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Abstract. We have analyzed some properties of mean field theories of thermotropic biaxial liq-
uid crystals with (D2h) symmetry. The study consists of two parts. In the first part we re-examine
the standard theory due to Virga and coworkers. We introduce a convenient symmetry-adapted pa-
rameterization which allows the phase diagram to be displayed in an explicitly symmetry-preserving
triangle. In the second part we use the Laplace approximation to examine the low temperature
properties of the liquid crystal order parameters. Two of these (conventionally, D,P ) are identically
zero at zero temperature in a biaxially ordered phase, non-zero at low temperatures in the liquid
crystalline phases, but are again zero at higher temperatures in the isotropic phase. We use a low
temperature expansion to derive an expression for the dominant terms in the free energy. This
functional is minimized to obtain the low temperature properties of the order parameters D,P .
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1. Introduction. Daniel Vorländer [59] was the first to realize that that the
presence of thermotropic nematic phase is strongly associated with a rod-like shape in
the component molecules. The success of the Grandjean-Maier-Saupe molecular field
picture [30, 48] confirmed the basic idea. In its most naive form, this theory supposes
that a uniaxial liquid crystal phase is the consequence of cylindrically symmetric
interactions between strictly uniaxial rod-like molecules. However, the molecules in
chemists’ test tubes stubbornly refuse to conform to theoretical idealizations. In fact
mesogenic molecules tend to be, at the very least biaxial, with the two minor axes
distinguished on a molecular length scale.

The presumed intimate relationship between the point symmetries of the mole-
cules, on the one hand, and of the low temperature phases, on the other, gave rise
to theoretical speculation about the possible existence of purely orientational biaxial
liquid crystalline phases. In 1970 Freiser [26, 27] constructed a molecular field theory
for a fluid of biaxial liquid crystal molecules, generalizing the Maier-Saupe theory [48].
He predicted that the usual first order isotropic – (uniaxial) nematic (I −Nu) phase
transition would be followed at lower temperatures by a second order uniaxial-biaxial
nematic (Nu −NB) phase transition. In 1973 Alben [3] constructed a Landau theory
which addressed some of the issues raised by Freiser. He predicted the existence of a
point, later known as a Landau point, at which the isotropic-nematic phase transition
became continuous, and at which the uniaxial-biaxial and isotropic-uniaxial nematic
transitions collide. The Landau point, at which the biaxial nematic phase undergoes a
second order transition to the isotropic phase, has been the focus of much subsequent
study, and will be one of the subjects addressed in this paper.

An explicit example of biaxial molecular fluid is a fluid of hard biaxial particles
with (D2h) symmetry. In 1974 Straley [57] constructed a molecular field theory for this
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system, using an excluded volume parameterization. The predicted phase sequence
agreed with that of Freiser and Alben. Straley realized that the statistical mechanics
required not merely “uniaxial” and “ biaxial” scalar order parameters, but also others
which took account of the orientational ordering of the so-called “minor” molecular
axes. The minimum set introduced by Straley (in his language S, T, U, V , and for
which in this paper we use S, P,D,C [22]) has come to be regarded as conventional,
albeit that authors have not uniformly adopted the same normalization [54].

Yu and Saupe [60] observed a lyotropic biaxial phase in 1980, but the thermotropic
biaxial phase has been much more elusive. In the latter case, despite intense study,
and a number of positive reports [47, 2], many current observations remain controver-
sial [40, 41]. However, theoretical and simulation studies of the statistical mechanics
of the biaxial phases are of some intrinsic interest, and also to clarify conditions re-
quired for fruitful experimental observations.

A key theme running through the theoretical literature has been the idea that
as the degree of biaxiality increases, the isotropic-uniaxial nematic phase transition
becomes more continuous. The conventional wisdom was as follows. First, the order
parameter jump (howsoever defined) becomes less, the temperature gap TNI − T ∗

between the phase transition temperature TNI and a point of incipient thermody-
namic divergence T ∗ decreases, and the order parameter correlation length ξc at TNI

increases. At the same time there is a low temperature biaxial nematic phase with a
continuous uniaxial-biaxial phase transition. The uniaxial-biaxial (NU − NB) phase
transition temperature TUB < TNI increases as the degree of biaxiality is increased.
This situation continues until a critical degree of biaxiality is reached, at which point
TUB = TNI , and the (now direct isotropic-biaxial) phase transition becomes continu-
ous [3, 13, 10, 51]. This is the Landau point.

But beyond this degree of biaxiality, the original phase progression is restored.
Some have identified this exchange as going from a rod-like to a disc-like molecular
shape. Although we do not take this point of view, there is certainly an exchange
of principal molecular orientations. As the degree of “biaxiality” (as originally con-
ceived) is further increased, now the nematic–isotropic transition becomes more first
order, and the uniaxial–biaxial transition decreases in temperature. Eventually a sit-
uation is reached at which the molecules are again uniaxial, but now the molecular
axis of symmetry has changed. The biaxial phase disappears, and the uniaxial phase
follows the predictions of the old theories.

However, although this picture appeared theoretically robust, there were some ap-
parently discordant experimental observations in lyotropic systems [53, 60, 4]. These
experiments, albeit in colloidal systems with some extra physics, suggested the pos-
sibility of direct first order transitions between isotropic and biaxial phases (rather
than merely a Landau point), and of first order NU −NB transitions. Thus although
the result, due to Sonnet et al. [56, 12], that molecular field theory permits first order
I −NB and NU −NB transitions over a range of biaxiality parameters seemed to go
against the canonical picture, it did resolve an experimental paradox.

This paper presents some theoretical results within the molecular field picture
of nematic liquid crystals. In §2, we examine some aspects of the model developed
in Refs.[56, 12]. The traditional molecular field picture used the so-called geometric
mean approximation for the effective intermolecular potential [46, 13, 39, 43]. This
approximation, which reduces the number of molecular biaxiality parameters from
two to one, is also implicit in much other work as well [3, 57]. The approximation
is analogous to the well-known Lorentz-Berthelot mixing rule relating strength of the
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heteroatomic Van der Waals interaction to the strengths of the homoatomic inter-
action [49]. At first sight it seems unlikely that relaxing it will change qualitative
features of the predicted phase diagram.

However, Sonnet et al. [56] developed a mean field picture in which the geo-
metric mean approximation is drastically broken, albeit within a molecular picture
that some might regard as remaining uniaxial. This model sustains a low tempera-
ture phase which can be identified with a biaxial phase. Moreover, although it offends
naive ideas of what is meant by biaxiality, it has the distinct computational advantage
of admitting a single scalar uniaxial order parameter and a single scalar biaxial order
parameter. This model predicted, for suitable parameters, both first order I − NB

and NU −NB transitions. Furthermore, Sonnet et al. asserted this phase diagram to
be universal, in that the key features of the phase diagram would be retained if some
of their more drastic approximations were relaxed.

The more general study by Bisi et al. [12] more or less ratified this expectation.
Now four rather than two order parameters were required for a full description, and
the biaxiality is described by two independent parameters. The full phase diagram
now could be represented in what these authors call “the essential triangle”. The
essentiality lies in a somewhat complicated set of transformations associated with ex-
change of molecular axes, causing physical information to be repeated if the whole
biaxiality plane is considered. The purpose of our §2 is to use a picture based on
traditional representations of phase diagrams of ternary mixtures, to visualize this
information in what believe is a clearer manner.

This visualization is mainly concerned with the topological (global) properties of
a phase diagram. But for both practical and theoretical reasons it is also important
to be able to study the local properties of a phase diagram. To this end the Landau
expansion of the free energy, in terms of low powers of the order parameters, is often
a privileged route due to its simplicity. However, in its standard form, this procedure
does not provide an accurate method with which to study the highly ordered phases.
Specifically, the details of the dependence of the order parameters on temperature far
from the onset of nematic order are not accessible from a Landau expansion.

In Sec.3 we develop a method to construct an approximation of the free energy in
the low temperature régime. This method goes beyond the usual Landau picture, but
nevertheless maintains the key idea of expansion in terms of order parameters. The
procedure is simple enough to be able to perform a semi-analytical analysis. However,
although it is only approximate, it nevertheless yields accurate results just where the
phases are most highly ordered. In particular, we can explore the low temperature
properties of the order parameters as a function of the degree of biaxiality. Finally in
§4 we draw some brief conclusions.

