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SPACES OF GRAPHS, BOUNDARY GROUPOIDS AND THE COARSE

BAUM-CONNES CONJECTURE

MARTIN FINN-SELL AND NICK WRIGHT

Abstract. We introduce a new variant of the coarse Baum-Connes conjecture designed to
tackle coarsely disconnected metric spaces called the boundary coarse Baum-Connes conjec-
ture. We prove this conjecture for many coarsely disconnected spaces that are known to be
counterexamples to the coarse Baum-Connes conjecture. In particular, we give a geomet-
ric proof of this conjecture for spaces of graphs that have large girth and bounded vertex
degree. We then connect the boundary conjecture to the coarse Baum-Connes conjecture
using homological methods, which allows us to exhibit all the current uniformly discrete
counterexamples to the coarse Baum-Connes conjecture in an elementary way.

1. Introduction and Outline

The coarse Baum-Connes conjecture for metric spaces plays a central role in answering posi-
tively certain topological and group theoretic problems [HR95]; it implies a positive solution
to the Novikov conjecture for finitely generated discrete groups [Hig00, FW95] and informa-
tion about the existence of positive scalar curvature metrics on spin manifolds [FW95, HR00].
It is well known that this conjecture has counterexamples [HR00, Hig99, WY12] in the class
of coarsely disconnected spaces.

In this paper we introduce a new conjecture associated to uniformly discrete bounded geom-
etry metric spaces that is tailored to studying the geometry of coarsely disconnected spaces
by utilising their asymptotic geometry. For a space X this conjecture is phrased in terms of
a certain Baum-Connes conjecture for a naturally constructed groupoid called the boundary
groupoid of X, which we denote by G(X)|∂βX .

Conjecture 1 (Boundary Coarse Baum-Connes Conjecture). Let X be a uniformly discrete
bounded geometry metric space. Then the assembly map:

µbdry : K
top
∗ (G(X)|∂βX , A∂) → K∗(A∂ ⋊r G(X)|∂βX )

is an isomorphism.

The coefficient algebra A∂ in the conjecture above is related to the asymptotic geometry of X
and occurs in the work of Yu and Oyono-Oyono [OOY09]. The idea here is that this conjecture
should be easier to prove in those instances that the coarse Baum-Connes conjecture fails, an
idea that we confirm during the first half of this paper.

In particular we prove the following result:

Theorem 2. The boundary coarse Baum-Connes conjecture holds for the following classes
of coarsely disconnected spaces:

Date: July 2013.

1

http://arxiv.org/abs/1208.4237v2


2 MARTIN FINN-SELL AND NICK WRIGHT

(1) box spaces of finitely generated a-T-menable groups;
(2) coarse disjoint unions constructed from sequences of finite graphs with large girth and

uniformly bounded above regularity.

The first point is an easy observation outlined in Section 2, however the second point is rather
more interesting and relies on carefully studying the natural geometry of large girth sequences
to produce a partial action of free group [KL04]. These ideas are covered in Section 3.3.

The second objective of this paper is to connect the boundary coarse Baum-Connes conjec-
ture, via homological methods, to the coarse Baum-Connes conjecture. Using this machinery
we give elementary proofs of many of the counterexample arguments from [HLS02, Hig99,
WY12] as well as many results concerning classes of expander graphs present in the literature
[CTWY08, GTY11, OOY09]; in particular in Section 4 we give an elementary proof of results
of Willett and Yu [WY12] concerning large girth sequences:

Theorem 3. Let X be a space of graphs with large girth constructed from a sequence of finite
graphs with uniformly bounded vertex degree. Then:

(1) the coarse Baum-Connes assembly map is injective for X.
(2) If X comes from an expanding sequence then the coarse Baum-Connes assembly map

for X is not surjective.

Finally in Section 5 we give a counterexample to the boundary coarse Baum-Connes conjecture
by considering a space introduced by Wang [Wan07] and adaptations of the counterexample
arguments present in the literature:

Theorem 4. There is a coarsely disconnected space Y constructed from a box space of SL2(Z)
for which the boundary coarse Baum-Connes assembly map is injective but fails to be surjec-
tive.

1.1. Acknowledgements. The first author wishes to thank the second author, his supervi-
sor, for his unending patience and support as well as Rufus Willett for carefully reading the
first drafts.

1.2. Groupoids, expanders and the coarse Baum-Connes conjecture. In this section
we recall some definitions and results from the literature that will appear within the text. We
begin with groupoids by focusing on certain relevant examples.

A groupoid is principal if (r, s) : G → G(0)×G(0) is injective and transitive if (r, s) is surjective.

A groupoid G is a topological groupoid if both G and G(0) are topological spaces, and the maps
r, s,−1 and the composition are all continuous. A Hausdorff, locally compact topological
groupoid G is proper if (r, s) is a proper map and étale or r-discrete if the map r is a local
homeomorphism. When G is étale, s and the product are also local homeomorphisms, and
G(0) is an open subset of G.

Definition 1.1. Let G be a groupoid and let x, y ∈ G(0) and A,B ⊂ G(0). Set:

(1) Gx = s−1(x)
(2) Gy = r−1(y)
(3) Gyx = Gy ∩ Gx

Denote by G|A the subgroupoid GAA , called the reduction of G to A.
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Definition 1.2. Let G be a locally compact groupoid and let Z be a locally compact space.
G acts on Z (or Z is a G-space) if there is a continuous, open map rZ : Z → G(0) and a
continuous map (γ, z) 7→ γ.z from G ∗ Z := {(γ, z) ∈ G × Z|sG(γ) = rZ(z)} to Z such that

rZ(z).z = z for all z and (ηγ).z = η.(γ.z) for all γ, η ∈ G(2) with sG(γ) = rZ(z).

When it is clear we drop the subscripts on each map. Right actions are dealt with similarly,
replacing each incidence of rZ with sZ .

Definition 1.3. Let G act on Z. The action is said to be free if γ.z = z implies that
γ = rZ(z).

We end this section with some useful examples.

Example 1.4. Let X be a topological Γ-space. Then the transformation groupoid associated
to this action is given by the data X ×G⇒ X with s(x, g) = x and r(x, g) = g.x. We denote
this by X ⋊G. A basis {Ui} for the topology of X lifts to a basis for the topology of X ⋊G,
given by sets [Ui, g] := {(u, g)|u ∈ Ui}.

Example 1.5. The construction in the example above can be generalized to actions of étale
groupoids. We are concerned with the topology here: Given an étale groupoid G and a G-
space X as well as a with a basis {Ui} for G(0). We can pull this basis back to a basis for
X ⋊ G given by [r−1

z (Ui), γ], where Ui ⊆ s(γ).

Example 1.6. Let X be a coarse space with uniformly locally finite, weakly connected coarse
structure E . Define G(X) := ∪E∈EE ⊆ β(X×X). Then G(X) is a locally compact, Hausdorff
topological space. To equip it with a product and inverse we would ideally have liked to be
considering the natural extension of the pair groupoid product on βX×βX. We remark that
the map (r, s) from X × X extends first to an inclusion into βX × βX and universally to
β(X × X), giving a map (r, s) : β(X ×X) → βX × βX. We can restrict this map to each
entourage E ∈ E allowing us to map the set G(X) to βX × βX.

Lemma 1.7. [Roe03, Corollary 10.18] Let X be a uniformly discrete bounded geometry metric
space and let E be any entourage. Then the inclusion E → X × X extends to an injective
homeomorphism E → βX × βX, where E denotes the closure of E in β(X ×X).

Using this Lemma, we can conclude that the groupoid G(X) can be embedded topologically
into βX × βX and so we can equip it with the induced product and inverse.

As we are considering the metric coarse structure we can reduce this to considering only
generators:

G(X) :=
⋃

R>0

∆R

This groupoid plays an important role the groupoid formulation of the coarse Baum-Connes
conjecture and the most general consequences of that conjecture. We recall some results
concerning this groupoid from the literature:

Theorem 1.8. Let X be a uniformly discrete bounded geometry metric space. Then following
hold:

(1) G(X) is an étale locally compact Hausdorff principal topological groupoid with unit
space G(X)(0) = βX. [Roe03, Theorem 10.20][STY02, Proposition 3.2];
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(2) C∗
r (G(X)) is isomorphic to the uniform Roe algebra C∗

u(X). [Roe03, Proposition
10.29];

(3) The coarse Baum-Connes conjecture for X is equivalent to the Baum-Connes conjec-
ture for G(X) with coefficients in ℓ∞(X,K). [STY02, Lemma 4.7].

Lastly, we recall the definition of an expander:

Definition 1.9. Let {Xi} be a sequence of finite graphs and let X be the associated space
of graphs. Then the space X (or the sequence {Xi}) is an expander if:

(1) There exists k ∈ N such that all the vertices of each Xi have degree at most k.
(2) |Xi| → ∞ as i→ ∞.
(3) There exists c > 0 such that spectrum(∆i) ⊆ {0} ∪ [c, 1] for all i.

