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Abstract

The nucleolus is one of the most important solution concepts in cooperative game theory as

a result of its attractive properties - it always exists, is unique, and is always in the core (if the

core is non-empty). However, computing the nucleolus is very challenging because it involves the

lexicographical minimization of an exponentially large number of excess values. We present a method

for computing the nucleolus of large games, i.e. those with more than 50 players, using nested linear

programs (LP). Although different variations of the nested LP formulation have been documented

in the literature, they have not been used for large games because of the large size and number of

LPs involved. In addition, subtle issues such as how to deal with multiple optimal solutions and with

tight constraint sets need to be resolved in each LP in order to formulate and solve the subsequent

ones. Unfortunately, this technical issue has been largely overlooked in the literature. We treat these

issues rigorously and provide a new nested LP formulation that is smaller in terms of the number of

large LPs and their sizes. We provide numerical tests for several games, including the general flow

games, the coalitional skill games and the weighted voting games, with up to 100 players.

Keywords: Nucleolus; cooperative game; multi-level programming; payoff distribution; constraint gen-

eration; lexicographical minimization.

1 Introduction and Literature Review

The nucleolus is one of the most important solution concepts for cooperative games with transferable

utilities. It represents a way to distribute the reward (or cost) among the players involved in a way

that lexicographically minimizes the excess values (i.e. dissatisfaction levels) of all coalitions. The

nucleolus was introduced in 1969 by Schmeidler [33] as a solution concept with attractive properties -

it always exists, it is unique, and it lies in the core (if the core is non-empty). We review concepts in

cooperative game theory and their mathematical definitions in Section 2.1. The nucleolus concept has

been used in many different applications. For example, in the banking industry, groups of banks enter

into an agreement for their customers to use ATM machines owned by any bank in the same group. The
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nucleolus is then used to suggest how the cost of installing and maintaining those ATM machines can

be shared among the banks (see Gow and Thomas [15]). It has also been applied to insurance premium

setting (Lemaire [25]) and to network cost sharing (Deng et al. [8], Granot and Huberman [16], Granot

and Maschler [17]), among many other applications.

Despite the desirable properties that the nucleolus has, its computation is, however, very challenging

because the process involves the lexicographical minimization of 2n excess values, where n is the number

of players. Kohlberg [21] provides a necessary and sufficient condition for an imputation to be the

nucleolus. However, the criterion requires forming the coalition array of all 2n possible coalitions and

then making sure 2n linear inequalities are satisfied. The analytical form of the nucleolus is only available

for games with three players Leng and Parlar [26]. There are a small number of games whose nucleoli

can be computed in polynomial time. These include the connected games in Solymosi and Raghavan

[35], the neighbor games in Hamers et al. [18], the cyclic permutation games in Solymosi et al. [36], and

the flow games with unit capacities in Potters et al. [30], Deng et al. [8], Kern and Paulusma [20]. It

has been shown that finding the nucleolus is NP-hard for many games such as the utility games with

non-unit capacities in Deng et al. [8] and the weighted voting games in Elkind et al. [11]. In fact, finding

the core and the least core is NP-hard in supermodular games [34] and inventory centralization games

[7].

Kopelowitz [23] suggests using nested linear programming (LP) to compute the kernel of a game.

This encouraged a number of researchers to compute the nucleolus using linear programming. For

example, Kohlberg [22] presents a single LP with O
(
2n!
)

constraints. The number of constraints in the

LP formulation of Owen [28] is reduced to O
(
4n
)

but the coefficients get larger. The nucleolus can also

be found by solving a sequence of LPs. However, the number of LPs involved is exponentially large

(i.e. O
(
4n
)

in Maschler et al. [27] and O
(
2n
)

in Sankaran [32]). Potters et al. [31] present another

formulation that involves solving (n− 1) linear programs with, at most, (2n + n− 1) rows and (2n − 1)

columns. The authors also develop a prolonged Simplex method for solving these large LPs and conduct

numerical experiments for games with 10 players. Derks and Kuipers [9] improve the implementation of

the prolonged Simplex method in [31] and provide numerical results for games with 20 players. Göthe-

Lundgren et al. [14] attempted to apply a constraint generation framework to find the nucleoli of basic

vehicle routing games. However, some of results are incorrect as has been pointed out by Chardaire [6].

The issue of having multiple optimal solutions in each LP was not considered in [14], but we are able

to deal with that in Section 2.4. Fromen [13] uses Gaussian elimination to improve the formulation of

Sankaran [32] and to reduce the number of LPs in the implementation. Nevertheless, the LPs are still

extremely large when the number of players gets larger and existing methods become intractable when

n exceeds 20. In the nested LPs formulation, subsequent LPs are formed based on the optimal solutions

of the previous LPs and the tight inequalities. One needs to be very careful if there are multiple optimal

solutions to these LPs and if there are multiple coalitions with the same worst excess values. The paper

provides a rigorous treatment of the nested LPs formulation which deals with these issues.

For each payoff distribution, there are 2n excess values that correspond to 2n possible coalitions.

The nucleolus is the payoff distribution that lexicographically minimizes its excess values. Thus finding
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the nucleolus effectively is only possible if one can find the worst coalition(s) for a given imputation

efficiently. Faigle et al. [12] show that the nucleolus can be found in polynomial time if finding the worst

coalition for a given imputation, i.e. the separation problem, can be done in polynomial time. Their

method is based on the ellipsoid algorithm which, although theoretically having a polynomial runtime,

does not perform well in practice. Our paper bridges this gap and presents a practical numerical

procedure for computing the nucleolus. We test our algorithm with the coalitional skill games and the

weighted voting game.

The key contributions of our work include:

• We present a nested LPs formulation for computing the nucleoli of cooperative games. Although

the idea of using a nested LPs framework has been around for more than 40 years ago (Kopelowitz

[23]) with various reformulations having been proposed, these methods face several issues that

will be described in detail in Section 2.4. The most critical issue among these is how to handle

multiple optimal solutions in each of the large LPs. Dealing with multiple optimal solutions is

often needed in multi-level programming and is often very challenging. We provide a concrete

method for dealing with these issues in Sections 3.2-3.5.

• The size of our nested LPs formulation is smaller than other nested LPs formulation described in

the literature as can be seen in Table 1. The number of LPs to be solved in our method is smaller

than that in Maschler et al. [27] and Sankaran [32] while the number of columns in each LP is

smaller than that in Potters et al. [31]. These features are results of our special way of handling

tight coalitions and finding the minimal tight sets (the key idea in Theorem 1 and the main results

in Theorem 2).

Algorithms # LPs and their sizes

Kohlberg [22] in 1972 One LP with O
(
2n!
)

constraints

Owen [28] in 1974 One LP with O
(
4n
)

constraints but the coefficients get large

Maschler et al. [27] in 1979 O
(
4n
)

LPs, each with with O
(
2n
)

rows and n+ 1 columns

Sankaran [32] in 1991 O
(
2n
)

LPs, each with O
(
2n
)

rows and n+ 1 columns

Potters et al. [31] in 1996 n− 1 LPs, each with (2n + n− 1) rows and (2n − 1) columns

Our method (2012) n− 1 LPs, each with (2n + n− 1) rows and (n+ 1) columns

Table 1: Comparison between our method and the literature.

• We provide numerical computation for large games with up to 100 players in the weighted voting

games [1, 5] and up to 75 players in the coalitional skill games [2, 3]. This is a significant

improvement compared to the literature where numerical results are shown for computing the

nucleoli of games with at most 20 players.

In addition to these key contributions, we also apply a constraint generation framework for solving

the large LPs. This gives hope to solving very large LPs as we don’t have to rely on the simplex method
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to solve large scale LPs when n ≥ 25. The constraint generation algorithm is not new and has been

applied successfully in many areas including finding the solutions of cooperative games (e.g. Caprara and

Letchford [4]). Applying it to solving nested LPs though creates some challenging problems in keeping

track of multiple discrete and continuous optimal solutions so that subsequent LPs can be formulated.

Our approach is appropriate for large games and for combinatorial games where it is costly to calculate

the characteristic values for all the possible coalitions. For example, in the flow games proposed by Kalai

and Zemel [19], the value of a coalition is the maximum flow that can be sent through the subnetwork

using edges in the coalition only. In this case, it is time consuming to calculate all the 2n possible

values. Instead, we can incorporate the maximum flow problem into the constraint generation problem

that is then solved only if needed. We also demonstrate how this can be done in other games such as

the voting games and the coalitional skills games.

The structure of this paper is as follows: Section 2.1 provides the list of notations used throughout

the paper and a review of important solution concepts in cooperative game theory such as the core,

the least core, and the nucleolus. We present the idea behind the nested LPs and their formulation in

Sections 2.2 and 2.3 with an illustrative example. The focus of this paper starts from Section 2.4 where

the subtle issues relating to the nested LPs formulation are discussed in detail. The main contribution

of this paper lies in addressing these issues in Section 3. We present the framework for finding the

nucleolus in Section 3.1 and the idea of finding optimal solutions with minimal tight sets in Section 3.3.

Our algorithm requires solving at most (n− 1) large LPs, each having (n+ 1) columns and (2n +n− 1)

rows as shown in Section 3.4. Various numerical experiments are presented in Section 5 and conclusion

is drawn in Section 6.

2 Finding the Nucleolus using Nested LPs

2.1 Review of Solution Concepts in Cooperative Game Theory and Notation

Let n be the number of players and let N = {1, 2, . . . , n} be the set of all the players. A coalition S is a

subset of the players, i.e. S ⊂ N . Let C ≡ 2N be the set of all the possible coalitions. The characteristic

function v : 2N 7→ R maps each coalition to a real number with v(S) representing the payoff that

coalition S is guaranteed to obtain if all players in S collaborate no matter what the other players do.

A solution of the game x = (x1, x2, . . . , xn) is a way to distribute the reward among the players, with

xi being the share for player i. Let us denote x(S) =
∑

i∈S xi. For each imputation x, the excess value

of a coalition S is defined as e(S,x) = v(S)− x(S) which can be viewed as the level of dissatisfaction

the players in coalition S feel over the proposed solution x. Solution concepts for cooperative games

include:

• An imputation is a solution x that satisfies
∑

i∈N xi = v(N ) and xi ≥ v(i),∀i ∈ N .

• The core of the game is the set of all imputations x such that e(S,x) ≤ 0, ∀S ⊂ N .