2. Symmetry-preserving phase diagram.

2.1. Order parameters and internal energy. We consider a fluid made from
biaxial molecules with (D2h) point group symmetry. Let (m1,m2,m3) be unit vectors
along the three principal molecular (symmetry) directions. These quantities represent
what are usually known as the molecular axes. Define α, β and γ to be the three Euler
angles, describing the orientation of the molecular frame of reference with respect to
the laboratory axes. There are only four independent scalar order parameters for
a system composed of molecules possessing (D2h) point group symmetry in a phase
with the same symmetry (see e.g. [54]). These are conventionally denoted by S, D,
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P and C and are written in terms of the Euler angles as [54]:

S =
1

2
〈3 cos2 β − 1〉 , P =

3

2
〈cos 2γ sin2 β〉 (2.1)

D =
3

2
〈cos 2α sin2 β〉 , C =

3

2
〈(1 + cos2 β) cos 2α cos 2γ − 2 cosβ sin 2α sin 2γ〉 ,

(2.2)

where the angle brackets denote averaging over all possible orientations of the mole-
cules.

In general, in the isotropic phase (I), all order parameters vanish. In a phase with
uniaxial order (NU ), S and D are non-zero, while P = C = 0. However, in the more
ordered biaxial phase (NB), all four order parameters are generally non-zero. We note
that, in the limit of perfect ordering, we may suppose without loss of generality that
the molecular and laboratory frames coincide. In this case, α, β, γ → 0, and it follows
from the definitions in Eqs.(2.1–2.2) that S → 1, P → 0, D → 0, and C → 3.

Fig. 2.1. Schematic description of a molecule possessing (D2h) point group symmetry. The
molecular and the laboratory frames of reference are identified by (x, y, z) and (X,Y, Z), respectively.
The Euler angles α, β, and γ are also shown.

The order parameters P and D thus exhibit rather anomalous behavior. In the
high temperature I phase they vanish. In the NU phase, D 6= 0, and as temperature is
further decreased into the NB phase, P 6= 0 also. But at sufficiently low temperatures,
they vanish again, having gone through a maximum along the way. In theories of
biaxial liquid crystals, S and C are often interpreted as principal order parameters,
for increasing orientational order implies increasing values of these quantities. On the
other hand, D and P , which may not grow large, are regarded as subsidiary order
parameters which are in some sense slaved by the principal order parameters, subject
to the degree of molecular asymmetry. We shall return to this point in the next
section.

The internal energy U in the molecular-field theory is usually derived from a
spherical tensor approach[46, 39, 42, 43]:

U = −1

2

[
u200

(
S2 +

1

3
P 2

)
+

√
8

3
u220

(
S D +

1

3
PC

)
+
2

3
u222

(
D2 +

1

3
C2

)]
, (2.3)
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where the u2mn are related to coefficients in the spherical tensor expansion of an
effective molecular interparticle potential. A full description of the relative molecular

biaxiality requires two parameters, usually labeled λ, γ, where λ =
u222
u200

and γ =

u220
u200

. Eq.(2.3) corresponds, for example, to the molecular field approximation of

the intermolecular potential proposed long ago by Straley [57]. The expansion of U
in Eq.(2.3) is the most general quadratic rotational invariant built from these order
parameters [43].

The spherical tensor description is a powerful approach which, in particular, en-
ables rotationally invariant and non-redundant expressions to be constructed without
difficulty. On the other hand, a disadvantage of this approach is that the molecular
z-axis has a privileged status from the beginning, as it is chosen as the long-axis of
the molecules with preferred alignment to the laboratory z-axis. The privileged sta-
tus assigned to one of the molecular axes and to the laboratory axis is necessary in
order to perform practical calculations. But it introduces an artificial and arbitrary
element which reflects on the subsequent developments of the theory and, clearly, has
no physical significance.

A major theoretical goal is to study the phase behavior of the system with respect
to variations of the relative molecular biaxiality. In general the direction of alignment
generally depends (continuously) on the degree of molecular biaxiality. The physics
of the system, however, must be independent of the labels assigned to the molecular
and laboratory axis. Thus it is preferable not to privilege the status of one of the
molecular or laboratory axes. Rather one should treat all the axes on an equal footing.
In this case, the description of the system will be totally symmetric with respect to
the relabeling of the axes.

As an example of difficulties that can emerge from this approach, let us consider
the standard phase diagram of a biaxial nematic liquid crystal in the geometric mean
approximation [46, 13, 39, 43]. In this picture, molecular biaxiality is defined by the
single parameter λ in Eq.(2.3) above:

λ =
u222
u200

=

(
u220
u200

)2

= γ2. (2.4)

The phase diagram resulting from this approximation, following the calculations of
Boccara et al. [13] is plotted in Fig 2.2. The NU −NB phase transition line exhibits
a cusp at γ = 1/

√
6. For this value of γ the aligning strength of the molecular x and

z axes is equal, and the molecular biaxiality may be regarded as being maximal. The
uniaxial nematic phase disappears, and there is now a direct I−NB phase transition.
The phase diagram has some kind of mirror symmetry with respect to γc = 1/

√
6.

The two sides of the phase diagram represent closely analogous physical situations.
For each value of γ1 < γc, there is an associated value γ2 > γc exhibiting equivalent
physics, but with a rescaled fundamental energy parameter. Boccara et al. have
asserted that γ > γc corresponds to discs, whereas γ < γc correspond to rods, and
that this mapping indicates that the physics of rods and of discs is equivalent. Our
picture is slightly different, but in any event, the relative molecular biaxiality γ = 0
(and hence, by construction, uniaxial molecules) is formally and physically equivalent

to γ =
√
3/2 ≈ 1.2247. In each case the theory describes a system of uniaxial (D∞h)

molecules. The only difference is that at γ =
√
3/2 the molecular x-axes align rather

than the “natural” molecular z- axes. The lack of linearity of the mapping over the
range, and the fact that the value γ =

√
3/2 is not immediately obvious, suggests
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Fig. 2.2. Phase diagram after Boccara et al. [13]. Normalized temperature scale on y axis
and biaxiality parameter γ along x axis. The two uniaxial phases N+

U and N−
U are associated with

molecular alignment along molecular z and x axes respectively, and meet at a Landau point also
coincident with a continuous transition from the biaxial nematic NB to the isotropic phase I. Note
also the hint of some kind of symmetry between the regions with γ less than and greater than 1√

6
.

that the parametrization of the molecular biaxiality, although useful for small degrees
of biaxiality, is not optimal over the whole range.

There is an alternative, purely Cartesian, approach to the theory of biaxial
nematic (D2h) liquid crystals. This has been developed by Virga and colleagues
[56, 12, 20, 21, 11]. These theories involve two ordering tensors Q and B, defined as

Q = 〈m3 ⊗m3 −
1

3
I〉 , B = 〈m1 ⊗m1 −m2 ⊗m2〉 , (2.5)

where, in the laboratory frame of reference

Q =

−1
3 (S − P ) 0 0

0 −1
3 (S + P ) 0

0 0 2
3S

 ; B =

−1
3 (D − C) 0 0

0 −1
3 (D + C) 0

0 0 2
3D

 ,

(2.6)
and where S,D, P,C are as defined in Eqs.(2.1,2.2) [54].

Their internal energy, as deduced from the mean-field potential, is

U =− 1

2
Ũ0 (Q ·Q+ 2ΓQ ·B + ΛB ·B)

=− Ũ0

3

[(
S2 +

1

3
P 2

)
+ 2Γ

(
S D +

1

3
PC

)
+ Λ

(
D2 +

1

3
C2

)]
,

(2.7)

where Γ and Λ are the two measures of molecular biaxiality.
In the uniaxial liquid crystal, only the tensorQ contributes to the energy. The ten-

sor B is associated with the difference in alignment properties between the molecular
x and y axes, and in a uniaxial phase would be expected to be zero. As expected, the
internal energy given in Eq.(2.7) turns out to be equivalent to that given in Eq.(2.3).
We note here that although the theory has been expressed in apparently invariant
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tensor form, in practice, the privileged status of the molecular z axis is nevertheless
preserved.

