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Abstract

The Corneal limbus is a readily accessible region at the front of the eye, separating the cornea and sclera. Neural colonies
(neurospheres) can be generated from adult corneal limbus in vitro. We have previously shown that these neurospheres
originate from neural crest stem/progenitor cells and that they can differentiate into functional neurons in vitro. The aim of
this study was to investigate whether mouse and human limbal neurosphere cells (LNS) could differentiate towards a retinal
lineage both in vivo and in vitro following exposure to a developing retinal microenvironment. In this article we show that
LNS can be generated from adult mice and aged humans (up to 97 years) using a serum free culture assay. Following culture
with developing mouse retinal cells, we detected retinal progenitor cell markers, mature retinal/neuronal markers and
sensory cilia in the majority of mouse LNS experiments. After transplantation into the sub-retinal space of neonatal mice,
mouse LNS cells expressed photoreceptor specific markers, but no incorporation into host retinal tissue was seen. Human
LNS cells also expressed retinal progenitor markers at the transcription level but mature retinal markers were not observed
in vitro or in vivo. This data highlights that mouse corneal limbal stromal progenitor cells can transdifferentiate towards a
retinal lineage. Complete differentiation is likely to require more comprehensive regulation; however, the accessibility and
plasticity of LNS makes them an attractive cell resource for future study and ultimately therapeutic application.
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Introduction

Retinal diseases are the leading cause of untreatable blindness

worldwide. These conditions include age related macular degen-

eration (AMD) and a wide spectrum of inherited retinal diseases.

Irreversible visual impairment arises due to a gradual loss of light

sensory neurons- photoreceptors and/or their supportive cells the

retinal pigment epithelium (RPE). Unlike lower vertebrates, adult

mammals cannot regenerate retinal neurons. The visual disability

caused by these diseases carries a formidable clinical and socio-

economic burden in western countries [1].

Cell based therapies are an attractive approach to treat retinal

disease [2]. They offer the potential to restore functional vision.

Recent studies have demonstrated that transplanted photoreceptor

precursor cells can form synaptic connections with host retina and

improve visual function in animal models of retinal degeneration

[2–4]. However, identifying practical cell sources to generate

sufficient functional cells for transplantation remains challenging.

Utilizing embryonic or fetal tissue is difficult due to limited

resources, ethical issues or risks of tumour formation [5]. In

addition, transplant rejection may occur due to chronic immune

responses. This has been observed after transplantation with a

90% loss of integrated allogeneic photoreceptors by 4 months, and

nearly 100% loss at 6 months [6]. Therefore immune-matched

autologous cell resources have considerable advantages.

Autologous somatic cells can be genetically reprogrammed into

induced pluripotent stem cells (iPSCs), an embryonic stem cell-like

state, and then differentiate into all three germ layer cells,

including a retinal lineage with the production of photoreceptors

and RPE cells [7]. These iPSCs derived cells have been

transplanted into animal models of retinal degeneration and have

shown promising results [8,9]. Whilst using this differentiation

method, risk of tumour formation remains due to contamination

with undifferentiated cells [10]. Recently, a new 3D culture

method has successfully produced a larger number of ‘‘integration-

competent’’ photoreceptor cells from ESCs. The process of

differentiation recapitulates the in vivo development of the optic-

cup [11,12]. This 3D culture protocol is also based on Matrigel, a

solubilised basement membrane derived from murine sarcomas. It

contains undefined xenogenic growth factors, which prevents the

protocol from production of clinical grade transplantable retinal

cells. Hence, potential adverse effects still need to be carefully

addressed prior to iPSCs based cell therapy.

Adult stem/progenitor cells are an attractive alternative

autologous cell resource. Studies have shown the plasticity of

these cell types. They can be induced to transdifferentiate toward

lineages other than that of their origin [13–15]. Certain cell types

can also de-differentiate into multipotent progenitor cells that give

rise to cells that express retinal specific markers. This includes

ciliary body (CB) epithelium and retinal Müller glial (MG) cells,
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although their potential remains controversial [16–21]. In

addition, routine safe and practical surgical techniques do not

exist to harvest them. Therefore they are unlikely to be a practical

autologous cell resource in the immediate future.

