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Nematic liquid crystals composed of bent-core molecules exhibit unusual properties, including an
enhanced Cotton-Mouton effect and an increasing isotropic (paranematic)-nematic phase transition
temperature as a function of magnetic field. These systems are thought to be good candidate biaxial
liquid crystals. Prompted by these experiments, we investigate theoretically the effect of molecular
biaxiality on magnetic field-induced phenomena for nematic liquid crystals, using both molecular
field and Landau theory. The geometric mean approximation is used in order to specify the degree of
molecular biaxiality using a single parameter. We reproduce experimental field-induced phenomena,
and predict also an experimentally accessible magnetic critical point. The Cotton-Mouton effect
and temperature dependence of the paranematic-nematic phase transition are more pronounced
with increased molecular biaxiality. We compare our theoretical approaches and make contact with
recent relevant experimental results on bent-core molecular systems.

PACS numbers: 78.15.+e, 64.70.M-.

I. INTRODUCTION

In external fields, nematic-forming fluids exhibit a
number of common characteristics close to the onset of
the nematic phase [1]. First, the field induces a low de-
gree of orientational order in the isotropic phase, caus-
ing it now to be known as a paranematic phase. The
order parameter 〈P2〉 of the new phase is proportional
to the quadratic power of the applied field. This phe-
nomenon is called the Cotton-Mouton effect if the field is
magnetic and the Kerr effect if the field is electric. Sec-
ond, the temperature TNP of the first order phase tran-
sition from the more ordered phase to the less ordered
phase is shifted towards a higher temperature as the field
strength increases. This shift in the transition tempera-
ture also increases linearly with the quadratic power of
the applied field strength. Finally, there is a critical field

strength, above which it is predicted that there will be
no clear transition between the nematic and the parane-
matic phases.
Early experimental studies by Stinson and Litster us-

ing just a magnetic field revealed a Cotton-Mouton ef-
fect [2] in nematics formed of rod-like (or calamitic)
molecules, but did not observe a temperature shift in
TNP . Later Rosenblatt [3] was able to observe an in-
crease in the transition temperature, but the shift was
negligible, of only a few mK. More recently, all three field-
induced phenomena have been observed experimentally
for a system of calamitic molecules in electric fields by Le-
lidis and Durand [4]. However, in general these effects are
also weak and difficult to observe. In recent years anal-
ogous experiments have been carried out on systems of
bent-core molecules. Wiant et al.[5] observed a Cotton-
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Mouton effect, while in related work Ostapenko et al.[6],
using the bent-core molecule 4-chlororesorcinol bis[4-(4-
n-dodecyloxybenzoyloxy) benzoate] (ClPbis10bbs) (see
Fig.1 observed both a strong Cotton-Mouton effect and
a marked increase in TNP . The implication is that in
bent-core nematics, magnetic effects on the nematic-
paranematic phase transition may be stronger than in
conventional calamitic nematics, and the consequent
magnetic critical point may also be much more acces-
sible. This paper addresses the theoretical question of
why this might be the case.

FIG. 1. The molecular structure of the liquid crystal mate-
rial 4- chlororesorcinol bis[4-(4-n-dodecyloxybenzoyloxy) ben-
zoate] (ClPbis10bbs) used in the experiment by Ostapenko et

al.[6].

The effect of an external field in general on the
nematic-isotropic phase transition can be addressed us-
ing either the Landau-de Gennes theory, or by using
molecular field theory. However, the question of the
origin of the field (electric, magnetic etc.) makes lit-
tle difference to the mathematical structure of the the-
ory. Landau-de Gennes theories for electric [4] and mag-
netic [1, 7] fields both give analytical formulas for the
three field-induced phenomena discussed above. Anal-
ogous calculations for nematics formed from calamitic
molecules, using Maier-Saupe-like molecular field theo-
ries in the presence of an external field, have been made
by Hanus [8] (electric fields) and Wojtowicz and Sheng
[9] (magnetic fields). A comparison of the Landau-de
Gennes theory and the analogous molecular field theory
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for such a magnetic field-induced nematic was carried
out by Palffy-Muhoray and Dunmur [10]. In positive
diamagnetic anisotropy materials, both paranematic and
nematic align with the director parallel to the field. How-
ever, for negative anisotropy materials, the director tends
to align perpendicular to the field in the nematic phase,
but parallel to it in the paranematic phase.

This general picture has also been confirmed by simu-
lation. Luckhurst and Simpson [11] carried out a series of
Lebwohl-Lasher [12] lattice Monte Carlo simulations for a
nematic in a magnetic field, which supported the hypoth-
esis of a critical field strength. A more recent series of
lattice simulations, using the Zwanzig model of discrete
orientations [13], has been performed by by Warsono et

al.[14]. This simple simulation also reproduces the mag-
netic field-induced nematic-to-paranematic phase transi-
tion and the critical field.

Ostapenko et al [6] associated the strong effects which
they observed in their experimental system with two pri-
mary factors. The first was the strong magnetic field (∼
31T) available. The second was that the material un-
der study was formed from bent-core molecules. Within
the Landau-de Gennes theory, a strong Cotton-Mouton
effect at TNI and a strong shift in TNP (B) would oc-
cur if the coefficient of the cubic term in the Landau-de
Gennes expansion were in some sense small. They ar-
gue empirically for a connection between the smallness
of the cubic parameter and the bent-core V-shape. In
this paper, we shall specifically address the question of
the connection between these quantities, noting that the
constituent bent-core molecules used in this experiment
are highly biaxial.

This bulk of this paper is concerned with the effect
of molecular biaxiality on magnetic-field induced phe-
nomena for nematic liquid crystals, with an underlying
goal of addressing the recent experimental findings [6] on
bent-core molecule liquid crystals discussed above. The
high biaxiality of these molecules depends on the inter-
arm angle. As a result, we expect the magnitudes of the
magnetic-field phenomena for bent-core molecule systems
to be different from those in calamitic molecule systems.
We develop a molecular field theory as an extension of the
theory by Wojtowicz and Sheng [9] since it is a straight-
forward theory which allows us to include molecular bi-
axiality. We note that a simple molecular field theory for
uniaxial nematic formed from biaxial molecules in the
absence of any external field was developed some time
ago by Luckhurst et al.[15]. This theory has been used
to improve the numerical agreement between theory and
experiment of the major order parameter S at the tran-
sition, the transitional entropy, the dependence of S on
the temperature and the non-zero value of the molecu-
lar biaxial order parameter D [15]. In this context, the
present theory may also be viewed as an extension of
that theory for a uniaxial nematic formed from biaxial
molecules, now also specifically including the interaction
of the constituent molecules with the magnetic field. The
layout of the paper is as follows.

