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Modelling Approaches for DC-DC Converters
With Switched Capacitors
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Abstract—In this paper we review relevant problems
in the modelling of DC-DC converters with switched
capacitors. We study several approaches that overcome the
exposed modelling difficulties, addressing ideal and non-
ideal cases and using dynamic equations that are valid in
a large signal domain.

Index Terms—Averaging, DC-DC converters, modelling,
switched capacitors; switched systems.

I. INTRODUCTION

Switched capacitor (SC) converters offer several ad-
vantages such as light weight, small size, high power
density and large voltage conversion ratios [1], which
results important for a large number of applications (see
e.g. recent developments in [2], [3], [4], [5], [6]). For
these reasons, increased interest has been given to their
design, modelling and control. Many control techniques
for power converters are based on nonlinear models,
see for instance the extensive compendium of control
techniques presented in [7]. Such models and conse-
quently their associated nonlinear controllers are able to
perform well in wide ranges of operation compared with
linearised models. However, the conventional approach
for the regulation of SC based converters is a linear
feedback control that is based on approximate small-
signal linearised models of the circuit topologies. In
some applications, this approach does not make the con-
verters able to respond well to requirements of regulation
in the presence of a wide range of input voltages and load
variations [8].

Different approaches have been proposed for the mod-
elling of SC converters, such as incremental graph ap-
proaches [9], useful for determining steady state voltage
gains. In [10], [11], [12], approaches for modelling SC
are given by considering the inherent losses produced
when capacitors are connected in parallel. A steady
state modelling approach is provided [13] in which
SC converters are analysed by considering equivalent
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output impedances. The approach in [14] provides state-
space models by solving numerically the loss equations
depending on the position of the switches. The results
are used to calculate the steady state gain and a steady
state equivalent resistance. Approaches considering ideal
switches and consequently, discontinuities on the volt-
ages across capacitors have been discussed in [15], [16].
Parasitic resistances have played also an important role
in the study the dynamic performance of SC convert-
ers [17], since energy losses during charge/discharge
processes permit the elaboration of accurate dynamic
models (see [11],[18],[19],[20]).

In this paper we gather and discuss theory and princi-
ples regarding the operation of SC converters. Moreover,
we present a systematic exposition of three modelling
approaches for DC-DC converters with SCs. The pro-
cedures are illustrated using a Fibonacci SC converter
obtained from [21] and the three switch high-voltage
converter proposed in [22]. The methods are similar to
the classical averaging techniques that consider equiva-
lent circuits depending on the position of the switches.
However, instead of using the real ESR lumped in the
circuit (see for instance [8],[23]), we consider: 1) the
case with ideal switches where discontinuous signals
are allowed, 2) an average loss modelling based on the
results provided in [18], and 3) a reduced order model
based on a voltage balancing property.

II. PRELIMINARIES

Power electronics devices with two linear dynamic
modes and ideal switches can be modelled using the
following switched linear system structure (see [24],
[25])

d

dt
x = Aux+Bu ; u = 0, 1 ; (1)

where x(t) ∈ Rn×1 is called the state function; Au ∈
Rn×n, Bu ∈ Rn×1 are the matrices that define the
physical laws of the dynamic modes, and u = 0, 1, a
binary index term that denotes which of the two modes
is active according to a specified switching signal. If
we assume that the switching signal is periodic and
that the trajectories of the system variables are every-
where continuous, we can approximate the dynamics of
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the switched linear system into averaged quantities by
considering a duty cycle denoted by D. This action is
equivalent to approximate a switched linear system into a
nonlinear system where the so-called current and voltage
ripples of the converter are neglected. The averaging
technique allow us to obtain the following structure

d

dt
xav = [DA0 + (1−D)A1]xav +DB0 + (1−D)B1 ;