We now develop a theory that avoids assigning a favored status to any of the
molecular axes. The resulting formulae will retain some symmetry lost by privileging
the molecular z axis. We first note that a distinct ordering tensor is associated with
each principal molecular axis [61, 58]. This leads to the the definition of the three
symmetric traceless tensors

Q1 = 〈m1⊗m1−
1

3
I〉, Q2 = 〈m2⊗m2−

1

3
I〉, Q3 = 〈m3⊗m3−

1

3
I〉 . (2.8)

The three tensors Qi each describe the orientation of one molecular axis with respect
to the laboratory axis, replacing the two tensors Q,B. We note that, by construction,
the threeQi are not independent but must satisfyQ1+Q2+Q3 = 0. The replacement
of the two independent tensors Q,B by the three dependent tensors Qi has the
disadvantage that the dependence must be borne in mind, but the advantage that no
molecular axis has a special status.

In a phase with D2h symmetry, the eigenframes of the three tensors Qi will be
mutually diagonalizable. The laboratory axes are then chosen to be coincident with
this common eigenframe in order to minimize the number of independent scalar order
parameters. The internal energy can now be rewritten in terms of the standard quartet
of order parameters as follows:

U = −1

2
U0 (λ1Q1 ·Q1 + λ2Q2 ·Q2 + λ3Q3 ·Q3)

= −U0

3

[(λ1 + λ2
4

+ λ3

)(
S2 +

1

3
P 2

)
+

1

2
(λ2 − λ1)

(
S D +

1

3
PC

)
+

1

4
(λ1 + λ2)

(
D2 +

1

3
C2

)]
.

(2.9)

In this parameterization, the overall strength of the interaction is parameterized
by U0. To determine the topology of the phase diagram, only the relative strength of
the different orientational tensor interactions is important, and the constraint λ1 +
λ2 + λ3 = 1 can be assumed without loss of generality.

From Eqs.(2.3) and (2.9), explicit expressions for the transformations for the
molecular biaxiality parameters can be written as:

u200 =
U0

6
(λ1 + λ2 + 4λ3)

u220 =
U0

2
√
6
(λ2 − λ1)

u222 =
U0

4
(λ1 + λ2)

⇔


λ1 = (2u222 −

√
6u220)/U0

λ2 = (2u222 +
√
6u220)/U0

λ3 = (3u200 − 2u222)/2U0,

(2.10)

while a comparison between Eqs. (2.7) and (2.9) yields:
Ũ0 =

U0

4
(λ1 + λ2 + 4λ3)

Γ =
λ2 − λ1

λ1 + λ2 + 4λ3

Λ =
λ1 + λ2

λ1 + λ2 + 4λ3

⇔


λ1 = 2Ũ0(Λ− Γ)/U0

λ2 = 2Ũ0(Λ + Γ)/U0

λ3 = Ũ0(1− Λ)/U0

. (2.11)

By imposing the constraint λ1 + λ2 + λ3 = 1 we also derive the identity: U0 =
Ũ0(1 + 3Λ).
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(1, 0, 0)(0, 1, 0)

(0, 0, 1)

(1,−1, 1)(−1, 1, 1)

(1, 1,−1)

λ1 > λ2, λ3λ2 > λ3, λ1

λ3 > λ1, λ2

g.m. approximation

Sonnet-Virga-

Durand line

Cubic point

Fig. 2.3. Ternary diagram of the ground states. The center of the diagram is defined by the
cubic point whose coordinates are ( 1

3
, 1
3
, 1
3
). The dashed lines separate the plane into three sectors in

which the dominant attractive anisotropic interaction is, respectively, along the z (blue), y (yellow)
and x (green) molecular axis. These sectors meet at a common vertex known as the cubic point.
The inner triangle (shown with red edges) encloses those points for which all the axes interact
attractively. The external triangle (shown with blue edges) identifies the limit of stability of the
biaxial phase. The geometric mean approximation, as given in Eq.(2.14), corresponds to a circle
passing through the vertices of the red triangle, with center at the cubic point.

2.2. Ground state ternary diagram. The principal advantage of the (λ1,
λ2, λ3) representation is that the degree of biaxiality is represented in terms of a
barycentric coordinate system. One related context in chemical physics is that of
complex fluids; concentrations in a ternary mixture are often expressed using this
picture. Phase diagrams in ternary mixtures require a discussion of phases at par-
ticular relative concentrations {ci}; c1 + c2 + c3 = 1. These concentrations can be
represented as points in an equilateral triangle [55]. One picture of this triangle is
to think of the relative concentrations as represented by points (c1, c2, c3) in ordinary
three-dimensional Cartesian space but constrained to lie on the plane c1+c2+c3 = 1.

In ternary mixtures, pure systems (e.g. c1 = 1, c2 = c3 = 0) are then represented
by vertices of the equilateral triangle. Two-component submixtures map onto the
edges of the triangle. The region of all-positive relative concentrations is then the
equilateral triangle, with side

√
2 and height

√
3/2, and vertices at the points (1,0,0),

(0,1,0) and (0,0,1). As concentrations are never negative, points outside the concen-
tration triangle are unphysical. The barycentric coordinate representation also crops
up in a number of other mathematical contexts [16].

There is an immediate analogy to degrees of biaxiality, with the relative orienta-
tional alignment strengths λi playing the role of the concentrations ci. We shall refer
to the set of points in the corresponding ternary diagram as the biaxiality parameter
plane, which is shown in Fig.2.3. Uniaxial systems correspond to λi = 1, for i = 1, 2, 3,
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depending on whether the x, y or z molecular axes align. Two-component systems
correspond to nematic systems in which two molecular axes tend to align, but the
third is inert. The central point inside the biaxiality parameter plane, with coordi-
nates

(
1
3 ,

1
3 ,

1
3

)
we shall label as the cubic point. In this case the alignment properties

of each molecular axis are the same, and the system will be expected to possess Oh

symmetry. However, by contrast with the ternary mixture, points outside the triangle
do now map onto physical systems. If one, or even two, of the λi are negative, this
indicates that some molecular axes favor a mutual antiparallel alignment. However, in
this picture the physical case in which all axes carry an antiparallel tendency requires
a new diagram, because the constraint that

∑
λi = 1 is necessarily violated.

The phase diagram as a function of the biaxiality is found by studying the min-
ima of the internal energy (2.9) as a function of the changing biaxiality parameters
λ1, λ2 and λ3. As described in detail elsewhere [43, 18, 14], each physical significant
phase can be described by thirty-six equivalent choices of the order parameters S, P ,
D and C. In a system with D2h symmetry, this multiplicity of the order parameters
is due to the physical irrelevance of the specific labels associated with the molecular
and laboratory axes. In the same way, there are also six possible values of the set
(λ1, λ2, λ3), related by a different choice of the axis labels, where the physical be-
havior of the liquid crystals is equivalent. These discrete symmetries correspond to
triangular symmetries of the phase diagram in the biaxiality parameter plane.

We now discuss Fig.2.3 in more detail. For practical purposes it is also helpful
to introduce an orthogonal frame of reference adapted to this plane, (γ1, γ2, γ3), with
origin in the cubic point (λ1, λ2, λ3) = (1/3, 1/3, 1/3). Explicitly, the following change
of variables

γ1 =
1√
2
(λ1 − λ2)

γ2 =
1√
6
(λ1 + λ2 − 2λ3)

γ3 =
1√
3
(λ1 + λ2 + λ3 − 1)

⇔


λ1 =

1

3
+

γ1√
2
+

γ2√
6
+

γ3√
3

λ2 =
1

3
− γ1√

2
+

γ2√
6
+

γ3√
3

λ3 =
1

3
−
√

2

3
γ2 +

γ3√
3

(2.12)

takes the plane λ1 + λ2 + λ3 = 1 into the coordinate plane γ3 = 0. As can be easily
checked, the transformation (2.12) is simply the composition of a translation and a
rotation. As such, it preserves lengths and angles. The coordinates γ1 and γ2 play
the role of the Cartesian coordinates x and y in the biaxiality parameter plane, with
origin in the cubic point.

