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Abstract

Plants rely on the conducting vessels of the phloem to transport the products
of photosynthesis from the leaves to the roots, or to any other organs, for
growth, metabolism and storage. Transport within the phloem is due to an
osmotically-generated pressure gradient and is hence inherently nonlinear.
Since convection dominates over diffusion in the main bulk flow, the effects of
diffusive transport have generally been neglected by previous authors. How-
ever, diffusion is important due to boundary layers that form at the ends
of the phloem, and at the leaf-stem and stem-root boundaries. We present
a mathematical model of transport which includes the effects of diffusion.
We solve the system analytically in the limit of high Munch number which
corresponds to osmotic equilibrium, and numerically for all parameter val-
ues. We find that the bulk solution is dependent on the diffusion-dominated
boundary layers. Hence, even for large Péclet number, it is not always cor-
rect to neglect diffusion. We consider the cases of passive and active sugar
loading and unloading. We show that for active unloading the solutions di-
verge with increasing Péclet. For passive unloading the convergence of the
solutions is dependent on the magnitude of loading. Diffusion also permits
the modelling of an axial eflux of sugar in the root zone which may be
important for the growing root tip and for promoting symbiotic biological
interactions in the soil. Therefore, diffusion is an essential mechanism for
transport in the phloem and must be included to accurately predict flow.



1 Introduction

The vascular transport systems are essential to the functioning of plants.
Whilst the xylem vessels are responsible for transporting water and nutri-
ents derived from the soil, the phloem is responsible for transporting sugars
produced in the leaves to organs that need sugar, such as the roots. Under-
standing phloem transport is essential for understanding plant functioning,
and may lead to advances in improving plant growth. In the agricultural
industry, foliar-applied fertilisers are being considered as a way to improve
the efficiency of fertiliser use (Ferndndez & Brown, 2013), and the opti-
mal application of these fertilisers may depend on the dynamics of phloem
transport.

In contrast to the lignified xylem, the phloem is comprised of living tissue
consisting of sieve elements and companion cells (Van Bel, 2003). The sieve
elements form conducting segments, which are separated from each other
by sieve plates (porous structures that become blocked at times of injury).
Sugars are transported within the phloem as sap, which consists of water,
dissolved sugars and minerals. The transport of sap is pressure driven, but
the pressure gradient is osmotically generated. At the leaves, sugars are
actively loaded into the sieve cells which decreases the osmotic potential
and hence the water potential. This causes water to enter the phloem from
surrounding tissues and consequently raises the hydrostatic pressure. At the
sink tissues, unloading of sugars, for use in growth, metabolism or storage,
increases the osmotic potential (increasing the water potential) which causes
water to leave the phloem sap, decreasing the hydrostatic pressure. There-
fore, due to the activities of the leaves and the roots, a pressure gradient is
maintained which causes the flow of fluid. This process, known as osmot-
ically generated pressure driven flow was proposed by Miinch (1926), and
has come to be the accepted mechanism of sap flow (Thompson & Holbrook,
2003a). The Miinchian flow of sap is inherently nonlinear since sugar is ad-
vected from the source to sink tissue by the flow of sap, but the flow itself
is set up by the sugar concentration gradient. This nonlinearity has made
analysis of the phloem difficult. In addition, the precise details of loading
and unloading processes are still unknown and there is much research into
whether loading or unloading dominates the flow (Patrick, 1997; Turgeon,
2010; De Schepper et al., 2013).

The majority of phloem modelling has been numerical, with the most
complete study being conducted by Thompson & Holbrook (2003a) who
considered time-dependent phloem flow with a nonlinear osmotic potential,
nonlinear viscosity, elastic walls, the effects of sieve plates, and loading and
unloading. They also provided a comprehensive review of other phloem
models (see appendix in Thompson & Holbrook (2003a)). They extended
their model in Thompson & Holbrook (2003b, 2004), and Thompson (2005)
to consider phloem flow under the state of osmotic equilibrium and to in-



vestigate the propagation of concentration and pressure waves down the
phloem. Jensen et al. (2009, 2011, 2012) followed the approach of Thompson
& Holbrook (2003a,b, 2004) modelling the phloem flow analytically and nu-
merically. They considered transport in the loading, unloading, and translo-
cation zones, first analysing explicit loading and then implicit loading. Note
that the translocation zone denotes the region where sugar transport is due
to Miinchian flow, resulting in predominantly axial transport of sugars. The
translocation zone usually refers to the stem of the plant. This is in contrast
to the loading and unloading zones of the leaves and the roots where large
radial transport of sugars occurs.

Due to the large magnitude of the Péclet number (Thompson & Hol-
brook, 2003a), convection of sugar dominates over diffusion. This has led
to the majority of previous authors neglecting the diffusive terms entirely
in their analysis. Whilst this assumption may be valid in the bulk of the
phloem, it is possible that due to the nonlinearity of the flow, boundary
layer effects at the ends of the phloem may become significant and influence
the bulk flow. Therefore, it is our aim to use matched asymptotic analysis to
determine whether neglecting diffusion entirely is a valid assumption. The
application of matched asymptotics to flow and transport in the phloem is
limited to the work of Pickard & Abraham-Shrauner (2009). These authors
analytically considered phloem flow including diffusion. However, their anal-
ysis only considered the translocation zone and neglected longitudinal vari-
ation of pressure. These assumptions ensure that velocity is driven solely by
the concentration gradient, and neglects the end-effects caused by the root
and leaf boundaries, which may significantly influence flow.

In this paper we follow the approaches of Jensen et al. (2011, 2012) and
consider the flow within the loading and unloading zones as well as the
translocation zone. For simplicity we do not consider a nonlinear viscosity
or a nonlinear osmotic potential, but instead investigate the effect of diffu-
sion on flow in the phloem for biologically-relevant parameters, i.e., when
diffusion within the main bulk of the phloem is low, and when the system
is close to osmotic equilibrium.

In Section 2 we present the model which describes the transport of wa-
ter and sugar including the effects of diffusion. The majority of previous
phloem modelling has been concerned with transport in trees, and as a rep-
resentative example of a tree, we consider the model parameters for black
locust in Section 3. We also consider the model parameters for wheat to
represent transport in cereals. We then nondimensionalise the model, and
in Section 4 we present the analytical method and solution to the model.
In Section 5 we compare the analytical solution to the numerical solution
for biologically-relevant parameters and investigate the effect that the main
model parameters have on the flow. In particular, we investigate the effect of
diffusion on the phloem flow and find that only for certain parameter values
do the solutions become independent of Péclet number such that diffusion



can be neglected. Finally, in Section 6 we discuss the implications of the
model findings.

2 Model

We consider the transport of water and photosynthates from leaves to roots
in the phloem vessels of plants. We follow a similar approach to the phloem
model of Jensen et al. (2011, 2012) and the xylem model of Payvandi et al.
(2014), and separate the plant and phloem tissue into three functional zones
in the Z direction; the leaves L, the stem S, and the roots R as shown in
Figure 1 in Section 4. The leaf zone is represented by 0 < Z < 21, the stem
zone is 21 < Z < Zo and the root zone is 25 < 2 < 23 where 2, 21, 25 and %3
are measured in metres. All symbols are given in Table 1. In Section 3, we
will show that the model parameters are highly dependent on phloem radius
and plant length 2Z3. Therefore we consider two different-sized plants: the
crop plant Triticum aestivum (wheat) and the tall tree Robinia pseudoacacia
(black locust). Parameter values for these two plants are given in Table 1.

Multiple products of photosynthesis are found in the phloem (Barbaroux
et al., 2003), but for simplicity we group these sugar-containing compounds
into one variable ¢ (mol m~3). Whilst other nutrients such as potassium are
also transported in the phloem, in this paper we assume that the osmotic
potential gradient is created by sugar, ¢, only.

