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Abstract

Background: Information on social interactions is needed to understand the spread of airborne infections through a
population. Previous studies mostly collected egocentric information of independent respondents with self-reported
information about contacts. Respondent-driven sampling (RDS) is a sampling technique allowing respondents to recruit
contacts from their social network. We explored the feasibility of webRDS for studying contact patterns relevant for the
spread of respiratory pathogens.

Materials and Methods: We developed a webRDS system for facilitating and tracking recruitment by Facebook and email.
One-day diary surveys were conducted by applying webRDS among a convenience sample of Thai students. Students were
asked to record numbers of contacts at different settings and self-reported influenza-like-illness symptoms, and to recruit
four contacts whom they had met in the previous week. Contacts were asked to do the same to create a network tree of
socially connected individuals. Correlations between linked individuals were analysed to investigate assortativity within
networks.

Results: We reached up to 6 waves of contacts of initial respondents, using only non-material incentives. Forty-four (23.0%)
of the initially approached students recruited one or more contacts. In total 257 persons participated, of which 168 (65.4%)
were recruited by others. Facebook was the most popular recruitment option (45.1%). Strong assortative mixing was seen
by age, gender and education, indicating a tendency of respondents to connect to contacts with similar characteristics.
Random mixing was seen by reported number of daily contacts.

Conclusions: Despite methodological challenges (e.g. clustering among respondents and their contacts), applying RDS
provides new insights in mixing patterns relevant for close-contact infections in real-world networks. Such information
increases our knowledge of the transmission of respiratory infections within populations and can be used to improve
existing modelling approaches. It is worthwhile to further develop and explore webRDS for the detection of clusters of
respiratory symptoms in social networks.
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Introduction

For important respiratory pathogens, like influenza, SARS and

tuberculosis, spatial proximity between social contacts is a major

determinant in the transmission process [1]. To understand the

dynamics of transmission of pathogens through a population,

information on contact patterns is needed. First explorations to

quantify contact patterns relevant for respiratory infections using

contact diary questionnaires were conducted by Edmunds et al. in

1997 [2]. Subsequently, many other studies were performed in

which the distribution of contacts was analysed among different

age-groups [3], settings and across countries [4,5]. Various study
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designs were applied and tested for performance and validity [6–

9]. Up till now, most of these studies focused on recording and

analysing contact patterns of randomly sampled individuals.

Surveys were ‘egocentric’ and contained only self-reported

information about characteristics of contacts of respondents and

the links between them. Other studies investigated participants

wearing digital devices that sense their proximity to others

including their spatial movements [10,11]. However, such studies

can only be performed in specific settings and with small numbers

of participants.

The rate at which infections spread across a community

depends, among others, on the topology of the contact network

[12]. Theoretically, it has been shown that network properties like

the clustering of contacts and heterogeneity in ‘degree’ (i.e. the

total number of contacts per individual) influence transmission

dynamics [13–16]. For designing optimal control strategies, it is

important to have knowledge on the network properties that allow

or enhance the spread of infections along links in a network of

individuals. More specifically, it might be advantageous to identify

individuals who act as a bridge between communities or as hubs

spreading to many other individuals.

Here we report on a pilot study using respondent-driven

sampling (RDS) to recruit respondent as well as their close social

contacts into a survey to study transmission related contact

patterns. RDS is a variant of chain referral sampling, which

includes ascertainment of degree distributions [17]. Different from

snowball sampling, researchers keep track of who recruited whom

and their numbers of social contacts. RDS is predominantly used

for making prevalence estimations of characteristics in otherwise

hard-to-reach populations such as injecting drugs users [18–20]. In

this study we explored the technical feasibility and implementation

of webRDS in a general population. We employed RDS with a

different aim, namely as a sampling tool to study contact patterns

relevant for the transmission of respiratory pathogens.

Increasing access to the internet, especially in low- and middle-

income countries, offers new opportunities for epidemiological

research [21–24]. Earlier studies found that social mixing

patterns can be measured through simple internet-based surveys

[6,25]. Until now, only few studies used the internet for RDS

(webRDS) [26]. A recent study performed in VietNam among

internet-using MSM (‘men who have sex with men’) showed the

potential of webRDS for sampling hidden and stigmatized

populations [27]. The applicability of (web-)RDS for recording

contacts relevant for respiratory-transmitted infections has, to our

knowledge, not yet been investigated. We analysed the applica-

bility of online social networks (i.e. Facebook) for inviting

contacts, and the use of non-material incentives to stimulate

recruitment. Secondly, we studied the correlations between

individuals linked by recruitment chains and the distribution of

connected components of the recruitment trees. Finally, we

investigated whether webRDS can be used to detect clusters of

influenza-like-illness symptoms in social networks.

Materials and Methods

Respondent Driven Sampling
RDS begins with the selection of initial respondents, called

‘‘seeds’’. The seed is asked to complete a survey and afterwards

provided with a limited number of coupons (usually three or four)

to invite contacts who are then asked to do the same. Limiting the

number of coupons for each participant forces the sample

recruitment chain to penetrate into the social network of seeds.