To obtain a complete phase diagram, a temperature axis must be introduced,
orthogonal to the biaxiality parameter plane and therefore orthogonal to the picture
in Fig.2.3. Each point in the figure can be interpreted as the projection of the phase
diagram along the temperature axis. As a two-dimensional projection of a three-
dimensional phase diagram, the information on the actual transition temperatures is
lost. It is possible nevertheless to represent the phase sequences.

However, we postpone the discussion of the presentation of the phase sequences
and first concentrate on the description of the ground states of the system, i.e., the
minima of the internal energy (2.9) as the biaxial parameters are varied. These funda-
mental states can be interpreted as the preferred phases when the entropy contribution
to the free energy becomes negligible. In limiting the scope of the description, at least
initially, we can easily identify the regions of the biaxial parameters plane with equiv-
alent physical significance. By construction, the fact that our parametrization does
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not favor any axis, and thus respects the triangular symmetry of the system, plays a
key role in the analysis.

The ground states depend only on the relative values of the {λi}. The plane
can thus be divided into three separate but equivalent regions using the criteria that
λ1 > λ2, λ3; λ2 > λ1, λ3 or λ3 > λ1, λ2. In the specific case when λ3 > λ1, λ2, for
example, the z-molecular axes will align most strongly, and tend to align first as the
temperature is decreased.

The inner triangle (shown with red edges in Fig.2.3) is defined by the convex
hull of the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Its sides are obtained by imposing
λ1 = 0, λ2 = 0 and λ3 = 0. Points inside this triangle are defined by positive
values of the parameters λi in the biaxiality parameter plane in Eq.(2.9). Physically,
the anisotropic interactions between the molecule axes are all attractive. Thus, the
ground state is here strongly biaxial, as all the molecular axes tend to align with each
other, and by convention also with the laboratory axes.

We contrast the inner triangle with the outer triangle (shown with blue edges in
Fig. 2.3), defined as the convex hull of the points (1, 1,−1), (1,−1, 1) and (−1, 1, 1).
The sides of this triangle are determined by the equations λ1 = 1, λ2 = 1 and
λ3 = 1. The region between these two triangles contains points in the biaxiality
parameter plane where the anisotropic interactions between the molecule axes are
partly repulsive. Physically, this means that one of the λi is negative, but the other
two remain positive. However, as long as this repulsive interaction is weak, the ground
state is still biaxial, although in some sense not “strongly biaxial”. Now the transition
to a biaxial nematic phase is expected to appear at a lower temperature. We expect
the whole blue triangle to define the region of biaxial ground states, as we now show.

Without loss of generality, we can specifically consider an attractive interaction
between the z-molecular axes. In this case the internal energy (2.9) attains its mini-
mum when the molecular long-axes are aligned, and we can consider this to be oriented
along the z-laboratory axis.

In a completely ordered phase, by definition (see Eqs.(2.1,2.2)), the secondary
order parameters, P and D, must vanish. The magnitude of the internal energy in a
biaxial phase, as given in Eq.(2.9), can now be simplified, yielding:

Ub ≈ −U0

3

(1 + 3λ3
4

S2 +
1

12
(λ1 + λ2)C

2
)
. (2.13)

To determine whether a biaxial nematic state is favored we compare the absolute
minimum of the internal energy in a biaxial nematic phase with that of a purely
uniaxial nematic phase. When λ3 ≥ 1 the sum λ1+λ2 must be lower or equal to zero.
In this case, a minimization of Ub in (2.13) when λ3 ≥ 1 necessarily yields C = 0.
Thus a uniaxial internal energy has a lower energy, and thus the biaxial ground state
is unstable.

The explicit triangular symmetry of the internal energy with respect to the rela-
beling of the axes then allows us to prove that the same conclusion holds also when
we consider alignment with respect to the x or y axes. At first sight it would appear
that the theory is predicting a uniaxial ground state. This is anomalous in that the
uniaxial ground state for this system retains non-zero entropy, and corresponds to
an orientational glass phase. However, in a continuous system, the region of liquid
stability is usually relatively restricted, and at low temperatures the liquid state is
preempted by a crystal, the details of which require a more detailed study of the
spatial dependence of the interparticle potential.
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On the other hand, the orientational aspects of liquid crystalline behavior are
often studied using nearest neighbor lattice models. The classic such model only deals
with uniaxial interactions and is due to Lebwohl and Lasher [38]. The molecular field
theory of such a model coincides with the Maier-Saupe theory [48], while the critical
properties are anomalous in the same manner as experimental liquid crystals [23]. In
the biaxial context, such a lattice was introduced by Biscarini et al. [10].

If the mean field model is interpreted as representing the properties of such a
model, then the loss of stability of the biaxial ground state occurs whenever one of
the λi is greater than one. In Fig.2.3 this corresponds to the region outside the blue
triangle. We interpret this as a possible instability of the uniform biaxial state with
respect to a different ground state. Here, depending on the nature of the lattice, we
expect the ground state to be either glassy or non-uniform. If the lattice is frustrated,
the ground state will be degenerate and hence glassy [32]. If it is not frustrated, on the
other hand, a case which obtains when the lattice is, for example, cubic, the ground
state can be ordered. In general we expect a nematic analogue of an antiferromagnetic
phase, characterized by nematic ordering along the principal axis, and anti-nematic
ordering in sublattices along the other molecular axes. These systems have been
studied by De Matteis and Romano [19]. We label this state as an antibiaxial phase.

Close to the edges of the triangle there is a competition between uniaxiality and
biaxiality. The edges form multiphase lines, along which the ground state is extremely
degenerate. We note that, as can be checked directly using the transformations (2.11),
the blue triangle corresponds exactly to the region of stability labeled as the “essential
triangle” in Ref.[56, 20, 12]. This region is defined by Λ ≥ 0; Λ − 2|Γ| + 1 ≥ 0. It is
shown in Ref. [56, 20, 18], with greater rigor than observed here, that only within this
region, the state of complete alignment of two molecules is a non-degenerate minimum
for the given mutual orientational interaction energy.

Usually it is complicated to draw three dimensional phase diagrams. In the lit-
erature of biaxial liquid crystals there are some traditional approximations that re-
duce the number of independent molecular biaxial parameters from two to one, so
that the phase diagram can be represented on a two-dimensional plot. The first
standard approximation is the geometric mean approximation discussed above. It is
so-called because in the spherical tensor approach the relative molecular biaxiality
coefficient u220 is expressed as u220 =

√
u200u222. It has been noted this expression is

consistent with the molecular interactions originating from London dispersion forces
[26, 27, 31, 46, 13]. In Refs. [56, 21, 12], this approximation is called the “dispersion
parabola”, given by the equation Λ = Γ2.

Substituting u220 =
√
u200u222, into Eqs.(2.10) yields the following relation in

terms of λ1, λ2, λ3:

1

λ1
+

1

λ2
+

1

λ3
= 0 . (2.14)

A little algebra and the use of the adapted Cartesian coordinates (γ1, γ2), as intro-
duced in Eq.(2.12), transforms Eq.(2.14) into

γ21 + γ22 =
2

3
, (2.15)

Thus, in the biaxiality parameter plane, the geometric mean approximation corre-

sponds to a circle, centered at the cubic point, and with radius
√

2
3 . This geometric

mean circle passes through the vertices of the red triangle and is shown in Fig.2.3.
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An alternative standard reduction of the number of molecular biaxiality coef-
ficients is obtained by imposing u220 = 0 (or Γ = 0), which we refer to as the
Sonnet-Virga-Durand approximation [56, 21]. As shown in [21, 12], this reduces the
complexity of the theory by retaining just the two dominant order parameters, S and
C. An extension of this approximation for biaxial nematics with C2h point group
symmetry is considered in [44]. In the biaxiality parameter plane, the curve u220 = 0
corresponds to the straight line defined by λ1 = λ2. As is evident by the triangular
symmetry, analogous approximations are obtained by setting λ1 = λ3 or λ2 = λ3.
These approximations are shown as dashed lines in Fig.2.3.

