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The Antarctic subpolar seas are of great climatic importance due to their 19 

vigorous interactions with the atmosphere and cryosphere, which influence 20 

continental deglaciation, global sea level, and the production of dense bottom 21 

waters. However, understanding these interactions and their impacts is 22 

confounded by sea ice, which blankets the region seasonally. In particular, the 23 

regional oceanic response to recent changes in Antarctic freshwater discharge is 24 

largely unknown. Here, we use satellite measurements of sea surface height 25 

(SSH) during ice-free months and an ocean circulation model to show that over 26 

the last two decades (1992-2011) Antarctic coastal sea level has risen at least 2 ± 27 

0.8 mm yr-1 above the regional mean south of 50°S, and that this signal is a steric 28 

adjustment to increased glacial melt from Antarctica. Our findings document the 29 

strength of the sea level response to accelerating Antarctic discharge, and 30 

demonstrate a significant climatic perturbation to the cryospheric forcing of the 31 

Southern Ocean.  32 
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  33 

The Antarctic subpolar seas are a region of intense and complex interactions between 34 

the atmosphere, ocean and cryosphere, with an influence on Earth’s climate that is 35 

greatly disproportionate to their area. Air-sea-ice interactions in these seas are central 36 

to the stability of the Antarctic Ice Sheet and global sea level1,2, the volume and extent 37 

of Antarctic sea ice3, the Earth’s albedo4, and the generation of the Antarctic Bottom 38 

Water (AABW) that cools and ventilates much of the global ocean abyss5. The 39 

subpolar seas are currently experiencing a significant increase in freshwater discharge 40 

from the grounded Antarctic Ice Sheet1 and its fringing ice shelves1,2,6. The current 41 

state of knowledge concerning the impact on the adjacent ocean of this rapid change 42 

in freshwater forcing is, however, extremely limited, consisting of a few suggestive, 43 

yet highly localised and temporally sparse time series of in situ hydrographic 44 

observations7-13. Here, we use multiple lines of evidence (satellite measurements of 45 

SSH, in situ hydrographic measurements, and results from ocean model simulations) 46 

to reveal the local response to the recent Antarctic freshwater imbalance. 47 

 48 

The grounded Antarctic Ice Sheet is currently losing mass overall through increased 49 

ice discharge, but gaining mass in places through enhanced snowfall1,14.  With modest 50 

variability in evaporation and precipitation in subpolar waters15, the increased 51 

discharge is expected to freshen the nearby ocean. Such freshening should be 52 

attributable to an ‘excess’ freshwater discharge above a baseline rate consistent with a 53 

steady ocean salinity. Discharge from the grounded ice sheet increased by 150 ± 50 54 

Gt yr-1 between 1992 and 2010 (ref. 14), implying an average of 75 ± 25 Gt yr-1 55 

excess discharge. An alternative estimate of the grounded ice contribution can be 56 

derived by assuming that the excess discharge is equal to net losses from West 57 
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Antarctica and the Antarctic Peninsula, which sum to 85 ± 30 Gt yr-1 between 1992 58 

and 2011 (ref. 1). Additional mass loss is occurring via the thinning of floating ice 59 

shelves. Whilst this mass loss is more uncertain than that of grounded ice, it may be 60 

estimated from satellite measurements and modelled surface accumulation, which 61 

indicate floating ice thinning of 280 ± 50 Gt yr-1 between 2003 and 2008 (ref. 16-17) 62 

and 115 ± 43 Gt yr-1 for 1994-2008 (ref. 6). Finally, a series of large ice-shelf retreats 63 

has occurred along the Antarctic Peninsula that is not included in the previous figures, 64 

and which averages 210 ± 27 Gt yr-1 between 1988 and 2008 (ref. 6). However, it is 65 

unclear how much of the freshwater from these breakups was injected into the ocean 66 

over the Antarctic subpolar seas, and how much removed to distance by icebergs.  All 67 

the above estimates represent changes since the early 1990s, but in situ measurements 68 

suggest that the ocean was already freshening then, so these values constitute a lower 69 

bound for the actual excess discharge above a ‘steady salinity’ rate. 70 

 71 

The excess freshwater flux to the Antarctic subpolar seas in the last two decades is 72 

estimated hereafter as the sum of mass losses from the thinning of grounded and 73 

floating ice, ~350 ± 100 Gt yr-1. The bulk of this discharge is focussed around the 74 