2.1 Water transport in the phloem

We consider the flow within a single phloem vessel since transport along
all the vessels is summative. The axial flow along the phloem vessel is
governed by Poiseuille’s law (Thompson & Holbrook (2003a)), such that the
dimensional axial flux, ¢¢ (m®s~1), is given by

N dp s mwat

Qz__kz<d2>; kz—8ﬂ7 (1)
where 7 is an index for the plant zone; i = L, S, R, refers to the leaf, stem, and
root zones respectively. k, is the phloem axial conductivity (m*Pa~ts71), pf
is the internal fluid pressure (Pa) in the phloem vessel, @ is the radius (m)
of the phloem vessel, and i is the viscosity (Pas) of the phloem sap. The
radial flux per unit area ¢ (ms~!) into the vessel is given by the difference
in water potential (Pa) bﬁtween the inside of the phloem vessel, \i’i, and the

surrounding apoplasm, W,
@ = Ly (Weut = 07, )

where flp (m Pa~!s™!) is the hydraulic conductivity of the phloem bound-
ary. We assume that the water potential outside the phloem is constant and



Symbol | Description Value Units Source

L, S, R | leaf, stem, root zones - - -

i zone index - — —

a phloem vessel radius 6x 1076 m Wheat, Thompson & Holbrook (2003b)
10 x 1076 m Black locust, Thompson & Holbrook (2004)

Ei position of leaf-stem boundary 0.23 m Wheat Kutschera et al. (2009)
10 m Black locust, Section 3

2 position of stem-root boundary 0.33 m ‘Wheat, Kutschera et al. (2009)
40 m Black locust, Jensen et al. (2011)

Z3 length of plant 0.81 m ‘Wheat, Kutschera et al. (2009)
50 m Black locust, Section 3

C typical concentration 877 molm™3 ‘Wheat, Thompson & Holbrook (2003b)
463.23 molm™® Black locust, Thompson & Holbrook (2004)

P pressure scale 2.25 x 10* Pa ‘Wheat, Calculated using P = 23[LU/&2
5% 10° Pa Black locust, Calculated using P = 2;;ﬂU/d2

l:‘z phloem axial conductivity 1.02 x 10719 | m*Pa~'s! ‘Wheat, Calculated using l;’z = g—f
7.85x 1071 | m*Pa~ls! Black locust, Calculated using k~ = g—'}:

U typical sap velocity 2x 1074 ms~! Section 3

L, hydraulic conductivity of membrane | 5 x 10~1* mPa s! Thompson & Holbrook (2003a)

D diffusivity of sugar in water 5x 10710 m?s~! Thompson & Holbrook (2003a)

L fluid viscosity in phloem 5x 1073 Pas Jensen et al. (2011)

T temperature 293 K standard

Ry universal gas constant 8.314 Pa m®mol~'K~! | standard

2 axial coordinate variable m —

é concentration of sugar variable molm™

N concentration of sugar at z =0 variable molm™3 Section 3

F radial loading/unloading of sugar variable molm™2s~!

il passive loading parameter variable m~2s T

G active loading parameter variable molm ™ Zs ! -

f axial unloading of sugar at z = z3 variable molm ™ 2s~ 1 -

G axial flux variable m? s T -

Gr radial flux variable msT -

D internal phloem pressure variable Pa -

Weut external water potential 0 Pa Section 2

v internal water potential variable Pa -

W osmotic potential variable Pa -

Table 1: Summary of dimensional symbols and their values.

as a reference set Wopy = 0. We rewrite ¢ as a sum of the pressure, p',
and osmotic potential, ¥, (Pa). For simplicity we choose the Van’t Hoff ap-
proximation (Kramer & Boyer, 1995) of linear dependence on concentration,
Ui = —R, T &, where R, is the universal gas constant (Pa m® mol'K~!)
and T' (K) is the temperature such that Wi = pi — IA%g T ¢. Note that nonlin-
ear formulations of the osmotic potential are more accurate for high solute
concentrations and have been used by Thompson & Holbrook (2003a). By
conservation of mass, the gradient of axial flow along the vessel balances the
radial flow into the vessel such that

2,56
ST = —omal, (5 - R,7E), 3)
where 27aL, is the radial conductivity (m? Pa~'s™!) of the phloem bound-
ary. We follow the approach of Jensen et al. (2011, 2012) and assume that
both the phloem tips (in the leaf and in the roots) are impermeable to water
and hence prescribe zero flux of water:

(jZL:O at 2 =0, and cjsz at

N>
Il
N>

@

(4)




Note that the baseline value of pressure is set by the osmotic potential,
R, T ¢&. In addition, we prescribe continuity of the pressure p’, and the flux,
G-, at the zone boundaries, 2; and 2.

2.2 Sugar transport in the phloem

Sugar is loaded into the phloem in the leaf region after production by photo-
synthesis and then, after transport, unloaded in the stem and root regions.
Following the approaches of Thompson & Holbrook (2003a), and Jensen et
al. (2011, 2012), we assume that the loading and unloading of sugar into
and out of the phloem vessels, which we represent by Fi (mol m~—2s71), is
balanced by the flux of sugar in the axial direction. Similar to Payvandi et
al. (2014) we also allow diffusion to contribute to the axial flux and allow
unloading to also take place in the stem region. Leakage of solutes has been
observed along the whole length of the phloem (Minchin & Thorpe, 1987,
1996; Van Bel, 2003), and sugar stem reserves are of particular importance
to crop grain filling (Rawson & Evans, 1971). Therefore, conservation of ¢
is given by

Nt
(Z(é@—wﬁﬁﬁ;)_mmﬁ, (5)
where D is the diffusion coefficient (m2s™!) of sugar in the phloem sap.
We allow the loading and unloading of sugar in the phloem vessels to be
either active or passive. Active loading/unloading refers to input/output
of sugar in the phloem independent of the sugar status within the phloem,
representing the action of a pump. Consequently, active unloading can be
unphysical for low ¢'. Conversely passive loading/unloading is dependent
on the sugar status, and represents the transport of sugar down the sugar
concentration gradient. We let

Fr=q'é + 67, (6)

where, if 6¢ (m~2 s71!) is zero, the loading/unloading is passive. Conversely,
if 7 (mol m~2s7!) is zero, the loading/unloading is active. In each zone, we
allow the loading/unloading to be either completely active or passive. For
both wheat and black locust, it is thought that the loading in the leaf zone
is active, i.e sugar is pumped in (Jensen et al., 2013). Therefore throughout
the paper we consider active loading in the leaf zone, and either active or
passive unloading in the stem and root zones. Note that active loading is
similar to the implicit loading of Jensen et al. (2012), whilst passive loading
is similar to their explicit loading case.

Payvandi et al. (2014) showed diffusion to be important in the xylem
vessels, and we expect that it may also be of importance in the phloem vessels
especially near the ends of the phloem vessels when the fluid velocity falls



to zero. The inclusion of diffusion also allows the modelling of an axial flux
of sugar, f (mol m~2s71), at the vessel termini in the roots (£ = 23), which
we include for generality. It is possible that axial effluxes of sugar occur
due to the nutrient requirement of the meristemic tissue at the growing root
tip (Bingham & Stevenson, 1992). In addition, sugar exudates at the root
tip (presumably from the phloem) can be important for promoting bacterial
interactions in the soil (Dilkes et al., 2004). For the remaining boundary
condition on ¢, we prescribe the concentration of sugar to be N (mol m~3)
at the terminus in the leaf. The boundary conditions therefore are

. dclt
dz
In addition, at the zone boundaries, Z2; and 22, we prescribe continuity and

flux continuity of ¢*. In Section 3 we choose N =% 0 due to the loading of
sugar at Z = 0 after being produced by photosynthesis.

