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Abstract

An accurate Cartesian-grid treatment for intermediate Reynolds number fluid-solid interac-
tion problems is described. We first identify the inability of existing immersed boundary
methods to handle intermediate Reynolds number flows to be the discontinuity of the ve-
locity gradient at the interface. We address this issue by generalizing the Boundary Data
Immersion Method (BDIM, Weymouth and Yue, J. Comp. Phys., vol. 230, 2011), in which
the field equations of each domain are combined analytically, through the addition of a higher
order term to the integral formulation. The new method, featuring a second-order convo-
lution, retains the desirable simplicity of direct forcing methods and smoothes the velocity
field at the fluid-solid interface while removing its bias. This results in accurate flow predic-
tions and pressure fields without spurious fluctuations, even at high Reynolds number where
the method is second order in the L, norm. A treatment for sharp corners is also derived
that significantly improves the flow predictions near the trailing edge of thin airfoils. The
second-order BDIM is applied to unsteady problems relevant to ocean energy extraction as
well as animal and vehicle locomotion for Reynolds numbers up to 10°.

Keywords: Cartesian-grid, Immersed Boundary method, fluid-body interactions,
intermediate Reynolds numbers, airfoil, sharp edge

1. Introduction

Immersed Boundary (IB) methods have become popular in the last ten years for simu-
lating flows with complex geometries and moving boundaries. IBs remove the effort needed
to generate a body-fitted grid and enable the use of efficient numerical methods that can be
easily solved in parallel (see [1] for a review of IB methods). This relative simplicity makes
IBs particularly attractive for engineering applications and the study of animal locomotion.
However, these applications are often characterized by large Reynolds numbers, which we
will show are particularly challenging for IB methods.

Introduced by Peskin in the 1970s [2] to simulate heart valves, IB methods were first
developed to solve the coupled motion of an elastic boundary immersed in a viscous fluid
on a fixed Cartesian-grid. The effect of the IB on the surrounding fluid is simulated by the
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addition of a force density (which represents the force of the surface of the object on the fluid)
to the Navier-Stokes equations [3]. These methods have then been extended to fluids with
solid boundaries by defining artificial body forces [4]. Many options have been explored for
defining the forcing (structure attached to an equilibrium with a spring [5], explicit feedback
controller [4], porous medium [6]) but all require user specified parameters and are subject
to severe stability constraints due to their stiffness [7].

To overcome these limitations, Fadlun et al. [7] proposed a formulation in which the
forcing is directly estimated from the discrete problem such as to impose the desired velocity
on the boundary. This method and the many variations that have subsequently appeared
in the literature are direct forcing methods and have been widely used for flows in which
the motion of the boundary is prescribed. A well known issue with this class of algorithms
is their tendency to introduce large non-physical pressure oscillations (see [8] for example).
Muldoon [9] even showed that the pressure could locally increase without bound as the time
step goes to zero. These oscillations are caused by the lack of smoothness of the velocity
across the boundary before the projection step [10]. A related issue is that these methods
account for the boundary in the momentum conservation equations but not in the mass
conservation equation. Uhlmann [11] proposed an alternative direct-forcing formulation in
which the forcing is first computed on Lagrangian markers, then spread onto the neighboring
Eulerian nodes. While not directly addressing the mass conservation issue, this formulation
later generalized by [12] and [13] has been shown to significantly reduce undesirable force
oscillations.

In sharp-interface approaches, the communication between the moving boundary and the
flow solver is usually accomplished by explicitly modifying the computational stencil near the
IB. Unlike forcing methods, sharp-interface approaches alter both conservation equations,
usually using a ghost-fluid [14] or ghost-cell method [15, 16]. But Seo et al. [17] showed
that even with such treatment, local mass conservation is violated which produces pressure
fluctuations. Instead, they suggest the use of cut-cell finite volumes that reshape the cells
in the vicinity of I1Bs [18, 19, 20]. However, cut-cells in three dimensions can produce seven
different polyhedral control volumes and arbitrarily small cells. The small cells need to
be merged to avoid stability problems and “freshly cleared” cells that appear with moving
boundaries need a careful treatment in order to avoid pressure fluctuations [19, 20]. Due
to all these considerations, sharp-interface approaches, and especially cut-cell methods have
lost the simplicity which was the main appeal of IB methods.

An alternative approach, called the Boundary Data Immersion Method (BDIM), has been
proposed by Weymouth and Yue [21]. Similarly to Uhlmann’s direct forcing formulation
[11, 12, 13], BDIM relies on convolving the equation governing the motion of the immersed
boundary with the Navier-Stokes equations. The boundary, however, is represented by a
distance function rather than Lagrangian points. The fundamental difference between BDIM
and direct forcing methods, though, is an additional modification to the pressure term anal-
ogous to the discrete operator adjustments of sharp-interface methods such as [19] and [14],
avoiding the projection issues discussed in [10]. Unlike sharp-interface methods, BDIM alters
the analytic equations near the embedded boundary (and not the discrete operators), which
makes the method easy to implement in existing flow solvers regardless of the geometry be-
ing simulated. This enables BDIM to predict a smooth pressure field even for flow featuring
moving boundaries, while retaining the simplicity that makes IBs attractive. This method
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Figure 1: Velocity profile and its derivative at the wall in a one-dimensional channel flow of height
L for Re = L?/(vt) = 100 and 1000.

has proved its versatility by successfully simulating a variety of low Reynolds number and
multi-phase flows [22, 23, 24, 25].

BDIM can also be compared with the volume-penalization IB method of Kajishima [26],
wherein the interpolating function represents the volumetric fraction of the fluid in the com-
putational cell. BDIM could reproduce this property using a linear kernel, but in practice we
use a smoother kernel to help avoid spurious force oscillations as discussed in [27]. Addition-
ally, because in BDIM the interpolation coefficient is only a function of the distance to the
boundary and is independent of the grid, its calculation is trivial compared to the volume
fraction. Finally, like direct forcing methods, Kajishima’s method estimates the pressure
without taking the solid into account whereas, as will be discussed in Section 2.4, BDIM also
modifies the pressure equation.

The next big challenge for IB methods lies in moderate to high Reynolds number flows,
which give rise to fundamental problems for existing approaches [1, 28]. The source of
these problems is illustrated here by considering a one-dimensional unsteady channel flow in
which flow of kinematic viscosity v with uniform z-velocity U suddenly enters a channel with
opening 0 < y < L at time ¢t = 0. Figure la shows the velocity profile u(y,t)/U near the
boundary for two Reynolds numbers Re = L*/(vt) = 100 and 1000 computed on a body-
fitted grid and Figure 1b shows the corresponding derivatives. The solution is uniformly zero
in the solid domain (y < 0) whereas the solution in the fluid (y > 0) has a non-zero slope
at the interface. Therefore, even though the velocity field is continuous across the boundary,
its first derivative is not. Guy [10] showed that the pressure fluctuations in direct forcing
methods are caused by the incompatibility of smooth IB methods with this discontinuity in
the first derivative of the velocity. The higher the Reynolds number, the larger the jump
in the velocity derivative, exacerbating this problem and requiring special techniques for
accurate simulation.

In all direct forcing methods as well as in BDIM, a weighted average between the fluid and



solid velocities is used to estimate the fluid velocity near a solid boundary. Such a treatment
will be referred to as 1st order in the rest of this paper. While a 1st order treatment of the
boundary can allow accurate predictions at low Reynolds numbers, they are not appropriate
for flows characterized by a thin boundary layer.