The molecular field theory is discussed in section II. In
addition to studying the molecular field theory, we also
derive a Landau-de Gennes expansion from the molecu-
lar field theory for uniaxial nematic formed from biaxial
molecules in section III. The methodology is an exten-
sion of that developed by Katriel et al.[16] for uniaxial
nematic formed from uniaxial molecules, and later ex-
tended by Luckhurst et al.[17] to study nematics formed
from biaxial molecules. Using this method, we demon-
strate that the cubic expansion coefficient B can be re-
lated to the molecular biaxiality. Since typical bent-core
molecules are highly biaxial and depend on the angle
between the two arms, their system has a significantly
smaller value of B than for calamitic molecules. Finally,
we discuss our results in section IV.

II. MOLECULAR FIELD THEORY

A. Self-consistent free energy

a. Background to theory. The theory combines ele-
ments of the molecular field theory of biaxial liquid crys-
tals developed elsewhere [15, 18–21], with the molecular
field theory of uniaxial liquid crystals in an external field
[9]. Molecular orientation ω is parameterized in terms of
two Euler angles β, γ taking their conventional meanings
(polar angle β and azimuthal angle γ). The Euler angle
α is only of interest in a specifically biaxial phase, and is
not required here. In this part of the theory, we suppose
constituent molecules to possess D2h symmetry (i.e that
of an orthogonal parallellepiped). We note, however, that
the molecules of ultimate interest in this theory possess
C2v symmetry. Nevertheless, the second order invariants
associated with these two different symmetries are the
same.
b. Spherical harmonics. Two second-order spherical

harmonics play an important role in a uniaxial nematic
formed from biaxial molecules. These are:

C20(ω) =
1

2

(

3cos2β − 1
)

= P2(cosβ), (1a)

ReC22(ω) =

√

3

8
sin2βcos2γ, (1b)

where P2(cosβ) is the usual second order Legendre poly-
nomial. The required order parameters are the mean
values of these quantities:

S = 〈C20(ω)〉 =
〈

1

2

(

3cos2β − 1
)

〉

= P̄2, (2a)

D = 〈ReC22(ω)〉 (2b)

The order parameter D gives information about the rel-
ative degrees of orientation of the minor order axes, i.e.
its biaxiality. A detailed discussion of order parameters
and their significance, as well as conventions in theories
of biaxial liquid crystals, is given by Rosso [22].
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c. Biaxiality parameter and geometric-mean approx-

imation. We now formulate the internal energy per
molecule. In zero field, this internal energy is constructed
as a rotational invariant of the quadratic products of the
second-rank order parameters [20],

UM = −1

2

∑

u2mn〈C2m〉〈C2n〉. (3)

Here, the scalar components of the supertensor u2mn

are called interaction coefficients. Since the constituent
molecules have C2v symmetry, there are only three
second-rank interaction coefficients, u200, u202 ≡ u220

and u222 [23].
In order to reduce the number of parameters, we use

the geometric-mean approximation [15] (GMA). In this,
the molecular interaction only depends on one relative bi-
axiality parameter, λ = u222/u202 = u202/u200. We note
that the notation λ for the biaxiality parameter is con-
sistent with the usage of Luckhurst et al.[15], but differs
from that of Sonnet et al.[24], and of Luckhurst et al.[17].
A key simplification of the GMA, at least within molec-
ular field theory, is that now there is only one combina-
tion of spherical harmonics J entering the theory [15, 17].
Likewise there is only a single independent order param-
eter J = 〈J(ω)〉 (the composite order parameter), where

J(ω) = C20(ω) + 2λC22(ω). (4)

In the presence of a magnetic field, the internal energy
consists of two parts. The first part is the molecular
interaction, UM . The second part, UB , is generated by
the interaction of the molecule with the applied field.
Following de Gennes [25], this is given by

UB = −3

4
B2

2
∑

n=0

χ2n〈C2n〉, (5)

where B and χ2n denote the magnetic flux density
and the molecular magnetic susceptibility tensor, respec-
tively. There are two strength parameters χ20 and χ22.
An approximation in the spirit of the GMA is that

χ22 = λχ20. (6)

The underlying assumption here is that the biaxiality in
χmn is the same as in u2mn, which is plausible, although
at this stage untested.
Subject to these approximations, the internal energy of

a biaxial molecule in a uniaxial nematic in the presence
of a magnetic field reduces to

U = UM + UB = −1

2
u200J 2 − 3

4
χ20B

2J

= u200

[

−1

2
J 2 − V J

]

, (7)

which is a function only of the single composite order
parameter J . It is apparent that the elimination of the

second independent parameter simplifies the mathemati-
cal problem significantly. The term on the extreme right
scales all energies with respect to u200. The quantity

V =
3

4

B2χ20

u200

(8)

serves as a non-dimensional measure of the effective im-
posed external field. It is proportional to the square of
the imposed magnetic or electric field, and is also pro-
portional to the physical coupling constants. A scaled
temperature can also be expressed in terms of u200:

T ∗ =
kBT

u200

, (9)

where kB is Boltzmann’s constant.
d. Free energy functional. The free energy func-

tional A[f(ω)], where f(ω) is the singlet orientational
distribution function, is now constructed in the usual way
[26], by combining energy and entropy terms:

A = U − TS, (10)

where T denotes the absolute temperature, and S is the
relative orientational entropy. The order parameters can
be expressed in terms of f(ω):

〈C2m〉 =
∫

dωC2m(ω)f(ω), (11a)

while the composite order parameter J is given by:

J = 〈J(ω)〉 =
∫

dωJ(ω)f(ω), (11b)

the orientational entropy is given by

S = −kB

∫

dωf(ω) ln f(ω), (12)

and the distribution function is subject to a normalisa-
tion condition

∫

dωf(ω) = 1. (13)

The distribution function f(ω) is determined by the
free energy given in eqs.(7),(10)) subject to the constraint
eq.(13) [25]. The resulting singlet orientational distribu-
tion function is given by

f(ω) = Q−1exp (U(ω)/kBT ) , (14)

where Q denotes the orientational partition function

Q =

∫

dωexp (U(ω)/kBT ) , (15)

and where the potential of mean torque U(ω) is given by

U(ω) = −
(

∑

u2mn〈C2m〉C2n(ω)

+(3/4)B2χ2nC2n(ω)
)

. (16)

Using eq.(7), this can be reexpressed in terms of J as
follows:

U(ω) = −u200 (J + V ) J(ω). (17)
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e. Self-consistent equation. Combining eqs.(14,17),
together with eq.(9) the quantity J can be expressed
self-consistently in terms of the scaled temperature T ∗

and scaled external field V as follows:

J = Q−1

∫

J(ω) exp
(

J + V
)

J(ω)/T ∗dω, (18)

with

Q =

∫

exp
(

J + V
)

J(ω)/T ∗dω (19)

We note that evaluation of J is sufficient to solve for
order parameters as a function of temperature, as the
potential of mean torque is now specified.
f. Cotton-Mouton effect. Here we recapitulate pre-

vious work on the stability of the isotropic phase, and
bifurcations rendering it unstable (see e.g. Mulder [27]).
Eq.(18) can also be used to calculate the degree of or-
der induced in the isotropic phase above TNI . In this
regime J ≪ 1, and the exponentials in eqs.(18,19) can
be expanded to lowest order, yielding:

J =
1

4π

∫

J(ω)
(

1 + (J + V )
J(ω)

T ∗

)

dω. (20)

The linear response of J to an imposed field V can then
formally be derived, noting that

∫

J(ω)dω ≡ 0. (21)

Thus

J =
T ∗

bf

T ∗

(

J + V
)

, (22)

with T ∗

bf formally defined by

T ∗

bf =
1

4π

∫

dωJ(ω)2. (23)

Rearanginging eq.(22), we obtain

J =
T ∗

bf

T ∗ − T ∗

bf

V, (24)

in the limit that V is infinitesimally small. Thus the
orientational order is proportional to V and hence to the
square of the field, as expected, and the non-dimensional
Cotton-Mouton coefficient is given by:

κ =

(

∂J
∂V

)

V=0

=
T ∗

bf

T ∗ − T ∗

bf

. (25)

The quantity T ∗

bf is thus seen to be the orientational spin-
odal temperature of the fluid in scaled units. It is the
temperature at which the spontaneous response of the
orientational order parameter to an orienting field would
diverge in the isotropic phase. In normal circumstances,
T ∗

bf < T ∗

NI , and so this temperature is not reached. But
the closeness to which it is reached is dependent on the
relative biaxiality λ.

g. Relationship of relative biaxiality parameter to

bent-core molecular shape. In this paper we discuss ex-
periments on bent-core nematogens, characterised by an
interarm angle θ, while attributing their properties to bi-
axiality, characterised by parameter λ. This problem has
been addressed by a number of authors [28, 29]; for an
explicit derivation in the slightly more complex situation
of different arms, see Bates and Luckhurst [30]. The basic
idea is to suppose that the bent-core molecule is formed
from rods glued together, supposing that the rods in dif-
ferent molecules act on each other using interactions with
Maier-Saupe symmetry, and supposing potential energies
to be additive. The key formula [28, 30] is:

λ =

√

3

2

(

1 + cos θ

1− 3 cos θ

)

. (26)

We observe that this formula become meaningless if θ
is too small, and that normally θ ≥ π/2. The value θ = π
corresponds to a straight molecule, which by definition is
not biaxial, and indeed in this case cos θ = −1 and λ = 0.

The special value of λ =
1√
6
(see e.g. Fig 2 below, and

discussed extensively below [18, 19]), at which biaxiality
is maximal, corresponds to the tetrahedral angle θ =
cos−1(−1/3) ≈ 109.47o ≈ 0.61π.
Eq.(26) can be inverted so that for a liquid crys-

tal whose biaxiality can be ascribed to bent-core effects
alone, the bent-core angle can be expressed in terms of
the biaxiality parameter:

cos θ = −





1−
√

2
3
λ

1 +
√
6λ



 . (27)

B. Zero-field phase diagram

We first recall the influence of the molecular biaxiality
on the isotropic-uniaxial nematic transition temperature
within the geometric-mean approximation. The phase
diagram as a function of temperature and degree of bi-
axiality (see Fig.2) was derived by Boccara et al.[18] and
later by Remler and Haymet [19]. These studies also in-
cluded the biaxial nematic phase, which we do not discuss
here.
Fig.2 shows the dependence of the scaled transition

temperature, T ∗

NI , on the relative biaxiality parameter
λ. The key features of this phase diagram are as follows.

(a) The phase transition temperature T ∗

NI is an in-
creasing function of the biaxiality λ.

(b) At a critical value of the biaxiality λ = λm =
1√
6
,

the continuousN+
U −NB transition collides with the

first order I − N+
U transition at what is known as
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FIG. 2. Liquid crystal phase as a function of scaled tempera-
ture T ∗ and biaxiality λ, within the GMA, as calculated e.g.
in ref. [18]. Continuous lines: first-order transitions. Broken
lines: continuous transitions. I: isotropic phase. N+

U : uni-
axial nematic phase formed from calamitic molecules. N−

U :
uniaxial nematic phase formed from discotic molecules. NB :
biaxial nematic phase.

the Landau point. This is a continuous multicritical
point, at which there is a direct I −NB transition
without an intermediate uniaxial phase.

(c) As λ is increased beyond λm, the molecular order-
ing axis switches, as the major and minor symmetry
axes exchange roles. The phase diagram possesses
some reflection symmetry around λm (discussed in
more detail, e.g in [31, 32]), so that the phase N+

U

and N−

U can be regarded as alternative represen-
tations of the same phase. Equivalently, for each
λ > λm it is possible to redefine axes in such a way
as to associate this value of λ with a lower degree
of biaxiality λ′.

Thus the value λm may be regarded as corresponding
to a maximal degree of biaxiality. A comprehensive
study of the effects of biaxiality thus only requires a
study of values of λ ≤ λm, and this is the procedure
which we adopt.

C. Method

Rather than solve eq.(18) directly, we minimise the
Helmholtz free energy

A∗ =
A

u200

= −T ∗ lnQ(J , T ∗) +
J 2

2
, (28)

with Q(J ) defined as in eq.(19). The first derivative of
this equation is the self-consistent equation eq.(18). We
note that there are some subtle analytic points, which
are addressed, for example by Katriel et al.[16]. Strictly

speaking this procedure is not valid everywhere for find-
ing minimisers of A[f(ω)]. However, it is valid for finding
stationary points. In the region of interest the method
also suffices for determining the present quantities of in-
terest.
The procedure determines the equilibrium order

parameter J at a given temperature. The minimisation
uses the MATLAB function fmincon and iterates toward
a solution using a quasi-Newton method [33]. The
nematic-to-paranematic phase transition temperature is
found by determining J , as a function of T ∗, V, λ. The
first-order transition at TNP is located when there is
a discontinuous change in the order parameter J as a
function of T ∗.

D. Results

We first give a general overview of the biaxiality effects.
In Figs. 3 we show the dependence of the order parame-
ter J on the scaled temperature for a number of differ-
ent values of external field V and biaxiality λ. In each
subfigure, biaxiality is constant. For zero field strength,
the first-order transition is between the uniaxial nematic
and the isotropic phases. As λ is increased, the zero-field
transition temperature TNP increases. This result is al-
ready known [18, 26]. However, in some sense, in the
context of this paper, this result is less interesting, for
in any given case, the overall magnitude of the orienting
forces will not be known. Rather, it is the fine structure
of the phase diagram close to the onset of nematic be-
haviour, with or without an imposed external field, which
is of interest. As field V increases, the order parameter
jump ∆J becomes smaller, reducing to zero at a critical
point at (Vc, T

∗

c ). For V > Vc, the nematic phase and
the paranematic phase are no longer distinguishable.
As λ increases, the difference between the zero-field

transition temperature, T ∗

NI , and the critical transition
temperature, T ∗

c , (at the critical field) becomes smaller.
This phenomenon is related to the fact that J at the
phase transition in zero field becomes smaller as λ in-
creases. We note that this feature is likely to be robust
against changes in the overall magnitude of the orienting
force. Higher degrees of biaxiality are expected to show
lower order parameters at the phase transition.
Our calculations also illuminate the effect of biaxiality

on the Cotton-Mouton parameter, as discussed above in
eqs.(24,25). Evaluation of eq.(23) for specific λ yields:

T ∗

bf =
1 + 2λ2

5
, (29)

and hence a Cotton-Mouton parameter

κ =
(2λ2 + 1)

5(T ∗ − T ∗

bf )
. (30)

The maximum value of the Cotton-Mouton coefficient
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FIG. 3. Dependence of the composite orientational order parameter J on scaled temperature T ∗, for different field strengths
V , for several different molecular biaxiality parameters λ, varying from λ = 0 (uniaxial molecules) to λ = 1/

√
6 (maximal

biaxiality). For maximal biaxiality, all non-zero constant V , all curves (not shown) would be rounded. Nematic-paranematic
coexistence curves shown in bold (red online).

occcurs at κmax =
(2λ2 + 1)

5(T ∗

pn − T ∗

bf )
. As the degree of biaxi-

ality increases, even at zero field, the denominator of this

quantity tends to zero, and so κmax → ∞ as λ → 1√
6
. As

expected, a susceptibility diverges at the biaxial critical
point.

We now pass to the dependence of the scaled transition
temperature on the scaled effective field V for different
degrees of biaxiality λ, shown in Fig.4. In each case,
phase transition curve appears to be linear. There are
two limiting cases. The first is λ = 0, the uniaxial case
(curve A in Fig.4), which is well-known. The second oc-

curs for λ =
1√
6
, at maximal biaxiality. In this case the

line shrinks to a point, consistent with the known fact
that in this case, the first order phase transition reaches
a critical point. Between these limiting cases, the length
of the line shrinks steadily as the degree of biaxiality in-
creases. The implication, consistent with remarks made
in ref.[19], is that the field required to reach the criti-
cal point is dramatically reduced for highly biaxial liquid

crystals.

We note also that the slope of the line increases as
it shortens. The fact that the length of the magnetic
coexistence line reduces with increasing biaxiality is in
some sense a consequence of the approach of the nematic-
isotropic line to the multicritical Landau point. At this
point, the magnetic critical point must collide with the
phase transition; now the addition of even a small mag-
netic field destroys the phase transition. We can, how-
ever, also ask why these lines appear to be so straight,
and why the slope increases with the degree of biaxiality.

We shall return to this point in the next section, where
we discuss the Landau-de Gennes theory of the same phe-
nomenon, which is exactly soluble. But it turns out that
we can obtain quite detailed understanding of these phe-
nomena using thermodynamic considerations. The shape
of a first-order transition line in a general phase space is
governed by a generalised Clausius-Clapeyron equation
[34]. This relates the shape of the curve to properties
which change across the transition. In this case, we find



7

that

∂T

∂V
∼ δS

δS , (31)

where δS is the change in order parameter across the
phase transition, and δS is the analogous change in en-
tropy. These considerations enable us to derive a dif-
ferential equation for the shape of the coexistence curve
Tpn(V ), as follows.
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F: λ = 0.34

G: λ = 1/
√

6

FIG. 4. Dependence of transition temperature on scaled
quadratic magnetic flux density, V , as molecular biaxiality
λ increases.

We first recall the Helmholtz free energy in equilib-
rium, using eqs.(7,10,12,19,28):

A∗ = −T ∗ lnQ(J , T ∗, V ) +
1

2
J 2

= T ∗

∫

dωf(ω) ln f(ω)− 1

2
J 2 − V J . (32)

Let us suppose that there is coexistence at (T ∗, V ),
between states defined by J1,J2, with free energies
A∗

1(J1) = A∗

2(J2). Then along the coexistence curve

dA∗

1

dT ∗
∆T ∗ +

dA∗

1

dV
∆V =

dA∗

2

dT ∗
∆T ∗ +

dA∗

2

dV
∆V, (33)

where (T ∗ + ∆T ∗, V + ∆V ) is also on the coexistence

curve. The ratio
∆T ∗

∆V
then defines the differential equa-

tion for the coexistence curve in (T ∗, V ) phase space.
We further note that, in view of the equlibrium condi-

tion that
∂A∗

∂J = 0, the total derivatives of the free energy

are equal to the partial derivatives keeping J constant.
Thus, from the last term of the extreme right hand side
of eq.(33) we obtain that

dA∗

dV
= −J . (34)

Furthermore we can write

A∗ =
U

u200

− T ∗S = −1

2
J 2 +

(

−T ∗ lnQ+ J 2
)

, (35)

thus isolating an expression for the entropy per particle

S
kB

= −∂A∗

∂T ∗
= lnQ− J 2

T ∗
. (36)

Now, combining eqs.(33,34,35,36), we obtain
(

− lnQ1 + lnQ2 +
(J 2

1 − J 2
2 )

T ∗

)

∆T ∗

= (J1 − J2))∆V. (37)

This may be further simplied by noting that

A∗

1 = −T ∗ lnQ1 +
1

2
J 2
1 = −T ∗ lnQ2 +

1

2
J 2
2 = A∗

2, (38)

yielding

− lnQ1 + lnQ2 = − (J 2
1 − J 2

2 )

2T ∗
. (39)

Combining eqs.(37,39), we obtain

(

(

J 2
1 − J 2

2

)

2T ∗

)

∆T ∗ = (J1 − J2)∆V. (40)

Simplifying this further yields the final Clausius-
Clapeyron relationship for T ∗(V ) along the coexistence
curve:

∆T ∗

∆V
= 2T ∗

( J1 − J2

J 2
1 − J 2

2

)

=

(

2T ∗

J1 + J2

)

. (41)

Eq.(41) has two immediate corollaries. The first con-
cerns the nature of the curve T ∗(V ) for a given value of
the biaxiality parameter λ. In this case the sum J1 +J2

may be regarded as approximately constant, as in J
space, it will be locally symmetrical about the magnetic

critical point; then J1 + J2 ≈ 2Jc, and
∆T ∗

∆V
≈ T ∗

c

Jc
, as

the temperature also does not change much along this
line.
The second corollary is concerned with the slope of the

line as the biaxiality parameter is changed. Now J2 = 0,
and J1 = J (TNI). In this case, eq.(41) reduces to

∆T ∗

∆V
=

2T ∗

NI

J (TNI , λ)
. (42)

This is a property only of the zero-field theory [18, 19],
in which the quantity J (λ) ∼ (λm − λ) as λ → λm.

Thus
∆T ∗

∆V
diverges as the Landau multicritical point is

approached, as has been observed in the computations.
Finally we examine the phase transition lines in the

whole biaxiality-temperature plane. In Fig.5 we show
the effect of the molecular biaxiality on the orientational
spinodal line (T ∗

bf ), the transition line (T ∗

NI) and the

magnetic critical temperature (T ∗

c ). All three quanti-
ties increase with increasing biaxiality, but this cannot
be used as a diagnostic tool in interpeting experiments.
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However, the gaps between the three curves decrease
monotonically, tending to zero as λ → λm. This fea-
ture is more robust than the secular trend in the curves
themselves. It seems that smaller values of T ∗

NI − T ∗

bf
and of T ∗

c − T ∗

NI are signatures of the effect of biaxiality,
although the numbers are, of course, open to question.
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0.2

0.21

0.22
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0.25
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0.29

λ

T ∗

 

 

T∗

c

T∗

NI

T∗

bf

FIG. 5. Dependence of scaled bifurcation temperature T ∗

bf ,
scaled transition temperature T ∗

NI and scaled critical temper-
ature T ∗

c on biaxiality parameter, λ.