=Natz=0, échR—m) = 7ra’2f at 2=23. (7)

3 Nondimensionalisation and parameter values

We nondimensionalise the equations by using the following scales 2 = 23z,
p = Pp, é = Cc, where P is a typical internal pressure (Pa) and C'is a typical
concentration of sugar (mol m~—3). Note that only dimensional values are
denoted with a hat (") symbol. Similarly to Phillips & Dungan (1993) and
Thompson & Holbrook (2003b), we calculate P using the viscous pressure
scale such that P = 234U /a2, where U is a typical sap velocity (m s~1).
The nondimensional equatlons for water, and sugar transport are
2,0
%:M(pZ—HCZ), (8)

d dp 1 dc i
dz( <dz>+Peidz>_F7 ©)

where the nondimensional parameters are defined in Table 2. M is the
Miinch number (Jensen et al., 2009) defined as the ratio of radial conductiv-
ity of water to axial conductivity. H is the osmotic pull of the sugars defined
as the ratio of osmotic strength of the solution to the pressure scale (Phillips
& Dungan, 1993; Thompson & Holbrook, 2003b). The Péclet number, Pe,
is the ratio of convection to diffusion, and F* = nic’ + o is the nondimen-
sional loading/unloading parameter defined by a passive loading parameter,
n', and an active loading parameter, o’
The nondimensional boundary conditions are

dp” dp™
Lf()atz: , @ =0at z =1, ck=¢atz=0,
dz dz
dp® 1 dcft
R
_ - _ = 1
¢ <dz>+Pedz fatz=1, (10)



where ¢ is the nondimensional concentration at z = 0 of sugar in the phloem,
and f is the axial unloading parameter of sugar through the phloem tip in
the root at z = 1 (see Table 2 for definitions). We also specify continuity
and flux continuity of p’ and ¢’ at the zone boundaries, z; and zs.

Symbol Description Wheat Value | Black Locust Value
2= i—; nondimensional leaf-stem boundary 0.3 0.2
29 = f% nondimensional stem-root boundary 0.4 0.8
-7 23
M= 10;;% ratio of radial conductivity to axial conductivity 12 1x 10*
H = % ratio of osmotic forces to viscous losses 95 2
Pe = ﬂ";j} ratio of convective to diffusive transport 4% 10* 2.5 x 106
I _ 2maziFt . . . .
F* = N ratio of leaf radial loading to axial transport * *
S _ 2mazild . . . . ‘
F° = Si6 ratio of leaf radial loading to axial transport * *
R _ 2masiFlt e BT . . X i
&= N ratio of leaf radial loading to axial transport * *
f= % ratio of axial loading to axial transport * *
¢ = % ratio of sugar concentration scales at z = 0 * *

Table 2: Summary of nondimensional symbols and typical values used, based on
dimensional values given in Table 1. The starred symbol (*) indicates
that the value will be varied throughout the paper (see text in Section 3

for discussion).

To calculate the values of the nondimensional parameters in Table 2, we
use values for wheat and black locust given in Table 1. Phloem sap velocities
are generally in the range 0.5 to 1 m hr~! (Thompson & Holbrook, 2003a),
and we use an average value of U = 2x107% m s~!. We use wheat dimensions
measured from Kutschera et al. (2009) and black locust dimensions from
Jensen et al. (2011), where we use 23 = 40 m and estimate Z2; = 10 m,
and 23 = 50 m from typical leaf-stem-root proportions used in Jensen et
al. (2011). Due to the difference in height between wheat and black locust
we obtain a very large range in M (M = 12 for wheat and M = 10%
for black locust). Most plants fall within this range (Jensen et al., 2011)
and when M is large, the plants are in a state of osmotic equilibrium with
their surroundings (Thompson & Holbrook, 2003a). The Péclet number is
Pe = 4 x 10* for wheat and Pe = 2.5 x 10° for black locust. This indicates
that diffusion is small compared to convection in the bulk flow, for both
plants, in the absence of boundaries.

In general, the dimensional loading function of sugar, F', is unknown in
the literature. We follow the approach of Jensen et al. (2012); Payvandi et al.
(2014) to investigate the effect of varying the values of the nondimensional
radial and axial loading parameters F', and f. To represent the loading of
sugar in the leaf due to photosynthesis, and unloading in the stem and root
zones for storage and growth, we prescribe that F¥ is positive whilst F*°
and F® are both negative. In addition, we let f be positive to represent



axial efflux of sugar out of the phloem vessels to be used for root growth.

To solve across the parameter regimes applicable for wheat and black
locust we solve for the phloem transport both analytically and numerically.
The numerical computations are conducted in Matlab using the pdepe solver
where equations (8) and (9) are solved subject to the boundary conditions
(10). In Section 4 we will discuss the analytical method and solution, and
in Section 5 we will compare the analytical and numerical solutions.

4 Analytical solution

Following the approach of Jensen et al. (2012) we first differentiate equation

(8) and rewrite p in terms of flux, w’ = Cﬁl—’j, in (8) and (9) to give

d*w' - dc’

Y M (w—HEE 11
dz? <w dz) ’ (11)

et ,  dw 1 d%¢ ;
a S 12
dzw+c dz+Ped,22 (12)

The boundary conditions (10) written in terms of w are
wlh=0, =¢ at z2=0, (13)
1 dclt

wl =0, chR—f—ﬁd%:—f at z=1. (14)

The conditions of continuity become continuity of ¢, w, and flux of ¢ at the
zone boundaries z; and zo. Note that as p and ¢ are continuous at z = z;
and z = z9 then, using equation (8), % = % is also continuous.

To analytically solve equations (11) and (12) we use the method of
matched asymptotic expansions and consider the limit of high M and high
Pe which characterises most plants. For high M and Pe, the water and
nutrient transport equations become singular since the highest derivatives
are multiplied by ﬁ or ﬁ respectively. In order to regularise equations
(11) and (12), we seek boundary layers in the regions where the derivatives
become large; at the ends of the phloem or at the zone boundaries. We then
solve in the boundary layer regions and the central region separately, and
finally match the solutions together. For an introduction to boundary layer
methods and matched asymptotics, see Hinch (1991). Note that previous
authors (Thompson & Holbrook, 2003a; Jensen et al., 2012) neglect diffusion
entirely. This is equivalent to considering Pe = oo and, hence, neglecting
boundary layers in the solution for c.

To solve in the leaf, stem and root zones, we split each zone into one
central bulk region, one left-hand-side boundary (LHS), and one right-hand-
side boundary (RHS), which results in 9 regions in total given in Figure 1. In
the bulk regions convection dominates and w* = H % (and p* = Hc'), corre-

sponding to osmotic equilibrium, whereas in the boundary layers, diffusion
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Figure 1: Nondimensional model of a phloem vessel. z=0 is the top of the phloem
in the leaf, z1 is the leaf-stem boundary, zo is the stem-root boundary,
and z3 is the phloem terminus in the root. x* are local boundary layer

coordinates in the LHS boundaries of each zone, and y' are local
boundary layer coordinates in the RHS boundaries of each zone.

of ¢ and p are also important. We therefore seek boundary layer solutions
near z = 0 and z = 1 to satisfy the boundary conditions at the phloem ends,
and also at the zone boundaries z; and 29 to satisfy the continuity boundary
conditions.

We initially consider the leaf, stem and root zones separately, but in all
zones and regions we apply the following scalings

e=1/M, 1/Pe = €X/Pe, w' = dwt, H=¢é%H,
Fi=¢F,  n=¢3, o=¢a f=€F, (15)

such that Pe, w', F*, 7, &, f, and H are O(1) and the values of §, v, 3, and
X, are as yet undetermined. The structure of the equations is the same in
each zone, therefore we can write the equations in a general form. In the
leaf, stem, and root zones, the left-hand-side boundaries are z = 0, z = 21,
and z = z9 respectively, and we rewrite z in terms of a boundary layer
variable z*, such that

z = ezl =z + €2, z = 29 + €22l (16)
in the leaf, stem, and root zones respectively. Similarly, the right-hand-side
boundaries respectively are z = 21, 2 = 29, and z = 1, and we rewrite z in
terms of a boundary layer variable g, such that

2=z — eyl z =2y — Yy°, z=1- ek (17)

The scaled equations in the bulk region, LHS boundary region, and RHS
boundary region for all zones are given in Appendix A, together with the
boundary conditions at z = 0 and z = 1, and continuity conditions at z = z;
and z = z9.

