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Exciton-exciton recombination in isolated semiconducting single-walled carbon nanotubes was studied

using femtosecond transient absorption. Under sufficient excitation to saturate the optical absorption, we

observed an abrupt transition between reaction- and diffusion-limited kinetics, arising from reactions

between incoherent localized excitons with a finite probability of �0:2 per encounter. This represents the

first experimental observation of a crossover between classical and critical kinetics in a 1D coalescing

random walk, which is a paradigm for the study of nonequilibrium systems.
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Many natural processes can be described in terms of
diffusive transport of particles which react in proximity, for
example, chemical and biological reactions, crystalliza-
tion, epidemics and population growth [1–3]. Diffusion-
limited coalescence Aþ A ! A is a paradigmatic class of
reactions, widely studied since Smoluchowski’s early work
[4]. Despite its apparent simplicity, it exhibits rich kinetic
behavior governed by competition between reactive order-
ing, where coalescing pairs create local fluctuations in
density, and diffusive mixing which homogenizes the spa-
tial distribution. In spatial dimensions (d) greater than 2,
diffusion is efficient and the reaction rate follows classical
laws of mass action with mean density n decaying as t�1 at
long times. However, diffusion is inefficient for d < 2: the
diffusive random walk explores space ‘‘compactly’’ [5],
revisiting the same location many times. This leads to

anomalously slow decay n / t�1=2 [6] and to a self-ordered

spatial distribution [7] with characteristic scale
ffiffiffiffiffiffi
Dt

p
where

D is the diffusion coefficient. The diverging scale at long
times is reminiscent of equilibrium critical phenomena,
and such reactions are a prototype for the emergence of
self-organization and critical behavior in nonequilibrium
stochastic systems.

Unusually for nonequilibrium processes, diffusion-
limited coalescence is an exactly solvable problem in one
spatial dimension (1D) by a variety of theoretical methods
[8–11], and is accessible to experimental investigation
through exciton-exciton recombination reactions in semi-
conductors. In exciton-exciton recombination, a pair of
singlet excitons (X) exchange energy: one is eliminated
while the other is excited to a high energy state (X�) before
it loses energy to the lattice and returns to the original state:
X þ X ! X� ! X þ heat ! X. If the exciton cooling and
heat dissipation are sufficiently rapid, the kinetics of the
recombination process can be approximated by diffusion-
limited coalescence. In pioneering work in the late 1980s,

Kopelman and co-workers studied the recombination of
laser-induced excitons in organic semiconductors where
the effective dimensionality was varied in disordered
samples [12] and ultrathin wires [13]. Highly anisotropic
molecular crystals [14] and more recently semiconducting
carbon nanotubes [15] were subsequently investigated.
These experiments showed asymptotic diffusion-limited

behavior n / t�1=2 in agreement with theoretical predic-
tions, and represent some of the principal experimental
evidence for nonclassical fluctuation-dominated kinetics.
In exact theoretical methods the reaction rate is assumed

to be infinite; i.e., the reaction probability p per encounter
is unity. However, in real experimental systems, the pres-
ence of energy barriers, exclusion mechanisms, or orienta-
tion dependence acts to reduce the reaction probability.
In 1985, Kang and Redner [16] used scaling arguments to
show that a finite reaction rate gives rise to a regime of
reaction-limited behavior at early times and high excitation
densities, with a crossover to diffusion-limited kinetics at
later times. This was supported by approximate theoretical
models [17–19] and Monte Carlo simulations [16,20]. A
rigorous justification is found in field theoretic approaches,
where the crossover corresponds to a trajectory between
different fixed points of the renormalization group scaling
transformation [21]. In experiments, a slow crossover
might prevent the asymptotic regime from being reached
in systems of finite size. In spite of this theoretical interest
and experimental relevance, there has been no report (as far
as we are aware) of a reaction-diffusion crossover in any
experimental realization of a 1D coalescing random walk.
Here, we demonstrate for the first time an unambiguous

crossover between reaction- and diffusion- limited scaling
regimes, obtained by careful selection of experimental
conditions and by the use of carbon nanotubes exhibiting
strictly 1D diffusive transport. We illuminate the sample
at sufficiently high intensity to saturate fully the optical
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absorption, avoiding the influence of spatially nonuniform
excitation on the initial decay and allowing a study of the
intrinsic kinetics at early times. We also show how the
saturation condition allows determination of diffusion and
reaction parameters without knowledge of the absolute
exciton density, which is subject to uncertainty in the
absorption cross section and concentration of the probed
species. Semiconducting single walled nanotubes are ideal
candidates for the study of 1D exciton recombination
[15,22,23]. Nanotube diameters of�1 nm lead to quantum
confinement of the transverse motion and transport of
excitons is highly one-dimensional [24]. The preparation
of isolated nanotubes [25] has allowed extensive studies of
exciton photophysics [26] which show that photoexcited
excitons are compact, stable against dissociation at room
temperature [27] and under high excitation [28], but diffuse
with a high mobility [29]. They have sufficiently long
radiative lifetimes [30] so that bimolecular interactions
can be studied in the absence of single particle processes
by using femtosecond pump-probe methods.