Remark 1.10. Each Laplacian ∆i has propagation 1, so we can form the product in the
(algebraic) Roe algebra:

∆ :=
∏

i

(∆i ⊗ q) ∈ C∗
u(X)⊗K ⊂ C∗X

Now we can consider projection p onto the kernel of ∆. For an expander X we have
spectrum(∆) ⊆ {0} ∪ [c, 1] for some c > 0, and so by an application of the functional
calculus we can conclude that p ∈ C∗X. As ∆ breaks up as a product we observe that its
Ker(∆) = ⊕iKer(∆i) and so the projection p decomposes as a product:

p =
∏

i

p(i).

Additionally, it is easy to see that a function in ℓ2(Xi) is an element of the kernel of ∆i if
and only if it is a constant function, and so each pi has matrix entries pix,y =

1
|Xi|

.

The following notion is due to Guoliang Yu (unpublished):

Definition 1.11. An operator T ∈ C∗X is a ghost operator if ∀ǫ > 0 there exists a bounded
subset B ⊂ X ×X such that the norm: ‖Txy‖ ≤ ǫ for all (x, y) ∈ (X ×X) \B.

It is clear, from the definition as a product given above, that the kernel p of the Laplacian ∆
is a ghost operator.

2. The Boundary Coarse Baum-Connes Conjecture.

Throughout this section let G be an étale, Hausdorff locally compact topological groupoid.
For what we outline below these are essentially unnecessary assumptions, however our focus
on the coarse groupoid leads us to study this class. We outline the main concept introduced
in [HLS02].

Definition 2.1. A subset of F ⊆ G(0) is said to be saturated if for every element of γ ∈ G
with s(γ) ∈ F we have r(γ) ∈ F . For such a subset we can form subgroupoid of G, denoted

by GF which has unit space F and G
(2)
F = {γ ∈ G|s(γ) and r(γ) ∈ F}.
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We will be considering closed saturated subsets F . Any subset of this type gives rise to an
algebraic decomposition:

G = GF c ⊔GF

This lets us construct maps on the ∗−algebras of compactly supported functions associated
with G,GF and GF c :

0 → Cc(GF c) → Cc(G) → Cc(GF ) → 0.

Where the quotient map Cc(G) → Cc(GF ) is given by restriction and the inclusion Cc(GF c) →
Cc(G) is given by extension. By the functorial properties of the maximal C∗-norm this extends
to the maximal groupoid C∗-algebras:

0 → C∗
max(GF c) → C∗

max(G) → C∗
max(GF ) → 0.

On the other hand this may fail to be an exact sequence when we complete in the norm that
arises from the left regular representation λG. This is detected at the level of K-theory, as
discussed in [HLS02], by considering the sequence:

(1) K0(C
∗
r (GU )) → K0(C

∗
r (G)) → K0(C

∗
r (GF ))

This was used in [HLS02] to construct multiple different types of counterexample to the
Baum-Connes conjecture for groupoids. We observe that whilst the sequence:

0 // C∗
r (GF c)

α // C∗
r (G)

q // C∗
r (GF ) // 0

may fail to be exact in the middle term the maps α and q both exist and the map q is
surjective by considering the following diagram.

C∗
max(G) // //

����

C∗
max(GF )

����
C∗
r (G)

// C∗
r (GF )

It is also clear that the image of α is contained in the kernel of q, whence we can make the
sequence exact artificially by replacing C∗

r (GF c) by the ideal I := ker(q). We can then define
a new assembly map in the first term to be the composition of the original assembly map µF c

and the K-theory map induced by inclusion i∗ : K∗(C
∗
r (GF c)) → K∗(I). Then in terms of

assembly maps this gives us a new commutative diagram:

// K1(C
∗
r (GF ) // K0(I) // K0(C

∗
r (G)) // K0(C

∗
r (GF ) // K1(I) //

// Ktop
1 (GF ) //

OO

Ktop
0 (GF c) //

OO

Ktop
0 (G) //

OO

Ktop
0 (GF ) //

OO

Ktop
1 (GF c)

OO

//

where the rows here are exact. As in [HLS02] we now consider G = G(X), the coarse groupoid
associated to some uniformly discrete bounded geometry metric space X.

2.1. The Coarse Groupoid Conjecture. Let X be a uniformly discrete bounded geometry
metric space. From what was described above we can associate to each closed saturated subset
F of the unit space space βX a long exact sequence in K-theory. We consider the obvious
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closed saturated subset: ∂βX ⊂ G(X)(0). This gives us the following commutative diagram
(omitting coefficients):

K1(C
∗
r (G(X)|∂βX ) // K0(I) // K0(C

∗
r (G(X))) // K0(C

∗
r (G(X)|∂βX ) // K1(I)

Ktop
1 (G(X)|∂βX ) //

OO

Ktop
0 (X ×X) //

OO

Ktop
0 (G(X)) //

OO

Ktop
0 (G(X)|∂βX ) //
µbdry

OO

Ktop
1 (X ×X)

OO

We can now properly formulate the boundary conjecture by replacing the coefficients. Let

A∂ := ℓ∞(X,K)
C0(X,K)

Conjecture 2.2 (Boundary Coarse Baum-Connes Conjecture). Let X be a uniformly discrete
bounded geometry metric space. Then the assembly map:

µbdry : K
top
∗ (G(X)|∂βX , A∂) → K∗(A∂ ⋊r G(X)|∂βX )

is an isomorphism.

2.2. Tools to Prove the Boundary Conjecture. We consider the situation when a group
Γ acts on a space of graphs X. We introduce a definition:

Definition 2.3. Let E be a coarse structure on X and let S be a family of subsets E . We
say that S generates E at infinity if for all E ∈ E :

E ⊆ (

n⋃

k=1

Sk) ∪ F

Where each Sk ∈ S and F is a finite subset of X ×X.

Remark 2.4. The above definition is equivalent to asking that E \ E ⊆
⋃n
k=1 Sk \ Sk, where

the closure takes place in βX × βX.

Recall that ∆g := {(x, x.g)|x ∈ X} is the g-diagonal in X.

Proposition 2.5. Let X be uniformly discrete bounded geometry metric space and let Γ be a
finitely generated discrete group. If Γ acts on X such that the induced action on βX is free
on ∂βX and the action generates the metric coarse structure at infinity. Then G(X)|∂βX ∼=
∂βX ⋊ Γ.

Proof. Recall that under the hypothesis that the Γ action generates the metric coarse structure
at infinity we know that G(X) = (

⋃
g∆g) ∪ (X ×X).

We consider a map from transformation groupoid βX ⋊ Γ to G(X). Observe that ∆g is the
bijective image of the set {(x, g)|x ∈ X}. We extend this map to the respective closures,
giving a map for each g from the set of {(ω, g)|ω ∈ βX} to ∆g. Let {xλ} be a net of elements
in X that converge to ω. Then clearly each pair (xλ, g) is mapped to (xλ, xλ.g) under the
identification. Consider the element of the closure γg = limλ(xλ, xλ.g) ∈ ∆g and define the
extension of the bijection to be the map: (ω, g) 7→ γg.

This map is well-defined as G(X) is principal and so γg is completely determined by its source
and range - in particular any other net yλ that converges to ω gives rise to the same element
γg. We can then extend this over the entire groupoid βX ⋊ Γ element wise, where it is
certainly continuous but not in general injective or surjective (injectivity would require a free
action and surjectivity a transitive one).
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The map is a groupoid homomorphism because G(X) is principal; this follows as principality
implies the following diagram commutes:

βX ⋊ Γ

(r,s) ((

// G(X)
� _

(r,s)

��
βX × βX

We now restrict this map to the boundary ∂βX. We prove that the coronas ∆g \ ∆g are

disjoint: let γ ∈ ∆g\∆g and ∆h\∆h for g 6= h. Then we have that s(γ) = ω, r(γ) = ω.g = ω.h,
hence we have a fixed point on the boundary, which is a contradiction. Consider the restricted
diagram:

∂βX ⋊ Γ� t

(r,s) ''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

// G(X)∂βX� _

(r,s)

��
∂βX × ∂βX.

As the coronas are disjoint, for any γ ∈ G(X) it is possible to find a unique g and ω such that
s(γ) = ω, r(γ) = ω.g. It then follows that the pair (ω, g) map onto γ. Hence the map is a
surjection. To see injectivity, we appeal again to freeness of the action. The action being free
implies that the groupoid ∂βX ⋊ Γ is principal. From a brief consideration of the diagram
above injectivity follows.

It remains to consider the topology. For each g ∈ Γ, the map from ∂βX ⋊ Γ to G(X)∂βX on

the piece [∂βX, g] is a homeomorphism as ∆g \∆g can be identified with ∂βX, induced by
the source map or range map. Hence the map takes clopen sets to clopen sets; these form a
basis for the topology of G(X)|∂βX and so the map is a global homeomorphism. �

Example 2.6. (Box spaces) Let Γ be a finitely generated residually finite group and let
{Ni} be a family of finite index normal subgroups such that Ni ≤ Ni+1,

⋂
i∈NNi = 1 and

a fixed generating set S. Then the sequence of groups {Γ/Ni} with generating sets πi(S)
admits an action via quotient maps. Let �Γ = ⊔i∈N

Γ
Ni

, equipped with a metric that restricts

to the metric induced from the generating sets πi(S) for each i, and has the property that

d( Γ
Ni
, Γ
Nj

) → ∞ as i + j → ∞. This is called a box space for Γ. The Stone-C̆ech boundary

admits a free action of the group and the metric structure is generated at infinity by the
quotients maps and the right action of the group via these maps. Proposition 2.5 then
provides a description of the boundary groupoid and converts the boundary conjecture into
a case of the Baum-Connes conjecture with coefficients for Γ.