We choose values for the scales by balancing terms in the equations
against each other. In the fluid transport equations (equations (A.3) and

10



2 i 2 i
d“w and dw)

‘ prs qi
with the convective term, w'. Similarly, we choose 8 = x to balance the

viscous flow in equations (A.3) and (A.5) with convection of ¢ (jf:l w', j;i w',
“fgf , ‘fig’; ) in equations (A.4) and (A.6). Since convection of ¢ falls to zero
in the boundary layers, it is necessary that diffusion of ¢ (j;f; C‘ljjf;)
dominate in equations (A.4) and (A.6), and this is achieved by choosing
0 =14 x — a. Finally, in order to make analytical progress, we choose =y

such that the loading and unloading are small. In summary, we obtain

(A.5)), we choose @ = % to balance the viscous flow terms (

C

and

a:%, B =x, d=14+x—a, 7:%—204—1—)(. (18)
Considering black locust as an example, where M = 10* and Pe ~ 10°
then y = 1.5 which gives 8 = 1.5, § = 2, v = 2. Note that for this value of
0, the scaling of H becomes inconsistent with the biological estimations of
H given in Table 2. However, we will show in Section 5 in Figures 3 and 4,
that despite this scaling, the analytical solution is in good agreement with
the numerical solution for biological values of H. The fluid transport and
concentration transport equations scaled for black locust are

3 d2w! 1 _ dct
€2 dZQ :EQwZ—Hg, (19)
vdet v dw? 1 d%¢ 1=
2 — 2ct — = —¢e2 " 20
CEU T T hear T (20)
in the bulk region.
d?w' i gdci (21)
€ - = €W — —
dzi? dx?’
dc’ _;  dw’ 1 d*¢ 3 .
€ w' + ec* I + B diE = —e2 F", (22)
in the LHS boundary Region, where z = e2x” in the leaf, z = 21 + e225 in
the stem, and z = 2y + e22® in the root. Finally,
d?w' o Hdci (23)
€E—F = €W e
dyz2 dyz’
dct _; - dw’ 1 d%¢ 3 =
—ed—yiwZ —ec a0 + Pedy'? = —e2 F". (24)

in the RHS boundary Region, where z = 21 — eéy in the leaf, z = 29 — E%y
in the stem, and z = 1 — €2y in the root. The scaled boundary conditions
become

@t =0, k=, at  zl =0, (25)



_R dc

wft =0, ;@E:cﬁf at YR =0. (26)

The scaled continuity conditions at the leaf-stem boundary z = z; are

b =¢7, wl = w7, (27)
177 1 dc* 1 g_g 1 dc® dw”  dw®
_— = —_— = 2
e +P6 PP + Pe dz’ dz dz "’ (28)

an the scaled continuity conditions at the stem-root boundary z = 29 are

¢ = ck, w¥ = ol (29)
S R —S —R
19 g 1 de 1L R_R 1 de dw dw
il — - _— = 30
e Pe dz creiwT Pe dz’ dz dz (30)

In the bulk region (equations 19 and 20) the osmotic potential and the
diffusion of ¢ dominate. The viscous flow terms are much smaller indicating
that, in the bulk region, viscous effects are small compared to osmotic effects.

In the LHS and RHS boundary regions, the terms that dominate are

the osmotic potential terms (ﬁj;i and FIZ;) in equations (21) and (23),

and the diffusive transport of ¢ (ﬁj;; d ﬁj;f;) in equations (22) and
(24). In addition, the viscous flow terms (% and %) are now at the

same order of € as the radial flow (in the fluid transport equations) and the
convection of ¢ (in the concentration transport equations).

We expand ¢, @', F in increasing powers of ¢ such that
31
32

33
34

d=c+ eécli + ech + egcé + O(€%),
W = wh + e2w + ewl, + e2wh + O(e2),
Fi=Fi+e2Fl +0(e),
Fy=i'cy+a',  Fy=1qc.

(31)
(32)
(33)
(34)
We solve the fluid transport and concentration transport equations in all
regions subject to the boundary and continuity conditions at increasing or-
ders of €. In general the solution process involves solving in each region first,
applying the boundary conditions, then matching the solutions within each
zone to obtain a composite solution. Finally, we apply continuity of ¢*, w*
and flux of ¢! and w’ at the zone boundaries z; and z», to determine the
unknown constamts1 and the solution for all zones. The solution procedure
for O(e%) and O(e?) is given in Appendix B, and the solutions for ¢, ci,
ch, W, w are given in Appendix C. To calculate the pressure, we apply the
scalings from equation (15) to equation (8) such that

, _ dw’®
pl=éPHC + €1+5dl. (35)
z
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Expanding ¢! and @’ gives the solution for p’ up to O(e)

pl=¢é (Hcé + E%HCZi + eHch + €2 (I:Ic;:, + ddu;o) + O<62)> . (36)
Note that p is automatically continuous across the zone boundaries since
equation (35) is continuous across the zone boundaries.

The largest term in ¢’ is given by ¢} (equation (C.1)) and arises due to
the domination of the osmotic potential (H %) in all three zones. Since the
osmotic potential is the only term at O(¢”) in the fluid transport equation
(equation (B.3)), ¢}, is constant and depends only on the boundary condition
on ¢ applied at z = 0. The remainder of terms for ¢! represent deviations
away from this base value and arise from interactions of the osmotic potential
with other processes. For example, at O(e%), the osmotic potential again
dominates in the boundary layer regions (equation (B.4)), whereas in the
bulk regions, the osmotic potential of ¢} is balanced by the the axial velocity,
wh, and the diffusion of ¢} is driven by the convection of ¢ due to wj and the
loading/unloading due to Fy (equation (B.10)). At O(e), in the boundary
layer regions, the viscous flow terms finally contribute to the fluid transport
equations to drive the osmotic potential due to ¢ (equation (B.5)), and
diffusion of ¢} is balanced by convection of ¢} due to W} (equation (B.6)).

The first boundary layer terms, given by the exponentials, appear only
in ¢, (equations (C.5) to (C.7)). However these terms drive the bulk (non-
exponential) terms in ¢} (equations (C.2) to (C.4)). The implication of this,
is, that diffusion influences the bulk solution as well the boundary layer
solutions. The exponential terms in ¢} are due to the boundary conditions
at z = 0 and z = 1, whilst the exponential terms due to the zone boundaries
do not appear until ¢} (equations (C.8) to (C.10)). In contrast to ¢!, the
leading order terms of w' are dependent on ¢ and Pe since w = €w. 1w}
arises due to osmotic equilibrium in the bulk regions, and the balance of
viscous flow with radial flow in the boundary layer regions. In addition, the
boundary layer terms due to z = 0 and z = 1 appear at leading order in w}
(equations (C.11) to (C.13)), whereas the zone boundary terms appear at
first order in w} (equations (C.14) to (C.16)).

The structure of the analytical solution is conserved for all M and Pe
as long as H and F' are scaled according to equation (15). The analytical
solution is valid for all Pe, and as Pe increases (holding M, H, and F’
constant) the main effect is that the magnitude of w’ decreases as  increases.

5 Results

5.1 Comparison of analytical to numerical solution

We consider M = 10* and Pe = 10%, which are similar values to that
for black locust, x = 1.5, H = O(107%) and F = O(107®). The load-
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ing /unloading is represented by o = (¢%, 0% ¢%) and n = (n%, 7" n?),

where the superscript denotes the zone. For example o represents the ac-
tive loading in the leaf zone, o° represents the active loading in the stem
zone, and o ¥ represents the active loading in the root zone.

A comparison of the analytical solution to the numerical solution for
these parameter values is shown in Figure 2. The comparison shows that
the analytic approximation accurately captures the behaviour of ¢, w, and
p, where the normalised L2-norm for ¢ is equal to 4.51 x 10~7. In Figure

x107®

GNumerical 1 ©Numerical
-X-Analytical _‘r -X-Analytical

1

0.99

&) z -2/® o
0.98 -3 9.8
-4 -©-Numerical
D 5 ® -X-Analytical
087 05 1 0 05 1 %7 05 1
¥4 z ¥4
(a) concentration, ¢ (b) velocity, w (c) pressure, p

Figure 2: Profiles of phloem concentration, c, velocity, w, pressure, p, and radial
flow, p— He, against axial distance, z, comparing the numerical
solution (blue) to the analytical solution (red) for M = 10*, Pe = 105,
H=107%2=02,20=08, f=0,¢=1,0=(4x1077,0,0),
n=(0,—-1x10"7,-2 x 1077).