(2)
where xav(t) ∈ Rn×1 is the averaged state function.
When we consider the duty cycle D as an input, the
averaged system can be conveniently written in state
affine nonlinear form d

dtxav = f(xav) + g(xav)D ; with
f(xav) := A1xav + B1 and g(xav) := (A0 − A1)xav +
B0 − B1. The latter structure is usually the starting
point for the dynamic analysis and control of DC-DC
converters, since it can be derived almost directly from
the switched linear system structure (1) and it allows
to apply a wide number of nonlinear control techniques
(see for instance the compendium of controllers in [7]).
Unfortunately, as we will expose in the following section,
the traditional averaging technique cannot be applied to
systems with discontinuous trajectories, as it is the case
of switched-capacitor converters. In other words, the par-
allel connection between capacitors, which is the main
feature of such converters, produces discontinuities on
the voltages across their terminals at switching instants.
In mathematical terms, such situation is derived from
the introduction of algebraic constraints to the dynamic
modes of the converter. Consequently, an averaged state
affine nonlinear model cannot be directly obtained. In
order to overcome this issue, we study several modelling
alternatives for this type of converters.

III. MODELLING APPROACHES

In order to discuss the modelling procedures, we
consider the Two-phase Fibonacci SC converter depicted
in Fig. 1, corresponding to a simplified version1 of the
SC converter in Fig. 1(b) of [21]. We aim at showing
a detailed exposition that provides sufficient insight to
extend the discussed approaches to other topologies with
SCs.

The converter in Fig. 1(a) has two possible modes
depending on the position of the group of switches “1”
and “2” illustrated by blocks and whose operation is
complementary. Fig. 1(b) and Fig. 1(c) show the two
possible equivalent circuits of the converter.

1For ease of exposition, the third “Fibonacci cell” of the SC
converter in Fig. 1(b) of [21] has been omitted, and a parallel RC
load is considered.

Fig. 1. Fibonacci switched-capacitor converter: (a) Full schematic;
Equivalent circuits when (b) the switches “1” are closed and when
(c) the switches “2” are closed.

A. Dynamic modelling with ideal switches

In order to describe the dynamics of the converter
considering ideal switches, we proceed as usual; we
model the dynamic modes for each equivalent circuit
using current and voltage laws. Let us consider the case
in Fig. 1(b). We obtain the following set of equations

Σ1 :



v1 − E = 0 ,

v1 + v2 − v3 = 0 ,

v3 − v4 = 0 ,

C2
d

dt
v2 + (C3 + C4)

d

dt
v4 +

v4
R

= 0 .

(3)

Moreover, the set of equations corresponding to the
circuit in Fig. 1(c), are the following

Σ2 :



v1 − v2 + E = 0 ,

C1
d

dt
v1 + C2

d

dt
v2 = 0 ,

C3
d

dt
v3 = 0 ,

C4
d

dt
v4 +

v4
R

= 0 .

(4)

Note that since the switching produces parallel con-
nections among the capacitors and the source, there
exist algebraic equations expressing the corresponding
equalities for their voltages. As studied in the previous
section, when we model standard power converters, the
following step usually consists in obtaining one single
set of equations by considering the duty cycle and the
average value of the state variables as in equation (2).
However, if we try to follow such a method, we find that
the structure (2), which is based in a set of first order
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differential equations, cannot be satisfied since zero-th
order equations (i.e. algebraic constraints) are involved in
the dynamics of the converter. Moreover, we eventually
find two additional issues:

1. The voltages across capacitors are discontinuous
at switching instants, i.e. there exist instantaneous
“jumps” in the trajectories of the system variables.

2. The value of the voltages at the switching instants is
not uniquely determined, i.e. there exist more than
one possible consistent choice of initial conditions
that satisfy the equations at switching instants.

Since the value of the capacitors need to be uniquely
specified at switching instants, we consider a model
addressing instantaneous values, instead of using the
traditional averaging technique. We proceed to complete
the dynamic model of the converter by introducing a
reset rule for the system variables acting at the switch-
ing instants. In order to do so, we use the notation
f(t−) := limτ↗t f(τ) and f(t+) := limτ↘t f(τ), to
define the limit of a time function taken from the left
and from the right respectively.

In order to provide a realistic set of initial conditions at
the switching instants, the reset must respect the “prin-
ciple of conservation of charge” (cf. the redistribution
of charge in [15], [19]). We proceed by considering
the capacitors whose voltage is subject to algebraic
constraints, for instance when we switch from Σ2 to
Σ1, the total charge in the capacitors that exhibits a
redistribution due to parallel connections must be the
same before and after every switching instant ts, i.e.