This process did not require a normal subgroup; box spaces can constructed using Schreier
quotients. The conditions on the subgroups change to reflect the absence of normality. Let
Γ be a residually finite group and let {Hi} be a family of nested subgroups of finite index
with trivial intersection, and additionally satisfying: each g ∈ Γ belongs to only finitely
many conjugates of the subgroups from the family {Hi}. Fixing a left invariant metric on Γ
the box space can be constructed using the left quotients of Γ by the Hi. In this instance
these spaces are graphs with no left action of Γ. However they do retain a right action of Γ
that determines the metric at infinity and becomes free on the boundary (this is due to the
additional constraint concerning conjugates of the Hi).
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3. A Proof of the Boundary Conjecture for Spaces of Graphs with Large

Girth.

The aim of this section is to prove the following result:

Theorem. The boundary coarse Baum-Connes conjecture holds for spaces of graphs with
large girth and uniformly bounded vertex degree.

For this result we will need a weaker notion of action; We construct a partial action of Fk
for some finite k. Using a stronger version of Proposition 2.5 we will show that the boundary
groupoid G(X)|∂βX is a transformation groupoid ∂βX ⋊ G

X̂
for some étale groupoid G

X̂
.

As before, this converts the boundary Baum-Connes conjecture into a special case of Baum-
Connes with coefficients for the groupoid G

X̂
. Lastly, we construct a continuous, proper

groupoid homomorphism from G
X̂

to Fk, which we use to transfer the Haagerup property
from Fk to the groupoid G

X̂
. This will complete the proof.

As noted above we want to consider partial actions of a group Γ on a space X. This means
that the elements of Γ give rise to partial bijections of X, i.e bijections between subsets of
X. These partial bijections are algebraically encoded within an inverse semigroup, and the
partial action of Γ is a dual prehomomorphism from Γ into that semigroup.

3.1. An Interlude into Inverse Semigroup Theory.

Definition 3.1. Let S be a semigroup. We say S is inverse if there exists a unary operation
∗ : S → S satisfying the following identities:

(1) (s∗)∗ = s
(2) ss∗s = s and s∗ss∗ = s∗ for all s ∈ S
(3) ef = fe for all idempotents e, f ∈ S

Recall that a semigroup with a unit element is called a monoid, and it makes sense to talk
about inverse monoids in the obvious way. A very fundamental example is the symmetric
inverse monoid on any set X; consider the collection of all partial bijections of X to itself,
giving them them the natural composition law associated to functions, finding the largest
possible domain.

When X is a metric space we will be considering a inverse submonoid of I(X) in which every
partial bijection that maps elements only a finite distance, that is a generalised (or partial)
translation. We denote this by Ib(X).

Definition 3.2. Let S be an inverse monoid. We denote by E(S) the semilattice of idempo-
tents (just by E if the context is clear). This is a meet semilattice, where the meet is given
by the product of S restricted to E. In this situation, we can use the following partial order:

e ≤ f ⇔ ef = e

This order can be extended naturally to the entire of S: s ≤ t if there exists e ∈ E(S) such
that s = et. In terms of partial bijections this order corresponds to restricting an element to
a subset of its domain.

We remark that for a metric space X every idempotent element in I(X) moves elements no
distance, and hence E(I(X)) = E(Ib(X)).
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We want to consider quotient structures of an inverse monoid. In general quotients are given
by equivalence relations that preserve the semigroup structure.

Definition 3.3. An equivalence relation ∼ on S is called a congruence if for every u, v, s, t ∈ S
such that s ∼ t, we know that su ∼ tu and vs ∼ vt. This allows us to equip the quotient S

∼
with a product, making it into an inverse monoid.

One such example of this arises from an ideal in S.

Definition 3.4. Let I be a subset of S. I is an ideal of S if SI ∪ IS ⊂ I.

From an ideal we can get a quotient - at the cost of a zero element, that is an element 0 such
that 0s = s0 = 0 for all s ∈ S.

Definition 3.5. Let S be an inverse monoid and let I be an ideal of S. Then we can define
S
I
to be the quotient of the set S by the congruence: x ∼ y if x = y or x and y are elements

of I.

Another specific congruence we will be interested in is called the minimum group congruence
on S. This congruence, denoted by σ, is given by:

sσt⇔ (∃e ∈ E)es = et

This congruence is idempotent pure, that is for e ∈ E(S) and s ∈ S, e ∼ s implies s ∈ E.

Definition 3.6. We say S is 0-E-unitary if ∀e ∈ E \ 0, s ∈ S \ 0 e ≤ s implies s ∈ E. We
say it is 0-F-inverse if in addition there exists a subset T ⊂ S such that for every s ∈ S there
exists a unique t ∈ T such that s ≤ t and if for all u ∈ S with s ≤ u then u ≤ t.

3.2. Groupoids from Inverse Monoids. We take an inverse monoid S and produce a
universal groupoid G

Ê
. One way to do this involves studying the actions of S on its semilattice

E.

We outline the steps in the construction.

(1) Build an action of S on E.
(2) Build a dual space to E, which is compact and Hausdorff. This is a Stone dual to E.

Show this admits an action of S.
(3) Build the groupoid G

Ê
from this data.

Definition 3.7. (1) Let De = {f ∈ E|f ≤ e}. For ss∗ ∈ E, we can define a map
ρs(ss

∗) = s∗s, extending to Dss∗ by ρs(e) = s∗es. This defines a partial bijection on
E from Dss∗ to Ds∗s.

(2) We consider a subspace of 2E given by the functions φ such that φ(0) = 0 and φ(ef) =
φ(e)φ(f). This step is a generalisation of Stone duality [Law10]. We can topologise
this as a subspace of 2E , where it is closed. This makes it compact Hausdorff, with a

base of topology given by D̂e = {φ ∈ Ê|φ(e) = 1}. This admits a dual action induced

from the action of S on E. This is given by the pointwise equation for every φ ∈ D̂s∗s:

ρ̂s(φ)(e) = φ(ρs(e)) = φ(s∗es)

The use of D̂e to denote these sets is not a coincidence, as we have the following map

De → D̂e:
e 7→ φe, φe(f) = 1 if e ≤ f and 0 otherwise .
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Remark 3.8. These character maps φ : E → {0, 1} have an alternative interpretation,
they can be considered as filters on E. A filter on E is given by a set F ⊂ E with the
following properties:

• for all e, f ∈ F we have that e ∧ f = ef ∈ F
• for e ∈ F with e ≤ f we have that f ∈ F and
• 0 6∈ F

the relationship between characters and filters can be summarised as: To each char-
acter ψ there is a filter:

Fψ = {e ∈ E|ψ(e) = 1}.

And every filter F provides a character by considering χF , its characteristic function.

(3) We take the set S× Ê, topologise it as a product and consider subset Ω := {(s, φ)|φ ∈

D̂s∗s} in the subspace topology. We then quotient this space by the relation:

(s, φ) ∼ (t, φ
′

) ⇔ φ = φ
′

and (∃e ∈ E) with φ ∈ D̂e such that es = et

We can give the quotient G
Ê

a groupoid structure with the product set, unit space
and range and source maps:

G
(2)

Ê
:= {([s, φ], [t, φ

′

])|φ = ρ̂t(φ
′

)}

G
(0)

Ê
:= {[e, φ]|e ∈ E} ∼= Ê

s([t, φ]) = [t∗t, φ], r([t, φ]) = [tt∗, φ],

and product and inverse:

[s, φ].[t, φ
′

] = [st, φ
′

] if ([s, φ], [t, φ
′

]) ∈ G
(2)

Ê
, [s, φ]−1 = [s∗, ρ̂s(φ)]

For all the details of the above, we refer to [Exe08, Section 4]. This is the universal
groupoid associated to S. We collect some information about this groupoid from
[Exe08, Pat99] in Theorem 3.9.

Theorem 3.9. Let S be a countable 0-E-unitary inverse monoid, E its semilattice of idem-
potents and G

Ê
its universal groupoid. Then the following hold for G

Ê
:

• Ê is a compact, Hausdorff and second countable space.
• G

Ê
is a Hausdorff groupoid [Exe08, Corollary 10.9].

• Every representation of S on Hilbert space gives rise to a covariant representation of
G
Ê

and vice versa [Exe08, Corollary 10.16].
• We have C∗

r (S)
∼= C∗

r (GÊ) [Pat99, KS02]

We make use of the following technical property that arises from the presence of maximal
elements:

Claim 3.10. Let S be 0-F-inverse. Then every element [s, φ] ∈ G
Ê
has a representative [t, φ]

where t is a maximal element.