Antarctic Peninsula and the Amundsen Sea. This excess freshwater input is 75 

anticipated to freshen the Antarctic subpolar seas, and to raise regional sea level 76 

through both steric (density-induced) and barystatic (mass-induced) effects. 77 

Consistent with this, the few available time series of in situ hydrographic 78 

measurements, collated in Figure 1, suggest that Antarctic subpolar waters have 79 

undergone a marked freshening (by O(0.01) per decade) in recent decades7-13. An 80 

important limitation of these observations is their strong spatial bias to the Ross Sea, 81 

where tracer analyses suggest the implication of glacial meltwater in inducing the 82 
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local freshening7. If the freshening is as widespread as suggested by the very sparse in 83 

situ measurements, and if the increase in Antarctic freshwater discharge is indeed the 84 

causal factor, we expect sea level rise to be especially pronounced across the 85 

Antarctic subpolar seas, and to occur at a rate commensurate with the increase in 86 

freshwater input modulated by ocean dynamics. 87 

 88 

To test this, we examine the evolution of sea level around Antarctica over the last two 89 

decades using satellite measurements of SSH. The primary data analyzed are gridded 90 

Maps of Sea Level Anomaly (MSLA) generated by AVISO (Archiving, Validation, 91 

and Interpretation of Satellite Oceanographic Data) for 1992-2011 (ref. 18; analysis 92 

methods and uncertainties are discussed in detail in Suppl. Mat.). Satellite-derived 93 

measurements of sea level cannot be readily obtained in the presence of sea ice, so 94 

our analysis focuses on the largely ice-free summer months (January-April). Using 95 

data from these months, the linear trend in SSH was derived and the global-mean rate 96 

of sea level rise for summer months (~3.2 mm yr-1 between 1992 and 2012) 97 

subtracted to reveal the local anomaly (Fig. 1).  98 

 99 

Over the mid-latitude Southern Ocean, the sea level rise anomaly varies zonally, with 100 

alternating sign (Fig. 1a). This pattern arises from the superposition of sea level 101 

impacts caused by various large-scale modes of atmospheric variability19. At high 102 

latitudes (south of ~62°S), however, our analysis reveals a circumpolar, 103 

topographically-influenced signal of anomalously rapid sea level rise that has not 104 

been observed previously (Fig. 1b), occurring at 1-5 mm yr-1 above the global mean, 105 

with local peaks in the Ross Sea and Prydz Bay. The northern boundary of this rapid 106 

sea level rise is identified here as the line where the SSH trend anomaly first changes 107 
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sign or reaches a minimum with increasing distance from Antarctica (Fig. 1a). The 108 

mean sea level rise south of this boundary is at least 2 ± 0.8 mm yr-1 above the 109 

regional mean south of 50°S (1.2 ± 1.5 mm yr-1 above the global-mean sea level rise). 110 

Whilst the signal covers the broad Antarctic subpolar seas, the signals are most 111 

significant over the continental shelves, which are our primary focus. 112 

 113 

Although its statistical significance appears modest, the above quantification is a 114 

highly conservative estimate of the regional sea level rise anomaly induced by 115 

freshwater forcing. This is because the global-mean rate of sea level rise contains a 116 

large thermosteric contribution from the low- and mid-latitude oceans that is unrelated 117 

to polar processes20-21. A more appropriate approach to isolating the local effect of 118 