• The ε-core is defined as the set of all imputations x such that e(S,x) ≤ ε, ∀S ⊂ N .
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• Least core: The least core is the non-empty ε-core with ε being the smallest value.

• Nucleolus: For any imputation x, let Θ(x) = (Θ1(x),Θ2(x), . . . ,Θ2n(x)) be the vector of all the

2n excess values at x sorted in the decreasing order, i.e. Θi(x) ≥ Θj(x) if 1 ≤ i < j ≤ 2n. Let us

denote Θ(x) <L Θ(y) if ∃ r such that Θi(x) = Θi(y),∀1 ≤ i < r and Θr(x) < Θr(y). Then x is

the nucleolus if, Θ(x) <L Θ(y), ∀y 6= x.

This section provides only a brief review of cooperative game theory. We refer the interested readers to

Peleg and Sudhölter [29], Chalkiadakis et al. [5] for more thorough introduction of the topic.

2.2 The Idea behind Using Nested LPs

Consider the following minimax problem for finding the least core: min
x∈I

(
max
S⊂N

{v(S)− x(S)}
)

. This

problem finds an imputation x such that the worst excess value among all coalitions, i.e. max
S⊂N

{v(S)−
x(S)}, is minimized. By definition, the nucleolus must be a solution of this problem. Furthermore, let

ε = max
S⊂N

{v(S)− x(S)}, then the problem can be reformulated as an LP as follows:

min
x∈I,ε

{ε | ε+ x(S) ≥ v(S), ∀S ⊂ N}.

Before going into further details on the algorithm, we need to define the concept of tight set as it

is directly related to the definition of lexicographical minimization and will be crucial in formulating

the nested LPs.

Definition 1. For any given (x, ε), let us denote T (x) as the corresponding tight set of all those

coalitions S such that the constraints ε+ x(S) ≥ v(S) is tight, i.e. ε+ x(S) = v(S), ∀S ∈ T (x).

The reformulated LP problem is not easy to solve because there is an exponentially large number

of constraints. However, assume its optimal solution is (x∗, ε∗). Then the lexicographical ordering of

all the excess values of imputation x∗ will have the form: {ε∗, ε∗, . . . , ε∗, σ, . . .}, where the first |T (x∗)|
elements of the sequence are equal to ε∗ and the following elements are at most σ, which is smaller than

ε∗.

Solving this problem can provide us with the worst excess value that the nucleolus will produce.

However, the LP problem can have multiple optimal solutions and we are not guaranteed that the

optimal solution produced is the nucleolus. In addition, two distinct optimal solutions might have

different tight sets and the tight sets might have different sizes. We only know that the nucleolus must

correspond to an optimal solution x∗ with the smallest tight set T (x∗) (here, ‘smallest’ is in terms of

size). Elkind and Pasechnik [10] show that the tight set with the smallest size is unique, i.e. if both

x∗ and y∗ produce the sets T (x∗) and T (y∗) which are smallest in sizes, then the two sets must be

identical, i.e. T (x∗) ≡ T (y∗) (this result can be proved by exploiting the linearity property of the

problem). This means that choosing any optimal solution x∗ with the smallest tight set would lead to

the same minimal tight set T ∗ which will be used to formulate the subsequent LP. We will demonstrate

how to find the minimal tight set T ∗ in Sections 3.2 and 3.3. In order to find the nucleolus among all
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the imputations x∗ with the same smallest set T ∗, we must then aim to minimize σ and repeat this

procedure until x∗ is unique. This can be done by solving another LP:

min
x∈I,σ

{σ | ε∗ + x(S) = v(S), ∀S ∈ T ∗, σ + x(S) ≥ v(S), ∀S ∈ C\T ∗}.

The first set of constraints ensures that only candidate imputations with the first |T ∗| worst excess

values equal to ε∗ (but not larger) are considered. The second set of constraints and the objective

function aim to minimize the worst excess values among all the remaining coalitions. Solving this LP

will produce for us another set of coalitions T ∗′ with the excess σ∗. If we keep doing this, we will reach

the point where the optimal solution x∗ is unique; that is, x∗ is the nucleolus of the game.

2.3 Nested LPs Formulation for Finding the Nucleolus

The problem of finding the nucleolus can be formulated as nested LPs (a sequence of LP1, LP2, . . .) as

follows:

LP1 := min
x∈I,ε1

{ε1 | ε1 + x(S) ≥ v(S), ∀S ⊂ N}.

Let (x1, ε
∗
1) be an optimal solution. Notice that ε∗1 should be unique. However, it is possible to have

multiple optimal solutions x1. Each x1 will correspond to a set T1(x1) of all the coalitions S for

which the inequality constraint ε∗1 + x1(S) ≥ v(S) is tight. Among all the optimal solutions and their

corresponding tight sets, let T ∗1 be the set with the smallest size. Suppose for now that we are able to

solve LP1 and produce an optimal solution (x∗1, ε
∗
1) with the minimal tight set, i.e. T1(x∗1) ≡ T ∗1 . We

then solve the following LP:

LP2 := min
x∈I,ε2

{ε2 | ε∗1 + x(S) = v(S), ∀S ∈ T ∗1 , ε2 + x(S) ≥ v(S), ∀S ∈ C \ T ∗1 }.

For each k ≥ 2, suppose LPk produces (x∗k, ε
∗
k, T ∗k ). Then LPk+1 is formulated as follows:

LPk+1 := min
x∈I,εk+1

εk+1,

s.t. ε∗r + x(S) = v(S), ∀S ∈ T ∗r , ∀r ∈ {1, .., k}, (1a)

εk+1 + x(S) ≥ v(S), ∀S ∈ C\H∗k, . (1b)

where H∗k = ∪r∈{1,..,k}T ∗r . We repeat this process until LPk produces a unique imputation x∗. That

imputation is the nucleolus. To demonstrate the nested LPs formulation, we consider the following

simple three-player cooperative game example with the characteristic function:

v({1}) = 1, v({2}) = 2, v({3}) = 5, v({1, 2}) = 6, v({1, 3}) = 7, v({2, 3}) = 8, v({1, 2, 3}) = 12.

The set of all imputations is: I = {(x1, x2, x3) : x1 + x2 + x3 = 12, x1 ≥ 1, x2 ≥ 2, x3 ≥ 5}, and is

shown in the shaded area (the largest triangle) in Figure 1. The core of the game is:

C = {(x1, x2, x3) : x1 + x2 + x3 = 12, x1 ≥ 1, x2 ≥ 2, x3 ≥ 5, x1 + x2 ≥ 6, x1 + x3 ≥ 7, x2 + x3 ≥ 8},
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and is shown in the shaded trapezoid in Figure 1. LP1 is formulated as:

min
x,ε

{ε | x1 + ε ≥ 1, x2 + ε ≥ 2, x3 + ε ≥ 5, x1 + x2 + ε ≥ 6, x1 + x3 + ε ≥ 7, x2 + x3 + ε ≥ 8,

x1 + x2 + x3 + ε ≥ 12, ε ≥ 0, x1 + x2 + x3 = 12, x1 ≥ 1, x2 ≥ 2, x3 ≥ 5}.

The optimal value of LP1 is ε∗1 = 0 and the set of all the optimal solutions (the least core solutions)

is exactly the core. Solving LP1 will produce for us a least core solution. However, depending on the

solver we use, we might end up with one of the extreme points (e.g. if we use the simplex method) or a

relative interior point (e.g. if we use an interior point method). The tight sets that correspond to these

optimal solutions are:

T1(x) =



{
{∅}; {1, 2, 3}; {3}; {2, 3}

}
if x = (4, 3, 5),{

{∅}; {1, 2, 3}; {2}; {1, 2}; {2, 3}
}

if x = (4, 2, 6),{
{∅}; {1, 2, 3}; {1}; {1, 2}; {1, 3}

}
if x = (1, 5, 6),{

{∅}; {1, 2, 3}; {3}; {1, 3}
}

if x = (2, 5, 5),{
{∅}; {1, 2, 3}; {2, 3}

}
if x = α(4, 3, 5) + (1− α)(4, 2, 6), with 0 < α < 1,{

{∅}; {1, 2, 3}; {1, 2}
}

if x = α(4, 2, 6) + (1− α)(1, 5, 6), with 0 < α < 1,{
{∅}; {1, 2, 3}; {1, 3}

}
if x = α(1, 5, 6) + (1− α)(2, 5, 5), with 0 < α < 1,{

{∅}; {1, 2, 3}; {3}
}

if x = α(2, 5, 5) + (1− α)(4, 3, 5), with 0 < α < 1,{
{∅}; {1, 2, 3}

}
if x ∈ int(conv((4, 3, 5); (4, 2, 6); (1, 5, 6); (2, 5, 5))).

In this case, the minimal tight set is T ∗1 =
{
{∅}; {1, 2, 3}

}
when x belongs to the interior of the trapezoid

or the interior of the line segment α(2, 5, 5)+(1−α)(4, 3, 5) with 0 < α < 1. The problem of how to find

an optimal solution that corresponds to the minimal tight set will be dealt with in Section 3.3. However,

suppose for now that we are able to obtain this minimal tight set. Then we use T ∗1 to formulate LP2

as follows:

min
x,ε

{ε | x1 + x2 + x3 = 12, x1 + ε ≥ 1, x2 + ε ≥ 2, x3 + ε ≥ 5,

x1 + x2 + ε ≥ 6, x1 + x3 + ε ≥ 7, x2 + x3 + ε ≥ 8, x1 ≥ 1, x2 ≥ 2, x3 ≥ 5}.

The optimal value is ε∗2 = −0.5 and the optimal solutions of LP2 are those points in the line segment

connecting x = (2, 4.5, 5.5) and y = (3.5, 3, 5.5), i.e. those points with the form αx + (1 − α)y

where 0 ≤ α ≤ 1. Solving LP2 will produce a solution that belongs to this line segment. From the

minimal tight set T ∗2 =
{
{3}; {1, 2}

}
we can formulate and solve LP3 and obtain the optimal value of

ε∗3 = −1.25 and a unique solution of x∗ = (2.75, 3.75, 5.5) with the tight set T ∗3 =
{
{1, 3}; {2, 3}

}
. This

is the nucleolus and we can stop the algorithm.
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(5, 2, 5)

(1, 2, 9)

(1, 6, 5)

(4, 2, 6) (1, 5, 6)

(4, 3, 5) (2, 5, 5)
x∗

x y

Figure 1: Example of a cooperative game with three players. The largest triangle is the domain of

the imputations. The shaded trapezoid is the domain of the core, which coincides with the least core

for this particular game, i.e. the optimal solutions of LP1. The line segment between x and y is the

domain of all the optimal solutions of LP2. The nucleolus is x∗, which is the unique solution of LP3.

