divergence equation plus one vorticity 

equation for two-dimensional (2D) flow or three vorticity equations for three-dimensional (3D) flow. For problems 

of acoustic wave propagation, the divergence equation is sufficient for the prediction of acoustic wave propagation 

as indicated by previous works.
4,8,9

 However, its full implementation is difficult, especially for acoustic spinning 

mode (m>0) propagation in engine ducts, so that only a simplified model (LDE-1) is currently in use while a full 

version is being implemented and tested. The GTF method utilises an existing LEE solver, and solves a Poisson 

equation to obtain the acoustic velocity components to be used at the next time integration step. This process is 

reasonably straightforward to implement. Unlike the GTS and the LDE-1 methods, the solution obtained using the 

new GTF method is free from Rayleigh–Taylor instability. It can be applied to problems of acoustic propagation in 

engine exhaust flow and with jet – airframe interaction. For acoustic waves generated by vortical gust impingement 

on an airframe, a curl operator is used as a filter in order to obtain vortical velocity components of the particle 

velocity by solving the corresponding Poisson equations. Therefore, the GTF method has an advantage over the 

APE and the LDE-1 methods, because it is able to model the propagation of vortical disturbances.  

In order to solve broadband sound propagation problems efficiently and robustly, the GTF method has also been 

developed for broadband acoustic noise computations.
11

  The model keeps the advantage of 2D form while solving a 

3D problem by an assumption of a wave form in the azimuthal ( ) direction. This new formulation gives freedom in 

frequency by solving the acoustic variables such as acoustic pressure, velocity components in both real and 

imaginary spaces. All cut-on modes at different frequencies can be simulated in a single computation. Since modes 

between different frequencies are incoherent, the total computing cost for broadband noise is largely reduced. There 

is, however, a constraint on the new formulation, that if many individual frequencies are included in a single 

simulation. Estimation of SPL may require a long duration of computation to cover all periods of the acoustic 

modes. The same restriction also applies to the prediction of far-field radiation via an integral solution of FW-H 

equation.
 2
  

In this paper, the new GTF method is described in detail and tested together with the GTS and the LDE-1 

methods using a number of validation cases. These include benchmark test cases of sound propagation through a 2D 

turbulent flow,
5,12

 mode radiation from an unflanged engine duct featuring a jet with an infinitely thin shear layer 

(Munt’s case),
13,14

 and sound induced by vortical gust impinging on an airfoil.
21

 For the Munt’s case, the far-field 

directivity is computed through an integral solution of the FW-H equation, by reconstructing the 3D acoustic data on 

the entire integration surface from two-and-half dimensional (2.5D) computational results.  
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II. Formulation of the GTF method 

The GTF method utilises existing LEE while assuming that the momentum equation takes the form of 

divergence and vorticity equations implicitly. Using the vector form of the momentum equation, the LEE can be 

written below:  

    

  
                     

  
   

  
 
   

  
                                                                          

 
   

  
            

                                                                                        

       
   

  
            

                                                                                          

where    is the ratio of specific heats and source terms           indicate the source distribution. The velocity 

vector    has three components       in either a Cartesian         or a cylindrical polar         coordinate system. 

  an    represent pressure and density respectively. Divergence   and velocity potential   and their relations with 

the velocity vector    in a cylindrical polar coordinate system are 

             
   

  
 
   

  
 

   

   
 
  

 
                                                                        

where 

    
   

   
 
   

   
 

   

     
 

  

   
                                                                                

Before each time integration the acoustic velocity components are obtained from: 

   
  

  
    

  

  
    

  

   
                                                                          

Vortical velocity components are easy to obtain in 2D flow in       coordinates such that 

    
   

  
    

   

  
                                                                              

where the vortical velocity potential   is solved by another Laplace operator: 

     
    

   
 
    

   
 

   

  
 
   

  
                                                                           

Eq. (8) is part of a vector equation, given by applying a curl operator       to the momentum Eq. (1). 

       
   

   
 
   

  
 
  

 
      

   

  
 

   

   
      

   

  
 
   

  
                                                     

and we define 

                                                                                                      

In a 3D flow, vortical velocity components are obtained from: 

    
   

  
 
   

   
    

   

  
 
   

   
    

   

  
 
   

  
                                              

In a 3D flow, use of the curl operator involves solving three Laplace operators and is time-consuming. 