Proof. Take t = ts the unique maximal element above s. Then we know

s = tss
∗s and s∗s ≤ t∗sts
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The second equation tells us that t∗sts ∈ Fφ as filters are upwardly closed, thus (ts, φ) is a
valid element. Now to see [ts, φ] = [s, φ] we need to find an e ∈ E such that e ∈ Fφ and
se = tse. Take e = s∗s and then use the first equation to see that s(s∗s) = ts(s

∗s). �

3.3. (Dual) Prehomomorphisms and General Partial Actions.

Definition 3.11. Let ρ : S → T be a map between inverse semigroups. This map is called a
prehomomorphism if for every s, t ∈ S, ρ(st) ≤ ρ(s)ρ(t) and a dual prehomomorphism if for
every s, t ∈ S ρ(s)ρ(t) ≤ ρ(st).

We recall that a congruence is said to be idempotent pure for any e ∈ E(S), s ∈ S we have
that s is related to e implies that s ∈ E(S). We extend this definition to general maps in the
following way.

Definition 3.12. A (dual) prehomomorphism ρ is called idempotent pure if ρ(s)2 = ρ(s)
implies s ∈ E.

In addition we call a map S → T 0-restricted if the preimage of 0 ∈ T is 0 ∈ S.

Definition 3.13. Let S be a 0-E-unitary inverse monoid. We say S is strongly 0-E-unitary if
there exists an idempotent pure, 0-restricted prehomomorphism, Φ to a group G with a zero
element adjoined, that is: Φ : S → G0. We say it is strongly 0-F-inverse if it is 0-F-inverse
and strongly 0-E-unitary. This is equivalent to the fact that the preimage of each group
element under Φ contains a maximum element.

Example 3.14. In [BR84, LMS06] the authors introduce an inverse monoid that is universal
for dual prehomomorphisms from a general inverse semigroup. In the context of a group G
This is called the prefix expansion; its elements are given by pairs: (X, g) for {1, g} ⊂ X,
where X is a finite subset of G. The set of such (X, g) is then equipped with a product and
inverse:

(X, g)(Y, h) = (X ∪ gY, gh) , (X, g)−1 = (g−1X, g−1)

This has maximal group homomorphic image G, and it has the universal property that it is
the largest such inverse monoid. We denote this by GPr. The partial order on GPr can be
described by reverse inclusion, induced from reverse inclusion on finite subsets of G. It is
F-inverse, with maximal elements: {({1, g}, g) : g ∈ G}.

Definition 3.15. Let G be a finitely generated discrete group and let X be a (locally compact
Hausdorff) topological space. A partial action of G on X is a dual prehomomorphism θ of G
in the symmetric inverse monoid I(X) that has the following properties:

(1) The domain Dθ∗gθg
is an open set for every g.

(2) θg is a continuous map.
(3) The union:

⋃
g∈GDθ∗gθg

is X.

Given this data we can generate an inverse monoid S using the set of θg. This would then
give a representation of S into I(X). If the space X is a coarse space, then it makes sense to
ask if each θg is a close to the identity. In this case, we would get a representation into the
bounded symmetric inverse monoid Ib(X). We call such a θ a bounded partial action of G.
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Let X = ⊔Xi be a space of graphs admitting a bounded partial action of a discrete group G.
We remark that in this setting partial bijections in the group can have the following form:

θg = θ0g ⊔
⊔

i>i0

θig.

Where i0 is the first i for which the distances between the Xis is greater than the upper bound
of the distance moved by θg, and the θig are componentwise partial bijections of the Xi. We

collect all the additional pieces that act only between the first i0 terms into θ0g , which could
be the empty translation. We remark now that it is possible that there are partial bijections
θg that could have finite support, that is only finitely many terms that are non-empty after
i0. To avoid this we observe the following:

Proposition 3.16. Let S = 〈θg|g ∈ G〉 and let Ifin = {θg|supp(θg) is finite}. Then Ifin is

an ideal and the Rees quotient Sinf = S
I
is an inverse monoid with 0.

Proof. To be an ideal, it is enough to show that IfinS ⊂ Ifin, SIfin ⊂ Ifin. Using the
description of the multiplication of partial bijections from section 3.1, it is clear that either
combination si or is yields an element of finite support. Now we can form the Rees quotient,
getting an inverse monoid with a zero - the zero element being the equivalence class of elements
with finite support. �

We want to utilise a partial action to construct a groupoid, so we apply the general construc-
tion outlined in section 3.1 to get an improved version of Proposition 2.5. To do this requires
a notion of translation length:

Definition 3.17. The length of each θg is defined to be:

|θg| = sup{d(x, θg(x)) : x ∈ Dom(θg)}.

Definition 3.18. Recall that we say a bounded partial action θ generates the metric coarse
structure at infinity if for all R > 0 there exists S > 0 such that ∆R \∆R ⊆

⋃
|θg|<S

∆θg \∆θg .

We say it finitely generates the metric coarse structure if the number of θg required for each
R is finite.

Remark 3.19. Recall a groupoid G is said to be principal if the map (s, r) : G→ G(0) ×G(0)

is injective.

Proposition 3.20. Let {Xi} be a sequence of finite graphs and let X be the corresponding
space of graphs. If θ : G→ I(X) is a bounded partial action of G on X such that the induced
action on βX is free on ∂βX, the inverse monoid Sinf is 0-F-inverse with maximal element set
{θg|g ∈ G} and the partial action finitely generates the metric coarse structure at infinity then
there is a second countable, étale topological groupoid G

X̂
such that G(X)|∂βX ∼= ∂βX ⋊ G

X̂
.

Proof. Observe now that the finite θg play no role in the action on the boundary and so we
work with Sinf . We build the groupoid from the bottom up, by first constructing the unit
space using Proposition 10.6 and Theorem 10.16 from [Exe08].

We consider the representation of the inverse monoid Sinf on ℓ2(X) induced by θ to get a
representation πθ : S → B(ℓ2(X)). We can complete the semigroup ring in this representation
to get an algebra C∗

πθ
S, which has a unital commutative subalgebra C∗

πθ
E. Proposition 10.6

[Exe08] then tells us that the spectrum of this algebra, which we will denote by X̂ , is a
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subspace of Ê that is closed and invariant under the action of S on which the representation
πθ is supported.

As the space X̂ is closed and invariant we can reduce the universal groupoid G
Ê

for Sinf to

X̂. This we denote by G
X̂
.

We show this groupoid acts on βX; we make use of the assumption that θg is a bounded
partial bijection for each g ∈ G and again of the representation πθ. Each θg bounded implies
that the algebra C∗

θ (S) is a subalgebra of C∗
uX. We now remark that the representation

πX , when restricted to C∗E assigns each idempotent a projection in C∗
uX, that is C∗

πX
(E) =

πX(C
∗E) ⊂ ℓ∞(X). Taking the spectra associated to this inclusion then gives us a map:

rβX : βX ։ X̂

which is continuous. In particular as both βX and X̂ are compact Hausdorff spaces; this map
is closed (and open) and hence a quotient. We make use of this to define an action on βX.
By Claim 3.10 we have that each element of our groupoid G

X̂
can be represented by a pair

[θg, φ], for some φ ∈ X̂ . Observe also that as X is discrete so are all of it subspaces, hence
the maps θg are continuous (open) for each g ∈ G. These then extend to βX, and so coupled
with the map rβX we can act by:

[θg, φ].ω = θg(ω)

for all ω ∈ Dθ∗gθg
with rZ(ω) = φ. We see that rZ(ω).ω = [θe, rZ(ω)].ω = ω. and for all

([θg, φ], [θh, φ
′

]) ∈ G
(2)

X̂
with φ

′

= rZ(ω) we have:

[θgθh, φ
′

].ω = θgθh(ω) = θg([θh, φ
′

].ω) = [θg, φ].([θh, φ
′

].ω)

as rZ([θh, φ
′

].ω) = θh(φ
′

) = φ.

It remains to prove the isomorphism of topological groupoids: G(X)|∂βX ∼= ∂βX ⋊ G
X̂
.

We follow the scheme of Proposition 2.5 and build a map from βX ⋊ G
X̂

to G(X). Recall
that as the partial action of G generates the metric coarse structure at infinity G(X) =
(
⋃
g∆θg) ∪ (X × X). We observe that each ∆θg maps bijectively onto the domain of θg, a

subset of X.

This map extends to the closure of the domain precisely as in Proposition 2.5, where here
we map the pair (ω, [θg, φ]) to the element γg,φ that is the limit limλ(xλ, θg(xλ)) for some net
{xλ} that converges to ω (and also to φ). This map is well defined as the groupoid G(X) is
principal, and it fits into the following commutative diagram:

βX ⋊ Γ

(r,s) ((

// G(X)
� _

(r,s)

��
βX × βX

Again by principality, we can deduce that the covering map is a groupoid homomorphism.

We now restrict this map to the boundary ∂βX. As we know that the group action generates
the metric coarse structure at infinity and that the partial action of the group G is free on
the boundary. Using these facts we can see that:

(1) ∂βX ⋊ G
X̂

is principal.