C2v2(t
−
s ) + C3v3(t

−
s ) + C4v4(t

−
s )

= C2v2(t
+
s ) + C3v3(t

+
s ) + C4v4(t

+
s ) .

Additionally, the algebraic constraints of Σ1 dictate that
v1(t

+
s ) = E(t+s ), v2(t+s ) = v3(t

+
s ) − v1(t+s ), v3(t+s ) =

v4(t
+
s ).

After straightforward algebraic manipulations and as-
suming without loss of generality that the voltage E is
constant (and consequently E(t−s ) = E(t+s )), we obtain
the following reset rule

E(t+s )
v1(t+s )
v2(t+s )
v3(t+s )
v4(t+s )

 =
1

Ce1

 Ce1 0 0 0 0
Ce1

0 0 0 0
−C3−C4 0 C2 C3 C4

C2 0 C2 C3 C4

C2 0 C2 C3 C4



E(t−s )
v1(t−s )
v2(t−s )
v3(t−s )
v4(t−s )

 , (5)

where Ce1 = C2 + C3 + C4. Similarly, when we switch
from Σ1 to Σ2, the physical redistribution of charge
establishes that for every switching instant ts we have
that

C1v1(t
−
s ) + C2v2(t

−
s ) = C1v1(t

+
s ) + C2v2(t

+
s ) .

which together with the algebraic constraint v2(t+s ) −
v1(t

+
s ) = E(t+s ) = E(t−s ), we can determine the reset

rule
E(t+s )
v1(t+s )
v2(t+s )
v3(t+s )
v4(t+s )

 =
1

Ce2

 Ce2
0 0 0 0

−C2 C1 C2 0 0
C1 C1 C2 0 0
0 0 0 1 0
0 0 0 0 1



E(t−s )
v1(t−s )
v2(t−s )
v3(t−s )
v4(t−s )

 , (6)

where Ce2 = C1 + C2.
The voltage ripples of the converter using equations2

(4)-(6) and a periodic switching signal are shown in Fig.
2. Note that the discontinuous voltages are concatenated
via the reset rules after the switch.

Fig. 2. Voltage ripples of the Fibonacci SC converter.

Equations (4)-(6) represent an alternative dynamic
model based on instantaneous values for the discussed
SC converter. Note also that the model describes dynam-
ics in a large signal domain.

Remark 1. The presented approach allows to study the
dynamics of the SC converters in the sense of switched
linear systems (see e.g. [24], [25], [26]). Consequently,
their overall dynamic properties such as stability, stabil-
isability and control can be studied in this setting.

Remark 2. Note that the need to specify reset rules cor-
responds to a more general dynamic modelling approach
than that of traditional converters whose trajectories are
continuous at switching instants. For instance, in the
case of the switched linear system in equation (1), it
is assumed that x(t−s ) = x(t+s ) and consequently, the
matrices associated to the reset rules are trivially equal
to the identity.

2For this simulation, we used the parameters specified in Sec. III-3.
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B. Average losses-based modelling

The study of the large signal dynamics of SC con-
verters considering averaged quantities can be performed
in the nonlinear systems setting by considering non-
ideal switches. In this case, the issue regarding voltage
discontinuities vanishes.

We now discuss the concept of average dynamic
modelling with non-ideal switches. The approach has
been studied in detail in [18] for the modelling of
purely capacitor-based converters and in [20] for a hybrid
multiplier converter. Such approach applies the method
of average current between capacitors in parallel, rather
than the use of instantaneous values. The method is first
discussed in relation to Fig. 3(a) in which a capacitor
C1 is connected via a switch S to a second capacitor
C2, while the initial voltages across capacitors C1 and
C2 are different, i.e. V2(0) 6= V1(0).

Fig. 3. Electric diagram of a simple SC circuit and its equivalent
circuits.