2.4 Issues with the Nested LPs Formulation

From the simple example presented in Section 2.3, we have some observations on the properties of LPk.

First of all, ε∗k is always unique but there might be multiple optimal solutions xk. Second, among all the

optimal solutions xk, there might be more than one solution whose tight set is smallest in size. However,

all these optimal solutions share the same unique tight set. It is also interesting to notice that, based

on the construction of the nested LPs, any optimal solution xk+1 of LPk+1 is also an optimal solution

of LPk, LPk−1,...LP1. In addition, xk+1 produces the smallest tight sets in all these k LPs. The

nested LPs formulation provides us with a general procedure for finding the nucleolus. However, there

are many practical issues that need to be addressed:

Issue 1: For a given imputation x, how can we find the set Tk(x) of all the coalitions that produce the

worst excess values? This issue is equivalent to the problem of finding multiple discrete solutions of the

problem: max
S⊂N

{v(S)− x(S)}.
Issue 2: LPk might have multiple optimal imputations x, each of which corresponds to a tight set

Tk(x). How can we find an optimal solution x with the smallest |Tk(x)|?
Issue 3: The nested LPs presented might require solving as many LPs as there are distinguishing level

ε∗k and this could be exponentially large for some games. How can we modify it to bound the number of

LPs to at most (n− 1)?

Issue 4: Related to the second issue with multiple tight coalitions, the problem becomes even more

challenging when the tight sets have exponential sizes (this occurs in many games such as the weighted

voting games). If this is the case, how can we formulate and solve the subsequent LPs given that we

might not have the resources to compute the entire set T ∗k ?

As far as we have understood, although the nested LPs formulation was formulated by Kopelowitz

[23] in 1967 and various reformulations have been presented, very limited numerical tests have been

performed. In addition, all of these experiments are only for small games, i.e. Potters et al. [31] provide

numerical tests for games with at most 10 players, Derks and Kuipers [9] and Fromen [13] improve
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existing methods to provide numerical tests for games with no more than 20 players. We presume that

there are two main reasons behind this. First of all, the LPs has 2n constraints and hence are difficult

to solve in practice. The second and more critical reason lies on the difficulty of handling the multiple

optimal solutions in each LP (Issue 2).

Potters et al. [31] and Derks and Kuipers [9] recognize these four aforementioned issues and attempt

to resolve them using a prolonged simplex method. However, their method does not scale well because

of the large LPs involved. Issue 3 has been recognized in the literature and the conventional stopping

condition is when the tight constraints produce a unique solution. The number of LPs to be solved

is bounded by the number of players in [9, 31] thanks to their special way of avoiding having to solve

redundant LPs. Issue 4 has been recognized by Elkind and Pasechnik [10]. Under these situations, their

ellipsoid method requires the assumption that the size of T ∗k is known. Our paper deals issue 4 without

this assumption. This is done by replacing T ∗k with a representative set with size at most n. This not

only helps to resolve issue 4, but also makes the LPs formulation smaller, and thus easier to store and

solve.

3 Computational Approach for Solving the Nested LPs

The nested LPs formulation presented in the literature is usually in the form of Model (1) described

in Section 2.3. We will first reformulate these LPs slightly. Let (x∗k, ε
∗
k) be an optimal solution from

LPk that has the minimal tight set Tk(x∗k) = T ∗k . Let (x, εk+1) be an optimal solution of LPk+1.

Then equality constraints (1a) in LPk+1 requires ε∗r + x(S) = v(S), ∀S ∈ T ∗r , ∀r ∈ {1, .., k}. Since

(x∗k, ε
∗
r , T ∗r ) is an optimal solution from LPr, we also have ε∗r + x∗k(S) = v(S), ∀S ∈ T ∗r , ∀r ∈ {1, .., k}.

Subtracting one equality from the other, we obtain (x − x∗k)(S) = 0, ∀S ∈ T ∗r , ∀r ∈ {1, .., k}. Thus,

(x−x∗k)(S) = 0, ∀S ∈ H∗k, i.e. we restrict x ∈
{
x∗k +null(H∗k)

}
, where null(H∗k) denotes the null space

of all the coalition vectors in H∗k. From this, LPk+1 can be reformulated as:

LPk+1 := min
x∈I,εk+1

εk+1,

s.t. (x− x∗k)(S) = 0, ∀S ∈ H∗k, (2a)

εk+1 + x(S) ≥ v(S), ∀S ∈ C\H∗k. (2b)

This reformulation provides us with a more elegant form. The storage required in representing the

formulation is also smaller, i.e. only needs H∗k from previous LPs instead of (ε∗r , T ∗r ) for all r ∈ {1, .., k}.
This formulation also helps when dealing with large tight sets described as the fifth issue in Section

2.4. In this case, constraint (2a) can be expressed using rank(H∗k) number of equalities which is always

smaller than n. Here, rank(H∗k) denotes the number of linearly independent vectors in H∗k. Notice that

the nested LPs formulation shown requires solving as many large LPs as there are distinct values of ε∗k. It

is possible to resolve this using the ideas in Potters et al. [31] and Derks and Kuipers [9] to avoid solving

redundant LPs. Here, the set of constraints in (2b) are replaced by εk+1 +x(S) ≥ v(S), ∀S 6∈ span(H∗k),
where span(H∗k) denotes the linear span of vectors in H∗k. Hence the rank of H∗k keeps increasing after

solving every LP. Details of this will be presented in Section 3.4.
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3.1 Algorithm for Finding the Nucleolus

Algorithm 1 presents the complete algorithm for finding the nucleolus. The algorithm iteratively solves

LPk to obtain an optimal solution (i.e. Step 2), find its representative set in Step 3, and find an optimal

solution with the minimal representative set in Step 4. This process is repeated at most n times until

the minimal tight set has full rank. A demonstration of how Algorithm 1 works on a small flow game

is presented in the numerical results in Section 5.3.

Algorithm 1: Algorithm for finding the nucleolus x∗ of cooperative game (N , v)

1. Initialization: Set the initial tight set H∗0 to include only the identity vector e, i.e. H∗0 = {e};
for iteration k = 1...n do

2. Solve LPk and produce an optimal solution (x∗, ε∗k);

3. Find the representative set R(x∗) of T (x∗);

4. Find improving optimal solution x∗ with R(x∗) having the smallest rank (i.e. minimal

representing set);

if R(x∗) has full rank then

5. Output x∗ as the nucleolus and stop the algorithm;

end

end

In Step 2, we need to solve LPk efficiently. This task is feasible for any cooperative games with the

number of players less than around 20 since linear programming solvers such as the Simplex method can

handle these LP efficiently. For larger games, we need to make an assumption that the characteristic

function has some special forms that allows us to exploit and solve LPk. This assumption is quite

reasonable in the quest for finding the nucleolus because, without it, even solving for the core or the

least core has already been difficult. We demonstrate this possibility through some combinatorial games

to which the well-known constraint generation (CG) approach can be applied to solve LPk.

The CG algorithm (sometimes referred to as the delayed constraint generation or cutting plane

method) has been successfully applied to problems involving an exponentially large number of con-

straints and it could potentially be used for finding the least core. The idea of the CG algorithm is

to start with a restricted LP problem and then to check whether the optimal solution of the restricted

problem satisfies all the constraints in the original problem. If that is the case, then the solution to the

restricted problem is also an optimal solution of the original problem. Otherwise, we have identified a

violating constraint and that can be added to the restricted problem. It is noted, however, that applying

the CG algorithm to find the nucleolus is not straightforward since dealing with multiple optimal solu-

tions and the tight sets, i.e. the first and the second issues presented in Section 2.4, becomes even more

challenging to resolve within the CG framework. The CG algorithm often returns only a small subset of

all the tight constraints because many of these constraints are relaxed in the restricted problem. How

can we assess the size of the tight set of the optimal solution obtained against that of other optimal

solutions? Fortunately, these issues are resolvable in the CG framework and are presented in Sections
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3.2 and 3.3. We provide some further details about the CG algorithm in Appendix B.

We found many references in the literature that include only Step 2 when presenting the algorithm

for finding the nucleolus. This seems to create a common perception within the research community

that the nucleolus can be found by solving a nested LPs (without concerning about which optimal

solution in each LP to choose). As we have shown in the simple example in Section 2.3 and the list of

issues presented in Section 2.4, choosing the right optimal solution with the minimal tight set is crutially

needed for formulating subsequent LPs and hence Steps 3-4 described in Algorithm 1 are needed. In

fact, handling multiple optimal solutions is the major difficulty in computing the nucleolus and we can

only realize this through doing the actual numerical computation. The focus of the paper is to resolve

issues 1-4 listed in Section 2.4 which will be presented in the Sections 3.2-3.5.

The algorithm for finding the nucleolus presented in this paper involves solving several sub-problems.

These sub-problems are referred to throughout the paper by a list of acronyms that are included in

Appendix A.

3.2 Dealing with Issue 1: Finding Tight Coalitions

When solving LPk, we stop at the point when the relaxed LP produces the same result as the CG does,

i.e. when the lower bound (from the relaxed LP) is equal to the upper bound (from the CG). Let (x, ε∗k)

be an optimal solution found. Here, we use the notation (x, ε∗k) instead of (x∗k, ε
∗
k) since there could be

multiple optimal solutions x and what we obtained might not have the minimal tight set. The relaxed

LP will have a number of constraints, εk + x(S) ≥ v(S), that are tight. These correspond to coalitions

with the worst excess values. These tight coalitions are often only a subset of Tk(x) and we need to

find the remaining tight constraints that have not been in the relaxed LP. This problem is equivalent to

finding the remaining coalitions S that solve v(S) − x(S) = ε∗k, which is also equivalent to solving the

CG problem, maxS∈C\F {v(S)−x(S)}, where F is the set of tight constraints that we have identified so

far. We notice that each coalition S can be represented as an indicator vector z = {z1, z2, . . . , zn} where

zi = 1 means player i is in the coalition S and zi = 0 means otherwise. Then, for each imputation x, we

have x(S) = xtz, which is a linear function of z. Suppose also that v(S) can be expressed as a function

of z, i.e. v(S) ≡ v(z). Let {z1, z2, . . . ,zK} be the set of tight coalitions found so far. To find other tight

coalitions, we need to solve the following problem: max
z∈{0,1}n

{v(z) − ztx | z 6∈ {z1, z2, . . . ,zK}}. The

constraint z 6= zj is equivalent to eliminating previous solution zj from the feasible space. This can be

done by generating a cut to separate this point from the remaining as follows. We notice that z 6= zj is

equivalent to (2z−e) 6= (2zj−e) where e is the identity vector. Notice that both (2z−e) and (2zj−e)

have elements equal to −1 or 1 and hence they are different if and only if (2zj − e)t(2z − e) ≤ n − 2.

