Graphene Q-switched Yb:Phosphate Glass Channel Waveguide Laser

A. Choudhary1, S. Dhingra2, B. D’Urso2, K. Pradeesh1 and D. P. Shepherd1

1. Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
2. Department of Physics and Astronomy, University of Pittsburgh, Pennsylvania 15260, USA

Q-switched lasers can generate high-energy pulses that can have applications in medicine, material processing and defence. Waveguide lasers have several attractive features such as a low laser threshold and a high slope efficiency, provided that the propagation losses are kept low, compactness and mass-producibility. Ion-exchange is a simple and cheap technique to fabricate loss-loss waveguides in glass, with mode-locked operation being demonstrated in ion-exchanged Yb:phosphate glass lasers [1] using a semiconductor saturable absorber mirror (SESAM). Using graphene as a saturable absorber has several key advantages over SESAMs such as a broad wavelength operating range, cost-effectiveness and ease of fabrication. Graphene has previously been used as a saturable absorber to demonstrate Q-switched mode-locking in a femtosecond-written glass waveguide laser [2] and Q-switched operation in a carbon-irradiated Nd:YAG ceramic channel waveguide laser [3]. In this paper we present an ion-exchanged Yb:phosphate glass waveguide laser, Q-switched using a graphene saturable absorber.

A 200-nm-thick layer of aluminium (Al) was deposited on a surface-polished Yb:phosphate glass (IOG-1, Schott glass) sample using e-beam evaporation. Using photolithography, channel openings of widths 1 µm to 10 µm were defined in the metal mask, after which the glass sample was immersed into a salt mixture consisting of 45 mol% KNO3–50 mol% NaNO3–5 mol% AgNO3 kept at 325 °C for 10 minutes. Following the (Ag+, K+)-Na+ ion-exchange, the Al layer was removed and the glass was polished to a length of 17.8 mm. Graphene was grown on ultra-flat copper using atmospheric-pressure chemical vapour deposition (APCVD) [4]. Using PMMA, the graphene was transferred onto an output coupler (OC) with a transmission of 2% at the laser wavelength.

A fibre-coupled single-mode laser diode (3S Photonics) operating at 975 nm was used as a pump. The fibre output was collimated by an f = 8 mm aspheric lens, following which a half-wave plate and an isolator were installed to block any back-reflections from the waveguide. An aspheric lens with f = 11 mm was used to launch into a waveguide, fabricated with a channel opening width of ~6 µm. The waveguide cavity was formed by end-cutting a 200-µm-thick mirror with reflectivity of >99.9% (at 1055 nm) at the input facet and the graphene-coated OC at the output facet. On increasing the incident power to 220 mW, 17 nJ pulses were generated at a repetition rate of 392 kHz and with a full-width-at-half-maximum (FWHM) duration of 292 ns. The variation in pulse width and pulse energy with the incident power is shown in Fig. 1 (a). For the highest pump power of 652 mW, 27 nJ pulses were generated with a FWHM duration of 140 ns and at a repetition rate of 781 kHz. A typical pulse train (measured at 652 mW) is shown in Fig. 1 (b) and the average power and repetition rate versus incident power is shown in Fig. 1 (c). The slope efficiency obtained during Q-switched operation was 3.2% and the wavelength of operation was 1055 nm. In conclusion we have demonstrated the first, to the best of our knowledge graphene Q-switched ion-exchanged waveguide laser. Mode-locking and power-scaling experiments are under progress.

![Fig. 1](image-url) (a) Pulse width and pulse energy vs. incident power, (b) pulse train measured at an incident power of 652 mW, and (c) output power and repetition rate vs. incident power.

References