(2) G(X)|∂βX =
⊔
g∆θg \∆θg .
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From both (1) and (2) we can further deduce that the covering map is a bijection on the
boundary. Both groupoids are also étale and so each component ∆θg \∆θg is mapped home-
omorphically onto its image and is therefore clopen. It follows then that we get the desired
isomorphism ∂βX ⋊ G

X̂
∼= G(X)|∂βX of topological groupoids. �

We are interested in understanding the analytic properties of the groupoid G
X̂
. In particular

we are interested in showing that the groupoid has the Haagerup property. To do this we
study the inverse monoid S associated to the partial action θ.

Proposition 3.21. Let S = 〈θg|g ∈ G〉, where θ : G → S is a dual prehomomorphism. If
S is 0-F-inverse with Max(S) = {θg|g ∈ G} where each nonzero θg is not idempotent when
g 6= e then S is strongly 0-F-inverse.

Proof. We build a map Φ back onto G0. Let m : S \ {0} → Max(S) be the map that sends
each non-zero s to the maximal element m(s) above s and consider the following diagram:

G
θ //

!!❇
❇
❇❇

❇❇
❇❇

S
Φ

!!❉
❉❉

❉
❉❉

❉
❉

Gpr
σ //

θ

OO

G0

where Gpr is the prefix expansion of G. Define the map Φ : S → G0 by:

Φ(s) = σ(m(θ
−1

(m(s)))),Φ(0) = 0

For each maximal element the preimage under θ is well defined as the map θg has the property
that θg = θh ⇒ g = h precisely when θg 6= 0 ∈ S. Given the preimage is a subset of the
F-inverse monoid Gpr we know that the maximal element in the preimage is the element
({1, g}, g) for each g ∈ G, from where we can conclude that the map σ takes this onto g ∈ G.

We now prove it is a prehomomorphism. Let θg, θh ∈ S, then:

Φ(θg) = σ(m(θ
−1

(θg))) = σ({1, g}, g) = g

Φ(θh) = σ(m(θ
−1

(θh))) = σ({1, h}, h) = h

Φ(θgh) = σ(m(θ
−1

(θgh))) = σ({1, gh}, gh) = gh

Hence whenever θg, θh and θgh are defined we know that Φ(θgθh) = Φ(θg)Φ(θh). They fail to
be defined if:

(1) If θgh = 0 in S but θg and θh 6= 0 in S, then 0 = Φ(θgθh) ≤ Φ(θg)Φ(θh)
(2) If (without loss of generality) θg = 0 then 0 = Φ(0.θh) = 0.Φ(θh) = 0

So prove that the inverse monoid S is strongly 0-F-inverse it is enough to prove then that the
map Φ is idempotent pure, and without loss of generality it is enough to consider maps of
only the maximal elements - as the dual prehomomorphism property implies that in studying
any word that is non-zero we will be less than some θg for some g ∈ G.

So consider the map Φ applied to a θg:

Φ(θg) = σ(m(θ
−1

(θg))) = σ({1, g}, g) = g
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Now assume that Φ(θg) = eG. Then it follows that σ(m(θ
−1

(θg))) = eG. As σ is idempotent

pure, it follows then that m(θ
−1

(θg)) = 1, hence for any preimage t ∈ θ−1(θg) we know that
t ≤ 1, and by the property of being 0-E-unitary it then follows that t ∈ E(Gpr). Mapping
this back onto θg we can conclude that θg is idempotent, but by assumption this only occurs
if g = e. �

Proposition 3.22. Let S = 〈θg|g ∈ G〉 be a strongly 0-F-inverse monoid with maximal
elements Max(S) = {θg : g ∈ G}, where θ : G → S is a dual prehomomorphism. Then
the groupoid G

Ê
is Hausdorff, second countable with compact unit space. Also it admits a

continuous proper groupoid homomorphism onto the group G.

Proof. We record the topological facts about this groupoid here for reference.

Using the map Φ we construct a map ρ : G
Ê
→ G as follows:

ρ([m,φ]) = Φ(m)

A simple check proves this is a groupoid homomorphism. This map sends units to units as
the map Φ is idempotent pure. We prove continuity by considering preimage of an open set
in G:

ρ−1(U) =
⋃

g∈U

[θg, D̂θ∗gθg
]

This is certainly open as each [θg, D̂θ∗gθg
] are elements of the basis of topology of G

Ê
. We check

it is proper by observing that for groups G compact sets are finite, and they have preimage:

ρ−1(F ) =
⋃

g∈F

[θg, D̂θ∗gθg
], |F | <∞

This is certainly compact as these are open and closed sets in the basis of topology for the
groupoid G

Ê
. �

As G
X̂

⊆ G
Ê
we also get a continuous proper groupoid homomorphism from G

X̂
onto a group.

We recall a special case of [Tu99, Lemme 3.12].

Lemma 3.23. Let G and H be locally compact, Hausdorff, étale topological groupoids and let
ϕ : G→ H be a continuous proper groupoid homomorphism. If H has the Haagerup property
then so does G. �

This lets us conclude the following:

Corollary 3.24. Let θ be a partial action of G on X such that all the conditions of Proposition
3.20 are satisfied and such that the inverse monoid Sinf is strongly 0-F-inverse. If G has the
Haagerup property then so does G

X̂
.

Proof. The map induced by the idempotent pure 0-restricted prehomomorphism from Sinf
to G induces a continuous proper groupoid homomorphism from G

X̂
to G. This then follows

from Lemma 3.23. �
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3.4. Partial Actions on Sequences of Graphs. Let {Xi} be a sequence of finite graphs
with degree ≤ 2k and large girth. We begin by considering Pedersens Lemma. The following
is [Kön90, Theorem 6, Chapter XI]:

Lemma 3.25. Let X be a finite graph. If at most 2k edges go into any vertex then all the
edges of X can be divided into k classes such that at most two edges from the same class go
into any vertex. �

We remark that we can always assume that the 2k here is minimal; there is a smallest even
integer that bounds above the degree of all graphs in the sequence. This in particular stops
us from doing something unnatural like embedding the 4-regular tree into a 6-regular tree.

Lemma 3.26. Such a sequence can be almost k-oriented and this defines a bounded partial
action of Fk on X

Proof. We work on just the Xi. Using Lemma 3.25, we partition the edges E(Xi) into at
most k sets Ej such that every vertex appears in at most 2 edges from each subset. Pick a
generating set S = {aj |j ∈ {1, ..., k}} for Fk and assign them to the edge sets Ej , and label
the edges that appear in each Ej by the corresponding generator. Pedersens Lemma ensures
that no more than 2 edges at each point have the same label. This defines a map from the

edges to the wedge
∨k
j=i S

1. Choose an orientation of each circle and pull this back to the
finite graph Xi - this provides the partial k-orientation. Now define for each generator the
partial bijection θiaj that maps any vertex appearing as the source of any edge in Ej to the

range of that edge. i.e:

θiaj (v) :=

{
r(e) if ∃e ∈ Ej : s(e) = v

undefined otherwise

For g = aell ...a
em
m we define θig as the product θael

l
...θaemm ; i.e θig moves vertices along any

path that is labelled by the word g in the graph Xi. We observe that for i 6= i
′

the domain

Di
θ∗gθg

∩Di
′

θ∗gθg
is empty hence we can add these partial bijections in I(X) to form θg = ⊔θig.

It is a remark that as the topology of X is discrete these maps are all continuous and open.
It is clear that as each Xi is connected that the partial bijections have the property that
∪gDθ∗gθg

= X. Lastly, this map is a dual prehomomorphism as for each g, h ∈ G we have
that θgθh = θgh precisely when both θh and θgh are defined and moreover if θgθh is defined
then so is θgh. Hence this collection forms a partial action of G on X. We also remark that
as each bijection is given translation along a labelling in the free group it is clear that these
move elements only a bounded distance and are therefore elements of Ib(X). �

We need to show that the partial action generates the metric coarse structure at infinity, we
recall the length of a partial bijection:

Definition 3.27. The length of each θg is defined to be:

|θg| = sup{d(x, θg(x)) : x ∈ Dom(θg)}.

Remark 3.28. As we have a concrete description of each θg, given on each Xi, we can see that
the length on each Xi is given by:

|θig| = max{|p| : p ∈ { paths in Xi labelled by g}.

Then |θg| = supi |θ
i
g|.
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In this situation we require that the partial action contains plenty of infinitely supported
elements.

Proposition 3.29. Let θ : Fk → I(X) be the dual prehomomorphism corresponding to the
bounded partial actions on each Xi. Then for each R > 0 there exist finitely many infinite θg
with |θg| = |g| < R.

Proof. In the general case we know the following for each R > 0 and i ∈ N: |θig| ≤ |g| ≤ R.
From Lemma 3.26 we know that the partial action is defined by moving along paths inside
each individualXi. So for each R we count the number of words in Fk with length less than R;
this is finite (consider the Cayley graph, which has bounded geometry). Now we observe that
on the other hand there are infinitely many simple paths of length less than R, thus we must
repeat some labellings infinitely many times. These labellings will be contained in words in Fk
of length less than R hence when we take the supremum we observe that |θg| = |g| < R. �

Corollary 3.30. The bounded partial action θ of Fk on X finitely generates the metric coarse
structure at infinity, that is the set ∆R \∆R =

⋃
|g|<R∆θg \∆θg where the index set is finite.