Therefore, for the benchmark test cases involved, only 2D vortical waves (m=0) are tested. The velocity potentials 

are solved using an iterative procedure with five iterations.
9
 

The idea behind the GTF method is that a simple and stable model might be available for pure acoustic wave 

simulation, provided the velocity vector is constructed solely by acoustic velocity components. Numerical truncation 

errors or disturbances other than the acoustic components, due to the mean flow gradient effects, are filtered through 

a Laplace operator (i.e. Eq. (4)). As a whole, the GTF method provides a better physical justification than the GTS 
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method. After each time integration step, the GTF method uses a divergence operator       to obtain acoustic 

velocity components. Then, the new acoustic velocity vector is used in LEE, implying that the term            tends 

towards     
    . A 4th-order Runge-Kutta (R-K) time integration scheme

9
 is used in this work so that the new 

acoustic velocity vector is applied at each R-K stage. For acoustic waves induced by a vortical wave impinging on 

the airframe, an additional instability issue arises due to sheared flow, because the vortical waves are deformed by 

the sheared flow. GTF is as accurate as LEE when modeling vortical wave propagation. 

For acoustic wave propagation alone, only the divergence equation is used, so that acoustic velocity components 

are used in Eqs. (1) to (3) and tests can be extended for acoustic spinning modes (m>0). Furthermore, to include 

multi-frequency sources in a single computation for an engine duct spinning mode problem,
11

 each of Eqs. (1) to (3) 

can be separated into two equations in real and imaginary spaces by using a harmonic form          of the solution 

in the azimuthal direction with an azimuthal wave number m in a cylindrical polar coordinate system.  

 

III. Validations 

The proposed GTF method is validated against various benchmark test cases. These include the propagation of 

sound in a 2D turbulent shear flow,
5,12,15

 acoustic mode radiation out of an unflanged duct with a jet,
13,14

 and the 

noise produced by the interaction of a vortical gust with an airfoil leading edge.
21

 Three methods (GTS, GTF and 

LDE-1) will be tested and they have the potential to model the propagation of sound in sheared flow. Table 1 lists 

their features. 

Table 1. Features of GTS, GTF and LDE-1 Methods. 

GTS 

LEE employing gradient term suppression (omitting terms associated 

with                  ) 

GTF LEE employing gradient term filtering (using divergence and curl operators) 

LDE-1 Simplified divergence equation assuming uniform mean density flow 

 

In the computations, a 4
th

-order optimized spatial scheme was used for spatial derivatives and a low-dissipation, 

low-dispersion 4
th

-order Runge-Kutta scheme was used for time integration. A 10
th

-order explicit filter was applied 

to suppress any spurious waves developing in the calculations. Buffer-zones
16

 surrounding the computational 

domain maintained a reflectionless acoustic field. The simulations were performed on structured grids and the 

computational meshes used spatial resolutions of at least eight points-per-wavelength (PPW) in all directions. All 

variables are non-dimensionalised, unless otherwise mentioned, by the reference length of      1 metre, the 

reference flow density     , and the reference flow sound speed     . 

A. Sound propagation through a 2D turbulent shear flow 

The first benchmark test case is the propagation of sound in a 2D turbulent shear flow. This is a challenging 

benchmark test since the mean turbulent shear layer features both velocity and density gradients containing both the 

Kelvin-Helmholtz and the Rayleigh–Taylor instabilities. To the authors’ knowle ge there are no time-domain LEE 

based methods that are able to successfully suppress the instability for this case unless special treatments
5,15

 are 

adopted to remove the instability. In this study, a 2D computational domain was constructed within the range of 

                       in non-dimensionalised Cartesian coordinates, and cells were stretched near the 

shear layer (     ) along the y direction, providing sufficient resolution for the mean flow profile. Apart from 

the lower boundary (y=0), the entire computational domain was surrounded by outflow buffer zones to minimize 

spurious wave reflection into the computational domain. The total cell number was 147200.  With the reference 

values of                                 the mean non-dimensional velocity and density profile are shown in 

Error! Reference source not found. and they are: 
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where flow parameters              are non-dimensional. 

 

Figure 1. Mean u velocity and density profiles. 

 

Some flow parameters are listed in Table 2. The case features a high temperature            and high Mach 

number at the source.  