One interesting feature of the results is that within the
molecular field theory the ratio

r =
T ∗

c − T ∗

bf

T ∗

NP − T ∗

bf

, (43)

is very nearly constant, whatever the degree of biaxiality,
with r ≈ 1.5, and with the departures from this value
always remaining less than 4%. We shall return to this
result later in the paper, comparing it with the analytic
predictions of Landau-de Gennes theory and also with
experiment.

III. LANDAU-DE GENNES THEORY

A. General remarks

In this section we develop a Landau-de Gennes theory
[35] to describe magnetic field effects in nematogens com-
posed of biaxial molecules close to the onset of nematic
order. The theory is designed to illuminate the molecular
field theory developed in the last section, and also specif-
ically to address questions raised by Ostapenko et al.[6]
in their recent study of magnetic field effects in bent-core
nematics. In general such theories exchange simplicity for
a degree of accuracy, but do have the advantage of using
as input parameters which are obtained from experiment.
In uniaxial nematogens Landau-de Gennes theories have
already been used some time ago to describe the effects
of magnetic [1, 7, 9] and electric [4, 36] fields. There
has also been considerable work on Landau-de Gennes
theories in biaxial nematogens in zero field [1, 37–43].

A particular problem in discussing Landau theories of
biaxial fluids is the necessity to account for order pa-
rameters associated with all molecular axes, rather than
merely the single major order parameter associated with
ordering of the long axis. This problem can be addressed
using a full set of Wigner matrices [19], or a superten-
sor [37], or by introducing a second ordering tensor as-
sociated with ordering of the minor axes [21] (see Turzi
[44] for a comparative discussion). Here we adopt this
latter approach. In a uniaxial nematic each of these ten-
sors is itself uniaxial, and the order parameter associated
with the minor axes is known as the molecular biaxial-
ity order parameter (as opposed to the phase biaxiality
order parameter, which only occurs in a biaxial phase).
Once orientational degeneracy is eliminated, the two re-
quired scalar quantities in the expansion close to the on-
set of uniaxial nematic order are the parameters S and
D defined in eqs.(2). The construction of the complete
Landau-de Gennes theory, however, is contingent on the
correct enumeration of a menagerie of tensor invariants,
with a large number of consequent parameters as coef-
ficients, even if the theory is truncated at a relatively
low order. It turns out to be hard to relate changes in
these essentially phenomenological coefficients to molec-
ular properties, and thus to gain insight into the relation-
ship between the structure of the critical points and the
molecular biaxiality.

Some of the present authors [16, 17] have adopted an
intermediate Landau-de Gennes strategy. In this ap-
proach, parameters in the Landau theory of a biaxial
nematogen have been directly associated with quantities
which occur in the molecular field theory. In general, a
minimal Landau-de Gennes model close to and in the uni-
axial nematic phase still requires an expansion in both S
and D. However, by employing the geometric mean ap-
proximation discussed in section IIA above, it turns out
to be possible, as in the molecular field theory, to replace
the independent use of S and D by the composite order
parameter J = S+2λD, where λ is the relative biaxiality
parameter used in the previous section.

We shall suppose that the addition of an external field
involves a single extra one-particle interaction term in the
free energy. This term is associated with the anisotropic
interaction between the order parameters and the exter-
nal field. This is consistent with the approach adopted
in section II, but there are limitations to this approxima-
tion. In the case of magnetic fields, the intermolecular
interactions will not be changed by the application of
the field, and hence the simple one-particle anisotropy-
energy is valid. But in the case of an electric field, under
some circumstances a macroscopic polarization may be
introduced, as discussed by Rjumtse et al.[45]; then the
interaction between macroscopic dipoles may no longer
be negligibly small.
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B. Free energy

We use the free energy expansion introduced by Luck-
hurst et al.[17] to obtain the following order parameter
expansion, truncated at fourth order:

A∗ = (3/4)a(T ∗ − T ∗

bf )J 2 − (1/4)bT ∗J 3

+(9/16)cT ∗J 4 − V J . (44)

The coefficients in this expansion are now explicitly de-
pendent on the biaxiality parameter λ, but also depen-
dent on the temperature T ∗:

T ∗

bf =
(

1 + 2λ2
)

/5,

a =
10

3(1 + 2λ2)
,

b =

(

100

21

)

(

1− 6λ2
)

(1 + 2λ2)
3
,

c =

(

100

441

)

(

56λ6 + 444λ4 − 78λ2 + 17
)

(1 + 2λ2)
5

. (45)

The parameter V has the same significance as in eq.(8),
and makes the same assumption about the relative size
of external field interaction with S and D. The spinodal
temperature T ∗

bf (λ) =
(

1 + 2λ2
)

/5 is consistent with
that derived from the molecular field theory. More im-
portantly the cubic term proportional to b vanishes as
(λm − λ) at the Landau point. This forces the transition
at the Landau point (and only at that point) to be con-
tinuous, and leads to other anomalies in the system as
λ → λm.

Expression (45) explicitly ignores order parameters as-
sociated with the phase ordering and hence the biaxial
nematic phase. As we are not concerned with the biax-
ial NB phase, this approximation is harmless here, but
would be unacceptable if we were also including effects
associated with the NB phase. Finally we note that al-
though the fourth order coefficient is a complicated func-
tion of λ, it is a well-behaved complicated function, and
thus no thermodynamic anomalies are expected. For fur-
ther details we refer the reader to ref. [17]

As we shall be evaluating expressions only in the neigh-
bourhood of the nematic-isotropic transition, we adopt
the further approximation of forcing third and fourth or-
der coefficients to be constant. We do this by replacing
T ∗ in eq.(44) by a constant value θ = 0.22 ≈ TNI(λ = 0).
We thus rewrite the Landau-de Gennes free energy as

A∗ = (3/4)a(T ∗ − T ∗

bf )J 2 − (1/4)BJ 3

+(9/16)CJ 4 − V J , (46)

with

T ∗

bf =
(

1 + 2λ2
)

/5,

a =
10

3(1 + 2λ2)
,

B =

(

100

21

)

(

1− 6λ2
)

(1 + 2λ2)
3
θ,

C =

(

100

441

)

(

56λ6 + 444λ4 − 78λ2 + 17
)

(1 + 2λ2)
5

θ. (47)

The partitioning of factors in the coefficients in
eqs.(46,47) are those introduced by Gramsbergen et

al.[1], and facilitate comparison with previous work.