Proof. We proceed by decomposing ∆R as we did in the proof of Proposition 2.5.

∆R = (
⋃

|θg|<R

∆θg) ∪ FR

Where FR is the finitely many elements of ∆R who move between components. We now
consider the following decomposition of the set A := {θg||θg| < R} into:

A∞ = {θg||θg| < R and |supp(θg)| = ∞}

Afin = {θg||θg| < R and |supp(θg)| <∞}

The first of these is in bijection with the words in Fk that have |g| < R and define an infinite
θg from Proposition 3.29. Then:

∆R = (
⋃

g∈A∞

∆θg) ∪ (
⋃

g∈Afin

∆θg) ∪ FR

We complete the proof by observing that for each θg ∈ Afin the set ∆θg is finite. Therefore:

∆R \∆R =
⋃

g∈A∞

∆θg \∆θg =
⋃

|g|<R

∆θg \∆θg

�

Lemma 3.31. The partial action of Fk defined above extends to βX and is free on the
boundary ∂βX.

Proof. Fix g ∈ Fk. As the sequence of graphs has large girth there exists an ig ∈ N such

that for all i ≥ ig θ
i
g has no fixed points. Let ω ∈ D̂θ∗gθg

and assume for a contradiction

that θg(ω) = ω. Consider the graph G with vertex set V = ⊔i≥igXi, where two vertices x
and y are joined by an edge if and only if y = θg(x). This graph will have degree at most
2. Additionally, the set of non-isolated vertices inside V contains Dθ∗gθg

and so the subgraph
with vertex set consisting of the non-isolated vertices and the same edge set is chosen by ω
and has degree at most 2. Any such graph can be at most 3 coloured, subsequently the vertex
set breaks into three disjoint pieces V1, V2 and V3 and the ultrafilter ω will pick precisely one
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of the Vi. The action of θg sends Vi into Vi+1 modulo 3 by construction. Lastly, Vi ∈ ω implies
Vi+1 ∈ θg(ω) = ω, which is a contradiction. �

This freeness gives us a tool to understand the structure of Sinf .

Lemma 3.32. Let {Xi} be a sequence of graphs and let G be a group which acts partially on
each Xi. If G fixes any sequence in {Xi} then the partial action is not free on ∂βX.

Proof. Let θg denote the disjoint union of the θig arising from the partial action of G on each
Xi. To prove this it is enough to show that there is a single ω ∈ ∂βX that is fixed by the
action of some g ∈ G. The hypothesis that G fixes a sequence gives us x := {xn}I with I
infinite and θg({xn}) = {θng (xn)}I = {xn}I .

Now consider an ultrafilter ω ∈ ∂βX that picks x. Then this ultrafilter ω is an element of
Dg∗g as x ⊂ Dg∗g. Now for any A ∈ ω and consider the intersection A ∩ x. This is fixed by
the action of g, as it is a subset of x. Hence we have: θg(A ∩ x) ∈ θg(ω) for every A ∈ ω. As
θg(ω) is an ultrafilter A ∈ θg(ω), so in particular ω ⊆ θg(ω), whence θg(ω) = ω. �

Recall that the inverse monoid Sinf is represented geometrically by partial bijections on I(X).
This representation gives us access to the geometry of X, which we can utilise, in addition to
Lemma 3.32, to understand the structure of Sinf .

Lemma 3.33. Consider the inverse monoid Sinf as a submonoid of I(X). Then the following
hold:

(1) Sinf has the property that (g 6= eG and θg 6= 0) implies θg is not an idempotent;
(2) Sinf is 0-E-unitary;
(3) Sinf has maximal element set {θg : g ∈ Fk}.

Proof.

(1) We prove that no non-zero θg are idempotent. To do this we pass to the induced action
on βX. We observe that if θg is idempotent on X then it extends to an idempotent on
βX, hence on the boundary ∂βX. θg is non-zero implies that there is a non-principal

ultrafilter ω in the domain D̂θg . The result then follows from the observation that
θg ◦ θg(ω) = θg(ω) implies that θg must now fix the ultrafilter θg(ω), which by Lemma
3.31 cannot happen.

(2) For 0-E-unitary it is enough to prove that f ≤ θg implies θg ∈ E(S). Again, we
extend the action to βX. We observe that if θg contains an idempotent, then we can

build a sequence of elements of xi ∈ f ∩ D̂θ∗gθg
∩Xi such that θg fixes the sequence,

and hence fixes any ultrafilter ω that picks this sequence by Lemma 3.32. This is
a contradiction, from where we deduce that the only situation for which f ≤ θg is
precisely when g = eG hence trivially e ≤ θg implies θg ∈ E(S). For the general case,
we remark that by the above statement coupled with the dual prehomomorphism
property shows that f ≤ s implies s ≤ θeG , hence is an idempotent.

(3) We construct the maximal elements. Observe that using the dual prehomomorphism
it is clear that every non-zero word s ∈ S lives below a non-zero θg. So it is enough
to prove that for θg, θh 6= 0, θg ≤ θh ⇒ θg = θh. Let θg ≤ θh. This translates to

θhθ
∗
gθg = θg, hence for all x ∈ D̂θ∗gθg

: θh(x) = θg(x). Hence θ∗gθh ∈ E(S). From here
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we see that θ∗gθh ≤ θe. From (2) we can deduce: θ∗gθh ≤ θg−1h implies θg−1h ∈ E(Sinf ).

By (1) this implies θg−1h = θe, and this happens if and only if g−1h = e, i.e g = h.

�

Appealing to the machinery we developed earlier in Propositions 3.21 and 3.22 we get the
following corollary immediately.

Corollary 3.34. The inverse monoid Sinf is strongly 0-F-inverse.

We now have enough tools to prove the following result:

Theorem 3.35. Let {Xi} be a sequence of finite graphs of large girth and vertex degree
uniformly bounded above by 2k and let X be the corresponding space of graphs. Then the
boundary coarse Baum-Connes conjecture holds for X.

Proof. Combining the results in the previous section we know that a free group of rank k acts
partially freely on the boundary ∂βX in such a way as to give us a second countable locally
compact Hausdorff étale topological groupoid G

X̂
. This groupoid implements an isomorphism

G(X)|∂βX ∼= ∂βX ⋊ G
X̂
. We also know using Corollary 3.34 that the inverse monoid gen-

erated by the infinite support elements Sinf is a strongly 0-F-inverse monoid, admitting a
0-restricted idempotent pure prehomomorphism onto Fk. Hence the groupoid G

X̂
admits a

proper continuous groupoid homomorphism onto Fk, and so has the Haagerup property by
Corollary 3.24.

We can now conclude the Theorem by remarking that the isomorphism of groupoidsG(X)|∂βX
∼= ∂βX ⋊ G

X̂
turns the Baum-Connes conjecture for G(X)|∂βX into a specific case of the

Baum-Connes conjecture for G
X̂
. As G

X̂
has the Haagerup property we can conclude that

the Baum-Connes assembly map with any coefficients is an isomorphism [Tu00] and so the
assembly map required for the boundary conjecture is also an isomorphism. �

4. Applications to the coarse Baum-Connes conjecture.

In this section we capture, via homological methods, all the known counterexample arguments
present in the literature using the boundary conjecture. We begin by confirming that the
kernel I constructed in section 2 is the ghost ideal IG. In order to prove this we need some
technology of [HLS02]:

Lemma 4.1. [HLS02, Lemma 9] If an étale topological groupoid G acts on a C∗-algebra A,
then the map Cc(G, A) → C0(G, A) extends to an injection (functorial in A) from A ⋊r G to
C0(G, A). �

Remark 4.2. The phrase “functorial in A” allows us, given a map: A→ B of G−C∗-algebras,
to build the following square:

A⋊r G //
� _

��

B ⋊r G� _

��
C0(G, A) // C0(G, B)
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Remark 4.3. The map provided is not a ∗−homomorphism as it takes convolution in A⋊r G
to point wise multiplication in C0(G, A). However it suffices for applications as the map is
continuous.

Proposition 4.4. Let X be a uniformly discrete bounded geometry metric space. Then the
kernel of the map

l∞(X,K) ⋊r G(X) → (l∞(X,K)/C0(X,K)) ⋊r G(X)|∂βX

is the ghost ideal IG.

Proof. Lemma 4.1 implies that the following diagram commutes:

ℓ∞(X,K) ⋊G(X)
q //

� _

i
′

��

ℓ∞(X,K)
C0(X,K) ⋊G(X)

� _

i

��

C0(G(X), ℓ∞(X,K))
q
′

// C0(G(X), ℓ
∞(X,K)
C0(X,K) )

The downward maps being injective implies that the kernel is precisely the kernel of induced
map:

q : C∗X = ℓ∞(X,K) ⋊r G(X) → C0(G(X), l∞(X,K)/C0(X,K)).

Using the definitions we can compute this kernel:

I = {f |i
′

(f) ∈ C0(G(X), C0(X,K))}

= {f |∀ǫ > 0∃K ⊂ X ×X compact : |fxy| ≤ ǫ∀(x, y) ∈ X ×X \K}.