This is equivalent to (2zj − e)tz ≤ etzj − 1, which is a linear constraint on z (notice that zj is given).

The CG problem becomes:

max
z 6∈H∗k−1

{v(z)− ztx | (2zj − e)tz ≤ etzj − 1, ∀j = {1, ..,K}}.

Notice that when solving the constraint generation problem at LPk, we need to find the worst

coalition z 6∈ H∗k−1. Instead of adding an individual cut for each coalition S ∈ H∗k−1, a single ‘aggregated
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cut’ can be generated as follows: v(z)−x∗k−1(z) < ε∗k−1. This follows sinceH∗k−1 is the set of all coalitions

whose excess values are at least ε∗k−1. Depending on the problem structure and the form of function

v(z), the problem might be easy or difficult to solve. For example, if v(z) can be transformed into a

linear function of z as we will show later in Section 4.2 for the case of the weighted voting game, CG

becomes a mixed integer linear programming problem. If v(z) is quadratic, the problem is a quadratic

assignment problem. From this, we show that the weighted voting game can be solved in reasonable

time for games with up to 100 players.

3.3 Dealing with Issue 2: Finding Imputation Solutions x∗ with Smallest Tight Set

Let (x∗k, ε
∗
k) be an optimal solution of LPk with the smallest size set T ∗k . When solving LPk using a

standard LP solver or the constraint generation method, suppose we obtain an optimal solution (x, ε∗k)

whose tight set Tk(x) might be larger in size compared to T ∗k . If this is the case, we cannot take

(x, ε∗k, Tk(x)) to construct the subsequent LPs since this would not lead to a minimum lexicographical

ordering of excess values. However, from this solution, we can find an improved imputation with

smaller tight set as will be described in Theorem 1. Before presenting this theorem, we first describe

some additional notation. Let Hk(x) = H∗k−1 ∪ Tk(x) be the set of all tight coalitions that have been

identified so far. Notice that Hk(x) 6= H∗k unless Tk(x) ≡ T ∗k . Let σ be the (k + 1)th excess value that

corresponds to x, i.e., σ = maxS6∈Hk(x){v(S)−x(S)}. Then we have: v(S)−x(S) ≤ σ < ε∗k, ∀ S ∈ C\H∗k.
Let δ = 1

n+1(ε∗k − σ) > 0. We have the following theorem:

Theorem 1. Let (x, ε∗k) be any optimal solution of LPk with the tight set Tk(x), then the following LP:

FBOS := min
y∈I

∑
S∈Tk(x)

[v(S)− y(S)],

s.t. (y − x∗k−1)(S) = 0, ∀S ∈ H∗k−1, (3a)

(y − x)(S) ≥ 0, ∀S ∈ Tk(x), (3b)

|yi − xi| ≤ δ, ∀ i = 1, .., n, (3c)

always has an optimal solution y∗. In addition, we can conclude that:

• (x, ε∗k) is an optimal solution of LPk with the minimal tight set if the optimal objective value of

FBOS is equal to |Tk(x)|ε∗k, and

• (y∗, ε∗k) is an optimal solution of LPk with a smaller tight set compared to x otherwise.

Proof. The main idea in this theorem is to observe that, if |Tk(x)| > |T ∗k |, then there must exist

another imputation y that has smaller excess value than x on at least one coalition S ∈ Tk(x), i.e.

e(S,y) < e(S,x). This is equivalent to saying that x is not an optimizer of the following LP:

min
y∈I

∑
S∈Tk(x)

[v(S)− y(S)],
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However, the optimizer of this LP does not guarantee to be better than x on all coalitions, especially

those coalitions S 6∈ Tk(x). The additional constraints in FBOS are included for this purpose. The first

constraint, (y − x∗k−1)(S) = 0, ∀S ∈ H∗k−1, guarantees that y does not change the worst |H∗k−1| excess

values that have been identified by LP1, . . . ,LPk−1. The second constraint, (y−x)(S) ≥ 0,∀S ∈ Tk(x),

guarantees that the excess vector Φ(y) is at least as good as Φ(x) for all elements from coalitions

S ∈ Tk(x). The last constraint, |yi − xi| ≤ δ, ∀ i = 1, .., n, restricts y to a polyhedron (a box) that

contains x in its interior. From the choice of the box size δ, we can guarantee that the excess values

e(S,y) are smaller than ε∗k for all the remaining coalitions S ∈ C\Hk(x) as shown below.

(v(S)− y(S)) = (v(S)− x(S)) + (x(S)− y(S))

≤ σ +
n∑
i=1

|yi − xi| ≤ σ +
n

n+ 1
(ε∗k − σ) < σ + ε∗k − σ = ε∗k.

Combining all the three constraints, we guarantee that any feasible solution of FBOS isat least as good

as x lexicographically with regards to the first k level of worst excess levels, i.e. up to LPk. Since

the problem FBOS is bounded with at least one feasible solution x, it must have an optimal solution

y∗. If the optimal objective value is smaller than |Tk(x)|ε∗k, then there must be at least one coalition

S ∈ Tk(x) such that v(S) − y∗(S) < ε∗k. Hence y∗ is better than x lexicographically. To complete the

proof of this theorem, we need to prove that, if x does not have a minimal tight set, i.e. |Tk(x)| > |T ∗k |,
then the optimal objective value must be smaller than |Tk(x)|ε∗k. Indeed, we can construct a feasible

solution of FBOS with an objective value equal to |Tk(x)|ε∗k.
We notice a result from Lemma 1 in Elkind and Pasechnik [10] which shows that the minimal tight

set T ∗k is unique. In the proof of this lemma, the authors also show that if x1 and x2 are two optimal

solutions of LPk with the corresponding tight sets T (x1) and T (x2), then any point ω = αx+(1−α)y

with 0 < α < 1 will be an optimal solution with a tight set equal to T (x1) ∩ T (x2) (the proof is based

on the linearity of the problem). From this result, we can see that any point y = αx+ (1− α)x∗k with

0 < α ≤ 1 would have the smallest tight set. These properties are demonstrated in Figure 2.

(x1, T (x1)) (x2, T (x2))(ω, T (x1) ∩ T (x2))

(x∗, T ∗)

Figure 2: Domain of optimal solutions of LPk and their associated tight sets. The domain is convex

and all optimal solutions in the relative interior of the domain share the same tight set which is also

smallest in size. x1 and x2 are two extreme points of the domain with the corresponding tight set T (x1)

and T (x2). Any point ω = αx1 +(1−α)x2 with 0 < α < 1 will have a tight set equal to T (x1)∩T (x2).

If the domain contains a unique point, then that point is the nucleolus.

Going back to our theorem, we notice that x∗k satisfies constraints (3a-3b) of FBOS. Thus, if we

choose a small enough α, we can obtain an optimal solution y = αx+(1−α)x∗k that satisfies constraints
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(3c). By linearity, y also satisfies constraints (3a-3b) and hence y is a feasible solution of FBOS. In

addition, y has the smallest tight set since Tk(y) = Tk(x) ∩ Tk(x∗k) = Tk(x∗k). Thus, y is an optimal

solution of FBOS and with the minimal tight set. The proof of the theorem is complete.

The geometric view of Theorem 1 is illustrated in Figure 3. Let the cone K be defined as the intersec-

P(x)

x∗k
x y

K

Figure 3: Figure demonstrating the result from Theorem 1. Any y lying in the interior of the line

segment connecting x and x∗k has the minimal tight set w.r.t LPk. Cone K is the set of all imputations

that are at least as good as x when comparing excess values lexicographically on all coalitions belonging

to H∗k−1 ∪ Tk(x). Imputations within the domain P(x) would have excess values smaller than ε∗k for all

those coalitions not belonging to H∗k−1 ∪ Tk(x). Thus, all imputations belonging to K ∩P(x) would be

at least as good as x lexicographically w.r.t LPk.

tion of the set I of all imputations, the affine subspace {xk−1+null(H∗k−1)} that ensures the worst excess

values from previous LPs do not change, and the dual cone C∗(Tk(x)) ≡ {y ∈ Rn | 〈y,σ〉 ≥ 0, ∀σ ∈ Tk(x)}
to ensure that y is at least as good as x when considering coalitions within Tk(x), i.e.,

K = I ∩ {xk−1 + null(H∗k−1)} ∩ C∗(Tk(x)).

Then K contains x∗k. Here, null(H∗k−1) denotes the null space of vectors in H∗k−1. Let P(x) be any

domain that contains x in its interior. The idea is that once the domain P(x) is small enough, the

excess values of all coalitions not belonging to the tight set Hk(x) do not change much to exceed ε∗k. The

intersection of P(x) and K provides us with imputations that are at least as good as x lexicographically

with respect to the first k worst excess levels.

Remark: Notice that FBOS is an LP with n decision variables and with |Hk(x)| + 1 equality

constraints and (3n + |Tk(x)|) inequality constraints1, and can be solved very efficiently. Notice also

that the FBOS algorithm imposes the constraint of y ∈ P(x) for a small domain P(x) to provide a

theoretical guarantee. However, once we have found an improved solution y, we should extrapolate it

from x to obtain a new improved solution that is as close to the center of the domain of all the improved

optimal solutions as possible. This can be done by performing a line search on all ŷ = α∗y−(α−1)x for

the maximum αmax such that ŷ is still an improved optimal solution. Once we have obtained αmax, we

can then choose the improved optimal solution as ȳ = αmax/2 ∗ y− (αmax/2− 1)x. This extrapolation

step achieves two objectives: First of all, it provides us an improved optimal solution that is far enough

from x to avoid numerical error. Second, ȳ is more likely to be closer to the nucleolus and hence can

speed up our algorithm.