 

Table 2: Mean Flow Parameters for Test Case A. 

          

   

(K) 

   

(K) 

  

(  ) 

            
  

            

R 

            
  

0.756 600 300 477.52 103330 287.0 1.4 

 

A source term                         
                 is used on the right-hand side of Eq. (3) at the 

source location         . Figure 2 shows the non-dimensional acoustic pressures at the 60
th

 period. The 

computations based on the GTS and the GTF methods are stable, but the prediction of the LDE-1 method shows 

contaminated results within ten periods (see Fig. 2(c)). The two pressure fields predicted by GTS and GTF methods, 

shown in Figs. 2(a) and 2(b), are largely the same, featuring an upstream directed acoustic wave, and showing that 

the downstream unstable acoustic wave is removed. The removal of radial velocity gradients in GTS improves 

numerical stability while maintaining the accuracy of the final acoustic results.  

It is noticed that the GTS and the LDE-1 methods are not developed to treat the appearance of the Rayleigh–

Taylor instability (i.e. not for sheared flow with density gradient) but GTS was stable within 60 periods of 

computation. At least it indicates that relative importance of two types of instabilities for practical computations. 

The Rayleigh–Taylor instability is less important than the Kelvin-Helmholtz instability. It also indicates that the 

LDE-1 method is sensitive to the Rayleigh–Taylor instability. 
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a) GTS. b) GTF. 

 

c) LDE-1 prediction at the 10
th

 period. 

Figure 2. Acoustic pressure contours at the 60
th

 period. 

B. Sound radiation from an unflanged duct 

The second test case describes the mode radiation of an unflanged duct with a jet.
13,14

 Since an analytical far-

field solution exists this test case is intended for developing a reliable far-field prediction with multi-frequency 

contents and used for comparison of the GTF method as well. In this case, the thickness of the shear layer is omitted. 

A detailed description of the computational setup can be found in Zhang and Chen.
9
 The computational domain 

contains a total of 32472 cells and the structure of the computational domain is shown in Figure 3. The problem is 

solved in cylindrical polar coordinates, where       coordinates are shown in Figure 3, for an axi-symmetric mean 

flow. 

The duct mean flow has a Mach number of 0.5 and there is no ambient mean flow over radius r >1. Since the 

main interest is of broadband predictions, the incident waves are constructed in the inflow buffer zone using a mode 

of (m=6, n=1) at four individual frequencies (500, 1000, 1500 and 2000 Hz).  m and n are azimuthal and radial 

mode number. Results are sampled from the 50
th

 period onwards, and run for 250 periods of the highest modal 

frequency. Again, the three different methods are all numerically stable, yielding largely the same results. 
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Figure 3. Computational domain and schematic of problem setup for unflanged duct case. 

Figure 4 shows near-field SPL distributions obtained using the three methods (GTS, GTF and LDE-1). It can be 

seen that the overall sound pressure patterns are similar. In order to have a quantitative comparison, SPL 

distributions at y=1.5 are shown in Figure 4d. the GTF method gives the highest peak value, which is 1.9 dB and 2.9 

dB higher than the peak values of the GTS and the LDE-1 predictions respectively. Several factors may contribute 

to the discrepancies between the three methods, such as the amount of filtering, the type of governing equations and 

the iterative procedure. Additionally, the grid resolution around the duct opening will be verified in further study, in 

order to check that the discrepancies in near-field predictions are independent of the computational grid being used. 

 

  

a) GTS. b) GTF. 

  

c) LDE-1. d) SPL comparison at a line of y=1.5. 

Figure 4. Near-field sound radiation of an unflanged duct case. 

 

The far-field directivity, containing multi-frequency content, is predicted through an integral solution of the FW-

H equation.
2,17

 Solution of the FW-H equation requires acoustic perturbation data on a 3D integration surface in the 
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near-field. These data are presented in real values and can be reconstructed along the azimuthal ( ) direction from 

the 2.5D numerical solutions for an arbitrary variable       , 
 

                                                                                                      

 

where                     are the real and imaginary parts of variable f at an angle     respectively, and they are 

obtained from near-field predictions. The above formulation is different from the one previously used by Zhang et 

al.
4
 It is suitable for multi-frequencies while the earlier version is applied to a single frequency case using a time and 

azimuthal phase relation. To collect data for the integral solution, a grid resolution of 10 PPW in the azimuthal 

direction and a resolution of 10 data samples per wave period for the highest modal frequency were found to be 

sufficient. With such a setup the FW-H solutions can be rapidly obtained within minutes on a personal computer 

(Intel processor, 2.2GHz and 2GB memory) even for multi-frequency input. 