As X is uniformly discrete with bounded geometry and X ×X is equipped with the product
topology we can replace compact by bounded, which using Definition 1.11 is the ghost ideal
IG. �

Recall that the assembly map µIG associated to the open saturated subset X is given by the

composition of µX×X : Ktop
∗ (X ×X) → K∗(K(ℓ2(X)) with the inclusion i∗ : K∗(K(ℓ2(X)) →

K∗(IG). So to understand how the assembly map µIG behaves, it is enough to consider the
behaviour of the inclusion i∗ as the map µX×X is an isomorphism.

Proposition 4.5. Let {Xi}i∈N be a sequence of finite graphs. The the following hold for the
space of graphs X:

(1) The induced map i∗ : K∗(K(ℓ2(X,K)) → K∗(C
∗X) is injective.

(2) If X is an expander then Ktop
∗ (X ×X) ∼= K∗(K(ℓ2(X)) → K∗(IG) is not surjective.

Proof. Consider the coarse map X = ⊔iXi → P := ⊔i∗ given by projecting each factor to
a point and P carries the coarse disjoint union metric. This induces a tracelike map on the
K-theory of C∗X, which we denote by Tr. Observe also that C∗P ∼= ℓ∞(P,K)+K(ℓ2(P,K)),

hence has K0(C
∗P ) ∼=

∏
Z

K
, where K is the subgroup of

⊕
Z of elements with sum equal to

0. Now:
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To prove (1), Observe that the following diagram commutes:

K0(C
∗X) //

∏
Z

K

K0(K)

OO ::✉✉✉✉✉✉✉✉✉✉

Where the image of a rank one projection in K0(K) is given by a vector (1, 0, ...), which is
certainly an injection. It now follows that the upward map is injective.

For (2) consider a nontrivial ghost projection p ∈ IG. It is well known that Tr([p]) 6∈
⊕

Z

K
,

whilst Tr([k]) ∈
⊕

Z

K
for any compact operator [WY12]. As these differ under Tr, they cannot

possibly be equal in K0(IG). �

The boundary coarse Baum-Connes conjecture has applications to the coarse Baum-Connes
conjecture for spaces of graphs:

Theorem 4.6. Let X be a space of graphs arising from a sequence of finite graphs {Xi}. If
boundary coarse Baum-Connes conjecture is injective then the following hold:

(1) The coarse Baum-Connes assembly map for X is injective.
(2) If X is an expander then the coarse Baum-Connes assembly map for X fails to be

surjective.

Proof. Consider the diagram:
∏

i∈N
K0(C∗Xi)⊕

i∈N
K0(C∗Xi)

// K1(C
∗
r (G(X)|∂βX ) // K0(IG)

66♥♥♥♥♥♥
// K0(C

∗
r (G(X)))

d∗
OO

// K0(C
∗
r (G(X)|∂βX ) // K1(IG) //

// Ktop
1 (G(X)|∂βX ) //

?�

OO

Z
)
	

66♠♠♠♠♠♠♠♠♠♠ //
?�

OO

Ktop
0 (G(X)) //

µ
OO

Ktop
0 (G(X)|∂βX ) //

?�

OO

0

0
OO

//

We prove (1) by considering an element x ∈ Ktop
0 (G(X)) such that µ(x) = 0. Then x maps

to 0 ∈ Ktop
0 (G(X)|∂βX ) and so comes from an element y ∈ Z. Each square commutes hence

y maps to 0 ∈ K0(C
∗
r (G(X)). As the composition up and left (as indicated in the diagram)

is injective by Proposition 4.5, we know that y ∈ Z is in fact 0 ∈ Z. Hence x = 0.

To see (2): take any non-compact ghost projection p ∈ K0(IG), which does not lie in the
image of Z as it does not vanish under the trace d∗. Push this element to q ∈ K0(C

∗
r (G(X)).

Assume for a contradiction that µ is surjective. Then there is an element x ∈ Z that maps
to q, and so d∗(q) = 0, as the image of compact operators lies in the kernel of the map d∗.
However, we know that d∗(q) = d∗(p) is certainly non-zero. �

4.1. Some Remarks on the Max Conjecture.

Proposition 4.7. Let X be the space of graphs arising from a sequence of finite graphs {Xi}.
Then

(1) the maximal coarse Baum-Connes assembly map is an isomorphism if and only if the
maximal Boundary coarse Baum-Connes map is an isomorphism.
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(2) the maximal coarse assembly map is injective if and only if the maximal boundary
assembly map is injective.

Proof. As before we consider a diagram, this time of maximal algebras:

K1(C
∗(G(X)|∂βX ) // K0(K) // K0(C

∗(G(X))) // K0(C
∗(G(X)|∂βX ) // K1(K)

Ktop
1 (G(X)|∂βX ) //

OO

Ktop
0 (X ×X) //

∼ =

OO

Ktop
0 (G(X)) //

OO

Ktop
0 (G(X)|∂βX ) //

µbdry
OO

Ktop
1 (X ×X)

∼ =

OO

Both parts follow from a diagram chase. �

This result captures completely [OOY09, Corollary 4.18], but the proof is very much more
elementary. It is also clear that the argument above also works in the case of injectivity,
which is related to the content of [GWY08, Theorem 5.1].

5. A Counterexample to the Boundary Conjecture

In this section we develop the ideas of Higson, Lafforgue and Skandalis concerning the coun-
terexamples to the coarse Baum-Connes conjecture further, to construct a space of graphs
Y that has exceptional properties at infinity. The main idea is to decompose the boundary
groupoid further, giving a new short exact sequence at infinity similar to the sequences con-
sidered in Chapter 4. From this, we then construct an operator that is not a ghost operator,
but is ghostly on certain parts of the boundary. A tracelike argument, similar to those of
[Hig99, WY12] then allows us to conclude that the boundary coarse Baum-Connes conjecture
fails to be surjective for the space Y .

5.1. The space and its non-ghosts. The space we are going to consider first appeared in
[Wan07].

Let {Xi}i∈N be a sequence of finite graphs. Then we construct a space of graphs in the
following manner: Let Yi,j = Xi for all j ∈ N and consider Y := ⊔i,jYi,j. We metrize this
space using a box metric - that is with the property that d(Yi,j , Yk,l) → ∞ as i+j+k+l → ∞.

Now let {Xi}i be an expander sequence. As discussed in Section 1.2 of Chapter 4, we can
construct a ghost operator p =

∏
i pi on X, the space of graphs of {Xi}i. Similarly, we can

construct this operator on Y . In this situation we get a projection q :=
∏
i,j pi ∈ C∗

uY ,
which is a constant operator in the j direction. This was precisely the operator of interest in
[Wan07], as it can be seen that q is not a ghost operator, as its matrix entries do not vanish
in the j direction - a fact proved below in Lemma 5.1.

Recall that associated to Y we have a short exact sequence of C∗-algebras:

0 // ker(π) // C∗
r (G(Y ))

π // C∗
r (G(Y )|∂βY ) // 0.

We remark the kernel, ker(π) consists of all the ghost operators in C∗
u(Y ), that is those

operators with matrix coefficients that tend to 0 in all directions on the boundary.

Lemma 5.1. The projection π(q) := π(
∏
i,j pi) 6= 0 ∈ C∗

r (G(Y )|∂βY ). That is q 6∈ ker(π).
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Proof. We first observe that every bounded subset B of Y is contained in some rectangle of
the form RiB ,jB := ⊔i≤iB,j≤jBYi,j. So to prove that q is not a ghost operator it suffices to
show that there exists an ǫ > 0 such that for all rectangles Ri,j there is a pair of points x, y
in the compliment of the rectangle such that the norm ‖qx,y‖ ≥ ǫ. To prove this, recall that
the projection q is a product of projections pi on each Xi and fixing j, these projections form
a ghost operator.

Fix ǫ = 1
2 . Then there exists an iǫ with the property that ∀i > iǫ and for every x, y ∈ ⊔iXi

we know ‖pi,x,y‖ < ǫ. We remark that this iǫ can be taken to be the smallest such. So for

i ≤ iǫ − 1, we have that ‖pi,x,y‖ ≥ 1
2 . Now let Riǫ−1,∞ be the vertical rectangle ⊔i≤iǫ−1,jYi,j.

To finish the proof, consider an arbitrary finite rectangle Ri,j. This intersects the infinite
rectangle Riǫ−1,∞ in a bounded piece. Now pick any pair of points in a fixed box x, y ∈ Yk,l ⊂

Riǫ−1,∞ \Ri,j. Then for those points x, y it is clear that ‖qx,y‖ = ‖pk,x,y‖ ≥ 1
2 . �

We now describe the boundary ∂βY . We are aiming at a decomposition into saturated pieces
and with that in mind we construct a map to βX.

Consider the map βY ։ βX×βN induced by the bijection of Y with X×N and the universal
property of βY . Now define:

f : βY → βX × βN → βX

The map f is continuous, hence the preimage of X under projection onto the first factor is
an open subset of βY , which intersects the boundary ∂βY . In fact, what we can see is that
f−1(X) = ⊔f−1(Xi), where each f

−1(Xi) is closed, and therefore homeomorphic to Xi×βN.
We can define U = f−1(X) ∩ ∂βY .