1These include n inequality constraints y ∈ I for individual rationality, |Tk(x)| inequalities from 3b, and 2n inequality

constraints from 3c.
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3.4 Dealing with Issue 3: Bounding the Number of LPs to be Solved by (n− 1)

We notice that if we solve the nested LP formulation described directly, we might end up solving as

many large LPs as there are distinct levels of ε∗k before obtaining a full rank H∗k. However, in practice,

we do not have to solve all of these LPs since the equality constraint (x− x∗k)(S) = 0, ∀S ∈ H∗k−1 will

make most of them redundant, i.e. any feasible solutions will result in the same optimal objective value

due to the cost vector lies in the span of H∗k−1. In fact, we can use the same approach as in [31, 9] to

prove the following results:

Theorem 2. The total number of large LPs that we need to solve is at most n− 1.

Proof. We notice that once the equality constraints in LPk are enforced, we have (x − x∗k−1)(S) =

0,∀S ∈ span(H∗k−1) and hence v(S) − x(S) = v(S) − x∗k−1(S),∀S ∈ span(H∗k−1). This means these

excess values are constant and there is no reason to minimize them. Therefore, LPk should only try to

minimize the largest among non-constant excess values. In other words, we want to solve:

L̂Pk := min
x∈I,εk

εk,

s.t. (x− x∗k−1)(S) = 0, ∀S ∈ H∗k−1, (4a)

εk + x(S) ≥ v(S), ∀S 6∈ span(H∗k−1). (4b)

Notice that we have changed S ∈ C\H∗k to S 6∈ span(H∗k) as has been explained above. After solving

L̂Pk, we solve the small LPs in Theorem 1 to obtain tight coalitions T ∗k . Notice that T ∗k are not in the

span of H∗k−1 due to constraint (4b). Therefore, the rank of H∗k is always greater than that of H∗k−1
(unless H∗k−1 has already had full rank). This means rank(H∗k) ≥ rank(H∗k−1)+1 ≥ . . . ≥ rank(H∗0)+k.

Notice also that the constraint x(N ) = v(N ) is also considered as a part of H0. This results in

rank(H∗k) ≥ k + 1. Therefore, after solving at most (n− 1) LPs, we obtain rank(H∗n−1) = n, at which

point the unique solution obtained is the nucleolus.

The LP formulation L̂Pk now looks like that in Derks and Kuipers [9] but notice that the key

difference is in our way of solving to obtain an optimal solution with the minimal tight set. To obtain

an optimal solution, we use a constraint generation algorithm instead of solving the full LP directly.

To improve the optimal solution found, our key contribution is Theorem 1 where we just need to solve

small LPs to find another optimal solution with smaller tight set. It is not clear in Derks and Kuipers

[9] how the minimal tight set is found. Our method also differs from Potters et al. [31] in the size of

the LPs. In our formulation, L̂Pk has (n + 1) decision variables and (2n + n − 1) constraints (since

there are (2n − 2) non-trivial coalitions, each of which corresponds to a constraint, and there are n+ 1

constraints for enforcing x ∈ I). This means our LPs have (n + 1) columns compared to the (2n − 1)

columns in the LPs of Potters et al. [31]. The number of rows is the same at (2n + n− 1) for both our

method and Potters et al. [31].
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3.5 Dealing with issue 4: The tight sets are exponentially large

For each optimal solution x of LPk, the tight set Tk(x) might be exponentially large for many games.

If this is the case, then the constraint set in LPk+1 will be very difficult to keep track of, and LPk+1

will be even harder to solve. However, it is interesting to observe that the equality constraints can be

represented by mk constraints where mk is the rank of H∗k (mk ≤ n). Thus, if we can replace H∗k by its

mk representative vectors (coalitions), the equality constraints will be tractable. The issue is then how

we can create this representative set. The simplest way is to keep introducing new tight coalitions until

we can no longer improve the rank of H∗k. However, this method only works if the size of the tight set

is not too large. If the tight set is large, we have no way to check whether the tight constraints found

so far can form the representative set unless we have already had a full rank set (it could be the case

that H∗k does not have full rank). A better way is to introduce only tight coalitions that can increase

the rank of H∗k while undertaking the construction of the representative set. This guarantees that we

increase the rank of T ∗r each time we generate a new constraint.

3.5.1 Producing a representative set

Suppose so far we have generated Tr = {z1, z2, ...,zs}. In order to restrict z not to be in the linear

combination of {z1, z2, . . . ,zs}, we modify the constraint generation problem to:

REP := max
z∈{0,1}n

{v(z)− ztx | z 6∈ span{z1, z2, . . . ,zs}}.

Note that we have replaced the constraint z 6∈ {z1, z2, . . . ,zs} in the original CG problem described

in Section 3.2 by z 6∈ span{z1, z2, . . . ,zs}. This is equivalent to the existence of a vector u with

utzj = 0,∀j = 1, . . . , s and ztu < 0 (similar to Farkas’ Lemma). This is also equivalent to the following

set of constraints:{
z = u1 + u2, u1 ∈ span{z1, z2, . . . ,zs}, u2 ∈ null{z1, z2, . . . ,zs}, u2 6= 0

}
.

By our construction, {z1, z2, . . . ,zs} are s independent vectors. Therefore null{z1, z2, . . . ,zs} is a

subspace in Rn−s. Let A = [z1, z2, . . . ,zs] and let B ∈ Rn×(n−s) be a set of (n − s) vectors in Rn

that spans null{z1, z2, . . . ,zs}. Let u1 = Aωa and u2 = Bωb for some vectors ωa and ωb. The

condition u2 6= 0 is equivalent to ωb 6= 0. The condition z 6∈ span{z1, z2, . . . ,zs} is equivalent to:

z = Aωa +Bωb, ωb 6= 0. Let us define the domain

D = {(z,ωa,ωb) : z ∈ {0, 1}n, ωa ∈ Rs, ωb ∈ Rn−s, z = Aωa +Bωb, ωb 6= 0, v(z)− ztx = ε∗k}.

Notice that x, ε∗k, A and B are known. The constraint generation problem is equivalent to finding a

feasible solution (z,ωa,ωb) ∈ D. In order to check whether Ik(x) contains a unique point x, we can

find a feasible point in D by optimizing any arbitrary objective function over that domain. However, it

is not straightforward to model the inequality constraint ωb 6= 0. Instead, we need to optimize a set of

objective functions over a domain Dr defined as follows:

Dr = {(z,ωa,ωb) : z ∈ {0, 1}n, ωa ∈ Rs, ωb ∈ Rn−s, z = Aωa +Bωb, v(z)− ztx = ε∗k},
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where the inequality constraint is removed. We can find a feasible point in D or conclude it empty by

using the following Proposition:

Proposition 1. Let c1, . . . , cn−s be any set of (n− s) linearly independent cost vectors. If solving the

problems min
(z,ωa,ωb)∈Dr

ctjωb and min
(z,ωa,ωb)∈Dr

−ctjωb for each j = 1, . . . , n all have optimal values that are

equal to zero, then D is an empty set (which means REP is either infeasible or the optimal value is

not equal to ε∗k). Otherwise, any feasible solution (z,ωa,ωb) of any of these 2(n − s) problems with a

non-zero objective value will be a feasible point in D. In that case, z will be a solution of REP.

Proof. We notice that Dr is a non-empty domain since (z = z1, ωa = (1, 0, . . . , 0)t, ωb = 0) is a

feasible solution with an objective value equal to zero. Therefore, solving all these 2(n−s) optimization

problems will return either (a) at least one feasible solution with non-zero objective value or (b) all

of them have the same objective values that are equal to zero. In the first case, suppose there exists

a feasible solution (z,ωa,ωb) ∈ Dr such that ctjωb 6= 0. Then ωb 6= 0 and hence (z,ωa,ωb) ∈ D.

In the second case, suppose all feasible solutions of the 2(n − s) share the same objective value of

zero. We need to prove that the set D is empty to complete the theorem. Suppose for the purposes of

contradiction the set D is non-empty, i.e. there exists (z,ωa,ωb) ∈ D. This means (z,ωa,ωb) ∈ Dr.
We also have ctjωb = 0, ∀j ∈ {1, . . . , n − s}. This is impossible because ωb 6= 0 while c1, . . . , cn−s are

linearly independent.

Proposition 1 provides a way to find an optimal solution of REP (or to conclude that it is infeasible).

Although the theorem appears to involve solving 2(n − s) LPs, an optimal solution of REP is found

whenever an LP among them provides us with a feasible solution with non-zero objective value. This

means if we are lucky to choose the right set of cost vectors, we do not have to solve all of these LPs.

However, this approach still requires solving all the 2(n − s) LPs if REP is indeed infeasible. We can

speed up the process by using a randomization technique. For a random cost vector c, the condition

ωb 6= 0 is equivalent to either the optimal value of min ctωb or that of min − ctωb being different from

zero with probability one (w.p.1).

3.5.2 Using the representative set

Let R∗k be the representative set of H∗k. We prove that we still can solve LPk+1 even without the full

knowledge of H∗k. Once we have obtained the representative set, we reformulate LPk+1 as follows:

LPk+1 := min
x∈I,εk+1

{εk+1 | (x− x∗k)(S) = 0, ∀S ∈ R∗k, εk+1 + x(S) ≥ v(S), ∀S ∈ C\H∗k}.

In this case, the number of equality constraints has been reduced from |H∗k| to |R∗k| without changing

LPk+1 since the remaining equalities are redundant. However, the inequalities seem to still involve H∗k
while we are trying to avoid it by using its representative R∗k. Fortunately, this is not an issue in our

constraint generation method because what we need is to be able to generate violating constraints by

solving the CG problem, max
S∈C\H∗k

{v(S)− x(S)}, which is equivalent to

max
S

{v(S)− x(S) | v(S)− xk(S) < ε∗k},
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since H∗k =
{
S | v(S) − xk(S) ≥ ε∗k

}
. Thus, our constraint generation algorithm still does not change

when we replace H∗k with its representative set. However, the FBOS problem for finding an improved

imputation needs to be changed to:

FBOS2 = min
y∈I

∑
S∈R∗k(x)

[v(S)− y(S)],

s.t. |yi − xi| ≤ δ, ∀ i = 1, .., n,

(y − x∗k−1)(S) = 0, ∀S ∈ R∗k−1,

(y − x)(S) ≥ 0, ∀S ∈ Tk(x).

Notice that FBOS2 is different from FBOS in the objective function and in the equality constraints.