This process continues in recruitment ‘waves’, either until the

desired sampled size is reached or until the distribution of

participants’ characteristics has stabilised between waves or until

chains go extinct, ensuring that the final sample is not biased by

the choice of the seeds [17].

Web based RDS survey system
We developed a web based RDS survey system for facilitating

and tracking online recruitment, based on a system that was

implemented earlier by Bengtsson and colleagues [27]. We

designed templates for invitation and reminder emails, which

contained a link that provided direct access to the survey. These

unique links were based on personal codes and automatically

generated by the system for each participant. Each link could only

be used once for filling in the survey to prevent repeated

participation and participants seeing each others answers, and to

control the number of friends that could be recruited. The

questionnaire was divided over multiple pages (maximum of four

questions per page). All text was provided in both Thai and

English.

After submission of answers, respondents were redirected to a

page for inviting contacts. We provided three options for inviting

contacts: (1) sending an invitation email directly by the system to

contact persons for whom email addresses were provided or (2)

receive four separate invitation emails that could be forwarded to

contact persons or (3) connect to Facebook to invite Facebook

friends with a private Facebook message. For the first two email

options the name of the recruiter was required, which appeared in

the subject line of the email to personalise the invitation. As with

the emails for seeds, the template of the invitation emails used for

recruitment were standardised and contained background infor-

mation about the project, a (new) unique link to the questionnaire,

and a personal code. All emails and the first page of the

questionnaire contained a link to unsubscribe for the survey, which

led to another page on which reason(s) for not participating could

be provided.

For inviting friends on Facebook, participants needed to login to

their personal account, followed by accepting our app. The app

automatically created Facebook private messages, each containing

a unique link to the survey that could be forwarded one by one. As

with option 2, there was a possibility for the recruiter to add

personal text to each message, next to the invitation text provided

by us.

Illustration of network trees
As a non-material incentive, the progression of each network

tree could be followed by the respondent on the accompanying

institute website. Each network tree started with the code of the

seed, which was linked to the corresponding codes of the recruited

contacts. These contacts were each linked to contacts of contacts,

and so on. The trees were anonymous and did not contain

information provided by participants in the survey. All participants

were referred to the institute website after sending out invitations.

The network trees were updated daily and participants could

return to the institute website at any moment.

Informed consent and privacy
Apart from recruitment, the survey was anonymous. The

questionnaire pages were preceded by an informed consent page

containing the research purposes, information on data security,

subjects’ privacy, confidentiality (e.g. data was not shared with any

third parties) and non-material incentive, and the contact details of

the researcher. Participation was voluntary and individuals could

withdraw at any moment during the survey by closing the browser.

Only after accepting the form, individuals could proceed to the

questionnaire.

Respondent Driven Sampling and Contact Patterns
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More detailed information about the research project was

provided in a separate link, which could be accessed at any time

during the survey. Furthermore, the logos of the participating

research institutes were displayed on every page of the survey (as

well as in every invitation email), and were linked to the associated

websites. The system converted IP addresses to a unique

anonymous code using a one-way encryption algorithm; the

original IP addresses were deleted. All communication between

the user and the server was encrypted. The online database was

also encrypted and password protected.

We obtained ethical approval from the Medical Ethical

Committee from both the Faculty of Public Health Mahidol

University (Thailand) and University Medical Centre Utrecht

(The Netherlands).

Study design, seeds, and setting
The developed webRDS system was applied for conducting

contact diary questionnaires in Thailand between November 2012

and February 2013. As seeds we approached students from two

Bangkok universities with an invitation email. Students, in physical

group meetings varying between 6 and 30 persons, were first

informed with a short oral presentation about the project, and

afterwards contacted with an invitation email. In addition,

respondents could become friends with the researcher on a

Facebook page that was developed for this project, where updates

on the network trees were presented and where participants could

suggest friends as seeds (i.e. other than those personally

approached).

The seeds were selected from a convenience sample of students,

given sufficient spread of different curricula and academic years, in

collaboration with lecturers and faculty deans of student affairs to

prevent too much immediate overlap among contacts recruited by

the seeds. Each seed was asked to recruit four close contacts (e.g.

friends, family members and/or colleagues) whom they had met

(according to the contact definition described below) in real-life in

the past seven days. The time span of seven days was decided as it

was a reasonable period for remembering close contacts and a

seven days period includes the generation time of influenza

[28,29]. Each participant was provided with an invitation for each

of their four contacts. In principle, there were no exclusion criteria;

however, a contact had to have access to the internet. We sent out

reminder emails to seeds and contacts who did not respond within

two weeks after sending the invitation email.