C. Non-dimensionalization

The Landau-de Gennes magnetic critical point has
been discussed by Gramsbergen et al. [1]. Here we red-
erive these solutions, using scaling properties of this ex-
pansion. We make the following rescalings for the order
parameter, the temperature, the free energy density and
the external field respectively:

J̃ =
9C
2BJ ,

t =
27aC
B2

(

T ∗ − T ∗

bf

)

.

Ã = 729
C3

B4
A∗,

v =
162C2

B3
V. (48)

The rescaled free energy can now be written in terms of
J̃ , t in the following universal form:

Ã = −vJ̃ + tJ̃2 − 2J̃3 + J̃4. (49)

This rescaled free energy is independent of the biaxi-
ality parameter λ. All critical properties away from the
Landau point (where the transformation does not apply)
can be derived using eq.(49). Critical properties of Vc(λ),

and
∆T ∗

∆V
along the coexistence curve, as λ → λm follow

from the behaviour of B(λ), i.e. from the scaling trans-
formation, rather than from the intrinsic properties of
the model itself.

D. Properties of non-dimensionalized model

We shall investigate the properties of the non-
dimensionalized model using elementary algebraic ar-
guments. We thus avoid the necessity of investigating
minima and solving complicated simultaneous equations.
However, the mathematical tricks depend crucially on
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truncating the expansion at fourth order. If this condi-
tion is relaxed, the argument no longer holds, although
some of the results remain approximately true.
The zero-field spinodal T ∗

bf corresponds to t = 0, and
the NI transition temperature T ∗

NI occurs at t = 1, at
which point the free energy can be written as:

Ã = J̃2(J̃ − 1)2. (50)

This has equilibria at J̃ = 0, 1 with Ã = 0, thus exhibit-
ing explicitly that at the zero-field transition the rescaled
order parameter is unity.
Along the NP phase transition line, let the order pa-

rameter take values J̃1, J̃2 in the N,P phase respectively.
Ã(J̃) is quartic in J̃ , with equal minima at J̃1, J̃2, and
must necessarily take the form

ÃNP = ζ + (J̃ − J̃1)
2(J̃ − J̃2)

2, (51)

where ζ(v) varies along the phase transition line, the unit
factor outside the bracketed term is implied by the unit
coefficient of the quartic term, the repeated factors im-
ply the minima (and hence equilibria) at J̃1, J̃2, and the
explicit form implies the equality of the minima at ζ.
Expanding eq.(51) explicitly, we obtain

Ã =
[

ζ + J̃2
1 J̃

2
2

]

− 2J̃1J̃2

[

J̃1 + J̃2

]

J̃

+
[

J̃2
1 + J̃2

2 + 4J̃1J̃2

]

J̃2 − 2
[

J̃1 + J̃2

]

J̃3 + J̃4, (52)

which in principle is identical with eq.(49).
Further progress can be made by comparing coeffi-

cients respectively of terms of cubic, quadratic and linear
order in eqs.(49,52), yielding the relationships:

1 = J̃1 + J̃2, (53a)

t = J̃1
2
+ J̃2

2
+ 4J̃1J̃2 = 1 + 2J̃1J̃2, (53b)

v = 2J̃1J̃2

(

J̃1 + J̃2

)

= 2J̃1J̃2. (53c)

Eq.(53a) shows that the approximate relation discussed
in eq.(41) that the constancy of the sum of the order pa-
rameters across the transition line along its length is rig-
orously true in the Landau-de Gennes theory. Combining
eqs.(53b,53c) and eliminating J̃1J̃2 yields a universal ex-
plicit equation for the magnetic coexistence line:

t = 1 + v ⇒ ∆t

∆v
= 1. (54)

The critical point vc occurs when the N and P phases

collide, i.e. J̃1 = J̃2 =
1

2
, and hence using eq.(53c), we

find that

vc =
1

2
. (55a)

Combining this with eq.(54) yields

tc = 1 + vc =
3

2
. (55b)

Finally we derive relations for the order parameter differ-
ence across the transition line. Using eqs.(53a,53c,55a),
we derive

(

J̃1 − J̃2

)2

≡
(

J̃1 + J̃2

)2

− 4J̃1J̃2

= 1− 2v = 2(vc − v), (56a)

and likewise, using eq.(54):

(

J̃1 − J̃2

)2

= 2(tc − tNP ). (56b)

E. Results

We now use results from the last subsection to derive
general conclusions. Result eq.(55b) that tc = 3

2
trans-

lates, when rescaled into physical units to

rLdG =
T ∗

c − T ∗

bf

T ∗

NI − T ∗

bf

≡ 1.5, (57)

an analytic exact result which agrees with the numeri-
cally calculated value of r from the molecular field theory
in eq.(43). The value of

(

T ∗

c − T ∗

bf

)

, on the other hand,

depends on the value of λ, and behaves as (λm − λ)2 as
λ → λm.
The value of the critical field itself, from eqs.(48,55a)

is given by:

Vc =
B3

324C2
; (58)

from eq.(45), this predicts that Vc ∼ (λm − λ)3 and the
critical magnetic field Bc ∼ (λm − λ)3/2.
Using eq.(54), together with eq.(48), we obtain the

slope of the NP coexistence curve:

∆T ∗

NP

∆V
=

6C
aB =

4

3aJNI
, (59)

noting the same J−1 dependence as in the molecular field
case eq.(42).
Using eqs.(47), this can be expressed in terms of the

biaxiality parameter as

∆T ∗

NP

∆V
=

f(λ)

λm − λ
, (60)

where

f(λ) =
56λ6 + 444λ4 − 78λ2 + 17

70(1 + 2λ2)(λm + λ)
. (61)

We can also rescale the equation for the coexistence curve
in (J , T ∗) coordinates eq.(56b) to obtain

(J1 − J2)
2 =

8a

3C (T
∗

c − T ∗

NP ). (62)

In the purely uniaxial case λ = 0, this reduces, using
eq.(45) , to

(J1 − J2)
2 =

196

85θ
(T ∗

c − T ∗

NP ). (63)
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F. Comparison between Landau-de Gennes and

molecular field theories

Since our Landau-de Gennes theory is derived from the
molecular field theory, it is not surprising that both the-
ories have the same qualitative predictions. Although in
principle the molecular field theory is more accurate, the
Landau-KKLS theory has the advantage that it is analyt-
ically accessible. In fact in many cases the theories agree
even semi-quantitatively. Key common predictions are
that TNP increases quadratically with the applied field
strength and that the rate of change of the transition
temperature with B2 increases as the molecular biaxi-
ality becomes larger, as shown for the molecular field
theory in eq.(42) and for the Landau-deGennes theory in
eq.(59). This increase in the rate of change of TNP for the
two theories is shown in Fig.6. We can see that the dif-
ference in the rate of change for calamitic molecules and
for bent-core molecules is significant, particularly close
to the Landau point. The temperature scale over which
the magnetic coexistence line occurs is predicted to be of
the same order of magnitude as TNI−Tbf . For mesogenic
systems of higher molecular biaxiality, a lower magnetic
field strength is required to observed the magnetic critical
point.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0
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FIG. 6. Dependence of rate of change of dT ∗

NP /dV with
molecular relative biaxiality λ.