Here, we reduce the number of equality constraints from |H∗k| to |R∗k| without changing the problem

because the remaining equality constraints are redundant. The constraints (y−x)(S) ≥ 0, ∀S ∈ Tk(x)

can be dealt with using the same constraint generation procedure used to solve LPk. However, we need

the following theorem to extend the results from Theorem 1:

Theorem 3. Let (x, ε∗k) be any optimal solution of LPk with the tight set T (x). Then solving FBOS2

will lead to two cases:

(a) If x is not an optimal solution of FBOS2, then any optimal solution y∗ of FBOS2 would result

in a smaller tight set, i.e. |T (y∗)| < |T (x)|,

(b) If x is an optimal solution of FBOS2, then x is also an optimal solution of LPk with the minimal

tight set, i.e. T (x) ≡ T ∗k .

Proof. Let R∗k(x) = {z1, . . . ,zr}.

(a) Notice that x,x∗k are feasible solutions of FBOS2. In addition, FBOS2 is bounded and hence

it has an optimal solution. Suppose x is not an optimal solution of FBOS2. Then any optimal

solution y∗ of FBOS2 would have a smaller objective value. In particular, there exists a coalition

S in R∗k(x) such that v(S)−y∗(S) < v(S)−x(S). Since all other excess values of y∗ are less than

or equal to those of x by the construction of FBOS2, y∗ must have a smaller tight set compared

to x in LPk.

(b) Suppose x is an optimal solution of FBOS2. We will prove x is also an optimal solution of LPk

with the minimal tight set. Suppose, as a contradiction, that there exists another optimal solution

y∗ of LPk with |Tk(y∗)| < |Tk(x)|. This means there exists at least one coalition z0 such that

v(z0)−y∗(z0) < v(z0)−x(z0). Since any convex combination of x and y∗ is an optimal solution

of LPk whose tight set is smaller than Tk(x), we can assume y∗ is sufficiently close but not equal

to x. This means y∗ is also a solution of FBOS2. Notice that we can rewrite the objective

function as follows:∑
S∈R∗k(x)

[v(S)− y(S)] =
∑

S∈R∗k(x)

v(S)−
∑

S∈R∗k(x)

y(S) =
∑

S∈R∗k(x)

v(S)− rcty,
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where r is the size of R∗k(x) and c = z1+...+zr

r is the average of all coalitions z in R∗k(x). Since∑
S∈R∗k(x)

v(S) and r are constants in FBOS2, the problem is equivalent to minimizing −cty.

Since R∗k(x) is the representative set, z0 can be expressed as z0 =
∑r

i=1 βiz
i. For any α0, let

αi = 1/r−α0βi, we have: c =
1

r
(z1 + . . .+zr) =

r∑
i=1

(
1

r
−α0βi)z

i+α0

r∑
i=1

βiz
i =

r∑
i=1

αiz
i+α0z0.

We can choose α0 > 0 and small enough such that αi ≥ 0, ∀i. Thus,

ct(x− y∗) =

r∑
i=1

αi(z
i)t(x− y∗)︸ ︷︷ ︸
≤0

+α0(z
0)t(x− y∗)︸ ︷︷ ︸
<0

< 0.

This means x is not an optimal solution of FBOS2 and so there is a contradiction. The proof of

the theorem is complete.

4 Applicability to Combinatorial Games

We demonstrate the applicability of our algorithm to three classes of games. In these games, the entire

characteristic functions are costly to computed for instances with more than 25 players, e.g. it might

involves solving up to 2n optimisation problems just for getting the input of the general flow games

Kalai and Zemel [19]. We show that by using the constraint generation framework, we can eliminate this

stage and only compute some of the characteristic values by searching for the most violating constraints.

4.1 General Flow Games

The flow games were proposed by Kalai and Zemel [19]. Consider a network G(V ,E, c, s, t) with vertices

V , edges E, edge capacity c, source s and sink t. Each player owns an edge among n = |E| number

of edges. In the case all the players cooperate, the total payoff (reward) received by all the players will

be the maximum flow that can be sent from source s to sink t: v(N ) = max-flow(G). The max-flow

problem can be formulated as an LP as follows:

max
f

∑
j : (s,j)∈E

fsj ,

s.t.
∑

j : (j,i)∈E

fij −
∑

k : (i,k)∈E

fik = 0, ∀ i ∈ V \ {s, t},

0 ≤ fij ≤ cij , ∀ (i, j) ∈ E.

Suppose only a subset S ⊂ N of players cooperate among themselves. The total payoff received by

players in the set S will become:

v(S) = max-flow(V ,E(z), c(z), s, t),
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which is the maximum flow that can be sent from sources s to sink t by using only the edges in subset

S. Deng et al. [8] show that finding the nucleolus is NP-hard for general flow games. The nucleolus can

only be found in polynomial time if all the edge has unit capacities. Even in that case, the algorithm

relies on the ellipsoid method which performs poorly in practice.

In order to apply the constraint generation framework, we need to find the worst coalition for a

current proposal x, i.e. to solve

max
z∈{0,1}m

v(z)− xtz,

s.t. z 6∈ span(H∗k−1),

where z is the binary vector that indicates whether an edge is in the subset S, and v(z) is the payoff

of coalition S which can be formulated as follows:

v(S) ≡ v(z) = max
f

∑
j : (s,j)∈E

fsj ,

s.t.
∑

j : (j,i)∈E

fji −
∑

k : (i,k)∈E

fik = 0, ∀ i ∈ V \ {s, t}, (5a)

0 ≤ fij ≤ zijcij , ∀ (i, j) ∈ E. (5b)

The set of constraints (5b) enforces the flow fij to be zero if an edge (i, j) is not in the coalition. With

the characteristic function v(S) available for each coalition S, a stable reward shared among the players

could be modeled as the nucleolus value of the cooperative game.

By replacing the formulation for v(z) and combine the two max operators together, the CG problem

can be reformulated as:

max
z,f

−xtz +
∑

j : (s,j)∈E

fsj ,

s.t.
∑

j : (j,i)∈E

fsj −
∑

k : (i,k)∈E

fik = 0, ∀ i ∈ V \ {s, t},

0 ≤ fij ≤ zijcij , ∀ (i, j) ∈ E,

z ∈ {0, 1}n.

This is an MILP and can be handled by CPLEX for games of reasonable size.

4.2 Weighted Voting Games

In the weighted voting games (WVG), each player has a voting weight and a coalition receives a payoff

of one if the total voting weight of the coalition’s members exceeds some threshold and a payoff of

zero otherwise (see Leech [24], Elkind et al. [11], Elkind and Pasechnik [10] for details). WVGs have

many applications in political science, reliability theory and computer science (see Aziz et al. [1] and

the references therein). Let wi be the number of votes that player i has. A coalition S has a total

votes of ω(S) =
∑
i∈S

wi. The coalition will win the game if its total votes exceeds some threshold κ.
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The characteristic function of the game is defined as: v(S) = 1 if ω(S) ≥ κ and v(S) = 0 otherwise.

Elkind et al. [11] and [10] show that computing the least core of the WVG is NP-hard. They also

show that the nucleolus can be computed in polynomial time under the assumption that the size of

the tight set Tk(x) is known. However, finding the size |Tk(x)| is not straightforward, especially for

WVG with exponentially large tight sets. In addition, the polynomial running time property that the

authors derived is based on the ellipsoid method which does not perform well in practice. Despite these

NP-hardness results, we will show that, by using our method, the WVG can be solved efficiently for

instances involving sizes up to 100 players.

Since the main routine in computing the nucleolus is to find the coalition with the largest deficit

v(S) − x(S) from a given imputation x, we focus our discussion on this problem. The constraint

generation problem arisen in solving LPk is: max
z∈{0,1}n

{v(z) − ztx | v(z) − xk−1(z) < ε∗k−1}. We

introduce a binary variable z0 = v(z) and reformulate the problem as: max
(z0,z)∈{0,1}n+1

{z0 − ztx | ωtz ≥

z0κ, z0 −xtk−1z < ε∗k−1}. Here, the constraint ωtz ≥ z0κ ensures that z0 = 0 when ωtz < κ (the strict

inequality can be turned into a normal inequality like ωtz <= κ −miniwi by using the fact that z is

binary and κ is sufficiently large compared to miniwi). However, z0 should be equal to 1 to drive the

objective function to optimality if the condition ωtz ≥ κ holds. This is an MILP with (n + 1) binary

variables and with two constraints and can be solved very efficiently.

4.3 Weighted Coalitional Skill Games

Weighted coalitional skill games (WCSG) were proposed by Bachrach and Rosenschein [3], Bachrach

et al. [2]. In this game, there are n agents, T tasks and K skills. Each agent has a subset of skills and

each task requires a subset of skills. Let Ψ be the agent-skill matrix with binary indicator ψik denoting

whether agent i has skill k. Let Φ be the task-skill matrix with binary indicator φtk denoting whether

task t requires skill k. For each task t, and the skill vector Φt that it requires, the coalition z will be

able to perform the task if there exists at least one agent in the coalition that has skill φtk. We consider

a weighted average utility function defined as follows. Let ∆(z, t) be the binary indicator on whether

coalition z can perform task t. Then the coalition value is defined as v(S) =
∑

t∈1..T ωt∆(z, t) where

∆(z, t) =

1 if ΨTz ≥ Φt,

0 otherwise.

We will show that the constraint generation problem can be solved efficiently in the WCSG games

with reasonable size (i.e. n ≤ 500). Let us define variable δt = ∆(z, t). In this case, the constraint

generation problem minz∈{0,1}n
[
ztx− v(z)

]
can be reformulated as:

min
z∈{0,1}n

ztx−
m∑
t=1

ωt∆(z, t),
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which is equivalent to:

min
z,δ

ztx−
∑
t∈1..m

ωtδt,

s.t. ΨTz ≥ δtΦt, ∀t ∈ 1, ..,m, (6a)

z ∈ {0, 1}n, δt ∈ {0, 1}m. (6b)

The set of constraints (6a) forces δt to be equal to zero if coalition z does not have all the skill required

in Φt. Otherwise, δt should be equal to one to drive the objective function to the optimum. The

constraint generation problem is a mixed integer programming problem with (n+m) binary variables

and with (m+ t) constrains. Although the problem is NP-hard, we will shown numerically that CPLEX

can handle this class of games for instances with up to 75 players (under various choices of the skills

and tasks).

5 Numerical Experiments

In our numerical experiments, we start with a small flow game to demonstrate the steps involved in our

algorithm. Simulated large weighted voting games and coalitional skill games with 25 to 100 players

are presented to demonstrate the performance of the algorithm in detail.