2(a) we see that the concentration of sugar, ¢, decreases with axial distance
z; this reduction is due to the input of sugar into the phloem at the leaf zone
(FL is positive) and the output of sugar in the stem and root zones (F*° and
FE are negative). The input and output of ¢ changes the osmotic potential
within the phloem, causing inflow water at the leaf, and outflow in the stem
and root zones. This causes pressure (Figure 2(c)) to be higher in the leaf
zone than in the root zone, driving flow (Figure 2(b)) in that direction with
the maximum velocity occurring at the leaf-stem boundary. We can see the
development of a boundary layer near z = 0 in w, but not in ¢ at z = 0.
This is as expected since the boundary layer terms appear at higher orders
in the series in ¢ than for w.

We now consider the case where H is not determined by the scaling in
(15). Instead we use the values for black locust as given in Table 2 and plot,
in Figure 3, the analytical and numerical solution for black locust parameter
values, for the cases of active unloading (7° = 0) and passive unloading
(n® # 0). Note that the profile of p has not been plotted since its behaviour
is very similar to that of c. We consider three different magnitudes of loading
and unloading parameters; )4 = nc+ o, Fp =5 X Fa, and Fo = 10 X F4
where 7 = (0,0,0), 0 = (4x 1073, =1 x 1073, =2 x 1073) for the active case,
and = (0,—1 x 1073, -2 x 1073), o = (4 x 1073,0,0) for the passive case.
We see that for FF = F4 and F' = Fp, the analytical solution still agrees
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(b) Passive unloading, 7 = (0, -1 x 1073, =2 x 1073), ¢ = (4 x 1073,0,0)

Figure 3: Profiles of phloem concentration, c, and velocity, w, against axial
distance, z, comparing the numerical solution, n, to the analytical
solution, a, for black locust parameter values where M = 10*,
Pe=25x10% H=2,2 =02, 20 =08, and f =0, ¢ = 1. The
value of the loading/unloading parameter, F', is varied from F4 where
Fa=mnc+o,to Fp=5xFy and Fo =10 X Fju.
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well with the numerical solution. Analytically, for active loading only, we
see that

> eact,  Owlh> et (37)
— —_ . — — —_ 2
PeFi HFP
:¢>>e%< 60), 1>>e%<026>, (38)
K K

where k = HPe¢ + 1. If Pe = ¢ = 1 and H = O(1), Equation (38) holds
if Fi = O(G%H ). We see in Figure 3 that the analytical solution compares

well with the numerical solution when F' = O(e%) (F = F4) but starts to
differ as F' increases. Increasing F' decreases the validity of the series, and
for F' = F¢ the analytical solution differs from the numerical solution. This
difference is only small when the unloading is active, but becomes significant
when the unloading is passive.

Considering the parameters specific to wheat, for which the value of M
is quite small (M = 12), in Figure 4 we see that for active unloading, the
analytical solution provides a reasonable approximation to the magnitude of
the numerical solution for ¢. Conversely, for passive unloading the analytical
solution of ¢ is very different to the numerical solution. This is because the
value of M is too small for the asymptotic solution to be valid, and we
can see that the analytical solution improves in accuracy as M increases.
Therefore, for small plants such as wheat the analytical solution might only
be appropriate when the unloading is active. The value of H is larger for
wheat than for black locust, and hence for the analytical solution to be valid,
the size of F is larger.

For both wheat and black locust parameter values we can see that bound-
ary layers are very sharp, particularly with regards to ¢ near z = 0, and this
boundary layer is responsible for the changing magnitude of ¢ near z = 0.
The analytical solution can be easily used to provide an estimate of the
magnitude of ¢ near z = 0. Neglecting the exponential terms in c”, the
analytical solution of ¢* at z =0 is

5 = ¢, (39)

e%cf =0, (40)

ook — 10 : Pe*H¢ (z1(FF — Fy) + ZQ(F(i— FY+ Ff - f) o
M (PeH$ +1)2

We see that eck is responsible for causing the deviation from ¢ = ¢. The
magnitude of ecl is approximately O(M~95H=0-5Pe05 1) Therefore, in-
creasing either M or H reduces the magnitude of c% thereby reducing the
deviation from cg = ¢, whereas increasing Pe or F increases the magnitude

of cé increasing the deviation from cg.
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(b) Passive unloading, n = (0, —0.1 — 0.2), o = (0.4,0,0).

Figure 4: Profiles of phloem concentration, c, and velocity, w, against axial
distance, z, comparing the numerical solution, n, to the analytical
solution, a, for wheat parameter values where Pe = 4 x 10%, H = 95,
21 =03, 20 =04, and f =0, ¢ = 1. The value of M is varied to
show the improvement of the analytical solution compared to the
numerical solution for increasing M.

5.2 Dependence of solution on Pe

In the previous section we saw that the analytical solution presented is valid
only for high M, high Pe and small F'. We now consider the numerical
solution only, which is valid for all parameter regimes, to investigate the
effect of varying the two main nondimensional parameters, Pe and M. We
first consider the effect of Pe on the transport within the phloem to see if
diffusion can be neglected. We will show that the validity of this assumption
depends on the type and magnitude of loading.

Figure 5 shows the variation of ¢ and w with increasing Pe for different
values of I’ comparing active to passive unloading, and we see that, generally,
increasing Pe increases the deviation of ¢ from ¢ = ¢, and increases the
magnitude of w.

The majority of previous authors (Thompson & Holbrook, 2003a; Jensen
et al., 2012) modelling the phloem consider diffusion to be negligible and
hence discard the diffusive terms, which corresponds to the limit Pe = co.
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Figure 5: Profiles of phloem concentration, ¢, and velocity, w, against axial
distance, z for increasing Pe, for M =103, H =1, z; = 0.3, zp = 0.4,
f=0.
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The justification for this is that, for linear systems such as the flow within the
xylem (which also contains boundary layers), the solution for concentration
tends to a limit as Pe increases (as long as f is zero). However this is
not the case for the nonlinear flow considered here. For active unloading
the solutions do not tend to a limit. Conversely for passive unloading, the
solutions tend to a limit for large F'. This behaviour is shown in Figure 5
which covers a range of Pe that encompasses the values for wheat (Pe = 10%)
and black locust (Pe = 10°), and also includes higher values up to Pe = 102,
For active unloading as shown in Figure 5(a), as Pe is increased, we can see
that neither ¢ nor w tend to a limit, and in fact the solutions diverge with
Pe. The profiles of w do initially appear to converge for increasing Pe,
but then diverge, and the Pe for which the divergence occurs varies with
F. Conversely, for passive unloading (Figures 5(b) and 5(c)), increasing Pe
causes the profiles of ¢ and w to converge.

The difference observed between the active and passive cases is due to
the self limiting behaviour of the passive case. Integrating Equation (9) from
z =0 to z =1 we obtain

1
%\Zzo = (n/o cdz — o — f) Pe. (42)

As Pe increases, the limit of (42), in the case of active loading (n = 0) is
%|z:0 = oo. Conversely, in the case of passive loading (1 # 0), the limit of

%\ »—0 is bounded since fol cdz can adjust to balance —o — f.

In the passive case, the speed at which the profiles converge, with in-
creasing Pe, depends highly on the magnitude of F. For low values of F'
(Figure 5(b)), ¢ has not yet converged at Pe = 108. Conversely for high
values of F' (Figure 5(c)) both ¢ and w have nearly converged at Pe = 10°.
To characterise this convergence we plot the ratio Rp., which is defined as
c at Pe = 107 divided by ¢ at Pe = 10°, against increasing loading and
unloading for increasing values of M in Figure 6 . Note that the loading is
set to be active in the leaf zone and the unloading passive in the root zone
such that o = (7,0,0) and n = (0,0, —7). For very small magnitudes of
loading and unloading, there is only a small deviation from ¢ = 1 such that
Rp. is also very close to 1. As 7 increases, Rp. at first decreases, indicating
that the solution has not yet converged, and then slowly increases. For large
M, convergence only occurs when the magnitude of the loading is O(1).