We produced an ensemble of isolated HiPco nanotubes
[31] wrapped in single-strand DNA and dispersed in water;
details of our sample preparation and characteristics are
reported in Ref. [32]. The optical absorption spectrum
shows features characteristic of isolated nanotubes and an
excitation wavelength of 1133 nm was selected corre-
sponding to nanotube species with diameters 0.8–0.9 nm
[24]. An average length L ¼ 184� 5 nmwas measured by
atomic force microscopy. A transient population of exci-
tons was generated by illumination with a short light pulse
from an amplified Ti:sapphire laser with 250 kHz repeti-
tion rate, and the decay was studied by standard degenerate
pump-probe techniques. The diameters of focused pump
and probe beams were 130 and 95 �m, respectively, and
the sample was contained in a cuvette with 1 mm path
length. The energy of the pump pulse was varied between
0.2 and 104 nJ, with the maximum energy corresponding to
a fluence of approximately 0:8 mJ cm�2. The mean and
standard error of multiple scans were determined; weak
interference fringes between copolarized pump and probe
beams gave rise to a peak in the standard error [inset of
Fig. 1(a)], used to identify temporal overlap of the pump
and probe beam to within �10 fs. The pulse width of
105 fs is a convolution of 60 fs pump and probe pulses
with factors associated with the noncolinear geometry.

Figure 1(a) shows the evolution of the differential trans-
mission �T=T0, which for a given excitation condition is
proportional to the total exciton population. The signal
amplitudes have been normalized at times> 10 ps, show-
ing at long times a decay whose form is independent of
excitation density, while at shorter times a rapidly decaying
component emerges with increasing excitation. The correct
identification of these two regimes is the main purpose of
this Letter. Figure 1(b) shows the data on a log-log plot
where straight lines correspond to power-law decays. At

long times (t > 10 ps), �T=T0 appears to decay with a

diffusion-limited t�1=2 dependence, but the amplitude
varies with excitation in contrast to the expectation for an
asymptotic algebraic decay. We attribute this to an increase
in the photoexcited volume, illustrating the experimental
difficulty in relating n to �T=T0 when the absorption is
both nonlinear and nonuniform. The signal amplitude satu-
rates with excitation strength at both long and short times
[inset of Fig. 1(b)], as also observed in the early dynamics
(t < 0:1 ps), where at low excitation the population builds
continuously during illumination while at high excitation it

FIG. 1 (color online). (a) Decay of transmission �T=T0, nor-
malized at times >10 ps, at pulse energies (bottom to top) of
0.19, 0.48, 1.1, 4.0, 12, 40, 60, 80, and 104 nJ. The inset shows
the standard error from multiple scans (symbols), and the line is
a Gaussian fit of width 105 fs. (b) The same data (not normal-
ized) on a log-log plot. The dashed line shows the asymptotic
t�1=2 decay. The inset shows the differential transmission at
delays of 0.1 ps (squares) and 100 ps (triangles) as a function
of pulse energy.
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saturates at earlier times. The saturation of the optical
absorption has been attributed to phase-space filling due
to Pauli exclusion of excitons [33].

To quantify the algebraic decay n / t�, the exponent is
determined from � ¼ ðt=nÞdn=dt and shown in Fig. 2(a).
For t > 10 ps, a value of�0:5 is obtained for all excitation
densities, with an average of � ¼ �0:51� 0:01 between
20 and 100 ps, indicating diffusion-limited behavior. For
increasing excitation, the magnitude of � at short times
increased but did not reach the reaction-limited value of
�1; this is a consequence of the constant of integration
associated with the initial density n0 at t ¼ 0. We show that
the early dynamics at high excitation are indeed reaction
limited by examining the underlying rate equation. In
Fig. 2(b) we plot dn=dt divided by n2 (the factor relating
n to �T=T0 is unimportant here). For the highest excita-
tions (where the absorption is fully saturated), this takes a
constant value for times 0:4< t < 1:2 ps, confirming the
existence of a reaction-limited region governed by classi-
cal kinetics. Figure 2 demonstrates the coexistence of
reaction- and diffusion- limited behavior occurring at
different exciton densities within the same sample.
Figure 2(b) also confirms that the reaction is bimolecular,
and therefore that the region with � ¼ �0:5 arises from
1D diffusion-limited bimolecular kinetics and not from
classical kinetics of a free carrier (3-body) Auger process
which would have the same kinetic signature.