In this work we extend [21] by using the analytic BDIM formulation to establish a higher
order formulation of the near-boundary interaction between the fluid and solid domains. The
addition of the higher order term improves the accuracy of the method at high Reynolds num-
ber while generating a smoother velocity profile that reduces pressure fluctuations. We show
through high resolution simulations that this analytically derived first-moment correction
enables accurate simulations of high speed flows without introducing any new model param-
eters. Section 2 develops the new second-order BDIM approach. Specifically, Section 2.2
proposes an analytical equation that generalizes the convolution evaluation of [21] through
the addition of higher order terms. Comparison of the new formulation with that of [21]
and a direct forcing method is detailed in Section 2.3 in the context of a one-dimensional
channel flow. Finally, a finite volume implementation of the proposed method is presented in
Section 2.4. The generalized BDIM formulation is then applied to two and three-dimensional
fluid-solid systems in Section 3, which demonstrate its improved accuracy for intermediate
Reynolds number flows. Two-dimensional flow past a cylinder is used in Section 3.1 to assess
the numerical properties of the method as well as present and validate the force calculation
method. The new formulation is then tested on flows relevant to applications of practical
interest: unsteady two and three-dimensional viscous flows past a stationary and a moving
airfoil in Section 3.2 and 3.3, as well as a three-dimensional multi-body application in Section
3.4. This last example illustrates a case for which an Immersed Boundary method is more
appropriate than a body-fitted one. An improved treatment of sharp edges, essential for thin
airfoils, is also derived in Appendix A.

2. The Boundary Data Immersion Method revisited

In this work we consider a two-domain interaction problem in which the domain {2y is
occupied by an incompressible viscous fluid and the domain §2, by a solid or deforming body
with prescribed velocity V' (#,t). The governing equation in the solid body is simply given
by

—

i=V (1)
whereas the fluid is governed by the incompressible Navier-Stokes equation

ol (., =\ l= 0
E—F(u-V)u—i—;Vp—uVu—O (2)

After integration of Eq. 2 over a time step At, the fluid and body equations can be written
in the form

U
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where 8?At is the pressure impulse over At and ﬁAt(ﬁ) accounts for all the non-pressure
terms.

2.1. Smooth multi-domain coupling

IB methods aim at solving Eq. 3 using a grid that does not conform to the boundary
between ; and €2,. The approach proposed in [21] to solve Eq. 3 consists in convolving
the continuous equations with a nascent delta kernel in order to combine them in a smooth
meta-equation.

Eq. 3 can be written as a single equation

— —

(&) = b(@, 1) 1o, (Z) + flil, 7 t)lq, (£) for ¥ € O (5)
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where 1 4 is the indicator function of subspace A. Convolving both sides with a nascent delta
kernel K. with spherical support of radius € yields the following smoothed equation

(%, 1) = / (7 K (7, &) dF = b(Z,t) + f.(d.,Z,t)  for T € Q (6)
Q
where
be(Z,t) = / 0(Zy, ) K.(Z, 3) A, (7a)
Qp
folid, zt) = | fld., @ t)K(Z,Z;) dZ; (7b)
Qf

Thus the general equation Eq. 6 smoothly transitions from the fluid equation to the solid
equation as illustrated in Figure 2. In the dark gray area, f; = 0, such that v, = be. Similarly,
in the white area, b, = 0, so U, = f; The black dot is within distance € of the boundary,
therefore the kernel centered at that point intersects both {2¢ and 2,. At that point, both l;e

and f; contribute to ..

2.2. FEvaluation of the convolution

Eq. 6 is very general and can be applied to any multi-domain problem by replacing Eq. 4
with the appropriate equation for each domain. In order to solve Eq. 6 numerically, we need
to estimate the integrals on a grid. We wish a formulation that is grid independent, so that
it can easily be implemented on any grid with little computational overhead, even for moving
three-dimensional objects. In order to minimize the dissipative effects on the solution, it is
necessary to ensure smoothing only occurs where it is needed to alleviate the discontinuity
discussed in the introduction, ie on the boundary region in the normal direction. Therefore,
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Figure 2: Smoothing across the immersed boundary. The equations valid in each domain are
convolved with a kernel of radius ¢ and added together. The gradient of gray illustrates how the
contribution of b, and f. to the smoothed equation changes in the boundary region. The kernel at
a point (marked by a dot) that belongs to the boundary region is represented.

two requirements will be kept in mind while discretizing Eq. 6: (i) smoothing only occurs
near the boundary and (ii) smoothing occurs across the boundary but not along it.

The naive way of discretizing Eq. 6 would be to approximate the continuous convolution
by its discrete counterpart

b(Z,t) = /Q b(F, t) K (#,3) Ay, = Y b(@, 1) K (&, 7)) Azf + O(Ax?) (8)
b

TpEeQy

where Az denotes the grid size and d the dimensionality (2 or 3). However, this formulation
violates the first requirement. Since the kernel K (Z, %) has a finite support, the integral can
alternatively be evaluated using a Taylor expansion

-

b(7t) = /Q 5@ ) K.(7, 5) A, (9)
b

- / (5.1 + VB@.0) - (7~ 5)) Ko(.5) 5y, + O() (9b)
Qp
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where O(e?) appears on the right hand side to indicate the order of the error introduced by
this linearization. Note that if the velocity within the support of the kernel is not smooth
enough for the Taylor expansion to provide a valid approximation, local grid refinement (as
in [28]) can be used, which will also greatly improve the accuracy of the discrete differential
operators.

In order to compute Eq. 9 in the boundary region, the body velocity is extended into
the fluid domain. In the case of non-uniform body velocity, this is done using simple linear
extrapolation. Note that this means the prescribed velocity may not be divergence free, but
the modified pressure equation maintains divergence free flow in the fluid domain. Since we
now have a smooth velocity field #,, the fluid equation can also be extended into the body
part of the boundary region. Defining n and 7, respectively the normal and tangent to the



closest point on the fluid-solid interface, we express Eq. 9c as:

. . b
be(Z,t) ~ b(, 1) K (%, %) d7, + %(f, t)/ (@ — &) -1 K (Z, 7) Ay (10)
Qp

+ P / (7 —7) - 7 K(7,5) dd
87' Q

In order to satisfy the second requirement, a kernel that only depends on the distance to
the boundary is used

If the radius of curvature of the interface is large compared to the grid size, the boundary
can be locally approximated by its tangential plane [26], which significantly simplifies the
calculation. Indeed, assuming the boundary is locally flat (7 is constant across the support
of the kernel), the tangential component of the integration can be eliminated and the kernel
K (Z,9) be replaced by a one-dimensional kernel ¢ (Z - 7, &, - 1)

K (Z,y)dz, = K (Z-nn,y-nn) (/ dzy - %) dz, - n (12)
Q Qi Qp-7 —

Py N

The convolution then simplifies to:

. - . b .
b(Et) ~ b(f,t)/@(f-ﬁ,:fb-ﬁ) deJrg—(f,t)/(fb _F)h o, Ty 1) da
n
T uoB
(13a)
. ob
~ (1) pg” + - (F,1) " (13b)

where /LS’B and /Li’B are respectively the zeroth and first moments of the one-dimensional

kernel ¢, over €2,. Similar expressions can be obtained when the boundary is not locally flat.