Increasing M reduces the deviation of ¢ away from ¢ = 1 and thus
dampens the influence of the unloading terms and hence decreases the rate
of convergence. Therefore, the validity of the limit Pe = oo is strongly
dependent on the parameter values of the system, which are biologically
unknown. Hence, to improve accuracy of flow modelling in the phloem, the
effects of diffusion must be included.
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Figure 6: The ratio of ¢ at Pe = 107 over Pe = 10%, Rp,, for increasing values
of loading and unloading for three different values of M. The loading
in the leaf zone is active and the unloading in the root zone is passive,

o= (1,0,0), n = (0,0, —7).

5.3 Dependence of solution on M

We now consider the effect of M on the transport within the phloem. M is
the ratio of radial to axial conductivity and appears in Equation (8) which
balances axial flow with radial low. When the radial conductivity of the
wall is zero, M = 0, and hence no radial or axial flow occurs;

d*w

i 0, subject tow =0 at 2z =0 and z =1, (43)

such that w = 0 everywhere. Therefore, no water flow occurs and transport
is by diffusion only. When M = oo, the system is in a state of osmotic
equilibrium; p = Hc and w = H %. Hence, axial flow occurs which can
transport ¢ down the phloem at a higher speed than diffusion alone.

The behaviour of the system as M increases depends on the type and
magnitude of loading. For low values of loading, the active and passive sys-
tems are similar, whereas for high values of loading they differ. An example
of ¢ and w for low values of loading is shown in Figure 7(a). For both active
and passive systems, increasing M increases the transport of ¢, reduces %,
and increases the magnitude of w to a limit.

Whilst the passive system has the same dynamics of flow for all 7, the
active system behaves differently for larger values of o. Figures 7(b) and
7(c) provide examples of the active and passive system respectively, for
equal magnitudes of the unloading parameters: (o = (0,0, -2 x 1073) and
n = (0,0,0) in the active case; and o = (0,0,0), n = (0,0, -2 x 1073) in the
passive case). For the active case we see that as M increases, w increases
then decreases towards to the limit, whereas in the passive case w increases
towards to the limit as before.
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Figure 7: Profiles of phloem concentration, c, and velocity, w against azial
distance, z for increasing M, for Pe =103, H =1, z; = 0.3, 2o = 0.4,
f=0.
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The difference between the two cases is because the unloading of ¢ is
larger in the active case than for the passive case. The unloading in the pas-
sive case is limited since unloading is proportional to ¢. The large unloading
in the active case gives rise to an axial velocity which is larger in magnitude
than the high-M limit. Whereas in the passive system, the limited loading
causes the axial velocity to be lower in magnitude than the limit.

For even higher unloading parameters, the active system quickly becomes
unphysical since unloading irrespective of ¢ results in negative values for c.
For the passive system instead, in Figure 7(d) we see a larger % caused by
the larger unloading, and that w again increases in magnitude towards a
limit, but the approach to the limit has slowed.

5.4 Dependence of solution on f

The inclusion of diffusion also permits the modelling of an axial eflux at the
terminus of the phloem in the root. Figure 8 shows the profiles of ¢ and w
against z comparing the analytical to the numerical solution for M = 104,
Pe =10°, H = 1, n = (0,-0.01,—0.02), ¢ = (0.04,0,0) for increasing val-
ues of f. For these parameter values, the analytical and numerical solution

Be6

B-e.e 86008 £8 O n,f=10"*
-0-nf=10"
-o-nf=107?
* af=107"
-x-af=10"
~-a,f=10""

z

Figure 8: Profiles of phloem concentration, c, and velocity, w, against axial
distance, z, comparing the numerical solution, n, to the analytical
solution, a, for varying axial effluzes, f, for M = 10*. Pe = 10°,

H=1,2=03,22=04, ¢ =1, n = (0,—-0.01 — 0.02),
o = (0.04,0,0).

agree well, and we can see that an efflux of sugar at z = 1 now gives rise
to a boundary layer in both ¢ and w at z = 1. The boundary layer signifi-
cantly influences the solutions in the bulk. As f increases, the solution of ¢
decreases in magnitude, and w increases in magnitude, not just near z = 1
but for all z. The steepness of the boundary layer increases with the mag-
nitude of f since % = —fPe at z = 1. Extremely steep boundary layers
are unphysical, therefore f is unlikely to be much greater than O(1/Pe).
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6 Discussion

We have presented a mathematical model for the transport of sugar and
water within a phloem vessel in response to an osmotically-generated pres-
sure gradient. The magnitude and type of sugar loading and unloading
are unknown. Therefore, we have considered active and passive loading
and unloading. Passive loading represents the transport of sugar down the
sugar concentration gradient whilst active loading represents transport via
a pump.

We have solved the system numerically for all parameter values, and
analytically in the limit of high Miinch number using the method of matched
asymptotic expansions. We have seen that the analytical solution compares
well to the numerical solution for both black locust and wheat parameter
values when the unloading is active, and less well when the unloading is
passive and M is small. Thompson & Holbrook (2003a) expect that most
plants fall within the osmotic equilibrium regime i.e. high M for which the
asymptotic solution is valid.

Due to the high Pe number of sugar transport, the majority of pre-
vious authors neglect the effects of diffusion entirely. One of the primary
motivations for this paper was to analyse whether this assumption is valid.
Diffusion can only be neglected if the solutions become independent of Pe
at Pe numbers typical for plants (for example, as shown in Figure 5(c)). We
have found that the boundary layer terms drive the solutions in the bulk.
The boundary layer terms arise due to the fact that diffusion dominates
at the boundaries. Consequently, the effects of diffusion are important not
only in the boundary layer but for the entire length of the phloem. Since the
solutions derive mainly from the boundary conditions, it is difficult to com-
pare our results to previous work where diffusion is neglected. For example,
Jensen et al. (2011, 2012) consider a convection-only system, which reduces
the order of the governing equations, and hence apply the boundary condi-
tions that c is finite at the vessel ends. Pickard & Abraham-Shrauner (2009)
do include diffusion in their analysis, but only consider the translocation
zone, and axial loading only. They also neglect the longitudinal variation
of pressure, which is equivalent to considering the limit that H > 1. This
therefore places the solution in a different parameter regime to that consid-
ered in this paper, and therefore makes it difficult to compare the features
of the solutions.

Plotting the numerical solution for increasing Pe we found the system
behaved differently for active and passive loading. For active unloading,
the solutions diverge with increasing Pe. Conversely for passive unloading,
which is more physical for low sugar concentration, the solutions converge.
However, the rate of convergence, for Pe values typical for a plant, depends
on the magnitude of loading and unloading. For low magnitude loading the
solutions have not yet converged in Pe for Pe typical of plants, and therefore
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cannot be approximated by Pe — oo solutions, whereas for O(1) loading,
convergence occurs. The difference between the active and passive systems is
that unloading is unbounded in the active case, and bounded in the passive
case. In effect, the passive case self-limits the unloading. Therefore, the
validity of the assumption that diffusion can be neglected entirely depends
on the type and magnitude of loading, which is unknown.

We also considered the effect of increasing M on the system. For low
magnitude loading and unloading, the active and passive cases behaved sim-
ilarly, and increasing M increased the transport of ¢ and increased the mag-
nitude of w to a limit. For higher magnitude loading the active system
behaved differently, causing the axial velocity to increase and then decrease
towards the high-M limit. Again the difference between the active and
passive systems is due to self-limiting behaviour of the passive case.

The inclusion of diffusion also allows the modelling of an axial eflux
which may occur to transport sugar to the growing meristem or as a sugar
exudate to promote bacterial interactions. This flux has not been previously
observed, but experiments, similar to those by Dilkes et al. (2004) that
measure the profile of carbon within the phloem, should be carried out to
see if boundary layer effects occur at the phloem tip which could provide an
estimate for the magnitude of f.