Antarctic freshwater discharge would entail the subtraction of the global-mean rate of 119 

barystatic sea level rise from the measured SSH trend (see Suppl. Mat.). This rate is 120 

unlikely to exceed 1.5 mm yr-1 (ref. 16, 20-21), resulting in a mean sea level rise 121 

across the Antarctic subpolar seas of 2.8 ± 1.5 mm yr-1 above the global barystatic 122 

mean. However, the global-mean rate of barystatic sea level rise has substantial 123 

uncertainty, so hereafter we consider only the more conservative estimate relative to 124 

the global-mean rate of sea level rise. 125 

 126 

The temporal progression and regional distribution of SSH change across the 127 

Antarctic subpolar seas (Fig. 2) reveal several important features. For example, SSH 128 

displays a pronounced seasonal cycle that is most likely forced by seasonal 129 

fluctuations in upper-ocean temperature and salinity22. While this seasonal cycle is 130 

larger than the interdecadal sea level rise anomaly, it is distinct from the latter: the 131 

linear trend in SSH anomaly affects all stages of the seasonal cycle (see Suppl. Mat.). 132 
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 133 

To assess whether the enhanced rate of sea level rise measured across the Antarctic 134 

subpolar seas is consistent with forcing by the recent acceleration in glacial discharge 135 

from Antarctica, we consider three distinct lines of evidence. First, we use a global 136 

ocean circulation model forced with realistic rates of Antarctic freshwater discharge 137 

to simulate the regional response to increased discharge (see Suppl. Mat.). All model 138 

experiments produce a striking, circumpolar, steric sea level rise anomaly across the 139 

Antarctic subpolar seas that strongly resembles the altimetric observations, with a 140 

subpolar sea-average anomalous rise of 1-5 mm yr-1 for a freshwater release of ~300 141 

Gt yr-1 (the approximate excess Antarctic freshwater discharge averaged over the last 142 

20 years) centred in the Amundsen-Bellingshausen sector (Fig. 3). Remarkably, the 143 

modelled anomalous SSH signal is comprised of comparable halosteric and 144 

thermosteric contributions, with the former being focussed in the upper ocean and the 145 

latter at depth. Thus, the model suggests that the directly-forced halosteric sea level 146 

rise around Antarctica is amplified by a positive thermosteric feedback. The barystatic 147 

contribution of increased Antarctic freshwater discharge to the spatial distribution of 148 

the sea level rise signal is shown to be negligible by the simulations. 149 

 150 

Second, we quantitatively compare the altimetric results with recent observational 151 

estimates of steric sea level rise around Antarctica. The altimetric rates of Antarctic 152 

coastal sea level rise anomaly are found to be in broad agreement with (slightly 153 

exceeding) the halosteric sea level rise contribution of ~0.5-3 mm yr-1 implied by the 154 

available in situ measurements of interdecadal upper-ocean freshening around 155 

Antarctica7-13 (Fig. 1 and Suppl. Mat.), in line with model predictions of an important 156 

upper-ocean halosteric contribution to the anomalous SSH signal. Similarly, Southern 157 
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Ocean deep and bottom waters have warmed significantly in the period of our study, 158 

inducing a thermosteric sea level rise of ~1 mm yr-1 (ref. 23) that is comparable to the 159 

signal discussed here. While the spatial footprint of the deep thermosteric change 160 

extends well beyond the Antarctic subpolar seas23, in poor agreement with our 161 

observed signal and model results, the lack of spatial correspondence between 162 

thermosteric effects and regional sea level trends may relate to other factors, such as 163 

changes in wind forcing or self-gravitation (see Suppl. Mat). Thus, the existence of a 164 

significant contribution of deep-ocean thermosteric adjustment to the observed 165 

Antarctic coastal sea level rise does not conflict with available observations. 166 

 167 

Third, if it is assumed, based on the preceding modelling and observational evidence, 168 

that the Antarctic coastal sea level rise signal is partitioned approximately equally 169 

between a directly-forced halosteric component and a positive thermosteric feedback, 170 

the excess freshwater input required to explain the measured signal may be estimated. 171 

This involves multiplying half the linear trend in ocean volume inside the signal’s 172 

boundary (11.6 km3 yr-1; 1.4 mm yr-1) by a modified ‘Munk multiplier’ (36.7; ref. 24; 173 

see Suppl. Mat.), indicating a requirement of 430 ± 230 Gt yr-1 of excess freshwater 174 

input above the nominal rate needed to maintain a steady ocean salinity. This agrees 175 

with the increase in Antarctic melt observed in the last two decades (~350 ± 100 Gt 176 

yr-1), and lends support to our initial hypothesis that the recent imbalance in the 177 