5.1 Algorithm Demonstration via a small flow game

s

1

2

3

4

t

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

Figure 4: Example with 10 players (10 edges, 6 nodes).

Consider a flow game shown in Figure 4. There are n = 10 players (edges) that are numbered

according to the figure. The capacities of the edges are c1 = c9 = 3, ci = 1, ∀ i ∈ {3, . . . , 8} and

c2 = c10 = 2. Table 5.1 shows the step involved in computing the nucleolus of this game as described

in Algorithm 1. The following three key tasks are undertaken iteratively:

(1) Solve LPk by using the constraint generation algorithm to produce an optimal solution xk,

(2) Solve the REP problem to find the representative set of all tight constraints in T (xk),

(3) Solve the FBOS problem iteratively to find an optimal solution with the minimal tight set. If

the stopping condition doesn’t hold, formulate the subsequent LPk and go back to step (1).
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The first two columns in Table 5.1 show the steps and the tasks undertaken. The third column shows

the input required. The fourth column shows the output and some remark about it. The rows shows the

information for each step taken by the algorithm. For example, the first row shows step 1 of solving LP1.

That step produces ε∗1 = 0 and x1 = [1, 1, 0, 0, 1, 0, 0, 0, 1, 0]. Using the CG algorithm, we obtain an

optimal solution after only 16 iterations. The tight set produced by the last relaxed LP outputs only four

tight constraints among the total of 135 tight constraints. Instead of iteratively finding all the remaining

tight constraints, our method requires finding only 6 other constraints to form the representative tight

set by solving problem REP (the third row in Table 5.1). With this representative set, we solve FBOS

to obtain an improved optimal solution. First, we obtain x = (1, 0.5, 0, 0, 1, 0, 0.5, 0, 1) with the tight

set reduced to |T (x)| = 75 and rank(T (x)) = 9. Solving the FBOS three more times provides us

with three new optimal solutions with the tight set sizes being 29, 17 and 11 respectively. The ranks

of the tight sets are also reduced from 9 to 6, 5 and 4 respectively (shown in rows 4-7). The optimal

solution found is x = (1, 0.4375, 0, 0.125, 0.75, 0.25, 0.5, 0, 0.875, 0.0625). At this point, the tight set has

the smallest size and we can proceed to the subsequent LP. Solving LP2, again using the CG algorithm,

provides us with the optimal solution ε∗1 = −0.2 and x = (0.8, 0.2, 0, 0.2, 0.6, 0.6, 0.6, 0, 0.8, 0.2). We

repeat the process of solving the REP and FBOS and formulate LP3. After finding the representative

set and solving FBOS, we arrive at an optimal solution x = (1, 0.2, 0, 0.2, 0.4, 0.4, 0.6, 0, 1, 0.2) with the

minimal tight set. Since H∗3 has full rank. We stop the algorithm and conclude that x is the nucleolus.

5.2 Large Weighted Voting Games

We generate WVGs with different size and parameters as follows. For each n = {25, 50, 75, 100},
we generate random weight vectors using the χ2 distribution with different degrees of freedom ρ, i.e.

ρ = {1, 5, n}. The winning fraction f is set to either f = 0.5 or f = 0.75, i.e. either κ = d0.5etωe or

κ = d0.75etωe. For each combination of (n, ρ, f), we generate K = 10 simulated games. Table 3 shows

the computational results for these games in details. The first column in Table 3 shows the number of

the players, which ranges from 25 to 100. The second and third columns show the distribution function

of the weight vector and he winning fraction correspondingly. Columns 4-9 show the computation time

(in seconds) required to run the entire algorithm or to complete different subtasks. Column 4 shows

the total computational time from the beginning until the nucleolus is found. The total computation

time is broken down into three parts; a) to solve all the LPk, b) to find the representative set, and c)

to find an improved imputation. The computational times for these tasks are shown in column five, six

and seven correspondingly. The computation time for solving the LPk is further broken down to the

time to solve the relaxed LPs and to solve the constraint generation sub-problems. These are shown

in columns 8 and 9. Column 10 shows the number of LPk required and column 11 shows number of

iterations required for the constraint generation algorithm to solve LPk. Each row shows the average

of these computation statistics over K games for each combination of (n, ρ, f). For example, the second

row shows all the statistics for games with 25 players; the weight vector is from χ2
1 and the winning

fraction is 50% while the last row is for games with 100 players; the weight vector is from χ2
100 and the

winning fraction is 75%.
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Steps Tasks Input Output (update) & notes

1 Solve LP1 H∗
0 = e ε∗1 = 0, x1 = [1, 1, 0, 0, 1, 0, 0, 0, 1, 0]. CG terminates in 16 iterations

2 Find REP x1 Although Tk(x1) has 135 tight constraints that span R10, it is represented

by R1(x1) with 10 constraints.

3.1 Solve FBOS x1,R1(x1) Update x1 = [1, 0.5, 0, 0, 1, 0, 0.5, 0, 1]. T1(x1) has a smaller size with 75

tight constraints. It is also represented by a smaller REP R1(x1) ∈ R9.

3.2 Solve FBOS x1,R1(x1) Update x1 = [1, 0.5, 0, 0, 0.75, 0.25, 0.5, 0, 1]. T1(x1) has a smaller size

with 29 tight constraints. It is also represented by a smaller REP

R1(x1) ∈ R6.

3.2 Solve FBOS x1,R1(x1) Update x1 = [1, 0.5, 0, 0.125, 0.75, 0.25, 0.5, 0, 0.875, 0]. T1(x1) has a s-

maller size with 17 tight constraints. It is also represented by a smaller

REP R1(x1) ∈ R5.

3.2 Solve FBOS x1,R1(x1) Update x1 = [1, 0.4375, 0, 0.125, 0.75, 0.25, 0.5, 0, 0.875, 0.0625]. T1(x1)

has a smaller size with 11 tight constraints. It is also represented by a

smaller REP R1(x1) ∈ R4.

3.3 Solve FBOS x1,R1(x1) Set x∗
1 = x1, R∗

1 = R1(x1). No further improvement

End of first loop. Found an optimal solution of the first LP with minimal tight set.

Check stopping condition. H∗
1 does not have full rank. Continue!

1-3 Solve LP2 H∗
1,x

∗
1, ε

∗
1 ε∗2 = −0.2, x2 = [0.8, 0.2, 0, 0.2, 0.6, 0.6, 0.6, 0, 0.8, 0.2]. CG terminates in

16 iterations

Find REP x2 Although T2(x2) has 28 tight constraints that span R10, it is represented

by R2(x2) with 10 constraints.

3.1 Solve FBOS x2,R2(x2) Update x2 = [0.875, 0.2, 0, 0.2, 0.525, 0.6, 0.6, 0, 0.8, 0.2]. T2(x2) has a

smaller size with 26 tight constraints. It is also represented by a smaller

REP R2(x2) ∈ R9.

3.2 Solve FBOS x2,R2(x2) Update x2 = [0.875, 0.2, 0, 0.2, 0.525, 0.45, 0.6, 0, 0.95, 0.2]. T2(x2) has a

smaller size with 24 tight constraints. It is also represented by a smaller

REP R2(x2) ∈ R6.

3.3 Solve FBOS x2,R2(x2) Set x∗
2 = x2, R∗

2 = R2(x2). No further improvement

End of second loop. Found an optimal solution of the second LP with minimal tight set.

Check stopping condition. H∗
2 does not have full rank. Continue!

1-3 Solve LP3 H∗
2,x

∗
1, ε

∗
2 ε∗3 = −0.4, x3 = [1, 0.2, 0, 0.2, 0.4, 0.4, 0.6, 0, 1, 0.2]. CG terminates in 4

iterations

Find REP x3 Although T3(x3) has 48 tight constraints that span R10, it is represented

by R3(x3) with 10 constraints.

3.1 Solve FBOS x3,R3(x3) Set x∗
3 = x3, R3∗ = R3(x3) No further improvement

End of third loop. Found an optimal solution of the third LP with minimal tight set.

Check stopping condition. H∗
3 has full rank. Nucleolus found!

Table 2: Step by step for computing the nucleolus of a small flow game with 10 players.
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Computational Time

n ω κ Total LPs REP STS RLP CG # LPs # Iters

d0.5etωe 5.4109 5.3203 0.040625 0.05 0.018526 0.045369 1 83
χ2
1 d0.75etωe 5.9688 5.8 0.11094 0.05 0.021469 0.04697 1 83.7

d0.5etωe 14.623 14.603 0 0.020313 0.020199 0.14232 1 89.7
25 χ2

5 d0.75etωe 14.569 14.55 0 0.017188 0.021865 0.11451 1 106.3

d0.5etωe 29.045 29.019 0.003125 0.023438 0.023356 0.22803 1 115.5
χ2
n d0.75etωe 21.559 21.534 0 0.021875 0.02397 0.16267 1 115.3

d0.5etωe 15.336 14.6 0.60938 0.12344 0.029747 0.070045 1 145.9
χ2
1 d0.75etωe 18.47 18.155 0.18594 0.12812 0.032849 0.077401 1 163.7

d0.5etωe 32.205 32.167 0.00625 0.029687 0.033361 0.15935 1 166.7
50 χ2

5 d0.75etωe 33.381 33.35 0.0046875 0.026562 0.038545 0.13765 1 189.2

d0.5etωe 54.527 54.491 0.003125 0.028125 0.039877 0.21631 1 211.6
χ2
n d0.75etωe 38.852 38.817 0 0.032813 0.041819 0.15695 1 194.7

d0.5etωe 36.392 34.036 2.1344 0.21875 0.051033 0.10556 1 216.9
χ2
1 d0.75etωe 44.752 44.33 0.13281 0.28906 0.060297 0.11868 1 246.8

d0.5etωe 64.602 64.547 0.0015625 0.045312 0.061851 0.19325 1 252.6
75 χ2

5 d0.75etωe 78.616 78.561 0.003125 0.048438 0.076321 0.19012 1 294.5

d0.5etωe 141.57 141.51 0.00625 0.05 0.078862 0.34791 1 328.3
χ2
n d0.75etωe 83.872 83.808 0.0046875 0.054688 0.080333 0.20399 1 294.3

d0.5etωe 59.952 51.941 7.7453 0.25781 0.056447 0.1266 1 283.4
χ2
1 d0.75etωe 76.617 75.719 0.5375 0.35156 0.078371 0.14417 1 338.2

d0.5etωe 123.31 110.06 0.0078125 13.23 0.083104 0.22813 1 352.7
100 χ2

5 d0.75etωe 162.95 162.88 0.003125 0.054688 0.13099 0.23486 1 443.4

d0.5etωe 226.7 226.64 0.00625 0.048438 0.12469 0.33447 1 483.4
χ2
n d0.75etωe 238.39 238.33 0.00625 0.05 0.11905 0.52996 1 380