It is now clear from Fig.2.3 that a single portion of the biaxiality parameter plane
suffices to describe all physically relevant situations. For instance, the whole plane is
a replica of the lower right triangular region with the vertex in the cubic point and
delimited by the dashed lines identified by λ1 = λ2 and λ1 = λ3. Other portions of
the biaxiality parameter plane are isomorphically and isometrically mapped into this
fundamental region by exploiting the triangular and mirror symmetry of Fig.2.3.

The fact that a calculation of the full phase diagram requires only a partial cov-
ering of the biaxial parameter space is not new. In fact, this fundamental region is
equivalent to the essential triangle introduced by Bisi et al. in Ref.[12]. However, the
new feature is that in our case this result is an obvious consequence of the symmetry
of the system, while in Ref.[12] the equivalent regions are greatly deformed and there-
fore their equivalence is less transparent and less suited to a practical exploitation of
the intrinsic symmetries of the system.

2.3. Phase sequences. Fig.2.3 provides us with a great deal of information in
a compact and intuitive manner. However, it mainly describes the ground state of the
liquid crystal, namely the phase of the highest order where the internal energy attains
its global minimum. A more comprehensive picture is obtained when each point of
Fig.2.3 is associated to a phase sequence, rather than a unique high order phase.

For instance, whilst the isotropic to uniaxial (I − NU ) transition is always first
order, it known that the uniaxial to biaxial (NU −NB) transition can be either first
or second order [56, 21, 20]. Thus, the NU −NB transition line in the phase diagram
may bear a tricritical point. Correspondingly, a tricritical line can be drawn in the
biaxiality parameter plane, which divides it into two regions, according to whether
the secondary uniaxial to biaxial transition is first or second order. Moreover, a triple
line can be drawn, corresponding to the points where the isotropic, uniaxial, and
biaxial phases are in equilibrium. More precisely, we can distinguish the region where
there is a direct transition from the isotropic phase, I, to the biaxial phase, NB ,
from that where there is an intermediate uniaxial nematic phase, NU , by assigning
different colors. The results of Refs.[56, 21, 20] show that in the Sonnet-Virga-Durand
approximation, the transition fromNU toNB phase can be either first or second order,
thus evidencing the existence of a tricritical point. A second tricritical point is found
at a higher temperature and a higher relative molecular biaxiality, along the line of
direct transition from the isotropic to the NB phase. Furthermore, the lines of the
first order transition I−NU and NU −NB meet at a triple point. Thus, by symmetry
in our ternary phase diagram we expect to be able to represent six tricritical points
and three triple points along the dashed lines. An elementary conjecture is that these
special points along the dashed lines are connected by a line of triple points and a
line of tricritical points.

Using Eqs.(2.11), it is possible to rephrase the whole “universal mean-field phase
diagram” and all the results reported in Refs.[56, 21, 20, 12, 11] in terms of λ1, λ2 and
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λ3. The resulting phase sequences can be re-expressed in our biaxiality parameter
plane. The transposition of these results, in the region inside the geometric mean
approximation circle, is drawn in Fig.2.4. We remark that the quantitative plot of
the tricritical line and the triple lines shown in Fig.2.4 requires a bifurcation analysis
of the order parameters obtained from the minimization of the molecular field free
energy. The numerical data contained in Fig.2.4 are extracted from Ref.[12].

(1, 0, 0)(0, 1, 0)

A ≡ (0, 0, 1)

B ≡ (2
3
, 2

3
,−1

3
)

O

(0, 1

2
, 1

2
) (1

2
, 0, 1

2
)

(1
2
, 1

2
, 0)

C1

C2

C3

Line of
triple points

Line of
tricritical points

Fig. 2.4. Ternary diagram of the phase sequences, limited to the region of the biaxiality param-
eter plane enclosed by the geometric mean circle. The point C1 represents a tricritical point, C2 is
a triple point and C3 is a Landau critical end point. The different phase sequences are separated by
a line of tricritical points and a line of triple points.

To improve the description of the regions with different phase sequences, we
explore Fig.2.4. We start at the point A ≡ (0, 0, 1), proceed along the Sonnet-
Virga-Durand line λ1 = λ2 (shown as a solid deep blue line), to reach the point
B ≡ ( 23 ,

2
3 ,−

1
3 ). We remark that both A and B lie on the geometric mean circle. As

already mentioned in Sec.2.2, the strongest anisotropic interaction in the blue, yellow
and green sectors are, respectively, along the molecular z, y and x axes.

As already noticed, at A the biaxial phase NB is unstable, and there is only a first
order transition from the isotropic to the uniaxial nematic phase: I − NU . In what
follows, we adopt the convention of a single dash to denote a first order transition,
while we reserve a double dash, =, for a second order transition. Along the segment
AC1, a biaxial nematic phase appears and the phase sequence is: I − NU = NB .
The same phase sequence is expected within the blue sector, and by symmetry, also
within the yellow and green sectors, although in these last two regions it will be the
molecular y or x-axes which align in the intermediate uniaxial phase. We emphasize
the phase sequence I−NU = NB is valid only in the inner part of the sectors and not
along the edges between two sectors. We postpone the discussion of this interesting
point when we study the phase behavior along the segment C3B.

The point C1 represents a tricritical point. Here the continuous transition NU =
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NB becomes first order. Therefore the phase sequence in the tiny red regions is
I −NU −NB . As we move towards the cubic point, we hit the triple point C2 where
all the three phases, I, NU and NB coexist. As we move further the anisotropic
interactions of the molecular axis become comparable and the molecules want to
align along all the axes as soon as the temperature is low enough to abandon the
isotropic phase. Therefore, in the grey region there is a direct first order transition to
the NB phase: I −NB . The point C3 is where the line of triple points and the line of
tricritical points meet. We call this a Landau critical end point.

At C3 the transition to the NB phase is still direct from the isotropic phase, but
becomes continuous, while at the same time the region over which the direct transition
occurs shrinks to a single line. Furthermore, the same phase sequence, I = NB , is
also observed along the whole segment C3B.

It must be noted, however, that along the segment OB the interaction of the
molecular z-axes is weakly attractive or weakly repulsive (depending on the sign of
λ3), whereas the interactions of the x and y-axes are equal and strongly attractive.
Therefore, the uniaxial phase is never favored since there is not a single preferred
direction of alignment. By contrast, the biaxial phase is possible since the strong
attractive interaction of the x and y axes forces also the z axes to align. Slightly away
from the segment C3B, thus breaking the symmetry of the x and y axes, the NU phase
appears, although the transition I −NU is expected to be very weak. This result is
confirmed by the phase diagrams calculated along the geometric mean approximation
[57, 13, 43], where the transition I −NU becomes weaker and weaker as the point B
is approached.

As a final application, we are now in a position to show how the geometric mean
phase diagram, plotted in Fig.2.2, is transformed when we employ our parametrization
λ1, λ2 and λ3. With reference to Fig.2.4, the geometric mean line corresponds, in our

biaxiality parameter plane, to a circle centered at the cubic point, and with radius
√

2
3 .

In order to study the phase behavior along this line, we use the azimuthal coordinate
ϑ which measures the counter-clockwise angle starting from the point A ≡ (0, 0, 1).
With the aid of Eqs.(2.10) and (2.12) it is possible to show that

γ =
u220
u200

=
1√
2
tan

ϑ

2
, (2.16)

τ =
kBT

u200

(1 + cosϑ

3

)
. (2.17)

The route between (0, 0, 1)(ϑ = 0) and (1, 0, 0)(ϑ =
2π

3
) corresponds to a pro-

gressive exchange of nematic interaction strength between z and x molecular axes,
subject to the geometric mean approximation. This formulation now explicitly en-
sures that the transition temperatures are equal if λ1 and λ3 are exchanged. The

route corresponds to the range

[
0,

2π

3

]
.

These transformations map the phase diagram of Boccara et al.[13] shown in
Fig.2.2 into a different but physically equivalent form shown in Fig.2.5. The diagram is

now explicitly symmetric around ϑ =
π

3
, as one expects from the analytic formulation.