In contrast, the corneal limbus is a readily accessible area,

where the superficial layers are amenable to tissue harvesting.

Several groups have reported generation of neural colonies

(neurospheres) from cornea/limbus by neurosphere assay

[22,23]. This utilises a well-defined suspension culture system,

thus it is more appropriate for the derivation of cells for clinical

application. Zhao et al. showed the rat limbal cell cultured as

neurospheres expressed photoreceptor specific markers following

co-culture with neonatal retinal cells. The co-culture condition

provides a photoreceptor promoting microenvironment [15].

However, it remains unknown whether LNS from other species,

particularly from humans and mice, can give rise to retinal like

cells. Their ability to generate photoreceptor like cells in vivo and

to integrate into host retina is yet to be proven. In addition, the

number of adult stem/progenitor cells normally decreases with

age. It is thus important to investigate whether LNS can be

cultured from aged human eyes and used as an autologous cell

resource in age related diseases. Here, we investigate LNS derived

from mice and humans to extend the knowledge of limbal cells to

other species.

We have previously conducted a comprehensive characteriza-

tion of mouse LNS regarding their self-renewal capacity, origin

and ultrastructure, and shown that neurospheres derived from the

corneal limbus are neural crest derived limbal stromal stem/

progenitor cells. For the first time, we demonstrated that

functional neural-like cells can be derived from neural crest-

derived limbal cells [24]. The aim of this study is now to

investigate whether mouse and human limbal neurosphere cells

(LNS) can differentiate into retinal like cells both in vivo and

in vitro after exposure to a developing retinal microenvironment.

Materials and Methods

Animals
The use of animals in this study was in accordance with the

ARVO statement for the use of animals in Ophthalmic and Vision

Research and the regulations set down by the UK Animals

(Scientific Procedures) Act 1986. The protocol was approved by

the UK Home Office. All surgery was performed under isoflurane

inhalation anaesthesia, and every effort was made to minimize

suffering.

Male C57BL/6 mice were maintained in the animal facility of

the University of Southampton. Adult mice (6–8 weeks old) were

used for corneal limbal cell culture, differentiation, and transplan-

tation studies. Postnatal (PN) day 1–3 mice were used for isolation

of retina to provide a conditioned retinal development environ-

ment in vitro and as recipients for sub-retinal transplantation of

LNS cells.

Cell culture
Human limbal tissues that were consented for research use were

requested from the Corneal Transplant Service Eye Bank in

Bristol (CTS Eye Bank, http://www.bristol.ac.uk/clinical-

sciences/research/ophthalmology/tissue-bank/eye-bank/). The

study was approved by Southampton & South West Hampshire

Research Ethics Committee (A). The use of human fetal retinas

followed the guidelines of the Polkinghome Report, and was

approved by the Southampton & South West Hampshire Local

Research Ethics Committee. Written informed consent from the

donor or the next of kin was obtained for use of human samples in

this research.

Adult mouse/human corneal limbal cells were cultured as

previously described [15,23,24]. In brief, mouse limbal tissue was

digested with 0.025% (w/v) trypsin/EDTA (Sigma-Aldrich,

Ayrshire, UK) at 37uC for 10–12 min, and then in 78 U/ml of

collagenase (Sigma-Aldrich) and 38 U/ml of hyaluronidase

(Sigma-Aldrich) for 30 min. Human limbal tissue (age 72–97

years) was incubated in collagenase (78 U/ml) and hyaluronidase

(38 U/ml) in M2 medium (Sigma-Aldrich) at 37uC overnight.

Dissociated cells were cultured at a density of 16105 in DMEM:

F12GlutaMAX (Invitrogen, Dorset, UK) supplemented with 2%

B27 (Invitrogen), 20 ng/ml of EGF (Sigma-Aldrich) and 20 ng/ml

of FGF2 (Sigma-Aldrich).