Thailand has around 65.9 million inhabitants (20.5 million

households, with an average size of 3.2 persons), of which 8.3

million are registered in the densely populated capital Bangkok. In

2012, 27.5% of the Thai population in rural areas (aged six years

and older) was using a computer, 20.5% the internet and 66.2% a

mobile phone. Bangkok has higher proportions of users: 44.4%,

51.5% and 84.0% respectively. The age groups of 6–14, 15–24

and 25–34 use the internet most frequently (46.5%, 54.8%, and

29.7% respectively within each age group). Internet-use is much

lower for ages of 35 years and above [30]. In May 2013, Thailand

counted around 18.5 million Facebook accounts of which most

users were between the ages of 18–34 years [31].

Online questionnaire
We asked participants to record the number of contacts they

had during one full day (namely ‘yesterday’). A contact was

defined as a person standing or sitting close – defined as within

reach of an arm’s length [7,32] – to the participant for 30 seconds

or longer. This space within arm’s length was denoted as

‘YourSpace’. The definition was illustrated with pictures to clearly

indicate which contacts should be recorded.

To limit the burden for each participant, the online question-

naire was kept short; in total it consisted of eleven questions.

Participants were asked to record the number of contacts while

travelling (e.g. train, metro, bus, shuttle boot, minibus, car, tuk-

tuk) and at different locations (e.g. home, work, school/university,

restaurant, coffee shop, sport/leisure, concert or other places). For

the different locations, participants were asked to specify for each

contact whether this person was younger than, the same age or

older than the participant.

In Thailand, it is custom to share food with friends, family and/

or colleagues. Therefore we asked for the number of contacts

(within arm’s length) with whom participants had breakfast, lunch,

dinner and/or a snack break. In addition, we included a question

on the number and age (specified in age groups) of contacts that

lived in the household in the past seven days. To facilitate

participation, participants were instructed to leave answer options

empty when these were not applicable to them (instead of having

to fill in a zero). Empty cells were treated as a zero during analyses

for all participants who reached the last page of the questionnaire.

The following basic demographic information was also collected

for each participant: gender, age, educational level and postal

code. We also asked participants to report any influenza-like-illness

(ILI) symptoms (provided in a list) that they and/or their

household contacts experienced in the past seven days.

Analyses
Degree was defined as the sum of the numbers of contacts while

travelling and at different locations reported by each respondent

for one day. We censored degree and number of contacts while

eating to a maximum of respectively 500 and 75 contacts per day

for each respondent, which were considered as highest reasonable

values. We fitted a negative binomial distribution to the observed

degree distribution using maximum likelihood estimation (see Text

S1).

The tendency of individuals in a network to be linked to similar

individuals (‘assortative’ mixing, and vice versa ‘disassortative’

mixing if links are made between dissimilar individuals) can be

measured by correlation coefficients between pairs of individuals

[33]. To investigate mixing patterns within our sample, we

calculated correlations between the recruiter and his/her recruited

contacts. We used Pearson’s r for integer variables (e.g. age,

degree, household size, contacts while eating, and number of self-

reported symptoms). We used phi coefficient (rQ) for binary

variables (e.g. gender and two-or-more self-reported symptoms),

and Spearman rank-order (rrank) for ordinal variables (e.g.

educational level). For conducting null hypothesis tests for

Pearson’s r, a bivariate normal distribution is assumed [34].

Count variables were therefore log transformed, and bivariate

normality was visually assessed using joint probability distribution

plots (see Text S2).

Besides studying the correlation between characteristics of

neighbouring nodes, RDS allows for comparison of individuals’

characteristics across more than one link in the network.

Investigating such correlations shows whether correlations seen

for pairs of directly linked nodes persist beyond the first link. We

calculated correlations for all possible link distances between

respondents in the same component.

In RDS, respondents recruit contacts they know, with the result

that respondents have similar characteristics. Thus, characteristics

of respondents in the same component are correlated, and this

affects the standard errors of survey estimates. A measure for this

correlation is the intraclass correlation (ICC), derived in multilevel

analysis [35]. The ICC can be interpreted as the expected

correlation between two randomly chosen individuals within the

Respondent Driven Sampling and Contact Patterns
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same component. The ICC for a two-level model is defined as:

ICC~
population variance at component level

total variance
~

s2
u0

s2
u0zs2

e0

where the numerator is the variance at the component level s2
u0,

and the denominator represents the total variation in the model,

which includes the variance at the component level and the

variance at the respondent level s2
e0. The ICC can be calculated

for each variable separately and varies between 0–1. When the

ICC is zero, observations can be considered independent (s2
u0 = 0).

An ICC of 1 indicates that respondents in the same component

respond identically (s2
e0 = 0). The higher the ICC, the less

representative the sample is for the population given the variable

considered and the sample size. Variance estimates were derived

from an intercept-only multilevel model with restricted maximum

likelihood estimation [35].