In our picture ϑ = 0 i.e. λ3 = 1, corresponds to nematic rods whose principal axis

lies along the molecular z axis, while ϑ =
2π

3
i.e. λ1 = 1 corresponds to nematic rods

whose principal axis lies along the molecular x axis. This contrasts with the point
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Fig. 2.5. Symmetric form of the geometric mean phase diagram, obtained using the biaxiality
parameters λ1, λ2, λ3. The normalized temperature τ = kBT/U0 is along the y axis and the angle
ϑ, measured from the point A ≡ (0, 0, 1) in counter-clockwise direction, is along the x axis. Compare
to Fig.2.2.

of view put forward elsewhere that in some way the the passage across this phase
diagram corresponds to an exchange of rods and discs, and avoids the puzzle of why
there would be symmetry between the “rod” and “disc” section of the phase diagram.

Interestingly, however, a similar symmetric phase diagram has been obtained by
Zhang and Pallfy-Muhoray [61], where the parameter analogous to our ϑ is connected
to the molecular shape in a dispersive intermolecular interaction. In that case there-
fore, by contrast with the present study, the symmetry around ϑ = π/3 does indeed
mark the passage from rod-like molecules to disc-like molecules.

2.4. Summary. The biaxial liquid crystal molecular field theory picture of Virga
and coworkers (e.g. [56, 21, 12]) demonstrated that the uniaxial-biaxial liquid crys-
tal phase diagram could be much richer than previously expected. In particular, it
became clear that a regime of first-order isotropic-biaxial liquid crystal phase transi-
tions was possible. A prominent part of this theory involved the reduction of the full
set of biaxial parameters to a smaller essential set, which is pictured as an “essential
triangle”. Any other parameter was equivalent to one in the essential set by a group
transformation.

We have reformulated this picture in a manner in which the interactions between
different axes is given a more prominent role. The result is that the group theoretical
structure involved in exchanging order parameters is much more transparent. The
transformed essential triangle now transforms into an identical triangle, albeit rotated
or reflected. As a parenthetical remark here, we note that the “dispersion parabola”
of Ref.[21] is transformed to the geometric mean circle in our picture. Our triangles
are related to the triangles of Ref.[21] through a projective transformation, which
transforms one conic section (a parabola) to another (a circle) 1.

The basic picture of Fig. 2.4 will be robust with respect to changes of intermolec-
ular potential, so long as the basic D2h symmetry of the molecules and the phases
is retained. The picture will change, if for example, the system is constrained to a

1We are grateful to Professor E.G. Virga for this observation
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surface [9, 52], the principal axes are tilted with respect to each other, extra order
parameters are required, and the low temperature symmetry of the phase is no longer
D2h, as for example is the case in our recent study of C2h systems [44].

The least robust feature of Fig. 2.4 is the small region marked in orange, in which
there are successive first order transitions I −NU and NU −NB . It seems likely that
changes in the parameterization of the interaction in mean field theory, or fluctuation
effects in real systems, could cause the orange region to collapse entirely. Thus from
the point of view of statistical mechanics, this narrow region, corresponding to a small
parameter regime, presents an interesting challenge, both from a mathematical and
an experimental point of view.

A second interesting regime corresponds to the outer region close to the edges of
the “blue” triangle in Fig.2.3. In this region, the biaxial low temperature phase is
only just stable. In real systems, this region will probably be pre-empted by other low
temperature phases. But in model lattice systems, the multiphase lines are analogous
to other multiphase lines in systems with competing interactions [34]. Thus the mul-
tiphase lines corresponding to this edge could exhibit rich structure, particularly if
the nearest neighbor interactions are complemented by longer-range interactions with
countervailing effects.

So far in this paper we have been concerned with global features of the phase
diagram, rather than details of the dependence of order parameters on temperature.
However, these details are also important in experiments. Furthermore, many fea-
tures of the order parameter-temperature-biaxiality interdependence are amenable to
analysis, and it is to this that we turn next.

3. Landau-like approximation for the ordered phases. In this section we
shall be concerned primarily with the low temperature limit of molecular field theories
of biaxial liquid crystals. This region is pre-empted by other more ordered phases
in real liquids. It is however of considerable theoretical interest. In many cases,
it is tempting to derive a phase diagram and temperature dependence of the order
parameters computationally, without enquiring further into the details of the behavior.
Analysis, however, gives insight into the results.

The derivation of the classical Landau-de Gennes free energy expansion is valid
near the isotropic phase, close to the nematic–isotropic transition temperature. There-
fore, it is well expected that the predictions are non-physical in the low-temperature
regime; specifically, the order parameter S is not constrained to reach one (perfect
order), when the temperature goes to zero. Furthermore, for some values of the rel-
ative molecular biaxiality parameters, the order parameter S is non-negligible close
to the NU −NB phase transition line. Therefore, S possibly lies outside of the limits
of validity of the Landau expansion and this fact questions the applicability of the
classical Landau approximation to the study of the uniaxial–biaxial phase transition.

An alternative method to construct a (non-equilibrium) free energy density, is
the KKLS method [36, 43]. It borrows the internal energy from the Maier-Saupe
theory [48], but, unlike the molecular field theory, it derives the singlet orientational
probability distribution from the maximum entropy principle [35, 33]. This result has
been independently obtained by a number of authors [5, 6, 7]. A similar approach, in
the context of Onsager-style models, was first derived by Colot et al [15] and rederived
in somewhat simpler form by Fatkullin and Slastikov [24, 25].

This method has already been successfully applied to study the phase transitions
in liquid crystals [36, 43, 5, 6]. However, it has always been used as an alternative to
the standard Landau approximation of the free energy. In such cases one performs
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a polynomial expansion of the probability distribution around an isotropic phase in
which all the order parameters vanish.

In contrast, here we show that the validity of the KKLS approach is not limited to
this case. Indeed, alternative approximations can be found which yield a Landau-like
free energy that is valid in the high order regime S → 1, i.e., at low temperatures.
The final approximation to the free energy does not involve complicated integrals
and its study only requires the minimization of a function with respect to the order
parameters. What is lost, however, is the simple polynomial expression of the Landau
free energy. As we shall see, a more complicated functional dependence must be
considered, specifically a logarithmic dependence on the dominant order parameters
(see also Ref.[7]).

3.1. Introductory example: uniaxial molecules in a uniaxial phase.

3.1.1. Free energy functional. Before embarking on the study of biaxial ne-
matic liquid crystals, we present the method by calculating the Landau-like free en-
ergy, as derived in the KKLS protocol, for a system of uniaxial (D∞h) molecules in a
uniaxial (D∞h) phase. This was the standard example used in the original Ref.[36],
but, as opposed to what is done in [36], we now approximate the free energy in the
high order phase.

The only necessary order parameter is S, as defined in Eq.(2.1). The average
is performed with respect to the orientational probability function f(β), where β is
the angle between the molecular symmetry axis and the director. The function f(β)
is derived from the maximum entropy principle, i.e., it is chosen as to maximize the
entropy (kB is the Boltzmann constant)

S = −kB
∫ π

0

f(β) log f(β) sinβ dβ , (3.1)

under the constraints

S =
1

2
〈3 cos2 β − 1〉 ,

∫ π

0

f(β) sinβ dβ = 1 . (3.2)

Here the angle brackets mean the ensemble average with respect to f :

〈ψ〉 =
∫ π

0

ψ(β)f(β) sinβ dβ . (3.3)

The general form of the orientational distribution function is that of the Maxwell-
Boltzmann probability distribution [35, 33]. In our specific example this is

f(β, η) =
1

Z(η)
eη(3 cos2 β−1)/2 , (3.4)

where Z(η) is the partition function

Z(η) =

∫ π

0

eη(3 cos2 β−1)/2 sinβ dβ , (3.5)

and η is the Lagrangian multiplier associated with the constraint in Eq.(3.2) for fixed
S. The entropy is then calculated in terms of both S and η as

S = −kB
[
η S − logZ(η)

]
. (3.6)
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The Lagrangian multiplier η is related to the order parameter via the identity

S =
∂ lnZ(η)

∂η
, (3.7)

which, in principle, can be inverted to give η as a function of S. The function η = η(S)
can then be inserted in (3.6) to give an expression of the entropy uniquely in terms
of the order parameter S. In practice, without the introduction of special functions,
the inversion of Eq.(3.7) can be performed only approximately and even then only in
limited regions of the whole range η ∈ [0,+∞).