5.2. The boundary groupoid associated to the box space of a discrete group with
the Haagerup property. Let Γ be a finitely generated residually finite discrete group with
the Haagerup property, and let {Ni} be a family of nested finite index subgroups with trivial
intersection. Let Xi := Cay( Γ

Ni
). In this context, the boundary groupoid is generated by the

action of the group Γ extended to the boundary (see Proposition 2.5). In this context we can
show that U defined above is saturated:

Lemma 5.2. U is an open, saturated subset of the boundary ∂βY .

Proof. We have already shown above that U is open. To see it is saturated we prove that
U c is saturated. Let gY and gX be the continuous extensions of the map obtained by acting
through g on Y and X respectively. We observe that the following diagram commutes:

gY : βY //

p

��

βY

p

��
gX × 1 : βX × βN // βX × βN

The projection onto βX is also equivariant under this action. Assume for a contradiction that
U c is not saturated; there exists γ in U c such that gY (γ) ∈ U . It follows that gX × 1(p(γ)) is
in p(U), whilst p(γ) ∈ p(U c), hence gX(f(γ)) ∈ U whilst f(γ) ∈ U c. This is a contradiction
as f(U c) = ∂βX is saturated. �
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This gives us two natural complimentary restrictions of G(Y )|∂βY and a short exact sequence
of function algebras as in Chapter 4:

0 // Cc(G(Y )|U ) // Cc(G(Y )|∂βY ) // Cc(G(Y )|Uc) // 0.

We will now show that the corresponding sequence:

0 // C∗
r (G(Y )|U ) // C∗

r (G(Y )|∂βY )
h // C∗

r (G(Y )|Uc) // 0

fails to be exact in the middle. We proceed as in [WY12, HLS02] by using the element π(q),
which certainly vanishes under the quotient map from C∗

r (G(Y )|∂βY ) → C∗
r (G(Y )|Uc). To

show the failure we will show this sequence fails to be exact in the middle at the level of
K-theory and for this we will require a firm understanding of the structure of G(Y )|U .

We observe the following facts:

(1) Γ acts on the space Y := ⊔i,jYi,j built from {Xi}.
(2) This action becomes free on piece of the boundary that arises as i → ∞, that is Γ

acts freely on U c.
(3) The group action generates the metric coarse structure on the boundary; the finite

sets associated to each R > 0 in the decomposition are now finite rectangles. This
follows from considerations of the metric on Y .

It follows from the proof of Proposition 2.5 that the groupoid G(Y )|Uc is isomorphic to U c⋊Γ
and under the assumption that Γ has the Haagerup property we can conclude that the Baum-
Connes assembly map for the groupoid G(Y )|Uc is an isomorphism (with any coefficients).
We now concern ourselves with G(Y )|U .

Lemma 5.3. The groupoid G(Y )|U is isomorphic to ⊔i(Xi ×Xi)×G(N)|∂βN.

Proof. We consider the preimages f−1(Xi). These are clearly invariant subsets of βY that
when intersected with the boundary ∂βY are contained within U . The restriction of
(G(Y )|∂βY )|f−1(Xi) for each i isomorphic to the closed subgroupoid G(Xi×N)|∂βN of G(Y )|U .
These groupoids are disjoint by construction and therefore the inclusion ⊔iG(Xi × N)|∂βN is
an open subgroupoid of G(Y )|U . We now prove that:

(1) each G(Xi×N)|∂βN is isomorphic to (Xi×Xi)×G(N)|∂βN, where N has the well-spaced
metric;

(2) the union ⊔iG(Xi × N)|∂βN is the entire of G(Y )|U .

To prove (1), observe that the groupoid decomposes as G(Xi ×N) =
⋃
R>0 ∆R(Xi × N). For

each R > 0 we can find a jR such that ∆R(Xi × N) = FR ∪
⋃
j>jR

∆R(Xi × {j}), hence for
the boundary part of this groupoid it is enough to understand what happens in each piece
Yi,j, which is constant for each j. Secondly, observe that in the induced metric on a column,
the pieces Yi,j separate as j → ∞. This, coupled with the fact that for large enough R,

we know that ∆j
R(Xi × N) = Xi × Xi allow us to deduce that any behaviour at infinity of

this groupoid is a product of Xi ×Xi and the boundary groupoid G(N)|∂βN where N has the
coarsely disconnected metric. This groupoid is isomorphic to ∂βN, from which we can deduce
that G(Xi × N)|∂βN = (Xi ×Xi)× ∂βN for each i.
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To prove (2) we assume for a contradiction that there is a partial translation t, such that t
is not an element of the disjoint union. Such an element maps some (xi, ω) to (xk, ω), where
i 6= k. Without loss of generality assume also t has translation length at most R. Then the
domain and range of t are both infinite (as the closure is defined in G(Y )|U ), and must be
contained within a strip of width at most R > 0. From the definition of the metric, there are
only finitely many Yi,j within such a rectangle, hence t ∈ FR and hence t is not defined in
G(Y )|U , which yields a contradiction. �

Remark 5.4. Lemma 5.3 allows us to conclude that C∗
r (G(Y )|U ) ∼=

⊕
iM|Xi| ⊗ C(∂βY )

To conclude that [π(q)] is not an element of K0(C
∗
r (G(Y )|U )) we construct a trace-like map.

Theorem 5.5. The element π(q) maps to 0 in C∗
r (G(Y )|Uc), but does not belong to the image

of K0(C
∗
r (G(Y )|U )) in K0(C

∗
r (G(Y )|∂βY .

Proof. The first part follows from the definition of π(q); the quotient map h kills all operators
that are ghostly in the direction i→ ∞ and π(q) is such an operator.

To prove the second component we remark that each Ui := f−1(Xi)∩U is a closed saturated
subset of ∂βY , hence we can consider the reduction to Ui for each i. We consider the product,
and the following map:

φ : C∗
r (G(Y )|∂βY ) →

∏

i

C∗
r (G(Y )|Ui

) =
∏

i

C∗
r (G(Xi × N)

T 7→
∏

i

T |Ui

Under the map φ, the ideal C∗
r (G(Y )|U ) =

⊕
iM|Xi| ⊗ C(∂βY ) maps to the ideal⊕

iC
∗
r (G(Xi × N)). So, we can define a tracelike map, in analogy to [WY12, Section 6], by

composing with the quotient map τ onto
∏

i C
∗
r (G(Xi×N))⊕

i C
∗
r (G(Xi×N)) . This gives us a map at the level of

K-theory:

Tr∗ = φ ◦ τ : K0(C
∗
r (G(Y )|∂βY )) →

∏
iK0(C

∗
r (G(Xi ×N)))⊕

iK0(C∗
r (G(Xi × N)))

=

∏
iK0(C(∂βN))⊕
iK0(C(∂βN))

By construction, K0(C
∗
r (G(Y )|U )) vanishes under Tr∗. We now consider [π(q)] under Tr∗.

Recall that q =
∏
i,j pi. We define qi =

∏
j pi and observe that the operation of reducing

to G(Y )|Ui
can be performed in two commuting ways: restricting to U then f−1(Xi) or by

restricting to f−1(Xi) then U . The second tells us that qi = pi ⊗ 1βN is constant in the j
direction and when restricted to the boundary is π(qi) = pi ⊗ 1∂βN. Hence, Tr∗([π(q)]) =
[1∂βN, 1∂βN, ...] 6= 0 and so [π(q)] 6∈ K0(C

∗
r (G(Y )|U ). �

So in this case we have the following diagram:

K1(C(U c)⋊ Γ) // K0(ker(π)) // K0(C
∗
r (G(Y )|∂βY )) // K0(C(U c)⋊ Γ) // K1(ker(π))

Ktop
1 (U c ⋊ Γ) //

∼ =

OO

Ktop
0 (G(Y )|U ) //

?�

OO
&
� 44❤❤❤❤❤

Ktop
0 (G(Y )|∂βY ) //
µbdry

OO

Ktop
0 (U c ⋊ Γ) //

∼ =

OO

Ktop
1 (X ×X)

OO

Remark 5.6. We justify the diagonal inclusion of Ktop
0 (G(Y )|U ) into K0(C

∗
r (G(Y )|∂βY ). This

follows as the groupoid G(Y )|U is amenable, and hence the assembly map is an isomorphism.
The algebra C∗

r (G(Y )U ) =
⊕

iM|Xi| ⊗ C(∂βY ) injects into the product
∏
iM|Xi| ⊗ C(∂βY )
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at the level of K-theory and this inclusion factors through in the inclusion into the kernel of
π and into C∗

r (G(Y )|∂βY ). These maps provide enough information to conclude injectivity of
the assembly map µbdry.

A diagram chase under the assumption that the map µbdry is surjective quickly yields a
contradiction, whence we have:

Corollary 5.7. The assembly map µbdry associated to Y = ⊔i,jCay(
Γ
Ni

) is not surjective but
is injective. �
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