Far-field directivity comparisons are plotted in Figure 5. For the GTF method, two peak radiation angles are 

observed at 50 and 56 degrees which are consistent with predictions using the other two methods and the analytical 

solution. The GTS method has a similar directivity pattern and SPL level as the GTF and the LDE-1 methods, which 

shows its effectiveness in this case. The peak observation (elevation) angle is determined by a cut-on ratio  :  

 

     
 

       
                                                                                         

where     is radial wave number. For a fixed azimuthal number the cut-on ratio reduces with increase of frequency. 

Therefore the main contribution from lowest frequency (500 Hz) will be at the higher observation angle (56 degrees) 

as the cut-on ratio is close to unity. The contribution from the highest frequency (2000 Hz) will be mainly at the 

lower observation angle (50 degrees). At the lower peak angle, the differences in SPL between the CAA predictions 

(GTF, GTS and LDE-1 methods) and the analytical solution are +0.3, -0.3 and -0.6 dB respectively. At the higher 

peak angle (56 degrees), the differences in SPL between the CAA predictions and the analytical solution are +1.7, 

+0.1 and -0.3dB for the GTF, GTS and LDE-1 methods respectively. In terms of accuracy, the three methods 

generally have similar performance. It is observed that the computation using the GTF method produces a non-

smooth directivity prediction, especially at lower angles (< 45 degrees). This test case will be further studied to 

confirm this result. Apart from the removal of the Rayleigh–Taylor instability, the GTF method is the same as the 

LDE-1 method in principle. There may be other factors affecting the outcome of a GTF computation, such as the use 

of less filtering to save computing time, and the grid resolution around duct opening.  

 

Figure 5. Comparison of far-field directivities. 

Computing cost can be estimated for three methods. On a personal computer with an E4500 Intel processor (2.2 

GHz clock speed) and 2.0 Gigabytes memory running on a 32-bit operating system, Table 3 summarises the 

computing time of three methods for an engine bypass duct case. The GTF method uses 23% more computing time 

than the GTS method, and is therefore the most expensive computing tool used in this test. The LDE-1 method uses 
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less computing time since the Laplace operator is only applied at each time step rather than at each stage of the 

Runge-Kutta time marching scheme thus less iteration used in each time step. 

Table 3: Comparison of Computing Costs 

Model 

Computing time 

(seconds per grid  

per time step) 

Total computing time 

for 150 wave periods 

(minutes) 

Ratio  

(based on GTS) 

GTS 1.01×10-5 230.1 1.00 

GTF 1.23×10-5 281.9 1.23 

LDE-1 1.11×10-5 253.8 1.10 

 

C. Sound induced by vortical gust impinging on an airfoil 

The case of a harmonic vortical wave interacting with the leading edge of an airfoil was also considered. This 

case is included to demonstrate that the GTF method is capable of propagating vortical disturbances in addition to 

acoustic disturbances. This represents an advantage over methods such as LDE-1. A single frequency sinusoidal 

wave was forced at the domain inflow buffer zone to have non-dimensional amplitude and wavelength of 0.01  and 

0.125 chord lengths respectively. The wave was interacted with a NACA0002 airfoil in  =0.3 flow, where the non-

uniform meanflow had been previously solved using an inviscid CFD computation. The domain used non-reflective 

boundary conditions on all faces to prevent spurious reflections interfering with the simulation. The noise was 

predicted for observers at a distance of 100 chord lengths from the airfoil using the FW-H prediction method 

previously discussed. This computational setup has been previously used in Gill
 
et al.