For example, the derivation in the presence of a sharp corner can be found in Appendix A.
The same simplification holds for f.(i., 7, t):

— — — — € af — — €
folie, 7,1) ~ f(i., @, 1) ug" + 5 (e T,1) " (14)

where ,uB’F and £ are the moments over #. The kernel is chosen symmetric such that

,ui’F = ui’B = 0 outside of the boundary region. Consequently, @, = f; = f in the fluid,

away from the boundary and vice versa in the solid. It is also chosen positive in order to
guarantee the convergence of a broad spectrum of algorithms traditionally used to solve the
Navier-Stokes equations. Note that extending the method to higher than second order will
require dealing with the non-zero second moment of positive kernels outside the smoothing
region.



Figure 3: Integration kernel and its zeroth and first order moments. Outside of the boundary
region (|d| > €), u{ = 0. In the fluid for d > ¢, ,uS’B = 0 and MB’F = 1. Similarly, in the body for
d < —e, MB’F =0 and MB’B = 1. Within the smoothing region (|d| < €) all values are non-zero.

Unlike distributed forcing methods [27], the solution proposed here is rather insensitive
to the exact form of the kernel. In particular, as long as the kernel is continuous, changing
it does not affect the possible pressure fluctuations or convergence properties. The following
kernel will be used in the rest of this paper:

bo(z,y) = { (gl + cos(|z — 9’77/6))/(26) i }i : z} ; Z (15)

Using this kernel and defining d(Z) the signed distance from & to the fluid-body boundary
(d > 0 in the fluid, d < 0 in the body), we find:

I +4+ Lsin(4m)]  for |d <e

€

po(d) =< 0 for d < —e (16a)
1 for d >¢
2 i @) = (dsin (Fr) + 21 eos (37))) | for ldl<e g
pi(d) = (16b)
0 for |d| > €
where puf = MS’F and pj = . For the complementary domain €2, we simply have

Hi

pSP(d) = ps(—d) = 1 — ps(d) and p$P(d) = —pS(—d) = —pS(d). The one-dimensional
kernel ¢, an its zeroth and first order moments are shown in Figure 3. Since these have been
calculated analytically in the continuous domain, BDIM would belong to the ‘continuous
forcing” approach according to Mittal’s definition [1]. This also means that the formulation
derived here can as easily be used on a Cartesian grid (uniform or not) as on a tetrahedral
or unstructured mesh.

Combining the simplified convolution Eqs 13 and 14 with Eq. 6 we finally obtain the new
meta-equation

—

— € r € 7 € a X
ue(x):uo f"‘(l_ﬂo)b‘f’/ﬁ o

(1) (1)



This meta-equation generalizes the one from [21] by adding the first-order term in the expan-
sion of the convolution in Eq. 9. As noted in [21], u§ can be interpreted as an interpolating
function acting on the governing equations. The new pf term increases the order of interpo-
lation, improving accuracy in the presence of a large discontinuity in the velocity gradient.
As will be illustrated in Section 2.3, the u; term further smoothes the transition and results
in quadratic convergence in the external flow. Therefore, the present formulation, based on
a second-order convolution, will be referred to as 2nd order BDIM, whereas the formulation
presented in [21] will be referred to as 1st order BDIM.

2.3. Application to a one-dimensional channel flow

In order to illustrate the role played by the first moment correction, the simplistic example
of the one-dimensional unsteady channel flow presented in the Introduction is considered
again. This example has been chosen because, except for the mass conservation equation
that is absent, its treatment is very similar to that of the full three-dimensional unsteady
Navier-Stokes equations and an exact solution can be calculated (see Appendix Bl). A
forward Euler scheme is used such that the transition from time ¢, to time ¢y + At have a
very simple expression:

b=20 (18a)
92
flu,y,to + At) = u(y, to) + Atv 8_y2u(y7 to)- (18b)
The transition equation for 2nd order BDIM is given by
A g 9 A o
ue<y7t0+ t) = ILLO_'_ILL].a_y 1+ tl/a_gﬁ ue(y7t0)7 (19)

which we write in matrix form
u (nAt) = ([u§ + psD] [1 + Atv DP))" U, (20)

where D and D® are tridiagonal matrices resulting from the second-order central differencing
of the first- and second-order derivatives respectively. The moments pf and pf are given by
Eq. 16 where the distance function is

d(y)zg— 5—9

L |L
‘ ‘ (21)
for this channel geometry.
We will compare the error in the 2nd order BDIM solution to two formulations from
the literature; the 1st order BDIM from [21] and a direct forcing method adapted from the
approach in [27]. The Ist order BDIM transition matrix can be recovered by setting u to

zero in Eq. 20. The direct forcing formulation, which we derive in Appendix B2, is

u (nAt) = ([1 - ¢ [1+ Aty DP))" U, (22)



where (. is a column vector defined by (. (y) = (¢.(d(y),0) + ¢(d(y — L),0)) dy for the kernel
¢c defined by Eq. 15. Calling ug the exact solution and u, an approximate solution calculated
on grid g, we define the L., error with parameter p for grid spacing dy

eso(dy,p) = max max |ug — Uy |, 23
(dy, ) 9€G(dy) |:y€[P7L—P] o g'} (23)
where p is the location of the first point away from the wall included in the error metric, and
the Ly error

1 L
dy) = — —u,)2d 24
ez(dy) nax \/2599 /yzo(uo ug)?dy, (24)

where dgg is the 99% boundary layer thickness (see Appendix B1) and 10 grids of similar
spacing but different offset are used in G(dy). For all cases, we ensure that the simulations
are converged in time by using 107 time steps.

Figure 4 shows that for Reynolds number Re = L?/(vt) between 100 and 10000, ey, and
ey are only functions of the ratio between the grid spacing dy and dg9. The L., norm of all
three methods converges at first order when the points in the smoothing region are included.
However, excluding the first point off the boundary (setting p = € in Eq. 23), or using the
Lo norm, the 2nd order BDIM shows quadratic convergence.
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Figure 4: L, (a) and Ly (b) norms of the velocity error in the channel as a function of the grid
spacing normalized by dgg, the 99% boundary layer thickness as defined in Appendix B1l. Error
bars show the spread of the error calculated for Reynolds numbers Re = [100, 1000, 10000]. In
(a), the black solid curves show the L, norm across the whole channel (p = 0), whereas the red
dashed curves show the error away from the transition region (p = €). Note that as dy increases,
so does the region excluded from the e (dy, €) error, causing the value to decrease artificially when
the grid is so coarse that most of the boundary layer is excluded.

Analysis of the limiting case v = 0, detailed in Appendix B3, can help understand these
convergence results. 1st order BDIM and direct forcing have the same fixed point solution

10



ue(y) = 0 for |d(y)| < e. The smoothed solution calculated with these methods is as sharp
as the exact solution, with the discontinuity displaced € into the fluid. This phenomenon
can also be observed at Re = 1000 on Figure 5. At large Reynolds number, interpolation
is not enough to ensure appropriate smooth transition from the solid velocity to the fluid
one, which results in linear convergence even outside of the transition region. Increasing
the width of the kernel would not provide much additional smoothing, as these first order
methods cannot take advantage of the whole transition region, and would increase the kernel
dependent error.