For simplicity we have assumed that the osmotic potential is a linear
function of concentration and that viscosity is constant. However, Thomp-
son & Holbrook (2003a) and Jensen et al. (2012) argue that this is not likely
to be the case for the large concentration of sugar in the phloem. In addi-
tion, we have assumed that the phloem is in isolation, whereas it is actually
in close proximity to the xylem, which influences the dynamics of transport
(Holtta, 2006; Lacointe & Minchin, 2008; Hall & Minchin, 2013). Therefore,
future work should include these effects.

In summary, this work highlights the role of diffusion in sugar transport
within the phloem. Due to the biological uncertainty regarding the nature
of sugar loading and unloading, ignoring diffusion effects might lead to er-
roneous results. Therefore, to improve the accuracy of phloem modelling,
diffusion should be included and further experiments should be carried out
to determine the mechanisms and magnitudes of sugar loading and unload-
ing.
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Appendix A: Scaled equations and boundary con-
ditions

The scaled fluid transport and concentration transport equations are

d*w' - dc
1+6—8 _ 5B
€ paiak w' — H—dz , (A1)
dct . - dw’ 1 d?*¢ _
o—x 9t i d—X i - — X A9
€W + e Xe dz+Pedz2 € , (A.2)

in the bulk regions. In the leaf, stem, and root zones, the left-hand-side
boundaries are z = 0, z = 21, and z = zo respectively, and we rewrite z in
terms of a boundary layer variable 2 as; z = e®z in the leaf, z = z; +*z°
in the stem, and z = zp + €2 in the root. Therefore, the equations in the
LHS boundary region are

2,5 ‘
617a+67ﬁ% — Sta—Bgi _ FI;CZ., (A.3)
€T X
dét dw' 1 dc i
€a+6fxd7;wz + €a+6fxczd71;:i de; — _67+2a7XFz' (A.4)

In the leaf, stem, and root zones, the right-hand-side boundaries respectively
are z = z1, 2 = z2, and z = 1, and we rewrite z in terms of a boundary layer
variable 3’ as; z = 21 — €y in the leaf, z = 29 — €y in the stem, and
z = 1 — ¢*y® in the root. Therefore, the RHS boundary region equations
are

e adPwt 4. —dd
(l—a+d BW — Sta ﬁwUerTﬂ’ (A.5)
dct . dw' 1 d*c i
— eatox d;i o' — e de‘ Pe dyic,g = -, (A.6)

The boundary conditions at z = 0 and z = 1 become

ol =0, =9, at b =0, (A.7)
dcft

o =0, aF = T XPef at y®=0. (A.8)
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The continuity conditions at the leaf-stem boundary are

ek =7, Swl = fw?, (A.9)

L X S —L -5

§ L —L eX de 5§ S -8 eX de 5dw 5d’w
R —_ —_—= . A.10
6Cw—i_Pedz 6cw+Pedz “dz “dz ( )
The continuity conditions at the stem-root boundary are

=l e’ =k, (A.11)

S 5% R -5 ~R

s 5_g €<dc s R_p €Ydc sdw sdw A

R . — = 12
Ecw+Pedz Ecw+Pedz’ Tz % az ( )

Appendix B: Analytical solution procedure

Here we give the procedure to determine ¢! and @' at O(e”) and O(e%).
The overall method involves solving the fluid transport and concentration
transport equations in each region, applying the boundary conditions at z =
0 and z = 1, matching the solutions across the regions to obtain composite
solutions in each zone, and finally applying continuity conditions at z = z;
and z = zy to fully determine the solutions. We start at Region 1 which is
in the leaf zone.

B.1 Region 1

This region represents the LHS boundary layer in the leaf zone. The solution
in Region 1 has to match to the solution in Region 2 and also satisfy the
boundary conditions

b+ e%cf + ek + O(e%) =@, at 2 =0 (B.1)
ol + e%'u_)lL + ewd + O(e%) =0, at z¥ = 0. (B.2)
The O(€°) terms of equations (21) and (22) are

gl 1 ed
dzl 7 Pedxl?2 7

(B.3)

and applying the boundary condition (B.1), the solution for c§ in Region 1
is cf = ¢. The O(e%) terms of equations are (21) and (22) are
g der L d’ef

dal ’ Pe dzLl? ’ (B.4)

and applying the boundary condition (B.1), the solution for ¢} in Region 1
is ¢ = 0. The O(¢) terms of equations (21) and (22) are
d*w . s dck

deQ :U_)O _deiL’ (B5)
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L =L 2.L
deg _;  pdwy 1 d°cy

7 [R— g O, B.6
deL™0 TGl T P dgL? (B.6)
L
and substituting c§ = ¢ into (B.6) and integrating, we obtain ;l;—% =

—Peqbwg + k1 where k; is an unknown constant. Substituting back into
(B.5) yields
d*wi
dxLl?

= o} (1+ HPe¢) — Hk;. (B.7)

Solving (B.7), applying the boundary condition (B.2), and neglecting any
exponentially growing terms, we obtain

ki H —
o = (1 _ e*VHHPeWL) . (B.8)
1+ HPeo

The constant k; can only be determined by applying continuity conditions
between the plant zones but this can only occur once the composite solution
is determined for the entirety of the leaf zone. We therefore proceed to
Region 2 where we repeat this solution procedure.

B.2 Region 2

This region represents the central bulk of the leaf zone and the solution in
this region has to match to both the solution in Region 1 and Region 3. The
O(€") terms of equations (19) and (20) are

— % 1 d*ck

_ =0 _ =0 B.9
dz ’ Pe dz? ’ (B.9)

such that ¢ in Region 2 is a constant, which upon matching to Region 1
gives ¢} = ¢. The O(e%) terms of equations (19) and (20) are

L Hﬁ de§ o pdog 1 dcf

0= 2 o T dz Pe dz?

T 7 = —FF, (B.10)

where Fl' = ntcl + a%. Substituting ¢ = ¢, solving Equation (B.10), and
matching to the solution in Region 1, we find

Pe _. 22k
L L 1
= | —Fy— 4+ — B.11
“ HPeqb—i—l( 02+Pez>’ (B-11)
HP _ k
wb = _21C (LRl ) (B.12)
HPe¢ + 1 Pe
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B.3 Region 3

This region represents the RHS boundary layer in the leaf zone. The solution
in Region 3 has to match to the solution in Region 2 and satisfy continuity
conditions at z = z1. The O(e") terms of equations (23) and (24) are

gl _o LA
dyL ’ Pe dyL2 ’

(B.13)

such that cé in Region 3 is a constant, which upon matching to Region 2
gives c§ = ¢. The O(e%) terms of equations (23) and (24) are
dek 1 dc}

= — = B.14
dyL 07 Pe dyL2 07 ( )

which indicates that ¢ in Region 3 is a constant and we let ¢ = B¥. The
O(e) terms of equations (23) and (24) are

oy, - dck
dyLQ = Wy HW? (B15)
dC([)/ _I deé/ 1 dQC%
_dyiLwO — CO dyL + ?edyLZ = O, (B16)
and substituting ¢f = ¢ into (B.16) and integrating, we obtain 32—22 =

—Pe¢w§ + B where BY is an unknown constant. Substituting back into
(B.15) yields

d*>w
dyL2

=w} (1+ HPe¢) + HBY. (B.17)

Solving for ﬂ)é and neglecting any exponentially growing terms we obtain

_ 7T RL
Wk = AyeV Pyt _HBy (B.18)
HPep+1

Matching to Region 2 gives

Pe Flz2 k [
L_ FPed 1 <_ 02 Ly Plezl> ., BY=PeFlz — k. (B.19)

Combining the solutions for ¢ and w for all three regions within the leaf zone
we obtain the following composite solution for the leaf zone

ck = ¢, (B.20)

5) 2
ok % (_ Q. "’_12> , (B.21)
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HP - k -1 -3

where k = HPe¢ + 1 and where k; and A; are unknown constants to be
determined by applying continuity conditions at the zone boundaries. Before
continuity can be applied, we first calculate the stem and root composite
solutions. For brevity, we do not show the details here, but we do use the
same procedure outlined in Sections B.1 to B.3 for the leaf zone.

