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L. Background

= Exascale computing...
= First computer capable of 10 FLOPs in 2020.
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L. Background

= ... Butits architecture will be completely different to current supercomputers.

= Limited by power consumption, rather than hardware speed.
= Shift towards MASSIVE CONCURRENCY.
» Mostly intra-node concurrency (shared memory).

9 I I [ [
Cores Q
' FLOPs/Core

N FLOPS —— /6)

-~

logp(Normalized Values)
o P N W b= U1l & N o
|
|

Multi-Core (CMP)
>

! ! ! ! ! !
1995 2000 2005 2010 2015 2020
Date

I
—

Average of the Top500 supercomputers, with the first exascale machine superimposed.



Performance Analysis of Massively-Parallel CFD J. Hawkes

L. The Strong Scalability Problem

=  We've been used to weak scaling — making our problems larger to match
Increases in concurrency.

= Massive increase in concurrency makes this impractical - we need to split
our problems into smaller chunks (strong scaling).

= Memory capacity growing half as fast as overall compute power; finite cap
on problem size grows slower than core-count.

= Most challenging CFD lies in unsteady simulations. We can only parallelize
spatial dimensions, and we have to do this more to increase our unsteady
simulation capabilities.
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L. Objectives

= Investigating limitations to strong scalability

= Considering a range of common user settings to cover a broad range of
applications
= Discretization Schemes
» Turbulence Models
= Grid Structure
= Linear Equation-System Solvers
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Experimental Setup
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L. ReFRESCO

= Maritime-optimized RANS code RE_F_BESCO

= Various Eddy-Viscosity models
= State-of-the-art sliding, deforming and adaptive meshes

= Developed at MARIN (Netherlands), IST (Portugal), USP-TPN (Brazil), TUDelft
(Netherlands), University of Southampton (United Kingdom)

ReFRESCO Cavitation and Manoeuvring simulations [marin.nl]
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L. Profiling

= Run-time of SIMPLE Sp|it Initial Guess c;f Field Values
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L. kvLcc2

» Double-body wind-tunnel simulation
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L. Numerical Setup

= Segregated Solver
= 2.67m cells
»  k-w shear stress transport (SST-2003)

=  Momentum/Turbulence Equation
= Block Jacobi + GMRES
= ILCT 1%
= Explicit 0.15, Implicit 0.8-0.85 (ramped)
= QUICK or Upwind (15t Order)

= Pressure Equation
= ML + GMRES
= ILCT 1%
= Explicit 0.1
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L. 1RIDIS4

= University of Southampton Supercomputer
= #179 on Top500 in November 2013
= 12,200 cores at 2.6Ghz (16 cores per node)

[UoS, Computational Modelling Group — cmg.soton.ac.uk]
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Results
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L. Basic Scalability
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L. Basic Scalability
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I—» Convective Discretization Scheme

256 i | | | | |
UICK —=—
274 CDY-UD]l —— _
UDI —e—
Linear ——
192 —
160 -

—— 4T'_:—__T
0 I I I | I I

0 32 64 96 128 160 192 224 256
Num. Cores

Scalability of total runtime with various convective discretization schemes.



Performance Analysis of Massively-Parallel CFD J. Hawkes

L. Turbulence Models
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I—» Structured vs. Unstructured
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L. Linear Equation-System Solvers
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L. Linear Equation-System Solvers
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L. optimized Scalability
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L. optimized Scalability
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Conclusions
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I—» Conclusions

= Discretization scheme had little effect on overall scalability, assembly
routines are not a bottleneck.

= Two-equation Eddy-Viscosity models were considerably more expensive and
non-scalable than one-equation models — mostly due to non-scalable so/ve
routines.

= Mesh structure had little effect on overall scalability.

= Choice of pre-conditioner had a large effect on the so/ve routines, but still a
bottleneck.

»  MPI Data Exchangeis a bottleneck at higher node-count.

= Solveroutines are a bottleneck to shared-memory parallelization.

» [xchange routines are a bottle neck to distributed-memory parallelization.
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Further Work
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L. so Why Isn’t the Solver Scalable?

= Most codes use a Krylov Subspace (KSP) method such as GMRES.
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L, Chaotic Iterative Methods

= CIM: Maximum use of computation and communication.
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Q&A
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L. Nodal Speedup
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