For the proposed 2nd order BDIM, the fixed point solution to the infinite Reynolds
number case is

ue(y) = exp (1 ;Eugy - 1) for |d(y)| < e. (25)

1

This solution transitions smoothly from u.(y) = 0 at y = —e to u.(y) = 1 at y = €. The nor-
mal derivative term allows 2nd order BDIM to fully take advantage of the 2¢ wide transition
region, resulting in a smoother velocity at the interface. This results in a significantly reduced
error and second-order convergence in the external flow. The smoothness also ensures that
discrete differential operators still approximate their continuous counterpart, which helps
prevent artificial pressure fluctuations and flow instabilities as will be illustrated in Section
3.2.
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Figure 5: Exact, direct forcing, st order and 2nd order BDIM velocity profiles at the wall (located
at y = 0) in an unsteady one-dimensional channel flow of height L for Re = L?/(vt) = 1000. The
solid region is colored in gray, the fluid region in white. The smoothing region that extends from
y = —0.01L to y = 0.01L is represented by a gradient of gray. The new 2nd order method predicts a
velocity that very closely matches the exact solution outside of the smoothing region. The boundary
is halfway between two grid points.

Finally, we note that, in this one-dimensional flow, 1st order BDIM can be considered
a type of direct forcing method (though different from that described in [27]) because this
example is missing a mass conservation equation. Indeed, Figure 5 shows that they result
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in very similar velocity profiles, whereas the 2nd order BDIM profile is much closer to the
exact solution, especially as v — 0.

2.4. Flow solver

We will now apply the new 2nd order BDIM formulation to our fluid-solid interaction
problem. Substituting Eq. 4 into Eq. 17 results in the momentum conservation equation for
a general fluid-solid interaction problem

— € ) — 7 €N/ € 0 ) — ¥
Ue(to+At) = pg (ﬁg + Rag(tc) — aPAt) +(1—M0)V+M18—n (68 —V 4+ Rag(te) — 3Pm> (26)

Since the fluid is incompressible, the velocity field has to be divergence-free in the fluid
region at all time

V-i=0 for #eQy (27)
The corresponding equation in the body is trivial
V-i=V-b for Ze (28)

If the divergence of the velocity is zero inside the body, then the full meta-equation
automatically enforces a divergence-free i.. However, for general deforming bodies (like the
shrinking cylinder example from [29]), the smoothing equation needs to be applied in order to
resolve the discontinuity in V- Applying Eq. 17 to V - @ leads to the following generalized
equation

= 0

v.a€:(1—pg)€-5—ma—n(ﬁ-z§) for 7€ (29)

Note that the mass conservation equation is applied to V- ., whereas direct forcing methods
usually apply it to f. Substituting in Eq. 26 gives the following mass conservation equation

= € = = € 3] — € 0 D —
V- (MoaPAt> =V <Mo (ﬂS + RAt(“e)) o5 (?78 + RAt(Ue)>)
L (v )
— (V- 9) i - <%V> % (30)
where we define a modified pressure P implicitly as
6 . (ueaﬁm) = 6 . ;f(??m + u€£8ﬁAt (31)
0 0 1 an

We use P instead of P on the left hand side of Eq. 30 to avoid inversion of a non-symmetric
third-order pressure equation. As this variable substitution does not affect the right hand
side, it does not introduce any error in the velocity field divergence and the error in the
pressure field will not propagate in time. Eq. 31 shows that P only differs from P through

12



a second-order term. The difference P, between P and P can be approximately estimated
from P by solving the following equation
V- (ué(‘ﬁ%m> =V- (Hiaiﬁpm) (32)
n
As will be shown in Section 3.1, P is indeed quadratically driven to zero with grid refinement.
Eqgs. 26 and 30 form the smoothed governing equations of the coupled fluid-solid system.
They ensure exact mass and momentum conservation as well as the smoothness necessary
for the discrete operators to approximate the continuous ones. The governing equations Egs.
26 and 30 can be implemented with any computational scheme. We have implemented them
using an Euler explicit integration scheme with Heun’s corrector. The following equations
are solved in order to calculate @ = i@, (ty + At) from @y = @ (to) and V = V (to + At).

Euler integration with pressure correction

) € — — — € ¥ € a — — — B
@ = iy (o + Fau(ilo)) + (L= i) V 4 s, - (1o + Fauliio) = V') (33a)
Atﬁ(%ﬁpo):ﬁﬁ’—a—ug)ﬁ-v (33b)
VAN A
i =u — — s Vo (33¢)
Heun’s corrector

_ € (= = o P o Y S -
i = iy (o + Fadl@)) + (L= p) V + 5 - (it + Fielit) = V) (34a)
Atﬁ(%ﬁp1>:6-@3-(1-%)6&7 (34D)
L o, At =

o = i) — 7 to V1 (34c)

1
U= 3 (01 + 1) (34d)
where for incompressible Navier-Stokes,

Parlid) = At [— (a‘ 6) i+ yv%z} (35)

These equations have been implemented in an Implicit Large Eddy Simulation (ILES) code
(see [30] for a discussion on ILES). They are posed on a staggered mesh and central differ-
ences are used for all spacial derivatives except in the convective term in 7a; which uses a
flux limited QUICK scheme for stability. When the local flow is well resolved, these equa-
tions automatically revert to a non-dissipative (central difference) scheme. The only novel
computations required by the 2nd order formulation are in steps 33a and 34a to add the ug
derivative term on the right hand side. This normal derivative term is computed by calcu-
lating the gradient using a second-order central difference at all points. The gradient is then
projected on the outward normal to the closest boundary. Our experience is that this makes
up less than 1% of the simulation cost and, as shown in the next section, enables accurate
predictions of high Reynolds number flows.

13



N

1st order - 2nd order

Q

‘|H‘|‘.‘|‘..|H.|_zé 1 1 L L ]
0 2X4 6 8 - X

-

<
o

I’I\) -
NI rfrrrrfrrrri
=N

Figure 6: Flow past a stationary cylinder at Re = 100, instantaneous vorticity for the 1st and 2nd
order BDIM formulations.

3. Application to fluid-solid systems

In this section, two and three-dimensional flows relevant to animal and vehicle locomotion
are used to demonstrate the versatility and accuracy of the 2nd order BDIM formulation and
its suitability for practical intermediate Reynolds number applications.

First a grid convergence study is carried out on the canonical case of two-dimensional
flow past a static cylinder at low Reynolds number in Section 3.1. A method to calculate
the forces on a body is also presented and tested on that flow. The two following examples
focus on airfoils at Reynolds numbers between 10* and 10°, since many potential applications
of IBs (from industrial applications to the study of animal locomotion) involve airfoils for
producing lift or thrust. The first example in Section 3.2 consists in a SD7003 airfoil at
4° angle of attack and Reynolds numbers Re = 10000 and 22000. In this very challenging
example we show that a careful treatment of sharp edges dramatically improves the flow
predictions near the trailing edge. In Section 3.3, a heaving and pitching NACA0012 airfoil
at Reynolds number Re = 10° is simulated. Finally, in Section 3.4, the method is applied to
a three dimensional example for which a body-fitted simulation would be highly impractical.

3.1. Two-dimensional flow past a stationary cylinder at low Reynolds number

The canonical case of two-dimensional flow past a static cylinder is first considered in
order to assess the numerical properties of the proposed method. The flow is simulated in a
29 x 29 diameter D domain, constant velocity u = U on the inlet, upper and lower boundaries,
and a zero gradient exit condition with global flux correction. The grid is uniform near the
cylinder with spacing dz/D = 1/120 and uses a 1% geometric expansion ratio for the spacing
in the far-field. In this example and in the rest of the paper, the radius of the smoothing
kernel is chosen as twice the grid size ¢ = 2dx. The following studies in this section show
that this level of smoothing is ideal.