Antarctic cryosphere is driving pronounced and widespread changes in the salinity of 178 

the high-latitude Southern Ocean. 179 

  180 

Finally, we note that the observed anomalous SSH signal may also be influenced by 181 

several tertiary forcing mechanisms, which may account for at most ~10% of the 182 
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signal and are discussed comprehensively in Suppl. Mat. The most significant of these 183 

is the ocean’s barystatic response to wind forcing. The gravitational effect of 184 

Antarctic ice mass loss reduces relative sea level rise in the Amundsen and 185 

Bellingshausen seas by ~1 mm yr-1 (ref. 25). Other mechanisms, such as upper-ocean 186 

warming, precipitation-induced freshening or the ocean’s barystatic response to the 187 

acceleration in Antarctic freshwater discharge, were found to be insignificant. 188 

 189 

In summary, austral summer satellite altimetry measurements show a pronounced 190 

circumpolar rise in sea level across the Antarctic subpolar seas that significantly 191 

exceeds the global mean. The trend contains a significant halosteric contribution that 192 

originates in the increasing discharge of freshwater from Antarctica. Thermosteric sea 193 

level rise from the observed warming of the deep Southern Ocean, which has itself 194 

been linked to the freshening of the shelf waters ventilating AABW (ref. 23,26; see 195 

also Suppl. Mat.), also contributes to the signal. Our findings therefore reveal that the 196 

accelerating discharge from the Antarctic ice sheet has had a pronounced and 197 

widespread impact on the adjacent subpolar seas over the last two decades, and 198 

indicate that a significant climatic perturbation to the cryospheric forcing of the 199 

Southern Ocean is underway.  Given the key dependence of the Southern Ocean on 200 

freshwater forcing, this perturbation has major implications for the region’s 201 

stratification, circulation and important biogeochemical and ecological processes26-29.  202 

 203 
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 334 
Figure legends: 335 

 336 
Figure 1 | Regional anomaly in summer (January to April) sea level trend, 1992-337 
2011. The anomaly is calculated relative to the full (barystatic and steric) global-mean 338 
rate of sea level rise for summer months. a. Circumpolar view, showing the northern 339 
boundary of the sea level anomaly in black. Markers indicate in situ estimates of 340 
interdecadal freshening, shaded by the magnitude of the corresponding halosteric sea 341 
level rise. The information for each marker is given in the table in c. The 3000-m 342 
isobath is shown in green. b. Zonal-mean regional sea level rise. Shading highlights 343 
the 2-σ zonal variation. 344 

 345 
Figure 2 | Time series of sea level anomaly in the Antarctic subpolar seas, 1992-346 
2011. Dotted lines show the full time series, and solid lines the ice-free summer 347 
month record. Black: circumpolar average south of the signal’s boundary (trend = 1.2 348 
mm yr-1); light blue: Bellingshausen and Amundsen seas (BA; 135-60°W; trend = 0.2 349 
mm yr-1); dark blue: Ross Sea (RS; 130°E-135°W; trend = 1.3 mm yr-1); red: 350 
Australian-Antarctic basin (AA; 50-130°E; trend = 1.9 mm yr-1); green: Amery Basin 351 
(AB; 10-50°E; trend = 1.0 mm yr-1); pink: Weddell Sea (WS; 60°W-10°E; trend = 0.5 352 
mm yr-1). 353 
 354 
Figure 3 | Ocean model simulation of the regional anomaly in sea level trend, 355 
1992-2007. This is generated by subtracting a control run with a ‘background’ 356 
Antarctic freshwater forcing from an experimental run perturbed by an excess 357 
Antarctic freshwater runoff of 300 Gt yr-1 (see Suppl. Mat.). The 3000-m isobath is 358 
indicated in green.  359 
 360 
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