In the supplementary materials we analysed which variables are

important in the recruitment process using logistic regression

analyses (see Text S3). Furthermore, we explored whether

correlations for age, gender and education between recruiters

and their contact persons were only dependent on the direct

recruiter (i.e. one step away, a first-order Markov assumption), by

using a Monte Carlo technique to simulate a first-order

autoregressive process (see Text S4). We also visually assessed

equilibrium for all variables and applied the Volz-Heckathorn

estimator [36] to estimate population proportions from our sample

(see Text S5).

Analyses were performed with R (version 2.5.3); Figure 1 was

created with the package Rgraphviz. RDS data file is available

online, doi: 10.6084/m9.figshare.860458. We are currently

improving the user interface of the webRDS system, researchers

interested in the survey system are welcome to contact the authors.

Results

Study participants and recruitment waves
In total, we invited 191 students. Of those students, 89 (46.6%)

entered the online survey using the personal link provided in the

invitation email and 80 (41.9%) completed the online question-

naire, out of which 44 (23.0%) students invited contacts. Thirty-

nine (20.4%) of these led to completion of at least one new

questionnaire. The maximum number of recruitment waves was

six. There were 15 (34.1%) network trees with two or more waves

(Table S1). The two largest network trees consisted in total of 30

and 34 participants (Figure 1).

In total 257 individuals entered the online survey, of which 220

(85.6%) completed the survey. The age range of respondents was

14–52 years (mean age 26.7 years; standard deviation [SD] 6.73).

There were 157 (61.6%) female and 98 (38.4%) male participants.

Regarding education, 160 (63%) respondents had a bachelor

degree, 53 (21.0%) had a master degree, and 41 (16.0%) had a

junior high school, high school or higher diploma. When plotting

the sample proportion by increasing sample size, we observed that

the sample composition regarding age, gender and education did

not stabilise (see Text S5). Most respondents (122, 47.5%)

provided a postal code of a district outside Bangkok, 95 (37.0%)

indicated to live in Bangkok, and 40 (15.5%) did not provide their

postal code (see Table 1).

Two invited contacts indicated that they did not participate in

our survey as they had participated earlier as a seed. Repeated

recruitment among contacts occurred for an additional seven

times (e.g. individual first invited by seed and later also invited by

friend from another tree), based on the number of duplicates in

email addresses used for recruitment. One individual indicated not

to be interested in the subject of the survey. Two individuals

entered the questionnaire but did not provide any information.

Figure 1. RDS recruitment. (A) RDS network trees showing age, gender and educational level of respondents. Only trees with two or more
participants were displayed (in total 44 trees), symbols with black borders indicate seeds. (B) Cumulative number of participants and seeds (those
who filled in the survey) over length of time the survey was active (in days), since the survey launch. The cumulative number of respondents is
indicated by the red solid line, and participating seeds with the purple dotted line. Initially 44 students were approached, after 25 days more students
were approached with an invitation email.
doi:10.1371/journal.pone.0085256.g001
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Recruitment options used
Facebook was the most frequently used option for recruiting

contacts. Facebook was used by 116 (45.1%) respondents

compared to 29 (11.3%) who used one of the two email options.

A total number of 580 coupons were handed out. Of those, 168

(29.0%) actually entered the survey and 140 (24.1%) completed

the questionnaire. This means that we obtained 140 pairs of linked

individuals who both completed the survey. Of the successfully

recruited contacts, 117 (83.6%) were invited by 63 respondents

who used Facebook, compared to 23 (16.4%) contacts who

received an email from their recruiter (Table 2). Seventy-five

(29.1%) respondents did not use a recruitment option after

finishing the questionnaire. See Table S1 for a detailed overview of

the used recruitment options.

Technical issues
Although the invitation emails were evaluated for spam content,

a number of email providers blocked our emails. This severely

affected participation rates in the first phase of the pilot.

Furthermore, as personal codes could only be used once for

completing the survey, participants could not return to the survey

after closing the browser. Therefore, respondents who postponed

recruitment were unable to recruit contacts at a later stage.

Facebook made it easier for respondents to recruit contacts, as

they did not have to provide their email addresses. However, the

Facebook ‘Send Dialog’ application (for sending private messages

to friends) that was used is not supported for mobile devices.

Therefore, the Facebook invitation option was either invisible

when using a mobile device, or in some operating systems, the

option was provided but gave an error when selected. With the

Send Dialog the length of the standard invitation text that can be

provided by the researcher is restricted, and in some occasions

only partly displayed depending on the settings of the recipient. In

addition, we were unable to send out reminders to contacts that

had been invited via the online social network. The latter was

possible for the two email recruitment options, but errors were

sometimes made with filling in email addresses.

Number of reported contacts
A total of 19501 contacts were recorded, ranging from 0 to 4456

contacts per respondent per day. Three respondents reported

more than 500 contacts. Figure 2 displays the degree distribution

and the best fitting negative binomial distribution (mean = 88.2;

dispersion k = 0.57). Less contacts per respondent were reported

while travelling (the sum of contacts while travelling with different

transport vehicles) than for locations (the sum of contacts for all

locations together), respectively 19.2 (median = 6, SD = 40.8) and

Table 1. Number of recorded contacts by different characteristics.