As shown in Figure 6, both 1st and 2nd order BDIM methods show the same characteristic
vortex shedding pattern on this simple example. In order to quantify the error evolution
with grid refinement, the grid size is parametrized by parameter h such that the spacing
is dz/D = h/120. Since an exact solution for this flow does not exist, we use the solution
computed on a highly resolved grid (h = 1) as a baseline for computing the error. The same
flow is then computed for h = [3, 4, 6, 8, 12|, and the velocity and pressure errors are
shown on log-log plots in Figure 7 for 1st and 2nd order BDIM, as well as direct forcing.
Also included on the Figure are dotted lines denoting linear convergence and dashed lines
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Table 1: Simulated and experimental measurements of the shedding frequency (St) and the mean
drag (Cp) and lift (Cr) on a circular cylinder at Re = 100 compared to 1st and 2nd order BDIM
with dz/D = 1/120 and €/dr = 2. Experimental St is from [31] with an estimated uncertainty of
0.8%; experimental Cp is from [32], with an estimated error of 6%.

Source St CD CL CDp CDf CLp CLf
Exp. 0.164 125 - - - - - -

[33] 0.165 1.33£0.009 =+£0.332 0.99£0.0082 0.34 +0.0010 +£0.295 =+£0.042
[34] - 133 - - 1.00 - 032 - - -

[35] 0.164 1.34+0.011 =+£0.315 - — — —

[36] 0.167 1.35+0.012 =+0.303 - - - -

Ist order 0.167 1.31£0.009 =+£0.321 1.01+0.0085 0.30+0.0008 =+0.292 =£0.035
2nd order 0.167 1.314+0.009 =£0.313 1.00=£0.0081 0.30+0.0007 =£0.285 =0.034

denoting quadratic convergence. On all plots, the errors for 1st order BDIM and direct
forcing are at least twice as large as the error for 2nd order BDIM. The order of convergence
of the direct forcing method is between 1 and 1.5 for both velocity and pressure in the L, and
L., norms. For 1st order BDIM, the order of convergence of the velocity in L., norm is also
between 1 and 1.5, whereas in Ly norm and for the pressure in both norms, the convergence
is close to second order. Note also that whereas 1st order BDIM and direct forcing have
almost the same velocity error, the pressure error decreases faster with st order BDIM than
direct forcing. Finally, the 2nd order BDIM errors all converge quadratically but for the
pressure error in Lo norm that converges linearly in the range of grid spacing used. On
Figures 7d&e, the norm of the pressure correction P; defined by Eq. 32 is also plotted and
converges quadratically for both norms. We remark here that in this practical case the orders
of convergence do not exactly match those estimated in Section 2.3 on the one-dimensional
channel example. The addition of the pressure term, the smaller range of grid spacing and
the impact of time convergence are potential reasons for the observed differences.

We have also tested how the width of the kernel affects the accuracy of the computed
solution. For h = 4, Figures 7c&f show the L, norm of the velocity and pressure error for
¢/dx from 0.5 to 4. For €/dx greater than 2, the error decreases quadratically with the kernel
radius. Decreasing €/dz from 2 to 1 hardly reduces pressure error and increases the velocity
error; further decreasing €/dx results in an increased error. These plots show that the choice
of €/dx is a trade-off between limiting the diffusion caused by a large kernel radius while
ensuring enough smoothness for the discrete differential operators to be accurate. A radius
of two grid points is the best compromise and has been used throughout this paper.

Forces are calculated using a one-sided Derivative Informed Kernel (DIK) derived in [37].
The expression for the pressure force uses the Neumann pressure boundary condition and
has the form

~ op
F = —d=E ) astdz
P /Q (p d n> no. dz (36)

where 0 is a kernel designed to sample in the fluid near the surface. For this work we used
0 (d) = ¢c(d,€)/(1+d/R) with ¢, the kernel defined in Eq. 15 and R the radius of curvature.

15



S
@
_IS
10™
2
(d)
10"
S
@
1072
2
e/dx
—e— direct forcing —o— 1st order BDIM —#— 2nd order BDIM

-—E—- pressure correction  -----eeee linear — — — quadratic

Figure 7: L, and Ly norms of the velocity (a-c) and pressure (d-f) error versus grid size (a-b,
d-e) and kernel radius (c, f). The grid spacing is dz/D = h/120.

Similarly, the friction force is estimated using
ﬁf:/pudﬁ- (%ALWT) 5+dz (37)
Q

The advantage of the DIK method is that it evaluates the unsteady forces on the body
in one step without a surface grid. Note however that the forces are evaluated at a distance
¢ from the body. While this does not affect the accuracy of the pressure force, the friction
force will be underestimated if the width of the linear region of the boundary layer is less
than e. However, as noted by Pourquie [38], this limitation is common to most IB methods.
The mean drag (Cp) and lift (Cf) coefficients calculated using the DIK method, as well
as the individual contribution from pressure and friction (indicated by subscripts p and f
respectively) are compared to body-fitted simulations from Park [33] and Henderson [34]
in Table 1. In the same table, results are also compared to other Cartesian-grid methods
[35, 36] and experimental measurements [31, 32]. For this simple geometry low Reynolds
number example, both 1st and 2nd order BDIM compare well with documented results,
validating the force calculation approach. The mean forces have also been calculated using
a control volume, and the results match the DIK average values exactly.
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Figure 8: Flow past a stationary SD7003 airfoil at 4° angle of attack and Re = 10000 with grid
size dr = 1/100 (h = 2). Instantaneous vorticity for the Ist and 2nd order BDIM formulations.
Only the 2nd order method successfully predicts the regular vortex shedding pattern expected for
this test case.
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Figure 9: Convergence of 1st order (x) and 2nd order (o) BDIM for flow past a stationary SD7003
airfoil at Re = 10000. Drag (Cp) and lift (C},) coefficients, as well as reduced vortex shedding
frequency (k = we/(27U)) are compared to values from Uranga [39] (dashed lines).

3.2. Flow around a stationary SD7003 airfoil

Next the Ist and 2nd order formulations of BDIM are applied to a more challenging
high Reynolds number streamlined body case. The two-dimensional flow past a stationary
SD7003 airfoil at 4° angle of attack is computed in a 15 x 20 chord lengths domain. Constant
velocity 4 = U on the inlet, upper and lower boundaries, and a zero gradient exit condition
with global flux correction are used. The grid spacing is set to 200/h points per chord length
near the airfoil (corresponding to 16/h points across the thickness of the airfoil) with a 1%
geometric expansion ratio for the grid spacing in the far-field. The thin boundary layer,
low curvature separation and very sharp trailing edge make this case extremely challenging
for Cartesian-grid methods. We first consider a Reynolds number (based on the chord c)
Re = 10000 at which the boundary layer is expected to remain laminar along 94% of the
chord and the wake to display periodic vortex shedding [39, 40]. Since [39] reported that at
this Reynolds number 2D and 3D curves for average pressure and stream-wise skin friction
coefficients are indistinguishable, two-dimensional simulations are used.