3.1.2. Mathematical remarks.
(i) The entropy, as given in (3.6), is proportional to the Legendre transform [37]

of the function logZ(η), where the conjugate variables are η and S. The
involutive property of the Legendre transform then yields

∂S
∂S

= −kBη . (3.8)

The Lagrangian multiplier η is thus a “reactive force” originated by the con-
straint Eq.(3.2) for fixed S [37].

(ii) Once the dependence of the Lagrangian multiplier on S is known, Eq.(3.8)
can be integrated to give the entropy as a function of S. This is of course an
alternative procedure with respect to Eq.(3.6) to obtain the entropy. This is
the key step enabling the free energy to be expressed as a function of S, and
not merely a functional of f(β).

(iii) In more complicated cases, when multiple order parameters (and therefore
also multiple Lagrangian multipliers) are introduced, say Si, ηi, i = 1 . . . n,
Eq.(3.8) implies that the following compatibility conditions must hold:

∂ηi
∂Sj

=
∂ηj
∂Si

. (3.9)

(iv) In the standard applications of the method, the partition function is expanded
around η = 0 and then a series expansion of S in terms of powers of η is
obtained from Eq.(3.7). This expansion is then inverted [1] to give the Taylor
expansion of η in terms of powers of S. The leading order of this expansion
is η ∼ S, thus indicating that expanding Z(η) around η = 0 corresponds
to the high temperature approximation of the free energy (S ≈ 0). This is
consistent with the idea of a Lagrangian multiplier being a “reactive force”
that imposes the constraint. When S ≈ 0, the probability distribution is close
to being uniform and thus the entropy is close to its free maximum, where no
constraint is actually needed. This approximation is expected to be accurate,
and indeed it is [43], only close to the I −NU phase transition.

(v) By contrast, in the limit S → 1 (high order phase), the constraint must im-
pose an infinite “reactive force” in order to obtain a probability distribution
far from the entropy-free maximum. Imposing S → 1 selects z as the pre-
ferred molecular and laboratory axes, which may seem contrary to the spirit
of the symmetry-preserving representation of the phase sequences given by
the ternary diagram discussed in Sec.2. However, for some practical purposes
it is indeed helpful to use coordinates. The use of the ternary diagram easily
allow us to divide the biaxiality parameter plane into equivalent regions and
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therefore the results obtained for a particular choice of preferred axes can be
easily mapped into equivalent results in the other regions. Once this symme-
try is clearly understood and easily accessible there is no intrinsic restriction
in assigning a preferred status to any of the molecular and laboratory axes.

3.1.3. Low temperature expansion of the Maier-Saupe theory. As a new
application of the method, we seek an asymptotic approximation of the partition
function, as η → +∞. To this end, we apply the Laplace method [8] to the integral
(3.5) as η → +∞. To leading order we find

Z(η) ∼ 2eη

3η
. (3.10)

Using the identity (3.7) we derive S = (η− 1)/η, which is then easily inverted to give
η = 1/(1−S). Neglecting the irrelevant constants in the entropy, Eq.(3.6) or Eq.(3.8)
then yield

S = kB log(1− S) . (3.11)

With the purpose of writing the free energy, we use the internal energy as derived
from the molecular field theory and simplify Eq.(2.3) to give

U = −u200
2

S2 . (3.12)

Eq.(3.12) is consistent at equilibrium with the classic Maier–Saupe expression, which
is used to construct the equilibrium free energy in a molecular field approximation.
Finally, we arrive at the following expression for the free energy difference per particle,

F = U − T S = −u200
2

S2 − kBT log(1− S) , (3.13)

where T is the absolute temperature.
The presence of a logarithmic singularity at S = 1 constrains the order parameter

S to remain below its limiting value of unity at perfect order. As such it is expected;
this idea has been explored from a slightly different point of view by Ball and Majum-
dar [7]. This is to be contrasted with standard Landau expansions of the free energy
(S ≈ 0), for which there is no upper bound for the predicted order parameter S at
low temperature. In the low S limit this is, of course, an unimportant constraint.
The equilibrium order parameter obtained from the minimization of Eq.(3.13) is cal-
culated to be S = (1 +

√
1− 4kBT/u200)/2. We then verify directly that S ≤ 1, for

all temperatures.

3.2. Biaxial molecules in a biaxial phase.

3.2.1. Theory. We now apply the KKLS procedure to the study of a system
composed of biaxial (D2h) molecules in a biaxial nematic (D2h) phase. The ap-
proximation now entails all the four order parameters S, P , D and C as defined in
Eqs.(2.1),(2.2), where the average is performed over all possible Euler angles α, β and
γ:

〈ψ〉 =
∫ π

0

sinβ dβ

∫ 2π

0

dα

∫ 2π

0

dγ ψ(α, β, γ) . (3.14)

The partition function is

Z(η) = 〈exp[ηSψS(β) + ηPψP (β, γ) + ηDψD(α, β) + ηCψC(α, β, γ)]〉 . (3.15)



20 S.S. TURZI AND T.J. SLUCKIN

The functions ψS , ψP , ψD and ψC are defined as the angular functions in Eqs.(2.1),(2.2)
whose averages yield the order parameters S, P , D and C, respectively. Our purpose
is to write a Landau-like free energy that correctly describes the uniaxial-to-biaxial
phase transition, when it occurs at low temperatures. Specifically we suppose the
transition to appear in the nearly perfectly aligned uniaxial phase. Implicitly we also
suppose weak molecular biaxiality.

We thus now seek an approximate expression of the partition function assuming
that the system is initially in a well-ordered uniaxial nematic phase, with S ≈ 1
and C ≈ 0. Moreover, the condition S ≈ 1 implies small values for the minor order
parameters, therefore we can also assume P ≈ 0 and D ≈ 0.

Remark 3.1. This is not the only possible choice. We could choose S ≈ 1
and C ≈ 3. This yields the approximation to the free energy in a nearly perfectly
ordered biaxial nematic phase. Minimization of this free energy then yields the low
temperature behavior of the minor order parameters P , D.

This approximation corresponds to evaluating the integrals in Eq.(3.15) in the
limit ηS → +∞ and ηC ≈ 0. We therefore apply the Laplace method with respect to
ηS . To be able to include the effects of the minor order parameters, we do not limit
the expansion to the leading order, but we carry it up to O(β6), yielding

Z = eηSI0(3ηC)
[ 1

3ηS
+

1

9η2S
+

1

405η3S
+
η2P + η2D + η2C

6η3S

]
+ eηSI1(3ηC)

[
− ηC

3η2S
+

ηC
6η3S

+
ηDηP
3η3S

]
+ eηSI2(3ηC)

η2C
6η3S

+ o
(eηS

η3S

) (3.16)

where Iν(z) is the modified Bessel function of the first kind [1].
The relations between the order parameters and the Lagrangian multipliers, anal-

ogous to Eq.(3.7), yield the series expansion of the order parameters in terms of 1/ηS ,
ηP , ηD and ηC . The inversion of these expansion, to give the dependence of the La-
grangian multipliers in terms of the order parameters, requires some extra care with
respect to the uniaxial case studied in Sec.3.1. However, with the aid of Eq.(3.9), the
leading asymptotic behavior is found to be

ηS ∼ 1− S

(1− S)2 − (P 2 +D2)
, ηP ∼ P

(1− S)2 − (P 2 +D2)
, (3.17)

ηD ∼ D

(1− S)2 − (P 2 +D2)
, ηC ∼ 2

9
C . (3.18)

After some algebra, which we omit for brevity, the higher terms of the inversion
can also be identified. By integration is easy to show the leading contribution to the
entropy is, as for the uniaxial case of Sec.3.1, a logarithmic function:

S ∼ kB
2

log[(1− S)2 − (P 2 +D2)] (3.19)