Category Covariate
Number of
participants

Mean (median;SD)
number of reported contacts
while travelling

Mean (median;SD) number of
reported contacts at different
locations

Age of participant 14–19 10 (3.9%) 61.4 (5.0; 99.8) 212.7 (144.0; 200.6)

20–29 180 (70.0%) 17.3 (8.0; 33.0) 36.8 (17.0; 58.3)

30–39 50 (19.5%) 16.4 (5.0; 8.3) 50.2 (15.5; 97.1)

40+ 13 (5.2%) 24.8 (2.0; 68.3) 42.3 (15.0; 69.0)

Missing value 4 (1.6%)

Gender participant Female 157 (61.1%) 19.4 (7.0; 41.9) 42.0 (16.5; 75.8)

Male 98 (38.1%) 18.3 (5.0; 38.5) 51.1 (18.0; 88.2)

Missing value 2 (0.8%)

Educational level
participant

Master degree or higher 53 (20.6%) 16.7 (5.0; 42.3) 37.0 (15.5; 53.9)

Bachelor degree 160 (62.3%) 20.7 (5.0; 44.8) 48.3 (15.5; 92.2)

Lower than bachelor degree 41 (16.0%) 14.8 (11.0; 13.3) 45.2 (33.0; 63.1)

Missing value 3 (1.2%)

Household size 1 45 (17.5%) 12.6 (7.0; 22.3) 27.9 (14.0; 44.0)

2 21 (8.2%) 13.9 (9.0; 16.6) 20.2 (14.0; 16.9)

3 36 (14.0%) 13.6 (7.5; 23.4) 28.3 (14.5; 37.7)

4 45 (17.5%) 13.9 (5.0; 47.7) 34.5 (14.0; 66.9)

5 32 (12.5%) 20.4 (7.0; 33.5) 36.5 (21.0; 36.8)

6 15 (5.8%) 11.9 (9.0; 17.2) 47.2 (27.0; 52.4)

7+ 27 (10.5%) 46.6 (9.0; 77.2) 95.9 (28.5; 115.8)

Missing value 36 (14.0%)

Participant living in
Bangkoka

Yes 95 (37.0%) 19.4 (8.0; 40.1) 38.6 (16.0; 66.5)

No 122 (47.5%) 18.1 (5.0; 40.8) 38.9 (17.5; 58.5)

Missing value 40 (15.5%)

aMost seeds provided a postal code from a district far away from Bangkok, however we assume that most of these students stayed in a student dorm in Bangkok during
the study week.
doi:10.1371/journal.pone.0085256.t001
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45.1 (median = 17, SD = 80.8) mean contacts per day. Of all

recorded contacts, 7574 (55.0%) were made during weekdays,

compared to 6205 (45.0%) contacts that were made during the

weekend (degree was censored to a maximum of 500 contacts per

respondent). On average a degree of 62.3 (median = 25,

SD = 100.7) was reported per participant per day, with Friday

and Saturday having the highest degree per person (median 46.5

and 34.0 respectively) and Sunday the lowest (median of 20.5).

Contacts while travelling and at different locations
While travelling (Figure 2), on average most contacts were made

in the bus, mini bus or shuttle boat (mean of 7.1 contacts per

person). Remarkably, the mean number of contacts per person for

car or taxi was not much lower (4.8). For mass transport (e.g. sky

train, subway or airplane) the number of reported contacts per

person was over-dispersed. Comparable patterns were seen for

motorbike/tuk-tuk, which is probably due to the larger versions of

tuk-tuks (which can carry .3 persons). Twenty-six (11.8%)

respondents indicated that they did not use any transport vehicles

on the specific recording day.

Figure 2d shows the average number of contacts reported per

participant for different locations. Participants in the age class 14–

19 reported the highest numbers of contacts for each location,

except for work. Most contacts in this age class were reported for

school/university and ‘other’ (e.g. sports/leisure, concert and

other places) locations. For the oldest age class (40+), most contacts

were made at work. Table 1 shows the number of contacts while

travelling and at different locations for different respondents’

characteristics. Regarding contact numbers while eating, most

contacts were reported during lunch and dinner. Again, the age

class 14–19 reported overall the highest averages (which is an

average of the sum of contacts during breakfast, lunch, dinner

and/or snack break), and the age classes 20–29 and 30–39 had

more varied numbers of contacts (see Table S2).

Link recruiter and recruited
We examined correlations for characteristics and numbers of

contacts between linked respondents (recruiter versus recruited

contact) (Table 3). Strong correlations were found for age

(r = 0.555, p,0.001), gender (rQ = 0.205, p = 0.008) and education

(rrank = 0.520, p,0.001). These positive correlations indicate that

recruitment is assortative by age (Figure 3a), gender and

educational level.