When the switch is closed, assuming V1(0) > V2(0),
an electrical current flow from C1 to C2. The shape
of the charging/discharging current will depend on the
total loop resistance Rs, see Fig. 3(b), which consists of
the sum of the switch resistance and capacitors’ ESR.
Hence, the actual circuit can be described by Fig. 3(b).
The instantaneous circuit of Fig. 3(b) can be converted
into an average equivalent form by calculating the power
loss of the circuit in Fig. 3(b). The intuition behind this
method is to obtain an off-line expression derived from
the computation of the average amount of dissipated
energy according to the duty cycle of the converter, then
such expression is associated to the value of a variant
equivalent series resistor. The time domain solution
of the energy loss P dissipated by the loop resistor
Rs in Fig. 3, can be expressed in terms of decaying
exponentials as (see [18], p. 3343)

P =
I2av

2fsCe

(
1 + e−β

1− e−β

)
, (7)

where β := (DTs)/(RsCe), fs is the switching fre-
quency, Iav is the average current of the circuit (over
the switching period Ts = 1/fs), D the duty cycle that
sets the charge/discharge time period DTs (when switch
S in Fig. 3(a) is closed), for the circuit in Fig. 3(b), and

Ce = (C1C2)/(C1 + C2) is the equivalent capacitance.
From the above equation, considering average values, an
the equivalent resistance Re of the circuit can be defined
as a function of the duty cycle, i.e. Re : [0, 1] → R,
where

Re(D) :=
1

2fsCe

(
1 + e−β

1− e−β

)
, (8)

with β = (DTs)/(RsCe).

Remark 3. In [27], it has been determined that the value
of the dissipated power (7) in steady state is bounded by
the Slow/Fast Switching Limits, corresponding respec-
tively to the dissipated power considering ideal switches
and the absence of parasitic resistances; and to the
case when non ideal elements appear and the switching
frequency is fast enough to consider constant voltages
across capacitors during the switching period.

We can conclude that the average behaviour of the
circuit can be described by the average model of Fig.
3(c) in which voltages and currents are assumed to
be constant within the switching period Ts, which is
consistent with the concept of average models. In this
basic circuit, the average current Iav can be expressed
as,

Iav =
V1av − V2av
Re(D)

.

Following the losses-based averaging technique dis-
cussed above, we obtain the following set of equations
for the Fibonacci SC converter in Fig. 1 by applying
current laws with respect to each capacitor

Σloss :



C1
d

dt
V1av =

E − V1av
Re1(D)

− E + V1av − V2av
Re3(D)

− V1av + V2av − V3av
Re2(D)

,

C2
d

dt
V2av =

E + V1av − V2av
Re3(D)

− V1av + V2av − V3av
Re2(D)

,

C3
d

dt
V3av =

V1av + V2av − V3av
Re2(D)

− V3av − V4av
Re4(D)

,

C4
d

dt
V4av =

V3av − V4av
Re4(D)

− V4av
R

.

(9)
with

Ri(D) :=
1

2fsCei

(
1 + e−βi

1− e−βi

)
; βi =

DTs
RsiCei

;

where Rsi , Cei , i = 1, ..., 4, are the total resistance and
capacitance respectively of the loops where the average
currents are analysed.



5

Remark 4. The dynamic model (9) presents several
advantages: 1) The model describes the dynamics of
the converter in a large-signal domain. 2) The averaged
equations permit the computation of the converter gain
in a standard way, i.e. we can consider the derivative
of the state variables to be equal to zero, and after
straightforward computations it follows that V3av ≈ 3E
where the approximation accounts the power losses of
the circuit. 3) The model is able to capture additional
situations including: complete charging, partial charg-
ing and no effective charging; depending on the ratio
(DTs)/(RsCe) (cf. [18]).

Remark 5. The main disadvantage of the presented
model is its very high nonlinear structure. Due to this is-
sue, standard nonlinear control techniques that have been
set up for state affine nonlinear systems as in equation
(2) cannot be applied in a straightforward way using this
type of models and a more sophisticated mathematical
treatment is required. Moreover, the accurate estimation
of the equivalent loop resistances Rs may not be an
easy task, however a detailed exposition of the modelling
of non-ideal elements in SC loops including non-ideal
switches has been provided in [18].