IV. DISCUSSION AND CONCLUSIONS

A. Comparison with experiment

This study was prompted by an experiment by
Ostapenko et al. [6] which found a significant increase in
the transition temperature due to a magnetic field for a
system of bent-core molecules. These molecules are often
highly biaxial. We have developed a molecular field the-
ory to study the effect of the molecular biaxiality on the
magnetic field-induced nematics, and calculated the con-
sequence of this theory. We have also extended to finite

fields previous work in which we developed the analogous
Landau-de Gennes free energy for a biaxial liquid crys-
tal of given molecular biaxiality [17]. We note that an
earlier study [5] by the same research group found that
TNI − Tbf ≈ 0.4K was anomalously small. This study
provides extra indirect calorimetric evidence of the biax-
iality of the bent-core molecules used in the experiments
of Ostapenko et al.[6], for both our work and that of oth-
ers [18, 19] also predict reduced values of TNI − Tbf . In
addition, other techniques provide more direct evidence
of these biaxial effects [46].

The background to the experimental studies is that
it has turned out to be very difficult to persuade ne-
matogens to exhibit a magnetic-field-dependent transi-
tion [2, 3], and that when it was observed it was ex-
tremely weak. Thus the unusual experimental obser-
vation was simply that for this system it was possible
to observe a noticeable magnetic-field dependence of the
nematic-isotropic phase transition. Electric field effects
are in principle analogous from a theretical point of view,
and should be easier to observe, because the electric cou-
pling to experimentally accessible electric field is higher
than that to experimentally accessible magnetic fields
[4, 36, 45]. But electric fields present other kinds of prob-
lems, most noticeably Ohmic heating and screening, and
so in some sense a magnetic field experiment presents a
more unambiguous test of theory.

We remind readers that we have denoted the shift in
the nematic-isotropic transition as a temperature depen-
dence of TNP , the nematic-paranematic phase transition.
Once a field is imposed, the high temperature phase is
slightly ordered and is no longer isotropic; convention-
ally this is now known as a paranematic phase. There
is no longer a symmetry change at the phase transition,
merely a change in the magnitude of the orientational
order parameter. Experimental quantities which have
been observed are (TNI − Tbf ) ∼ B2 ∼ (λm − λ)2 [5],

and
∆TNP

∆B2
∼ B−1 ∼ (λm − λ)−1 [6]. The first is his-

torically smaller than in the same quantity measured in
calamitics by a factor of about 4.5. The second is dramat-
ically larger than that observed for calamitics [3]. While
recent observations with higher fields are not available,
and one might suppose that the size of (TNI − Tbf ) would
be smaller if a whole new set of observations were to be
made, the theory is at least consistent with the idea that
both these effects are due to the biaxiality-induced prox-
imity of the system to a Landau multicritical point. In
general, we expect that if further measurements could
be made, the order parameter in the nematic phase at
TNI ∼ (λm − λ) would be low, and the critical magnetic
field Bc ∼ (λm−λ)3/2, above which the P and N phases
are identical, would also be low compared to uniaxial
calamitics.

We can make specific contact with the experimental
results of Wiant et al.[5] and Ostapenko et al. [6] by
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using the ratio r defined in eqs.(43,57):

r =
T ∗

c − T ∗

bf

T ∗

NI − T ∗

bf

=
Tc − Tbf

TNI − Tbf
. (64)

This quantity measures the ratio of the length of the
NP coexistence curve as a function of temperature with
respect to the only temperature scale available, the dif-
ference (TNI − Tbf ). In both our calculations, we find
that r = 1.5 very closely. But in the experiments [6], it
is found that the ratio r ≥ 2.4, while the critical field has
not been reached. The fact that the critical field is not
reached is a signature that our goal of measuring Bc for
a range of calamitics is far-fetched. One does not know
how much larger Bc is than Bmax, the largest observed
field. On the one hand the closeness of the limit on r to
1.5 is reassuring. On the other hand, the value of r = 1.5
would seem to be a robust result.
The source for this small but unambiguous experimen-

tal disagreement with theory is unclear. It may be that
our version of molecular field theory is inaccurate. For
example Zhang et al.[47] have performed a cluster calcu-
lation involving a more complex self-consistency. They
find that (TNI−Tbf ) is reduced as compared to the naive
molecular field theory. It could be that the estimates of
Tbf have been made badly, because fluctuation effects are
causing the Cotton-Mouton parameter no longer to fol-
low (T − Tbf )

−1 behaviour. In this context, we remark
that the fine structure of the nematic-isotropic transition
has long been a puzzle; unreasonably critical in some re-
spects, and unreasonably first-order in others. Alterna-
tively, it could be that other order parameters are play-
ing a role; Ostapenko et al.[6] themselves attributed it to
possible tetrahedric order in their system. Nevertheless
we can make contact with experiment using the expected

biaxiality dependence of the quantity Z(λ) =
T ∗

NI

T ∗

bf

−1, as-

suming that only the biaxiality and nothing else is chang-
ing. This quantity is plotted in Fig.7. The quantity
Z(λ) is a non-dimensionalised measure of how close the
nematic-isotropic phase transition is to being a continu-
ous transition. When Z(λ) = 0, the phase transition is
continuous.
Wiant et al.[5] measured TNI − Tbf = 0.38K

for the bent-core LC, 4-chloro-1,3-phenylenebis[4-(4- 9-
decenyloxy) benzoyloxy benzoate] (10CPBB), yielding a
value of Z ≈ 0.001. We can compare this value to Z(λ =
0) ≈ 0.0045. This can be evaluated from computer sim-
ulations on the Lebwohl-Lasher model [48], in which the
molecules are known to be strictly uniaxial by construc-
tion. Alternatively, studies of 5CB and 6CB by Zink
and de Jeu [49] yield almost exactly the same answer.
If we suppose that the reduction in the quantity Z can
be ascribed only to biaxiality, then Z(λ)/Z(0) ≈ 0.23,
and we can use Fig.7 to estimate λ ≈ 0.28. We can now
invert result eq.(27) to estimate θ(λ) ≈ 116o, which is
rather close to the 120o expected on chemical grounds
for these molecules. If the same calculation is made for
the material used in ref.[6], then a value of θ ≈ 119.5o is
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FIG. 7. Dependence of Z(λ) = (TNI − Tbf ) /Tbf as a function
of biaxiality parameter, using molecular field theory. Dotted
line corresponds to λ = 1/

√
6 ≈ 0.41, the maximal biaxiality.

obtained. This is now even closer to the expected value
of 120o, although the extremely close agreement may be
fortuitous, as the assumption of a rigid structure does
not hold.
Analogous calculations can now be made to predict

values of Bc for these systems, using the calculated value
of λeff . Now, however, the actual value of this depends
on the coupling constant, χ20 in eq.(5); one needs to sup-
pose that this does not change, and in addition one needs
to estimate Bc for a material with zero biaxiality. For the
materials discussed in [6], typical values around 30T can
be estimated. We note that in this context the estimate
for Bc in uniaxial systems of ∼ 1000T by Wojtowicz and
Sheng [9] was adjusted by Hornreich [7] to ∼ 87T ; under
these circumstances the biaxiality brings down the esti-
mated critical field by a factor of 2 or 3. We must judge
Ostapenko et al.[6] rather unlucky not to have observed
the critical point at 31T .