No assortativeness was observed by degree between linked

nodes. Figure 3b shows the degree of the recruiter versus the

degree of the recruited contact. The distribution corresponds with

a random mixing in a population with negative binomially

distributed degree (Figure 2a). The summary statistic between

pairs of linked nodes indicated random mixing by degree

(r = 0.010, p = 0.907). Comparable correlations were seen for

household sizes of pairs of respondents (r = 0.058, p = 0.499). For

numbers of contacts while eating a weak assortative tendency was

seen (r = 0.215, p = 0.011). See Text S2 in supplementary materials

for scatterplots.

Successive links between contact persons in the same
component

Figure 4 shows the correlations between individuals across

several steps in the recruitment chain. For age, gender and

education the positive correlations decrease after the first link and

disappear after a distance of three or more steps between any two

individuals in the same chain (Figure 4a). For degree, numbers of

contacts while having food, and household size, no correlations

were observed over all distances (Figure 4b). Comparable analyses

can be performed based on recruitment waves (i.e. only forward

steps, see Text S4).

Intraclass correlations
The ICC values for age, gender and education (respectively

0.470, 0.203 and 0.435) suggest a relatively large homogeneity for

these characteristics within network components (Table 4). By

contrast, low ICC values were found for log degree (0.064),

numbers of contact while eating (0.142), household size (0),

numbers of self-reported symptoms (0), and two or more reported

symptoms (0). This confirms the results obtained through the

correlations reported above in which we did not explicitly take

interdependence of observations in components into account.

Self-reported symptoms
The mean number of self-reported symptoms was 1.8 (medi-

an = 2, SD = 1.5; varying from 0 to 8 symptoms per person). Of

the respondents who completed the survey, 66 (30.0%) reported

two-or-more symptoms, of which 7 (3.2%) persons reported a set

that indicates flu-like symptoms (e.g. a combination of the

symptoms fever, headache and muscle pain), and 13 (5.9%)

reported common cold-like symptoms (e.g. a combination of the

symptoms runny nose, sore throat and cough). Seventy-four

(33.6%) respondents reported one-or-more household contacts

with symptoms in the same period (Table S3). Random mixing

was seen by total number of self-reported symptoms and by the

variable two-or-more self-reported symptoms at all distances

(Table 3 and Figure 4c).

Discussion

We presented the results of a pilot study demonstrating the

applicability of webRDS for studying contact patterns, especially

those relevant to the transmission of airborne infections, of socially

connected individuals. To our knowledge, this is the first online

study in which RDS was applied to collect data specifically on

human contact patterns relevant for close-contact pathogens, and

the first in Thailand in which contact data was collected via the

Table 2. Number of successful recruitments by recruitment option.

Recruitment option used 0 (‘no’) 1 2 3 4 Total successful recruitments (n = 140)

Facebook 53 35 10 10 8 117 (83.6%)

Indirectly email 8 5 1 0 0 7 (5.0%)

Direct email 7 3 3 1 1 16 (11.4%)

Successful recruitment (of 1 to max. 4 contacts) counts when the invited contact also completed the survey; 0 (‘no’) indicates that recruiter invited his/her contacts but
these contacts did not complete the survey. 75 respondents did not invite anyone after filling the survey.
doi:10.1371/journal.pone.0085256.t002
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internet. By studying the correlations in characteristics between

recruiter and recruited contacts, we found assortative mixing by

age, gender and education, and random mixing by numbers of

contacts. Building on earlier work in Vietnam [27], we have shown

that webRDS can be used to elicit information about social

contact networks and to collect empirical data on mixing patterns

that are relevant for communicable disease transmission.

In contrast to most previous contact studies that focused on

egocentric data [5,8–11,37], we used RDS to include contacts and

contacts of contacts of the initial respondents into the study. This

sampling method allows researchers to collect contact data in

connected components of respondents, i.e. within the social

structures where transmission actually occurs. In particular,

mixing patterns and heterogeneity in numbers of contacts in

social networks can be studied directly thereby providing

information on possible transmission routes of communicable

diseases. Assortative mixing by, for instance, age affects the spread

of infections through a community. When individuals of a similar

age class primarily have contact with each other, infections are

likely to spread more within those subgroups. On a similar note,

Figure 2. Recorded contacts. (A) Distribution of reported degree, the line indicates the fitted negative binomial distribution; (B) degree by day of
the week (outliers .200 are not shown); (C) contacts while travelling with mass transport (sky train, subway and/or airplane), bus/minibus/shuttle
boot, car/taxi and/or motorbike/tuk-tuk (outliers .40 are not shown); (D) numbers of contacts at different locations (outliers .80 are not shown).
School was defined as ‘school/university’, ‘restaurant’ includes contacts at coffee shop, and ‘other’ is the sum of contacts encountered at sport/leisure,
concert and ‘other places’. Above each plot in B, C and D the mean and SD (in blue) are displayed and within each plot the median (in red); B also
contains the number of observations. Plots in C and D are based on an equal number of observations (n = 221).
doi:10.1371/journal.pone.0085256.g002
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data on the distribution of degree within a community provides

information on individuals who have many contacts and are

therefore more likely to become infected and to infect others than

individuals with fewer contacts. Theoretically it has been shown

that highly over-dispersed degree distributions strongly affects the

basic reproduction number, which is an important indicator of

how fast an infection spreads and what fraction of the population

will be infected [38]. Such RDS collected information on the

contact network can be used as input for mathematical models to

better describe transmission dynamics and impact of public health

interventions, such as vaccination or isolation of certain groups

within the population.