Table 3: Computational results of large simulated weighted voting games

From the third column, we can observe that the total computation time increase with the number of

players. The longest computational time is 238.39 seconds for the largest games with 100 players. Most

of the time is taken up for solving the LPk while the total times to find the representative set (REP)

and to find improved imputation (FBOS) are small. Column 10 shows that these voting games require

solving only LP1. All these LPs require less than 500 iterations in the constraint generation algorithm

to find an optimal solution. This means that instead of having to solve a big LP with 2n constraints, the

CG algorithm solves less than 500 small relaxed LPs and 500 constraint generation problems. Columns

8 and 9 show that the computation times required to solve these relaxed LPs and the CG problems are

relatively small. All the numerical results are tested on a personal computer with 2.67GHz CPU, 12GB

RAM, and the Windows 7, 64-bit operating system. We use MATLAB for coding and use IBM CPLEX
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Computational Time

n (m, k, ρ) Total LPs REP STS RLP CG # LPs # Iters

(10,5,0.5) 9.3655 4.6613 0.69732 4.0038 0.010201 0.096578 1.8 120.15

(10,5,0.7) 1.5202 0.68172 0.34944 0.48906 0.0064025 0.04492 1.55 58.4

25 (10,5,0.9) 4.478 1.6331 1.1117 1.7218 0.019776 0.24373 3.1053 31.789

(20,10,0.5) 28.498 19.537 3.6933 5.2643 0.027263 0.33063 3.6 156.25

(20,10,0.7) 48.051 45.404 0.97111 1.6723 0.028752 0.23869 2.3 176.2

(20,10,0.9) 8.9014 7.1144 0.73242 1.0538 0.01325 0.068927 1.45 85.35

(10,5,0.5) 56.841 51.995 3.1863 1.6458 0.10959 0.35252 1.85 416.9

(10,5,0.7) 39.625 32.653 3.1676 3.7939 0.076558 0.20414 1.6 301.5

50 (10,5,0.9) 42.276 36.509 4.4788 1.2769 0.037106 0.26389 1.8 166.05

(20,10,0.5) 115.03 106.77 1.8861 6.3602 0.18726 0.11657 1.4 488.95

(20,10,0.7) 114.26 89.389 19.357 5.453 0.19206 1.3062 3.85 416.6

(20,10,0.9) 36.285 31.58 2.2605 2.4352 0.1038 0.12702 1.45 233.15

(10,5,0.5) 337.39 253.08 74.244 10.023 0.32213 5.4044 2.6 873.4

(10,5,0.7) 226.29 187.49 26.857 11.914 0.23974 1.6586 1.6 728.6

75 (10,5,0.9) 175.59 125.34 29.247 20.97 0.148 1.185 1.6 460.4

(20,10,0.5) 486.62 454.16 12.717 19.7 0.37461 0.37486 1.2 1101

(20,10,0.7) 1375.3 394.43 626.16 354.61 0.47017 5.2229 2.6 869.4

(20,10,0.9) 172.17 136.38 19.115 16.656 0.2497 0.91194 1.4 483.7

Table 4: Computational results of large simulated weighted voting games

Studio Academic version 12.4 for solving LPs and MILP problems under default settings.

5.3 Large Coalitional Skill Games

We generate coalitional skill games with different size and parameters as follows. For each n =

{25, 50, 75}, we generate random skill matrix Ψ using the binomial distribution with different suc-

cess rates ρ = {0.5, 0.7, 0.9}. We generate K simulated games with K = 20 for n = {25, 50} and

K = 10 for n = 75. Table 4 shows the computational results for these games in details. The columns

and rows shown in Table 4 have the same interpretation compared to those in Table 3. Overall, the total

computational time increases as the number of players increase (the total time variation by changing

other parameters are mixed). The total time is broken down into three main tasks for solving the LPs,

finding the representative set and for finding solution with the minimal tight set. In most cases except

for the second last row with (n,m, k, ρ) = (75, 20, 10, 0.7) the task that took the most time is for solving

the large LPs. The second last column shows the number of LPs involved in the nested LPs. This

ranges from solving a single LP to up to 8 LPs. Among all the 300 instances generated, the worst

instance with the maximum total time is under 30 minutes.
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6 Conclusion

We presented a nested LPs formulation to compute the nucleolus of large cooperative games. Our

methodology was based on two main innovative ideas. First, we provided a method to find an imputation

with a smaller tight set from any given imputation by solving a small LP. This allowed us to find an

optimal imputation with the smallest tight set, an operation that is crucial in finding the nucleolus.

Second, we used representative sets of tight coalitions to deal with situations when the tight set is

exponentially large. In addition, we used various techniques such as generating cuts to find multiple

coalitions with the same worst excess values and using randomization to improve the computational

performance. All of these ideas were developed in conjunction with the constraint generation framework

that was used to solve large LPs which means issues such as dealing with multiple optimal solutions

and finding the tight sets became more challenging. We demonstrated our algorithm with the general

flow games, the coalitional skill games and the weighted voting games. In the coalitional skill games,

the nucleoli are found in less than 30 minutes for games with up to 75 players. In the weighted voting

game, the nucleoli were found in less than 240 seconds on average even for games with up to 100

players. This is a significant improvement compared to existing methods in the literature where only

games with at most 20 players have been studied. Our paper sheds light on future development in

the following areas. On the methodology side, the ideas of finding an imputation with smallest tight

set and of using representative sets can lead to future studies on solving more general lexicographical

minimization problems. In addition, as finding the core and the least core is just one small stage

in finding the nucleolus, the constraint generation framework can be further studied to compute these

solution concepts for more generic cooperative games. On the practical side, we expect that applications

of cooperative game theory that once were hindered by the difficulty in computing the nucleolus could

now be possible by applying our results.
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Appendix A: List of acronyms for subproblems and notations

In general, we use bold font for vectors and matrices.

• LPk: The kth LP in the nested LPs formulation.

• RLPk: A relaxed version of LPk.

• CG: A constraint generation problem (the separation problem) that identifies a coalition with

the worst excess among a subset of coalitions.

• FBOS: Find an ‘improved’ optimal solution of LPk, i.e. with a smaller tight set, from a given

optimal solution.

• REP: Find the representative tight set of an optimal solution of LPk. This representative set

spans the entire space of all the tight constraints of that particular solution.

• I: The set of all imputations of the game.

• (x, ε∗k): An optimal solution of LPk. Notice that ε∗k is unique but there could be multiple optimal

x.

• Tk(x): The set of all tight constraints at a feasible solution x of LPk. It is also referred to as the

tight coalitions.

• x∗k: An optimal solution whose tight set Tk(x∗k) has the smallest size.

• T ∗k : The minimal tight set, i.e. T ∗k = Tk(x∗k).
• R∗k: The representative tight set at x∗k in LPk, i.e. R∗k ⊂ T ∗k and |R∗k| = rank(R∗k) = rank(T ∗k ),

where |R∗k| is the size of the set R∗k.
• e = (1, . . . , 1)t ∈ Rn: The identity vector in Rn of all ones.

• z = (z1, . . . , zn)t ∈ {0, 1}n: An alternative representation of a coalition S where zi is a binary

variable that indicates whether player i belongs to the coalition S.
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Appendix B: Constraint Generation Algorithm for Solving Large LPk

In this section we aim to solve LPk. Since the LP has an exponentially large number of constraints, it is

often very difficult to solve. However, we notice that most of the constraints are non-binding at optimal

solutions. That means we can still find an optimal solution by including only a subset of constraints.

The idea of the constraint generation (CG) algorithm is to start with a relaxed problem and then to

check whether the optimal solution of the relaxed problem satisfies all the constraints in the original

problem. If that is the case, then the solution to the relaxed problem is also an optimal solution of the

original problem. Otherwise, we have identified a violating constraint and that can be added to the

relaxed problem. Let Cr ⊂ C be a subset of all coalitions (ideally |Cr| � |C|). We relax the inequality

constraint εk + x(S) ≥ v(S), ∀S ∈ C\H∗k−1 in LPk as follows:

RLPk := min
x∈I,εk

{εk | (x− x∗k−1)(S) = 0, ∀S ∈ H∗k−1, εk + x(S) ≥ v(S), ∀S ∈ Cr\H∗k−1}.

Once we have obtained an optimal solution (x, ε) for the relaxed LP, we will solve the constraint

generation problem: CG := max
S∈C\H∗k−1

{v(S) − x(S)}, and let S∗ be an optimal solution of the

constraint generation problem. If v(S∗)−x(S∗) ≤ ε, then (x, ε) satisfies all the constraints of LPk and

hence it is also an optimal solution of LPk. The CG algorithm then terminates and we have found

an optimal solution. Otherwise, we can introduce S∗ to the relaxed constraint set Cr and repeat the

process. The formal constraint generation algorithm is described below: An attractive property of the

Algorithm 2: The Constraint Generation Method for solving LPk

1. Initialization: Find any initial imputation vector x0 that solves LPk−1, set the relaxed set

Cr = ∅, set the lower bound ε0 = −∞, upper bound τ0 =∞, and set the iterative index j = 0.;

while τ j 6= εj do
2. Let j = j + 1 and solve the constraint generation problem CG:

τ j = max
S∈C\H∗k−1

{v(S)− xj−1(S)}, and let Sj = argmax
S∈C\H∗k−1

{v(S)− xj−1(S)}.

3. Add Sj to the relaxed set Cr;
4. Solve the relaxed problem RLPk and let (xj , εj) be an optimal solution;

end

5. Terminate the algorithm and record (xj , εj) as an optimal solution of LPk.;

constraint generation algorithm is that the lower bounds εj are increasing through iterations. We can

show that the constraint generation algorithm never enters a loop of reintroducing coalitions into Cr
before the final iteration. The proof for the correctness of the stopping condition in the iterative loop

is quite standard and we skip for brevity. In addition, since the set C of all the possible coalitions is

finite, the constraint generation algorithm will terminate at an optimal solution. This is independent

of the starting imputation x0.
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