Figure 8 shows instantaneous vorticity fields computed by both BDIM formulations for
h =2 and €¢/dx = 2. Whereas the 2nd order method shows laminar separation and periodic
vortex shedding as expected at this Reynolds number (detailed in [39, 40]), the Ist order
one shows vortices forming on the upper surface of the foil. This example compared to the
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Figure 10: Flow around a SD7003 airfoil at 4° angle of attack and Re = 10000 with h = 1.
Time-averaged velocity magnitude and streamlines.

previous one illustrates the fact that the local accuracy assumes a much greater importance
at high Reynolds number, especially when low curvature separation is involved. At low
Reynolds number, Figure 6 shows that the low and higher order methods predict similar
results. However, on this more challenging high Reynolds number example, the lower order
method fails to predict the proper qualitative behavior because a higher order treatment
of the boundary is necessary to address the large discontinuity in the velocity derivative
illustrated in Figure 1b.

A grid refinement study has been performed in order to establish the convergence proper-
ties of the methods on this high Reynolds number streamlined body case. The grid spacing
parameter h is decreased from h = 6 to h = 0.5, corresponding to 33 and 400 points per
chord length respectively (2.5 and 32 points across the thickness of the airfoil respectively),
and €/dx = 2 is used. Figure 9 shows the time-averaged drag and lift coefficients (respec-
tively Cp and Cp) on the airfoil as well as the reduced vortex shedding frequency k (based
on the chord) compared to body fitted ILES results from Uranga [39]. The 1st order method
does not seem to converge to the expected solution until the finest level. Indeed, despite the
smoothing introduced by g the zeroth oder moment of the kernel, the solution remains in
the wrong regime, even with 200 grid points per body length, due to the large jump in the
velocity derivative at the immersed boundary. On the other hand, the 2nd order method
converges steadily towards values that are consistent with Uranga [39] (force coefficients and
separation location reported by other authors [40] are within 5% of values from [39]).

The grid size h = 1 is chosen to further investigate the challenges associated with this
example and the importance of carefully treating sharp corners with IB methods. The for-
mulation derived above (Eq. 13) assumes that the IB is locally flat but it can easily be
extended to account for a sharp corner (see derivation in Appendix A). Figure 10 shows
the time-averaged velocity magnitude field and streamlines for four formulations: a) direct
forcing, b) 1st order BDIM, c) the uncorrected 2nd order derived in the previous sections,
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Figure 11: Average pressure (C}) and skin friction (C) coefficients around a SD7003 airfoil at 4°
angle of attack and Re = 10000 with h = 1. dy = dz/4 for (b).

and d) the 2nd order with the sharp corner treatment derived in Appendix A. The direct
forcing used here applies the st order BDIM equation for the momentum conservation and
the unmodified mass conservation equation (Eq. 30 with pu§ = 1 and pj = 0)). As has
been observed earlier, the lower order methods (a and b) are unable to provide appropriate
smoothing at this Reynolds number, causing instabilities to develop over the upper surface
of the wing instead of further down in the wake. As a result the separation bubble is swollen
and the velocity above it remains high until the trailing edge. In contrast, the second-order
formulations show that the velocity rapidly recovers after the leading edge, as observed in
[39]. However, the velocity field of the uncorrected 2nd order method shows that without
a careful sharp corner treatment, the low velocity region extends too far downstream with
unphysical fluctuations and streamlines. The simple analytic extension for sharp corners
derived in Appendix A solves these issues and the 2nd order velocity fields and streamlines
closely match those reported by Uranga [39] and Castonguay [40]. This example makes it
clear that the second-order formulation of BDIM significantly improves flow predictions in
cases where the grid does not fully resolve the geometry nor the boundary layer.

Figure 11a shows the average pressure coefficient along the airfoil for h = 1. The pres-
sure coefficient predicted by the 2nd order BDIM compares very well with Castonguay [40],
whereas for the same grid size, the first order methods (direct forcing and 1st order BDIM)
show large pressure fluctuations on the high pressure side and a plateau around mid-foil on
the low pressure side that is not expected at this Reynolds number [39, 40].

Since calculation of the skin friction is carried out € away from the boundary, it is accurate
only if the viscous sublayer is thicker than e, which is not the case in the simulations above.
In order to accurately calculate the skin friction coefficient and separation point for this
stationary, low angle of attack airfoil, a finer grid in the cross-flow direction is needed. Here
we used the h = 1 grid and increased the density in the y direction by a factor of 4. Correcting
for the fact that u.(0) = p{0u./On (from substituting exact f and b solutions in Eq. 17), we
calculated the skin friction as

iU (T4 en) -0

Cr@) = T E0) (38)

19



0.05
0.04}
0.03}
o 0-03F
Q i
O I
0.02
[ h=1
i h=2
0.01}F
07\llllll\lll\\ll\\l\lll\\
0 5 10 _. 15 20
Time —
(a) Time history of pressure drag coeffi- (b) Instantaneous span-wise vorticity iso-surfaces
cient for two grid resolutions. computed with h = 1.

Figure 12: Flow around a SD7003 airfoil at 4° angle of attack and Re = 22000.

where (2 + en) is linearly interpolated from the grid and p{(0) = 0 for 1st order BDIM and
direct forcing. As shown on Figure 11b, only 2nd order BDIM compares well with [39]. We
are able to accurately predict the skin friction, the location of separation (around z/c = 0.38
versus x/c = 0.37 for Uranga [39]) and even the transition of the boundary layer to turbulent
as indicated by the sudden dip in Cy around z/c = 0.94.

This example has been chosen to illustrate the main challenges faced by Immersed Bound-
ary methods: accurately simulating thin boundary layers separating over a low curvature
surface and ending with a very sharp edge. We show here that, unlike 1st order methods,
2nd order BDIM is able to accurately predict the pressure distribution around the airfoil,
without spurious fluctuations, in a way that steadily converges with grid refinement. Using a
finer grid in the cross-flow direction, it also provides good prediction of the skin friction and
separation. If skin friction is of interest, local grid refinement [28] or a wall-model [41, 42, 43]
can also be used instead of a global grid refinement in order to reduce the computational
cost. However, in practice, IB methods are of interest to simulate moving boundaries, in
which case the friction forces are much smaller than the pressure forces.

Next, a Reynolds number Re = 22000 is considered, at which the separated bound-
ary layer is expected to become turbulent around x/¢ = 0.7 [39]. In this regime, a three-
dimensional simulation is required to capture the main flow features and a domain of 0.3c is
used in the span-wise direction. As illustrated in the time history of pressure drag coefficient
for h =1 and h = 2 in Figure 12a, 2nd order BDIM naturally predicts the three dimensional
wake as soon as the grid spacing is smaller than the viscous sublayer (dy™ = 7 for h = 1).
Figure 12b shows instantaneous span-wise vorticity iso-surfaces computed using 2nd order
BDIM and the grid size h = 1.

Compared to the canonical low Reynolds number flow past a cylinder, the present example
combines three additional complexities: (i) a high Reynolds number, (ii) a low curvature and
(iii) a sharp edge. This flow presents most of the difficulties encountered in practical fixed
or rotating wings applications while being well documented, which makes it an excellent
benchmark. We have shown that this flow is very sensitive to the treatment of the IB: the
first order IB treatments (either BDIM or direct forcing) are unable to capture the physics
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Figure 13: Definition of heaving and pitching motion.

of the flow. An appropriate treatment of the sharp trailing edge also dramatically improves
the flow predictions and allows 2nd order BDIM to accurately capture the integrated forces,
pressure distribution, flow separation and skin friction for this challenging test case.