For further analysis of the data, we employ a simple
model based on effective rate equations. In the reaction-
limited regime, the classical rate equation dn=dt ¼ �krn

2

gives a density n� t�1 at times t � t1 where t1 ¼
ðkrn0Þ�1 is the time scale for the onset of reactions, kr is
the rate coefficient, and n0 is the initial population. In the
diffusion-limited regime, the controlling factor is the time
�x2=4D taken for a pair of particles of separation x to
meet. Exact solution gives an effective rate equation
dn=dt ¼ �kdn

3 valid at times t � t0 where t0 ¼
ð2kdn20Þ�1 and kd ¼ �D, and a density n that decays

anomalously slowly as t�1=2 [2]. The crossover between
these regimes can be approximated by considering each
coalescence event as a sequential diffusion and reaction; a
similar separation was discussed for diffusion-limited
chemical reactions [34]. The time for a pair of particles
to coalesce �nðdt=dnÞ is given by the sum of the time to
first encounter ðkdn2Þ�1 and the additional time to make
multiple attempts at reaction ðkrnÞ�1. Integration gives the
time t to evolve to density n from the initial density n0

tðnÞ ¼ 1

2kd

�
1

n2
� 1

n20

�
þ 1

kr

�
1

n
� 1

n0

�
: (1)

The decay is algebraic once the population has decayed
to a value n � n0 and there are regimes of reaction- and
diffusion-limited behavior at high and low density, respec-
tively. Equation (1) can be inverted to give an expression
for nðtÞ equivalent to that obtained from scaling [18] and
‘‘empty-intervals’’ [19] calculations, which have been
shown to agree well with phenomenological models [17]
and Monte Carlo simulations [16,20].
Since we do not know the absolute exciton density, we

write (1) in terms of a relative density

ts ¼ tþ t0 þ t1 ¼ t0ðn0=nÞ2 þ t1ðn0=nÞ: (2)

The constants of integration t0 and t1 have been ab-
sorbed into a time shift, yielding a ‘‘scaling time’’ ts whose
relation to n is independent of the initial condition and is
purely algebraic in the high and low density limits.
Crossover occurs at n2 ¼ ðt0=t1Þn0 and t2 ¼ t21=t0.
Figure 3(a) shows a plot of n=n0 against ts under the
highest excitation, where we believe the absorption to be
fully saturated giving an initial density ~n0. In the experi-
ment the delay time is measured from the peak of the
excitation pulse, whereas the decay process starts (roughly
speaking) from when the excitation is turned off; an offset
of 0:143� 0:005 ps was required to reproduce the
reaction-limited region as observed in Fig. 2(b). Distinct

regions of t�1 and t�1=2 decay are seen in Fig. 3(a). The
characteristic time scales at initial density ~n0 are ~t0 ¼
23:9� 0:5 fs and ~t1 ¼ 303� 3 fs, and crossover occurs
at t2 ¼ 3:8� 0:2 ps. The corresponding decay exponent
�0 ¼ ðts=nÞdn=dts is shown in Fig. 3(b). Between
0:5 ps � t � 100 ps it exhibits intrinsic behavior with a
crossover from �0 ¼ �1 to �0 ¼ �0:5. This is compared
in Fig. 3(b) to the calculated exponent from (2)

FIG. 2 (color online). (a) The decay exponent � at identical
pulse energies as Fig. 1 (top to bottom). � ¼ �0:5 indicates the
diffusion-limited regime (DLR). (b) The reaction rate divided by
n2 (in arbitrary units, 104 nJ pump pulses) showing a constant
value for 0:4< t < 1:2 ps, indicating a reaction-limited regime
(RLR).
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�0 ¼ � 1þ 2ts=t2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ts=t2

p
1þ 4ts=t2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ts=t2

p : (3)

The experimental crossover function is significantly
more abrupt than that indicated by (3).