In contrast to previous webRDS studies [26,27,39], we have

demonstrated that sampling can be performed without material

incentives. Our non-material incentive was considered a fun

motivator for recruiting contacts. Although the use of a monetary

reward or a combination of incentives as was applied by Bengtsson

et al. 2012 [27], could have increased the number of waves in our

study, applying material incentives generally increases the risk of

attracting ‘cheaters’ (e.g. respondents that participate multiple

times by recruiting themselves to receive multiple rewards) that

can severely affect study validity. In general, surveys in Thailand

are performed without incentives as contributing to research is

culturally considered an activity that does not require a monetary

reward.

Our results underpin the importance of recruiting motivated

and well-informed seeds, as was also seen in previous RDS studies.

The use of a Facebook option for recruitment of friends has shown

to be of critical importance for recruitment of contacts in the Thai

study population. By providing recruiters with four private

Facebook messages or invitation emails, we facilitated recruitment

and gained more control over the sampling process, despite some

technical challenges such as that the Facebook Send Dialog is not

supported on mobile devices. Recruitment was more personal and

directed, compared to the sharing of survey links in public areas as

was done by Bauermeister et al. 2012 [39].

However, our results are based on a rather small sample and

mainly represent students and their contacts of similar age (e.g. the

age class of 20–35, see also Text S5). Several factors might have

restricted recruitment and consequently the penetration of our

survey into different layers of the Thai population, for example

limited internet access, unfamiliarity with online recruitment of

friends, and perceiving an invitation mail as spam. In addition, the

criterion of recruiting only contacts that were seen in the past

seven days may have contributed to limit sample size and

composition. In case students and their contacts did not travel

back to their parental home during the weekend, they were not

likely to meet many other contacts outside the university and/or

work.

In contact diary studies, differences in contact definition cause

heterogeneities in numbers of recorded contacts and influence the

assessment of the importance of settings in disease transmission

risk [32]. Although the applied contact definition in our study was

fairly simple and not limited to physical contact, for events like

travelling by metro or bus during rush hours it is difficult to

estimate the number of persons within arm’s length. For these

events reported numbers of contacts may be less reliable. For

contacts that occur repeatedly within stable relationships such as

within households, schools and workplaces, repeated measures on

Figure 3. Correlations between recruiter and recruited contact. Graphs display correlations for (A) age, (B) degree (untransformed).
Overlapping points were made visible with a colour scale.
doi:10.1371/journal.pone.0085256.g003

Table 3. Correlations between directly linked individuals in
one component.

Cor. df p value

Age (r) 0.555 [0.439 – 0.652] 163 ,0.001

Gender (rw) 0.205 [0.054 – 0.346] 164 0.008

Education (rrank) 0.520 [0.383 – 0.653] 164 ,0.001

Degree log (r) 0.010 [20.156 – 0.176] 138 0.907

Household size log (r) 0.058 [20.110 – 0.222] 137a 0.499

Food with log (r) 0.215 [0.051 – 0.368] 138 0.011

Number of reported
symptomsb log (r)

20.095 [20.257 – 0.072] 138 0.266

Two or more reported
symptomsb (Q)

20.060 [20.223 – 0.108] 138 0.488

aOne case who reported .500 household contacts was removed.
bBased on total number of self-reported symptoms by each respondent.
doi:10.1371/journal.pone.0085256.t003
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different days and asking recruited contacts about the contact they

had with their recruiters (and vice versa) will provide insight in

reporting bias and the validity of the data [8]. Moreover, repeated

measures would aid participants in recalling daily contacts.

RDS is by nature subjected to clustering due to its sampling

process. Clustering refers to how many of an individual’s contacts,

and subsequently how many of the contacts reported by

individuals in the same referral chain, also had contact among

each other. Clustering can have a profound effect on disease

spread [16,40–42]. For example, high clustering of contacts means

more local spread and thus a rapid local depletion of susceptible

individuals. In future surveys more information should be collected

on repetitive recruitment among participants. Such information

can be used to make estimates of clustering. Repeated recruitment

could possibly be measured by asking respondents to report their

personal code, with which they were initially invited to the survey,

the moment they receive a second invitation (or more).