C. Simulation results

In Fig. 4, we show the comparison between the
circuit-based simulation of the output voltage v4 the
SC converter in Fig. 1 using the software Synopsys
Saber, and that of the simulations of the model with
ideal switches in (4)-(6) and the average power loss-
based model in (9) using Matlab. We consider the
parameters E = 10V , fs = 50kHz, C1 = C2 = C3 =
C4 = 10µF and R = 100Ω. The total loop resistances
are Rs1 = 0.21Ω, Rs2 = 0.043Ω, Rs3 = 0.032Ω,
Rs4 = 0.022Ω, which are for this case the sum of the
switch on resistances Rsw = 0.01Ω of the transistors and
the capacitors ESR Rc = 0.001Ω, i.e. Rs1 = 2Rsw+Rc,
Rs2 = 4Rsw + 3Rc, Rs3 = 3Rsw + 2Rc, and Rs4 =
2Rsw + 2Rc.

Remark 6. The simulation shows that both, the dis-
continuous and the average power loss-based models
provide reliable information regarding the dynamics of
the circuit. Since both the switched linear- and the
nonlinear- systems frameworks offer powerful tools for
dynamic analysis and control, the selection of the more
appropriate approach relies on the application, i.e. where
either instantaneous or averaged values can be of special
interest.

Fig. 4. Comparison of the output voltage “v4” simulation and the
proposed dynamic models.

IV. DYNAMIC MODELLING OF HYBRID CONVERTERS

SCs can be also combined with inductor/capacitor
stages that are not necessarily of discontinuous nature,
we call these type of topologies hybrid SC converters.
An example of a hybrid topology is the three switch
high-voltage converter depicted in Fig. 5, that was firstly
proposed in [22] and recently used for current-ripple can-
cellation topologies [28]. Although the topology presents
a basic principle of operation and a reduced number
of components, only its small-signal dynamic model is
available in the literature (see [22]). According to the

Fig. 5. Three Switch High Voltage Converter: (a) Full schematic;
Equivalent circuits when (b) the switch is closed and (c) the switch
is open.

material discussed in the previous sections, we show
two large-signal dynamic models for the three switch
high-voltage converter. The model with ideal switches
derived from the material in Sec. III-A encompasses the
following modes according to the equivalent circuits in
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Fig. 5(b) and Fig. 5(c) respectively.

Σ1 :=


L
d

dt
i = E − v1 ,

C1
d

dt
v1 = i ,

C2
d

dt
v2 = −v2

R
.

Σ2 :


L
d

dt
i = E ,

(C1 + C2)
d

dt
v1 = −v1

R
,

v2 = v1 .

The reset rule when we switch from Σ2 to Σ1 at ts is
given by

E(t+s )
i(t+s )
v1(t

+
s )

v2(t
+
s )

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



E(t−s )
i(t+s )
v1(t

−
s )

v2(t
−
s )

 ,

Similarly, when we switch from Σ1 to Σ2 at ts we have
E(t+s )
i(t+s )
v1(t

+
s )

v2(t
+
s )

 =


1 0 0 0
0 1 0 0

0 0 C1

C1+C2

C2

C1+C2

0 0 C1

C1+C2

C2

C1+C2



E(t−s )
i(t+s )
v1(t

−
s )

v2(t
−
s )

 .

Applying the the power-loss based modelling in Sec.
III-B we obtain the following set of average nonlinear
dynamic equations for the converter in Fig. 5.

ΣAv :



L
d

dt
ILav = Vin − (1−D)V1av ,

C1
d

dt
V1av = (1−D)Iav

− 2fsCe

(
1− e−β

1 + e−β

)
(V1av − V2av) ,

C2
d

dt
V2av = −V2av

R

+ 2fsCe

(
1− e−β

1 + e−β

)
(V1av − V2av) .

(10)
with β = (DTs)/(RsCe), where Rs is the total loop
resistance between the SCs and Ce = (C1C2)/(C1+C2).

Moreover, a particular property in hybrid SC con-
verters allow us to propose a third modelling method
based on a reduced order approximation. This method
offers additional structural advantages with respect to the
previously discussed approaches, such as basic mathe-
matical representations, i.e. allowing standard state affine
nonlinear forms, and a reduced number of equations.
In order to obtain such model, we recall the voltage
balancing property (cf. [23],[29]). The intuition behind
this method is to exploit the fact that the dynamics