B.4 Applying continuity conditions

Solving at O(€°) in the remaining 6 regions we determine that cg is constant
everywhere Assuming that ¢g is continuous across the zone boundarles we
find that cfy = ¢ for all nine regions. Solving at the next order, 0(62), we
find the following composite solutions in the stem and root zones

S = ]I:e < FO 2, ko + k3> (B.23)
0§ = T22 (RS2 4 k) + AgeVRTHC0 g VR TR By
cft = P/j (—F(FZ; + (FE— f)z+ k:4> , (B.25)
) = ﬁf “(—Ffz+ (FF - ) + Eief eVRTHI) 4 g VR,

(B.26)

where k1, ko, k3, k4, A1, Ao, A3, A4 are unknown constants to be determined
from applying continuity boundary conditions.

As can be seen, the solutions for @} contain exponential terms due to
the boundary layer terms. This implies that terms of a higher order (for
example ¢} and w;?) can contribute to the flux continuity conditions due to

the presence of ¢~ 2 within the exponential. For example if we write
Bt = i bulk wi,empee*%f(z) A= chbulk Ci,expee’%f(Z) (B.27)

then the derivatives, d% and dcz , which appear in the flux continuity con-

ditions become

dwi :E_% (dfO _lemp € 2f0>

dz dz

div zbulk div zea:p 1 d . 1
+e< o 20 by Dgiemein) Loed), B2y
z z

dz
ﬁze_l dfO zezp € 2fo
dz dZ

N
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d i,bulk d L,exp 4 d . 1
b (C?z PG oy B per ) o). (Ba9)
z z Z

Since ¢ = ;" = 0 and dcébz " = 0, the first contribution to d% is at
O(e%). The consequence of this is that the exponential terms of ¢ first have
to be calculated before continuity conditions can be applied and ¢} and u_)é
can be fully determined.

Solving for ¢} in all the Regions using the same procedure as in Sections
B.1 to B.3, and then applying the continuity conditions we find

ky = Pe (21 (Fy — F)) + 2 (Fy — FgY) + Fgt — f) (B.30)
ky = z(Fy — FRY+ FE - f, (B.31)
s — Zj (FE— FS), (B.32)
22 _ 22 - _
ke =5 (F5 = Fo) + 5 (Fg = F). (B-33)
A=Ay = A3 = Ay =0, (B.34)

indicating that, at this order, there are no boundary layer terms near z; and
2z9. Finally, we calculate the exponential terms of ¢4 in all Regions to fully
determine ¢, and w}, the solutions of which are given in Appendix C. At
this order, we find that boundary layer terms are non-zero at z; and zo and
hence we terminate the calculation here.

Appendix C: Analytical solution

: : R i
Here, we provide the solutions for cj, ¢, ¢, ¢4 w and W

cf =c = ¢ = o, (C.1)
P 2

= ; ( FF 1@22) , (C.2)
P 2

s :76 ( ES 5 Fhoz + k3> (C.3)
P 52

cR :?e ( B+ (B = )z + k4> (C.4)

L _te ks ot Hok1\ - FL2 4 FOLk}zS N k322
2 = \Pe” K3 2Pe 2 Pe?

Pe Flz4 Kz k HPeqb b
gl (Z2) (=0 1 ! -(£)2=
7 <n> ( 24 P66> P ! (©5)

Pe Pe FS2Y koz® k22
S _to 2 3
cy = - (k62+k7) ( KJ) < Y + 6 + 5 >
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5.\3 [ pS2.4 ] 3 2 S 2
/P F FSk ks — FRk
H< €)<0z02z+(2 oka) 2

3 5 9 + kﬁngZ) ) (06)

— 3 — — 7
£ (%) (F _(FR - D) R

((FF - 1)* = Fftha ) 2
+ 5 +ka (Fy' = f) 2
(P (LR (BE-DF w2 (R 5N
T\ k 24 6 2 3 2™
TS 2 7 1
HP 5
g = PEO (2)%0-2), (c.7)
K2
The exponential terms of c3 are
cbezy _ _RsHPeO —cyhe  AsPeS (s, (C.8)
K2 K2
c?,exp _ A6P16¢€—(%)%(z—21) _ A7P1€¢e—(%)%(z2—2)7 (Cg)
K2 K2
— — — R —
PP (H5 = [+ ) 7P 1 :
Reap _ 2 Ly HPe (B2 ) as)
€ = s ( L+ 2 (1 z)q§<6>>e
AgP ky3
8 1€<Z5e (£)2(z=2), (C.10)
K2
HPe , _ ki H 2%
L_ ¢ (- oLZ) M <1 _ e—(é)gz> , (C.11)
K
HP
ws = . C(—FSz+ky), (C.12)
HPe , - “r gy, HPef _(x)3
Wy = — C(~Ffz+ (B - D)+ ﬁef‘f_(?)ﬁ(l‘z)v (C.13)
ok :Hk5 e E 3 FF223 3 3F0Llf1z2 N k3z
1 K K 2 2Pe Pe?
_ /Pe\? Flz3 k22 HE 5\3 k)3
_ =L e _to 1 B o 7(7)2,2 7(7)2(z172)
q S ‘ Ase™
</€> ( 6 * P62> K ° s ’
(C.14)
_ HPe _ Pe\? [ FS2,3 3F¥ koz? _
wf: - /{:6—H2 <H> < 02 . 02 —f-(k%—FéSkg)Z—l-kgkg)
_(Pe\® [ F§2 §
— % H - _Zo” +k22 + k3z
K 6 2
1 1
b Age (e | g (3 (c15)
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Y= . 2 2

_ 3 /- _ _
—R ﬁ2<P€> (F(FQZ?’?’(FOR_f)F({%ZQ

A
K 6 2 2

(C.16)

The constants ki to k4 and Ay to A4 are given in equation, and ks, kg, k7,
kg, A5, Aﬁ, A7, Ag are given by

H Pe _
As = —+ (Fy - F), Ag = As, (C.17)
2K2
H Pe
K2

AL Pe?22 2 = = = = 7
fy = - 21 <z1 <3F0L - F§> + 20 (F§ — FfY) + Fff - f)
(z1 — 22)1751562

_ p I
+ I (- RR S F (e — @) (20 + 22)

+ FOR(Z1 + 2’2)(2’2 — 1) + f(zl + 22))

ﬁRP_€2(ZQ - 1) ( B

z%F‘OL + Fﬁg(zl + 29)(21 — 22)

+ 2K
9 _ _
S (2n+ (e — 1)+ f + 1>), (C.19)
7% Pez - =
ke =1 2 AFF - FO (322 — 223) — Fllzg(zp — 1) — 2of
2K 3
EPe(zy —1 _ _
n é; ) < — Z%FOL + FOS(zl + ZQ)(Zl — 22)
9 _ _
"3 (22 + Dz = 1)+ f(z2 + 1)), (C.20)
ky = — S—Pe Hz{(FE - F5)?
HPe _ _ _
PO (oo (R F) + 2al B — FR) + = )
/{2
" Pez} L S = R
TP (21(5Fy — 8Fy) + 822(Fy — Fi') + 8Fy* — 8f)
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=S PD,.3 B B _
TP (6EF — OFS) + 8=(ES — EF) + 8FR —8f), (C.21)

24K
— 3 —
Pe"H _ _
k8:—W(Z%(FoL—FoS)+Z (F§ — F)”
HPe _ _
+ EC0 (B — B+ 2ol B — B + B~ 1)
/-;2
_RP 2 9 B B B B B B
— o (6 — FS) + (655 — 9Ff) + 82(Ff - f)
K
_Lp 2 3 B B B
Lot (a5 — 8FS) + 820(F§ — FfY) + 85" - 8f)
K
-S5 2 _ B
U Pe251212 22) (ng(9z% + 102129 + 522) (21 — 22)
— 622 FE (21 + 29)
+ 8F (20 — 1)(2 + 2120 + 23) + 8F (22 + 2120 + zg)) (C.22)
where FY = 7lck + 6T, Fy =q%c +6° Flt =gl 4 67
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