21
 

Figure 6 shows comparisons of the near-field acoustic pressure response between the LEE method and the 

proposed GTF method. The case could not be computed with the LDE-1 method, because it cannot propagate 

vortical disturbances. Figure 7 shows the directivity predictions made by the LEE and the GTF methods. The results 

in Figure 7 are also compared with an analytical flat plate solution, that was ma e using Amiet’s theory, modified 

for 2D airfoils.
22

  

A very similar directivity pattern is predicted by both methods. The positions of the directivity lobes, which are 

caused by interactions between the leading and trailing edge, are well predicted. Both CAA predictions show an 

over-prediction of the noise in comparison to the flat plate solution at upstream observer angles. This may be caused 

by the use of a NACA0002 airfoil as opposed to genuinely flat plate geometry. The GTF predictions differ from the 

LEE predictions at acute upstream angles, such that GTF predictions are approximately 2.5 dB louder than the LEE 

predictions. The reason for this is not clear, but may be associated with the velocity gradients in the leading edge 

stagnation region. Further testing would be required to ascertain whether the GTF or LEE methods provide a more 

accurate solution in this case. However, the agreement shown in Figure 7 is considered sufficient to demonstrate the 

ability of the GTF method to propagate vortical waves. 

 

  
a) LEE. b) GTF. 

Figure 6.  Near-field acoustic pressure contours. 
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 Figure 7. Far-field directivity. 

IV. Stability Analysis 

The validations performed in the previous section have shown that the proposed GTF method produces stable 

solutions. The first validation case is a well-known unstable case for LEE due to the background mean sheared flow, 

and therefore a spatially unstable solution is developed along the axial (x) direction. Stability analysis works exist 

for the LEE method in Cartesian coordinates
5,18

 based on the mean flow data. In this section, a stability analysis is 

performed in cylindrical polar coordinates for the LEE and the GTF methods. For comparison purposes, the stability 

analysis is performed for both the LEE and the GTF methods using a harmonic form of analysis.  

To reduce the complexity of the system without losing generality, the following assumptions are made:    
                                               With emphasis on the mean shear flow, in this 

analysis the mean flow divergence influence on the model instability is omitted by setting      . With these 

assumptions the LEE can be derived in Eq. (14).  

 
 
 
 
 

 
 
 
 
   

  
   

   

  
     

                                                          

   

  
   

   

  
 
   

  
   

 

  

   

  
                                        

   

  
   

   

  
 

 

  

   

  
                                                         

   

  
   

   

  
 

 

  

   

   
                                                      

                                          

 

Substituting the harmonic form of the solutions,  

                                        
 
              

into Eq. (14), a single equation for unknown spatial wave number    can be derived in terms of pressure amplitude 
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where the parameter         . Eq. (15) is the same form as listed in references.
19,20

 It indicates that the 

instability comes from two sources, the velocity gradient term        and the density gradient term         

representing two instabilities: the Kelvin-Helmholtz instability and the Rayleigh–Taylor instability. As a special 

example for Cartesian coordinates       and 2D flow      , the above equation has a simple form.  

 
  

   
  

   
 

   

  
   

 

  
 
 

  
  

 

  
 
   

 

   
   

                                                     

Eq. (16) is identical to the equations described in References
5,18

 where the harmonic form of the solutions takes a 

form of           . For a given frequency   a corresponding wave number    can be obtained numerically by 

solving Eq. (16) using a shooting method with a classic Runge-Kutta fourth-order scheme. A numerical procedure is 
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implemented to find the solution of   . If the wavenumber    is a complex number (                 ) the 

LEE is spatially unstable. In this study, the negative sign of the     (spatial growing rate) shows the spatial 

instability.  

In the benchmark case
5,12,18

, a periodic acoustic source is placed inside a flow shear layer. It is noted that the 

denominator   in Eq. (16) has a non-zero complex value if the flow is unstable. Similar to Zheng et al,
18

 the 

acoustic wave is defined as an outgoing and decaying wave. In solving Eq. (16), the upper limit is set at   
   which is sufficiently far away from     where mean flow become uniform  Similar results are found within a 

frequency range from 0 to 565 Hz and for the excitation frequency of 477.52 Hz,                         
It is also interesting to check if this instability could happen in cylindrical polar coordinates. Since additional 

terms appear in Eq. (15), which are proportional to the inverse of the radius to ensure similar wave behaviour at far 

field, the upper limit is extended to r=60. The maximum spatial growing rate is found at mode of m=1 and it is weak 

at other modes. Figure 8 shows the spatial growing rate and the real wave number. The value of the real wave 

number increases gradually with the frequency and there is a minimum value of the spatial growing rate around the 

frequency of 282.7 Hz showing the most unstable state. In other m modes, no curve of the spatial rate can be found 

showing a stable state. Since the maximum spatial growing rate is found at mode m=1 it can be deduced that the 

instability most likely happens in lower m modes. 