B. Discussion of the theory

Our theory relies on a number of idealizations, whose
validity requires some justification. First, we have sup-
posed that molecular field ideas will work, even though
the problems under consideration deal with systems in
some sense close to critical points, and hence susceptible
to the effects of fluctuations. Second, we use the so-called
geometric mean approximation (GMA) to reduce an es-
sentially two order parameter problem to that of a single
composite order parameter. Quantitatively, this ansatz
must work not only for the effective two-particle energy,
but also (with the same parameter) for the interaction
between a single particle and the external magnetic field.
Third, we are supposing that a system of molecules with
C2v symmetry behaves as though it is composed of D2h

symmetry. The idea is that any specifically polar effects
associated with the bent-cores do not play a crucial role.
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Molecular field theories within the GMA all predict
that the addition of biaxiality will increase the degree of
criticality at the nematic-isotropic phase transition, as
a Landau multicritical point is approached. At the Lan-
dau point a direct transition to a biaxial nematic phase is
predicted, but we have concentrated on uniaxial nematic
effects (albeit associated with biaxial molecules). The
molecular-field approximation is known to grossly over-
estimate some first-order effects at the phase transition
(e.g. the size of orientationally ordered clusters in the
disordered phase), while describing correctly others (e.g.
the orientational order parameter at the phase transi-
tion). We proceed on the assumption that the molecular-
field procedure is essentially valid, but that some tem-
perature scales (most precisely TNI − Tbf ) are shrunk as
compared to the classic molecular field theory. In this
case, the Landau- de Gennes theory might be expected
to give a reasonable first approximation to a description
of the experiments. In any event, there are no other
available analytic techniques.
The use of the GMA is predicated on the belief that

the underlying interactions are governed either by shape
or by dispersion interactions. In these limiting cases, the
GMA is known to hold. If the assumptions are relaxed,
then the GMA may no longer hold, but the degree to
which it is false is not well-studied. Theoretical consid-
erations, however, indicate that relaxation of the GMA
may change the phase diagram shown in Fig.2 dramati-
cally. In some cases the Landau multicritical point is de-
stroyed entirely, and replaced by a first-order transition
from the isotropic phase to a biaxial nematic [21]. The
validity of the GMA ansatz for the interparticle potential
is not at all clear in all cases. But a heuristic justification
can be constructed, and furthermore, there is an experi-
mental clue. This is precisely that some properties of the
system seem more critical (in the phase transition sense)
than is usual in nematogenic materials, and hence the
system may be close to the Landau multicritical point.
So we proceed supposing that at least the Landau mul-
ticritical point feature to the theory is retained.
The use of the GMA for the external potential, eq.(6),

is less well-justified theoretically. Our main justification
lies in terms of providing an easily tractable theory. This
form for the order parameter-field coupling seems to com-
pel the magnetic critical point to approach the Landau

multicritical point at λ = λm =
√

1
6
. But Vause [39] sug-

gests a quite complex phase diagram topology connecting
the magnetic critical point and the Landau multicritical
point. However, Vause [39] implicitly relaxes this ap-
proximation, pointing out that beyond λm, the principal
order parameter will now be perpendicular to the mag-
netic field, something explicitly forbidden by the form of
the coupling adopted in eq.(6). At the moment, the pre-
cise degree of robustness of the phase topology we derive
is unclear and requires further theoretical work.
Finally, there is the question of the quasi-polar nature

of the bent-core molecules. Ryumtse et al.[45] have dis-
cussed what might occur (albeit in an essentially uniax-

ial molecule) when there are strong electric polar effects.
But in this respect magnetic and electric moments are
different, because induced electric dipole moments may
change the intermolecular interaction. By constrast, only
magnetic fields of astrophysical magnitude could have
this effect, and by that stage no doubt other effects would
already have intervened!

C. Final remarks

Our most important results are that high biaxiality,
or more specifically proximity to the Landau multicrit-
ical point, implies that TNI and Tbf (sometimes known
as T ∗ in the literature) will be closer together. The im-
plied degree of biaxiality can be inferred from the size of
this quantity, and this can be converted into an imputed
inter-arm angle in the bent-core molecule. This imputed
angle seems to be in semi-quantitative agreement with
experiment. In addition, in the presence of biaxiality
(and thus in bent-core nematics) TNP will be more sensi-
tive to magnetic field, it will be quadratic in the field, and
that the sensitivity will diverge at the Landau multicrit-
ical point. The Landau-de Gennes theory, together with
the experiments [5, 6] gives some insight into how this
will occur. The theoretical parameter which responds
most obviously to the biaxiality is the cubic term in the
Landau-de Gennes theory, B ∼ (λm − λ). Ostapenko
et al.[6] understood well that their result followed from
anomalously low B. In this paper we have provided some
extra justification at a molecular level for their obser-
vation, and shown that the behaviour of the bent-core
nematics is largely a result of the biaxiality implied by
the bent-core structure.
Nevertheless, we emphasise that further work is re-

quired. If bent-core molecules with inter-arm angles close
to the tetrahedral angle θ ≈ 109.5o could be synthe-
sised, it is likely that weaker first-order nematic-isotropic
transitions with consequent lower critical magnetic fields
could be synthesised. This might finally enable the mag-
netic critical point to be observed. Alternatively, if the
nematic-paranematic transition could be observed using
calorimetric methods, rather than (as in refs[5, 6]) by ob-
serving turbidity, then it might be possible to extrapolate
toward the critical point (and hence locate it accurately)
without actually producing the necessary high fields.
From a theoretical point of view, the rather hybrid na-

ture of the present theory implicitly supposes that the
weak first-order effects are essentially a superposition of
fluctuation effects (weakening the Landau-de Gennes cu-
bic term B) with biaxial effects. The latter are under-
stood and are described here, but the former have pre-
sented a puzzle ever since the Maier-Saupe theory was
formulated in the 1950s. More detailed simulations, in
which the biaxiality is well-characterized, may enable
the GMA to be tested for molecules of different types
of shape. We note simulations by Peroukidis et al.[50]
which concentrate specifically on bent-core molecules,
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and by Ghoshal et al.[51] which concentrate on board-like
molecules. More detailed lattice simulations, in which the
GMA is explicitly violated in model potentials, would ex-
pose the consequences of violating our key assumptions,
but here the extreme sensitivity of the systems close to
the critical point might require sophisticated finite-size
scaling techniques [52] In this respect, the comments of
Vause [39] about phase diagram topologies close to a Lan-
dau multicritical point also require further examination,
as do the comments of Ghoshal et al.[53] concerning the
interaction between transverse dipoles and biaxial molec-

ular shape.
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