Mesoscopic parameters describing diffusion and reac-
tion can be obtained from ~t0 and ~t1 by exploiting the
saturation condition, in a simple interaction model com-
prising random walks of particles on a lattice with hopping
frequency t�1

hop, single occupancy on a lattice site, and

nearest-neighbor interactions. The lattice spacing repre-
sents both exclusion and interaction lengths, and the maxi-
mum particle density is therefore the inverse of the lattice
spacing (~n0 ¼ 1=lex where lex is the axial length of the
exciton). The hopping time is thop ¼ l2ex=2D ¼ �t0ðn0lexÞ2
which at saturation is thop ¼ �~t0 ¼ 79� 2 fs. For finite

reaction probability p, the number of additional attempts

at reaction following the first encounter is (1=p� 1)
and the macroscopic reaction coefficient is kr¼
ðlex=thopÞp=ð1�pÞ. The reaction probability is given by

p=ð1�pÞ¼ ð�t0=t1Þðn0lexÞ and at saturation p¼ð�~t0=~t1Þ=
ð1þ�~t0=~t1Þ¼0:19�0:01. On average, a pair of excitons
interact�5 times before recombination occurs. To confirm
the validity of these parameters we determine the
exciton dephasing rate associated with thermally-activated
hopping t�1

hop ¼ 13 ps�1 and the maximum exciton-exciton

dephasing rate ð2=pÞ=ð~t0 þ ~t1Þ ¼ 31 ps�1. These are
consistent with four-wave mixing experiments on nanotubes
of similar dimensions where the rates were � 15 ps�1 and
� 35 ps�1, respectively, [35].
Observation of crossover requires that the crossover

density lies within limits imposed by particle exclusion
and finite sample size l�1

ex � n2 � L�1, restricting the
reaction probability to 1 � p=ð1� pÞ � lex=L. The
quantity p=ð1� pÞ describes the ratio of exciton depopu-
lation to dephasing (i.e., inelastic to elastic scattering). For
p ! 0, dephasing dominates as for Wannier excitons in
inorganic semiconductors, whereas for p ! 1 depopula-
tion dominates as for Frenkel excitons in molecular organic
materials. This quantifies the observation that the excitonic
properties of carbon nanotubes are intermediate [36],
leading to dephasing and depopulation rates of similar
magnitude [37].
Determination of the macroscopic coefficients kr and D

requires a reliable relation between �T=T0 and n. In its
absence, upper bounds can be obtained by estimating the

maximum exciton density. The t�1=2 decay associated with
exciton-exciton recombination persists for times up to at
least 100 ps, so that there remain at least 2 excitons per
nanotube. The ratio of�T=T0 at 100 ps and 0.1 ps yields an
initial population Nmax 	 120, and hence the exciton
length is lex ¼ L=Nmax � 1:5 nm, similar to theoretical
values [27]. The diffusion coefficient is D ¼ l2ex=2thop �
0:15 cm2 s�1, indicating a diffusive environment compa-
rable to earlier reports [29,33]; i.e., exciton transport
within the present samples is not exceptional. However,
our reaction coefficient kr ¼ lex=t1 � 5:0 nmps�1 is
smaller than an earlier estimate by a factor >60 [22].
In earlier studies of exciton-exciton recombination on

nanotube samples similar to those reported here, an initial
t�1 decay under high excitation was reported. This was
followed by a slower decay which was attributed to expo-
nential single exciton decay processes [22,23] rather than
to diffusion-limited exciton-exciton recombination, lead-
ing to an assumption of low exciton densities. In order to
explain the fast initial decay, Wang et al. proposed a giant
enhancement of the exciton-exciton Coulomb interaction
by 1D confinement [22]. Here we reach the opposite con-
clusion: it is a reduction in reaction probability (p < 1)
that leads to reaction-limited classical kinetics. Ma et al.
attributed the t�1 decay to coherent interactions between
extensively delocalized excitons [23]. However, we have

FIG. 3 (color online). (a) Normalized exciton density (sym-
bols) for 104 nJ pump pulses, plotted against the scaling time ts.
The error bars represent the standard error. The dotted curve
shows the pump pulse [the Gaussian fit from Fig. 1(a) with
arbitrary amplitude]. The dashed lines indicate t�1 and t�1=2

decay, and the arrows indicate the characteristic times ~t0, ~t1, and
t2. (b) Decay exponent for the data in Fig. 3(a). The heavy line
shows the experimentally determined reaction-diffusion cross-
over function, and the dashed line is the prediction of (3).

PRL 111, 197401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 NOVEMBER 2013

197401-4



determined the exciton length (<1:5 nm) and exciton co-
herence time (<80 fs) to be short, justifying the use of a
classical stochastic description of these quantum-confined
excitations. On the other hand, long-range electrostatic
interactions are not ruled out; indeed Förster resonant
energy transfer through intratube dipolar interactions
seems the most likely interaction mechanism [38].

Existing theories and numerical simulations of reaction-
diffusion systems are based on highly simplified models of
particle interactions and transport. The abrupt crossover
observed in our experiment suggests that the models may
be insufficient away from the asymptotic limit; this is a topic
for further research. Our results identify exciton reactions on
carbon nanotubes as an experimental platform permitting
precise investigations of anomalous reaction kinetics in a
low-dimensional nonequilibrium stochastic system.
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