3.3. Flow around a heaving and pitching NACA0012 airfoil

In order to illustrate the application of BDIM to moving IBs, we apply it to a heaving
and pitching NACA0012 airfoil at Reynolds number Re = 10° (based on the chord ¢ and
free-stream velocity U). The combination of heaving and pitching motion of a foil, known as
flapping, is at the core of aerial and underwater animal locomotion. The position of the foil
at time t is defined by A the vertical position of its pitch axis located at mid-chord of the
foil and « its angular displacement (see Figure 13), which are expressed as

{ Afe= Agcoskt (39)

a = agcos(kt + ¢)

where the reduced frequency k is expressed in radians and the time ¢ nondimenionalized by
U and c. Ag represents the amplitude of the heaving motion, «g the pitching amplitude and
¢ the phase between the two.

A high thrust producing case investigated by [44] is chosen:

Ag=1, ag=10°, ¢=7/2, k=1 (40)

The grid spacing is set to 67 points per chord length (8 points across the thickness of the
foil) in the region swept by the flapping foil with a 1% geometric expansion ratio for the
grid spacing in the far-field. The domain extends 6 chord lengths upstream, 8 downstream
and 9 chord lengths on either side in the cross flow direction. As in the previous examples,
constant velocity u = U on the inlet, upper and lower boundaries, and a zero gradient exit
condition with global flux correction are used.

The mean drag coefficient (drag force normalized by pU?c/2) estimated with the st
and 2nd order BDIM are compared to direct forcing and [44] for this case and two other
parameter sets in Table 2. The role of the pressure equation is more important in dynamic
cases than in static cases, therefore BDIM performs much better on this example than direct
forcing. However, as noticed by Isogai [45], the detailed treatment of the boundary is much
less important for this high frequency flow than for the steady case studied in the previous
section. Indeed, Figure 14 shows that the (dimensionless) drag and lift predictions from the
1st and 2nd order formulations are very similar. There are however two main discrepancies
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Figure 14: Lift and drag coefficients on the heaving and pitching NACA0012 at Re = 10°.

Table 2: Mean drag coefficient on the heaving and pitching NACA0012 at Re = 10° for various
combinations of the flapping parameters defined in Eq. 39. Based on comparisons with experiments
and other simulations, the error of the of the results reported in [44] is estimated to be within 15%.

Flapping parameters Mean drag coefficient

k [0) ap Ao direct forcing  1st order  2nd order  Tuncer [44]
1 90° 10° 1 —0.174 —0.358 —0.418 —0.446

1 75° 7° 0.75 —0.061 —0.173 —0.224 —0.29

1.34 75° 10° 0.75 —0.214 —0.338 —0.394 —0.446

between the two: (i) in the lift around ¢ = 22 and (ii) in the mean drag as shown in Table 2.
Whereas the st order formulation underestimates the drag by 20%, the value from the 2nd
order formulation is within 5% of the drag reported by Tuncer [44].

A more detailed analysis of the flow structures is necessary in order to assess the quality
of the simulations. To do so, Figure 15 shows instantaneous vorticity fields. During the
upstroke (Figure 15, ¢ = 21) both the st and 2nd order formulations show the formation
of a positive starting vortex due to the high angle of attack of the foil with respect to the
flow. However, as the foil reaches the top of its trajectory, the Ist and 2nd order predictions
diverge (Figure 15, ¢t = 22 and 22.5). Ounly the 2nd order formulation is able to predict that
the second (positive) vortex remains attached until it reaches the tail of the foil (as observed
in [44] and [45]). This accounts for the slight discrepancy in the lift between the two methods
shown in Figure 14.

We have demonstrated the ability of the 2nd order formulation of BDIM to capture the
main flow features generated by a flapping airfoil at Reynolds number Re = 10°. The method
has proved to provide accurate force predictions free of spurious fluctuations. This example
validates the use of BDIM for the study of flapping foils and more generally highly unsteady
flows.
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Figure 15: Instantaneous vorticity fields during heaving and pitching motion of a NACA0012 at
Re = 10° for the 1st and 2nd order formulations (Ag = ¢, ap = 10°,¢ = 7/2,k = 1).

3.4. Multi-body example inspired by fish sensing

The validation cases presented above are typically solved using body-fitted simulations,
and therefore do not feature complexities such as interfering bodies in the fluid domain. In
this section we demonstrate the ability of our method to handle several three-dimensional
bodies with different velocities by simulating a fish-like body passing a circular cylinder as
shown in Figure 16. Fish can sense pressure changes due to passing objects through an
organ called the lateral line [46] and use the information to detect and identify obstacles.
Similar to [47], our ‘fish’ is represented by an axisymmetric body of revolution based on a
NACAO0013 airfoil and a Reynolds number of 6000 is chosen (Reynolds number based on the
airfoil length L and free stream velocity U). The computational frame is attached to the fish
(whose axis of rotation is {y = 0, z = 0}) such that the fish is represented as stationary
on the grid and the cylinder moves with the free stream. The minimum separation distance
between the cylinder and the vehicle as well as the radius of the cylinder are chosen to be
equal to the thickness of the fish (0.13L). The grid spacing is set to 100 points per chord
length near the fish with a 1% geometric expansion ratio for the grid spacing in the far-field
and the computational domain has 10L x 4L x 4L size. Constant velocity u = U on the inlet
and y boundaries, periodic boundary conditions in z and a zero gradient exit condition with
global flux correction are used. The method easily generalizes to multiple immersed bodies
by applying Eq. 17 with g(i:’) the velocity of the closest body and d(¥) the distance to it
(used to calculate the p¢ terms).
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Figure 17: Pressure around the axisymmetric fish in open water at Re = 6000.
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Figure 18: Instantaneous pressure perturbation field around the axisymmetric fish passing the

cylinder (compared with the open water pressure) in the slice at z = 0. Pressure is normalized by
2

pU~=.

Figure 17a shows the pressure field around the axisymmetric fish in open water. For
casier comparison with body fitted simulations, the pressure coefficient C), along the surface
of the fish are compared to Windsor [47] in Figure 17b. Our Cartesian-grid method slightly
underestimates the stagnation pressure at the front of the fish but the agreement with the
body fitted simulations from Windsor [47] (dots in the Figure) after the front 2% of the fish
is very good. Our method also shows very small pressure fluctuations where the boundary
crosses the Cartesian grid but, as shown in Figure 11 on a two-dimensional example, these
fluctuations are significantly smaller than with st order methods.

Figure 18 shows the instantaneous pressure perturbation field around the fish passing the
cylinder (compared with the open water pressure) in the slice at z = 0. The Figure shows
that as the fish passes the cylinder distinctive pressure changes can be felt by the fish.

This kind of simulation is extremely challenging for body-fitted algorithms and the cost
of deforming and/or regenerating the grid as the computational domain undergoes large
deformations can exceed the cost of solving the Navier-Stokes equations. BDIM avoids these
issues and the complexity and deformation of the geometry do not affect the efficiency of the
new second-order simulation method.