 

 

Figure 8. The characteristic wavenumber    for a given excitation frequency   at the mode of m=1 (LEE). 

From the discussed assumptions, LEE contains only acoustic and vortical waves and it is proved that LEE is 

conditionally unstable. 

The same stability analysis can be applied to the GTF method directly. Since only acoustic velocity components 

are used in the GTF method including the tendency term, the simplified GTF method can be written as follows using 

the divergence equation and the same assumptions: 

 
 
 
 
 
 

 
 
 
 
 
   

  
   

   

  
     

                                                                        

   

  
   

   

  
  

   

  

   

  
                                                                      

 
 

  
 
    

   
 
    

   
 

    

     
 
 

 

   

  
  

 

  
 

   
  

   

  
   

   
   

   
 
   

   
 
 

 

  

  
 

   

     
                                                      

   
  

  
    

  

  
    

  

   
                                               

                                   

Using harmonic wave assumption, Eq. (17) leads to two equations for the acoustic pressure amplitude    and 

amplitude of the velocity potential   : 
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The second-order ordinary differential equations can be cast into first-order equations. With predefined 

frequency   and the wave number m, the solution of unknown    can be solved numerically through Eq. (19) for 

2D flow (m=0) in Cartesian coordinates. 

 

 
 
 
 
 

 
 
 
 
   

  
                                                                                           

   

  
   

                                                                        

   

  
                                                                                             

   

  
 

 

  

   
  

       
        

         
   

  
     

                                                  

At lower boundary     : 
 

             

At upper boundary: 
   

  
       

   

  
        

 

 
 
 

 
  

   

   
   

                       

    

   
    

  
  
   

         

  

It can be established for the upper boundary assuming        to ensure wave decaying in y direction): 

        
  

  
   

             
   

       
  

  
   

      

         

In solving Eq. (19) no solution of spatial growing rate can be found indicating that the proposed GTF method is 

unconditionally stable.  

In conclusion of the analysis, it is noted that both the vortical and the acoustic waves are contained in the LEE 

while only the acoustic wave is contained in GTF. It is also noted that in LEE the same equation (Eq. (14)) can be 

derived without the vortical wave components. From results of GTF it is known that instability exists for the 

acoustic wave but it cannot be excited by itself. Its excitation is from other disturbances such as the vortical wave as 

demonstrated in LEE.  Extension of the stability analysis to the cylindrical polar coordinates gives the same 

conclusion.  

V. Conclusion 

A new and stable GTF method is proposed for acoustic propagation computations. Based on a fundamental 

theorem of vector calculus, the new model uses a divergence operator and a curl operator as filters to maintain 

acoustic and vortical components of the particle velocity by solving corresponding Poisson equations. The method is 

developed to overcome solution stability problems in solving some of the existing governing equations for acoustic 

propagation in time-domain. Stability analyses are performed in cylindrical polar coordinates for both the LEE and 

the GTF formulations using a benchmark case. Analyses show that the new GTF method is unconditionally stable 

while the original LEE method is conditionally unstable. 
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Taking advantage of the stable characteristics of the new formulation, less filtering is needed, thus allowing 

savings in computation cost. The computational efficiency of the method is still comparable to that of the original 

LEE method in time-domain. In terms of computing cost, the GTF method is the most expensive one which uses 

23% more time than the GTS method. However, in comparison to the LDE-1 method the GTF method is easier to 

implement.   

Validation exercises are conducted against a number of benchmark cases which include the presence of 

background mean flow shear layers, and are known to generate unstable solutions using the LEE formulations. The 

results of the benchmark cases validate the efficiency, robustness, and accuracy of the new method. Results of the 

GTF method have also been compared with the GTS and the LDE-1 methods. This has confirmed the capability of 

the GTF method to compute sound propagation with background mean flows which contain velocity and density 

gradients. It also gives evidence that the GTS method has a rather small effect on the prediction of sound 

propagation in the near-field and noise radiation to the far-field. For challenging cases, with a background flow of 

velocity and density gradients, the GTF method can be used to obtain predictions of sound propagation. 
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