of the SCs are much faster than those of the overall
converter, consequently a zero-th order approximation
on the voltages across the SCs is used. Consider the SC
sub-circuit in Fig. 3(c) which shows an equivalent circuit
that considers the average current between capacitors.
In such circuit, the magnitude of the equivalent resistor
Re may vary arbitrarily by modifying the duty cycle
or the switching period. Moreover, from equation (8)
we can conclude that at higher frequencies, the average
losses inherent in the SCs decrease and the voltage across
capacitors tends to be constant during the switching
period Ts (see [30]). Consequently, the voltage across
C1 and C2 tend to be the same with the average
difference being the voltage across the resistor Re, i.e.
V1av − V2av = ReIav for the circuit in Fig. 3(c). In the
case of the converter in Fig. 5, if we assume that the
average voltage across capacitors C1 and C2 is the same,
i.e. V1av = V2av, we automatically neglect the nonlinear
terms associated to the power losses by considering the
sum of the dynamic equations for C1 and C2 in (10).
Thus we obtain the following reduced order average
dynamic model

ΣRO :


L
d

dt
I = E − (1−D)Vo ,

(C1 + C2)
d

dt
Vo = (1−D)I − Vo

R
.

(11)

where I is the input current and Vo the output voltage
(the voltage across C2). The model provides an approxi-
mation with a reduced number of equations considering
an ideal case (without losses), which can easily adopt
the standard state affine nonlinear form (2). The “open
loop” comparison of the output voltage considering the
circuit simulation and equations (11) is depicted in
Fig. 6. The parameters used for the simulations are
C1 = C2 = 50µF , R = 50Ω and L = 300µH .

Fig. 6. Comparison of the output voltage “v2” circuit simulation and
the reduced order model.
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Remark 7. Note that the reduced order model is
based on the voltage-balancing assumption. Conse-
quently, cases such as soft-switching (see e.g. [31])
can be considered as long as the assumption holds.
However the introduction of new dynamic elements such
as small series inductors will increase the differences in
the dynamics on the voltages across switched capacitors,
reducing the level of accuracy of the model.

Remark 8. Fig. 4 and Fig. 6 correspond to open-loop
simulations of the circuit topologies and the proposed
models. The simulations corroborate the “energy trans-
fer” principles that have been studied in this paper
and illustrates the discussed features of the proposed
approaches. Closed-loop implementations can be used
to test the discussed models under more challenging
scenarios e.g. in the presence of arbitrary load and input
voltage variations. However, since the theory and the
technical issues that arise from those implementations
are part of an important research area in control systems
that needs to be studied in detail, we have reserved such
theoretical developments for future work extensions.

We close this section by summarising the key features
of the presented modelling approaches in Table I.

TABLE I
DYNAMIC MODELLING OF DC-DC CONVERTERS WITH SCS

Approach Advantages Disadvantages

Ideal Switches

Allows to study the
current and voltage
ripples in converters

with switched
capacitors.

Averaged signals are
not considered, but
discontinuous ones.

Classic controllers for
state affine nonlinear

systems cannot be
applied.

Power-losses

Averaged signals
are obtained.

Non-ideal switches
are considered, thus

a more accurate
model is obtained.

Equivalent loop
resistances need to be

specified.
Highly nonlinear

structures are obtained,
and standard

nonlinear controllers
cannot be applied.

Reduced-order
(hybrid case)

Averaged signals
are obtained.

A reduced number
of equations

and a state affine
nonlinear form

is obtained.

The approximation
neglects the converter

losses and the
switched capacitor

dynamics.

V. CONCLUSIONS

We studied three modelling approaches for standard
SC based DC-DC converters with two modes. The

methods were illustrated using a Fibonacci SC converter
and a three switch high voltage converter. The method
discussed in Sec. III-A allows the study of the converter
in a large signal domain allowing discontinuous signals,
taking into account instantaneous values; the latter re-
sults convenient for the analysis of current and voltage
ripples. The approach in Sec. III-B provides an average
nonlinear model that captures non-ideal features such as
power losses. Finally, the method in Sec. IV allows the
use of basic nonlinear models with a reduced number of
equations that results convenient for control purposes.
Future research directions include the development of
control techniques using the approaches discussed in this
paper. Associated with the approach in Sec. III-A, new
theoretical developments are under study, where issues
such as modularity, i.e. the incremental development and
combination of mode dynamics, are of special interest,
see e.g. [26] and [32].
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