4. Conclusion

This paper generalizes the Boundary Data Immersion Method proposed in [21] by es-
tablishing a higher order analytic meta-equation. 2nd order BDIM provides a robust and
accurate treatment of IBs in high Reynolds number fluid/solid interaction problems. Our
method addresses the issues encountered by first-order methods (including direct forcing
methods) at high Reynolds number by adding a higher-order term to the traditional averag-
ing used to estimate velocities near the boundary. The resulting algorithm is both simple to
implement in existing Navier-Stokes solvers and computationally efficient.
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Applications with Reynolds numbers ranging up to 10° are presented: viscous flow past
a static SD7003 airfoil and past a flapping NACA0012 airfoil, as well as flow around an
axisymmetric fish passing a cylinder. It is shown that the predictions of flow around a slender
body with a sharp trailing edge is very sensitive to the IB treatment and that 2nd order
BDIM, with its new sharp edges treatments, can successfully predict it. 2nd order BDIM
has also demonstrated its ability to simulate highly unsteady flows without encountering grid-
locking issues as is the case with direct forcing methods [48]. The final examples illustrate the
ease of our method to handle three dimensional complex geometries with moving boundaries.

A limitation of the present method lies in the necessity to resolve the boundary layer
using a Cartesian-grid in order to accurately predict the skin friction. Considerations of
computational cost caused us to limit our studies to Re < 10°. Combining BDIM with
a local grid refinement technique [28] could improve computational efficiency for the thin
shear layers of higher Reynolds number flows. The use of a wall-layer model [41, 42, 43] or
tangential force model [20] to reduce the required near-wall resolution for very high Reynolds
numbers is an active area of research. At higher Reynolds number, the interactions between
wall-layer approximation and subgrid-scale model also need to be investigated in the context
of immersed boundary as has been done by Temmerman [49] for body-fitted grids.

The ability of 2nd order BDIM to accurately simulate the viscous flow around complex
geometries up to Reynolds numbers of at least Re = 10° enables a wide range of exciting
applications from ocean energy extraction to animal and vehicle locomotion. The robust
and smooth simulation of pressures and forces are also especially important in resonant
marine systems such as tank sloshing, vortex-induced-vibration reduction, and investigation
of biological hydrodynamic sensors such as the lateral line and seal vibressa. As such we
believe this simple Cartesian-grid approach based on a strong analytical framework to be a
significant contribution to the accurate study of these and other highly non-linear viscous
flow systems.
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Appendix A. Convolution evaluation at sharp corners

In Section 2.2, kernel moments are analytically evaluated in order to accurately immerse
the boundary data from the solid mechanical system onto the fluid mechanical equations of
motion. At corners (like sharp trailing edges), the smooth interface assumption introduced
at Eq. 13 does not hold. Here, the case of a geometry with sharp corners is locally treated
as the intersection of two component planar geometries.

Let us consider a point ¥ near a two-dimensional corner defined by two planes. We call
wy (with normal 77; and distance d; from Z) the wall closest to & and wy (with normal 7iy
and distance dy > d; from &) the other wall. The angle between the two planes is . Figure
A.19 shows a schematic of the geometry and variables.

Figure A.19: Schematic showing the variables used in the derivation of the convolution evaluation
at sharp corners.

Let us define a local coordinate system centered in & such that j =7y and P - ny > 0. In
this local coordinate system, the equation of wy is:

Vi—a’x+ay+c=0 (A.1)
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with normal 7 = (\/1 —a?, a). Therefore, a = 7y - 115. We also know that the point —dsn
belongs to ws, therefore ¢ = dj.
We can now write:

b (i, ©) = /Q b, &) K.(Z, %) di, (A.2a)
b

~ /Q (B, ) + 9, ) - (3 — 7)) K(, ) d (A.2b)
b

~ (0.5 [ K5 4+ 9iE.7) /Q (7, — 7) K.(7, 7)) d7, (A.20)

~ b(, T) MB?B(f)nLﬁl;(ﬂ’, 7) - 19 (2) b (A.2d)

Using the previously defined local coordinates and assuming a 2D problem (and kernel), we
can write (use d = d;):

po(E) = pg"(F) = | Ko, 5,) di, (A.3a)
Qp
= /_dl / o 1d2(x,y)<OM dx dy (A.3Db)
y=—e Jr=—+/e2—y>2 2./€2 — y2
—d;
where
Ly (e)<0 = Loc_(ayte)/vizaz (A.4)
therefore

min<\/627y2, 7(ay+c)/\/m) 1

Pely) = / S (A.5a)
min(—\/EQ—yQ7 —(ay—l—c)/\/m) 2+/€? — y2

1 ) 1 —ay —c
0, = +min | =, A.5b
2 <2 2\/62_3/2\/1_&2)] ( )

For most functions ¢, the integral above does not have a closed form solution. To simplify
the equation, the integral is simplified by replacing /€2 — y? by e. This is equivalent to
assuming a kernel with square support instead of circular. Therefore

= max

Y (y) ~ max [0, % -+ min (%, 22\?%)} (A.6)
where
o(y) = 0.5 (1 4+ cos (ym/e)) (A.7)
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Similarly,

@) = m7@) = [ @ DK@ 4 (A32)

Yy=—¢€ xz—\/m o 2 62_y2

= [ (v i) 6.0) 0y (A0

where
vi= 5 i o, s | o
< guin o, (L] (A.90)

These equations minimize the modeling error near sharp corners, as shown in §3.2.

Appendix B. Derivations for the one-dimensional channel flow

Here we detail some derivations for the unsteady one-dimensional channel flow example
analyzed in Section 2.3.

Appendiz B.1. Ezact solution

The exact solution to the unsteady one-dimensional channel flow at Reynolds number
Re = L?/(vt) is

u(y,t) =UY e @D/ Eegin ((2k + 1)my/L). (B.1)
k=0

The sum converges very rapidly and summing over the first 50 terms guaranties an error
smaller than 1071, For Reynolds numbers larger than 100, the velocity in the middle of the
channel is not affected by the boundaries, and the 99% boundary layer thickness is given by

do9 = 3.65/\/Re. (B.2)

Appendiz B.2. Direct forcing solution

We will now derive a direct forcing formulation (described in [27, 11]) of this example.
Using the same notations as in Section 2.3, the velocity in direct forcing is expressed as

where ¢ is a volume force ensuring that u. = 0 at the boundary (d(y) = 0). The volume force
is evaluated using a regularized delta function d,

gluyto+ At)= > GY)o(y—Y)=— > F(Y,tg+At)d(y—Y) (B.4)

Ye{o,L} Ye{0,L}
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where capital letters (F' and G) refer to values at the boundary. These values are interpolated
from the Cartesian grid points using the regularized delta function

F(Y,tg + At) = Z fW to+ At)oc(y —Y) (B.5)

In summary, the direct forcing formulation is

uc(y,to + At) = fu,y,to+ At — > Sy — Ynyto+At (y —Y) (B.6)
Ye{0,L}

where the discrete delta function is d.(y) = ¢.(d(y),0) dy for the kernel ¢, defined by Eq.
15. Defining the column vector (. = 0.(y) + d.(y — L), the matrix form of the direct forcing
formulation is:

u(nit) = ([1 - ¢ 1+ At DO 0. (B.7)

Appendiz B.3. Limiting case v = 0

The fixed point solution of the limiting case v = 0 for 1st order BDIM is given by the
equation

Ue = HGU,. (B.8)

Similarly, the fixed point solution for the direct forcing method is given by

= [1 - ¢ e (B.9)

In both cases, the fixed point solution verifies u.(y) = 0 for |d(y)| < e.
For the proposed 2nd order BDIM, the fixed point solution is given by

0
U = lMB + uia—y} Ue. (B.10)

In this case, the fixed point solution for |d(y)| < € is

ue(y) = Aexp(lzuoy), (B.11)

1

where the constant A\ = exp(—1) ensures that u.(e) = 1.
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