While RDS population estimates were not the aim of this

study, we were interested in obtaining samples of respondent-

contact pairs. Typically with RDS, well-connected individuals

(i.e. high degree individuals) tend to be over-sampled because

many recruitment paths lead to them. The bias that is

introduced, with respect to number of contacts, is corrected for

by the RDS estimators when making inferences to the

population [43]. Increasing the number of coupons could

provide a better view on an individual’s entire contact structure,

although it would increase the participation burden (e.g. more

contacts have to be approached) and increase the probability of

multiple recruitment.

In addition, with RDS respondents tend to recruit contacts who

they think will participate, making the peer recruitment anything

but random. For studying the representativeness of network links,

more information is required about the (non-randomly) chosen

contacts. For example, during future research recruited contacts

can be asked to specify the relation he/she has with the recruiter,

and to indicate the type, frequency and duration of contact, to

learn more about the contact persons that are included in the

sample. In addition, by defining more specific recruitment criteria

link sampling could become more controlled in order to counter

bias.

In future research, recruitment of seeds could be organised

through online communities (e.g. panels [44] or online social

networks), to capture a variety of seeds from all levels of the

population. In general, participants from online panels are used to

fill in web surveys, which will help researchers in the search for

generative seeds. In addition, selecting seeds through the web

might result in the inclusion of seeds from different geographical

locations, which decreases the clustering among contacts. How-

ever, this requires that seeds can be motivated for peer-recruitment

without researchers having to physically meet with these

individuals. If possible, it will then also be interesting to explore

the feasibility of using a probability based sample of seeds, i.e.

selecting seeds randomly, thereby providing every individual in the

population a chance of being selected as a seed. Representatively

selected seeds for webRDS would retain the benefits of a random

sample, such as collected in earlier egocentric studies, but are also

likely to reach a more representative sample of the contact

networks in a population. In theory, longer recruitment chains

ensure that the sociometric distance between the seeds and the

bulk of the sample will be large, hereby enhancing the diversity

and representativeness of the sample [45]. Furthermore, the use of

mobile devices for recruitment of contacts should also be further

explored. Communication through smartphones or other mobile

devices will continue to grow in Thailand and elsewhere providing

new opportunities for webRDS research.

In principle, with webRDS it is possible to recruit a sample

relatively fast compared to offline RDS [46] or traditional

sampling techniques. In our pilot study, recruitment of additional

Figure 4. Correlations between any two individuals with different link distance. With graph A showing the correlations for age, gender,
and education. Graph B displays the correlations in degree, number of contacts while having food, and household size (all after log transformation).
Graph C shows the correlations for total number of self-reported symptoms (after log transformation), and for two or more self-reported symptoms
(yes/no). Distances of five or more links were lumped together. The dotted lines show the confidence intervals.
doi:10.1371/journal.pone.0085256.g004

Table 4. Intraclass correlation coefficients.

ICC

Variance
between

components (s2
u0)

Variance within

components (s2
e0)

Age 0.470 22.848 25.812

Gender 0.203 0.049 0.203

Education 0.435 0.391 0.509

Degree (log) 0.064 0.087 1.281

Food with (log) 0.142 0.150 0.910

Household size (log) 0 0.000 0.511

Number of reported
symptoms (log)

0 0.000 0.659

Two or more reported
symptoms (yes/no)

0 0.000 0.210

doi:10.1371/journal.pone.0085256.t004
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seeds after day 25 led to a three times higher number of recruited

participants (from around 50 participants to a sample size of over

200, see Figure 1b) within only 15 days. Although the pilot sample

size was too small to include a large number of (linked) individuals

with influenza-like-illness symptoms, the sampling speed of

webRDS and the assortative recruitment by age, gender and

education is potentially useful for reaching contacts at risk for

infection, and for detecting clusters and studying the spread of

respiratory agents in social networks at the level at which it is

actually occurring. For example, webRDS could be applied for

case-contact tracing where reported cases act as seeds, who are

then asked to recruit contacts that they have physically seen during

their infectious period. The benefit is that respondents are in

control of recruitment, instead of health authorities, which is

efficient as individuals know with whom they had contact and they

can approach their contacts directly. In addition, with the use of

the internet the tracing of contacts will be accelerated (compared

to traditional methods) that will save time, human resources, and

possibly provides the health authorities with options to intervene

earlier during an outbreak (e.g. applying of interventions to control

the spread) thereby preventing new cases.

Despite the methodological challenges, RDS allowed us to study

connected components of individuals and obtain information

about links within the network. Such information increases our

understanding of contact networks relevant for the transmission of

respiratory infections and can be used to improve existing

modelling approaches. The application of webRDS for the

purpose of studying contact patterns within real-life network

structures is promising and will be explored further in future

studies.
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(categorised); (C) recruitment option used; (D) number of

household members with symptoms (categorised); (E) age (integer);

(F) male; (G) average number of contacts while eating (integer); (H)

flu (combination of the self-reported symptoms fever, headache

and muscle pain) and cold symptoms (combination of the

symptoms runny nose, sore throat and cough); (I) average number

of self-reported symptoms (integer); (J) average number of

household members (integer).
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