Finally, following the KKLS protocol outlined in Sec.3.1 and using the internal
energy as given in Eq.(2.13) leads to the free energy expansion,

F/U0 = −1

3

[(λ1 + λ2
4

+ λ3

)(
S2 +

1

3
P 2

)
+

1

2
(λ2 − λ1)

(
S D +

1

3
PC

)
+

1

4
(λ1 + λ2)

(
D2 +

1

3
C2

)]
− τ

{1

2
log[(1− S)2 − (P 2 +D2)]

− C2

9
− C4

324
− 2

27
C2 (1− S)2 − (P 2 +D2)

1− S

}
,

(3.20)
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where τ = kBT/U0 is the reduced temperature.
In writing the free energy (3.20) we have omitted for simplicity the polynomial

part of (1 − S) since it gives only small corrections to the entropy. Indeed, the
logarithmic part dominates the entropy in the limit of uniaxial order S ≈ 1, P ≈ 0,
D ≈ 0. By contrast and as a consequence of our approximation, the free energy
has only a polynomial dependence on the order parameter C and at least the fourth
degree must be retained in order to study the NU −NB transition. The last term of
Eq.(3.20) is the lowest degree term that couples the biaxial order parameters C with
S. Of course, more elaborate expansions for the free energy could be obtained by
keeping higher order terms. However, this could be done only at the cost of greatly
complicate the free energy and with a little gain for the physical insight.

3.2.2. Applications.
(i) Order parameter properties in a uniaxial (NU ) phase of biaxial (D2h) mo-

lecules. The relevant order parameters in this case are S and D, since by
assumption P = C = 0. The equilibrium order parameters are critical points

of the free energy (3.20) and hence solve the two equations
∂F

∂S
= 0 and

∂F

∂D
= 0. The reduced temperature, τ , can be eliminated from these equa-

tions to yield the following equation for the order parameters:

λ1(D − S)(1− S +D) + λ2(1− S −D)(D + S)− 4λ3SD = 0 . (3.21)

This equation can be used to calculate D as a function of S at equilibrium.
The leading approximation to the solution of Eq.(3.21), as S → 1, is

D =
λ2 − λ1

λ1 + λ2 + 4λ3
(1− S) + o

(
(1− S)2

)
. (3.22)

A few comments on these results are now in order.
Remark 3.2.
(a) We have shown rigorously that D → 0 as S → 1. This is physically

intuitive from the definition of S and D. In Eq.(2.1), S ≈ 1 implies
β ≈ 0 and hence in Eq.(2.2) D ≈ 0.

(b) We further find that D ∼ (1− S) at very low temperature.
(c) Along the Sonnet-Virga-Durand line, where λ1 = λ2 and the x and y

molecular axes are equivalent, D vanishes identically.
(ii) Can a system of uniaxial D∞h molecules posses a NB phase? Intuitively this

seems unlikely, but it is desirable to see this explicitly in the mathematical
description. To this end, we set D = C = 0 in Eq.(3.20). The minimization
of the free energy then immediately yields P = 0. Therefore, the KKLS-
derived free energy prohibits a NB phase for uniaxial molecules, even at low
temperature. This is to be contrasted with at least formal predictions of
standard Landau theories [17, 29] and molecular field theories [45].

(iii) The NU−NB phase boundary line along the Sonnet-Virga-Durand line. Within
this approximation, the critical points of F have P = D = 0. The only
“essential” variables in this case are S and C. We set λ = λ1 = λ2 and
λ3 = 1− 2λ. The phase line is determined by the loss of stability of the uni-
axial minimum. We therefore write the two following equations in the three
unknowns S, λ and τ , and evaluated at P = D = C = 0:

∂F

∂S
= 0 ,

∂2F

∂C2
= 0 . (3.23)
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The first equation is the equilibrium condition for the uniaxial order param-
eter S. The second equation expresses the bifurcation condition valid for a
second-order transition to the NB phase. The order parameter S can now
be easily eliminated from Eqs.(3.23) to yield an implicit expression of the
transition line, in terms of λ and τ :

16τ3 + (2− 3λ)(3λ− 10τ)(λ− 2τ) = 0 (3.24)

It is known from [56] that along this line there is a tricritical point, where
the transition NU = NB becomes first order. To locate the tricritical point
we resort to the method described in Ref.[21, 28]. This entails the solution
of the additional equation

∂2F

∂S2

∂4F

∂C4
− 3

( ∂3F

∂S∂C2

)2

= 0 , (3.25)

evaluated at P = D = C = 0. Eqs.(3.23) and (3.25) are three equations in
the unknowns S, λ and τ which can be solved numerically to give the location
of the tricritical point, yielding (λT , τT ) ≈ (0.26, 0.10). This region is close
to the NU − I transition, where our approximation would not normally be
expected to yield accurate results. But remarkably, the estimated position of
the tricritical point is in rather good agreement with the numerical results of
the mean-field theory described in Ref.[56].

4. Discussion. We first look at the context of our study. The study of phase
transitions in thermotropic nematic biaxial liquid crystals has attracted much theo-
retical and experimental work over recent decades. Nevertheless a complete under-
standing of this phenomenon remains elusive, as the continuing debate over recent
relevant experimental results [47, 2] testifies. Following as a consequence of this de-
bate, the experimental rarity of the NB phase has come as a surprise to the theoretical
community. It seems likely that the theoretical models remain inadequate. However,
it is possible that insufficient theoretical attention has been paid to competition with
crystalline phases. It may also be that some future insight will make the synthesis of
biaxial phases much easier.

We now turn the content of the paper itself. Theoretical studies of biaxial phases,
even in the context of the molecular field theory, have employed a wide range of
notations. These seem to have been mainly motivated by the personal taste of the
authors [54], rather than by any overarching strategy. The first part of this paper
demonstrates, however, that the symmetry of the system dictates a natural choice
of biaxiality parameters. The key advantages of the representation which we have
introduced are a clearer visualization of the various phase diagram and the easy
exploitation of the symmetry. It is in fact straightforward to identify the regions of
the biaxiality parameter space where the system has equivalent physical behavior. In
this way all the known results in the literature are unified under a common framework
and their intimate connections are revealed. In other words, we have shown that, in
order to obtain a clean, symmetry preserving, description of the phase diagram, the
group theoretical structure involved in exchanging order parameters must be explicitly
considered when choosing molecular biaxial parameters.

In the second part of the paper we have derived a Landau-like expansion of the
free energy that can accurately describe the system in an ordered phase, where, by
contrast, the validity of standard Landau theory is questionable. In doing so, we
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have followed the maximum entropy principle, first outlined in the context of liquid
crystals almost 25 years ago [36], and rediscovered independently in Refs.[7, 5, 6]. The
advantages of our method over the standard Landau theory are thoroughly discussed
in [43]. The resulting low-temperature approximation is non-polynomial in the order
parameters. This, however, is to be contrasted with the standard Landau theories,
where the free energy is constructed form the polynomial invariants.

We have shown that the non-polynomial nature of the free energy is essential in
order to predict the correct limiting values of the order parameters in the ordered
phases. These limiting values are neglected in the standard Landau approximation
because this is the truncation of a polynomial expansion, e.g., the order parameter S
is not constrained to go to 1, as τ → 0 [50]. This implies that the strategy adopted in
the Landau expansions, i.e., build the free energy taking a linear combination of all
the polynomial invariants with phenomenological coefficients, must fail because the
low temperature expansion of the free energy necessarily comprises non-polynomial
invariants (now of a subgroup of the original symmetry group), specifically in our
case, a logarithmic invariant.

We have therefore presented a procedure, where the internal energy is taken from
the molecular field theory and the entropy is derived from the maximum entropy prin-
ciple. This yields a Landau-like approximation of the free energy which is consistent
with the physical bounds. The procedure is simple enough to perform an analysis of
the order parameters analytically or semi-analytically. As examples of applications
we have derived the dependence of the minor order parameters, P and D, on the
major order parameter S and on molecular shape. We have also been able, using
low temperature extrapolations alone, to estimate the existence and position of the
NU −NB tricritical point, which was a surprise when first derived theoretically.
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