To promote neurosphere cell differentiation towards photore-

ceptors, co-culture was conducted as previously described [24]. In

brief, sphere cells derived from adult corneal limbus were plated

onto Poly-D-Lysine (P-D-L) (Sigma-Aldrich) and laminin (Sigma-

Aldrich) coated wells and co-cultured with dissociated PN1-3

mouse retinal cells or fetal week (Fwk) 7–8 human fetal retinal cells

using Millicel CM inserts (pore size 0.4 mm; Millipore, Watford,

UK) for 1–2 weeks. A papain dissociation system was used to

dissociate retinal cells as per manufactures’ instructions (Worthing-

ton-Biochemical, Berkshire, UK). In brief, minced retinal tissue

was incubated with a mixture of papain (20 units/ml) and DNase

(0.005%) for approximately 40 min at 37uC. Enzymatic digestion

was stopped using inhibitor solution contained 10% ovomucoid

and 0.005% DNase. Cell suspensions were then filtered using

100 mm cell strainers (BD Falcon, Oxford, UK) to eliminate large

cell clumps. Cell pellets were resuspended into neural differenti-

ation medium for co-culture. Neural differentiation medium was

Neurobasal A media (Invitrogen), 2% B27, 0.5 mM L-Glutamine

(Sigma-Aldrich), 0.5–1% fetal bovine serum (FBS, Sigma-Aldrich),

1 mM retinoic acid (RA, Sigma-Aldrich) and 1 ng/ml brain-

derived neurotrophic factor (BDNF, R&D System, Abingdon,

UK). In human LNS differentiation condition 2, Sonic hedgehog

(Shh, 3 nM, R&D Systems), Taurine (1 mM, Sigma-Aldrich) and

RA (1 mM) were added into Neurobasal A media containing 2%

B27, 0.5 mM L-Glutamine and 0.5–1% FBS. Half of the medium

was changed every other day.

Immunocytochemistry/immunohistochemistry
Cells were fixed with 4% Paraformaldehyde (PFA, pH 7.4,

Sigma-Aldrich) for 15–20 min at 4uC. Cells or tissue slides were

permeabilized and blocked with 0.1 mM phosphate buffer saline

(PBS) supplemented with 0.1% Triton X-100 (Sigma-Aldrich) and

5% donkey blocking serum (DBS, Sigma-Aldrich) for 0.5–1 hrs at

room temperature (rt), prior to addition of primary antibodies.

Specific IgG secondary antibodies (Alexa Fluor 488, 555-

conjugate (1:500) Invitrogen) were incubated at rt for 1–2 hrs.

Negative controls omitted the primary antibody. Nuclei were

counterstained with 10 ng/ml 49, 69-diamidino-2-phenylindole

(DAPI, Sigma-Aldrich). Images were captured using a Leica DM

IRB microscope or a Leica SP5 confocal laser scanning

microscope (Leica Microsystems UK Ltd, Buckinghamshire,

UK). To quantify the percentage of cells expressing a particular

phenotypic marker, the number of positive cells was determined

relative to the total number of cells (DAPI labelled nuclei). A total

of 500–1000 cells from 6 random fields were counted per marker.

The antibodies used are listed in Table S1 in File S1.

Transmission electron microscopy (TEM)
Samples were fixed with 0.1 M sodium cacodylate (Sigma-

Aldrich), 3% glutaraldehyde (Sigma-Aldrich), 4% PFA and 0.1 M
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PIPES buffer (Sigma-Aldrich) for 15 min. After rinsing in 0.1 M

PIPES buffer, samples were postfixed in 1% buffered osmium

tetroxide (1 hr, Sigma-Aldrich) and block stained in 2% aqueous

uranyl acetate (20 min, Sigma-Aldrich). Following dehydration

through a graded series of ethanol fixations up to 100%, the

samples were embedded in TAAB resin (TAAB Laboratories,

Berkshire, UK). Gold sections were cut on a Leica OMU 3

ultramicrotome (Leica), stained with Reynolds lead stain and

viewed on a Hitachi H7000 transmission electron microscope

equipped with a SIS megaview III digital camera (Hitachi High-

Technologies Corporation, Berkshire, UK).

Reverse transcription-polymerase chain reaction (RT-PCR)
Total RNA was isolated and cDNA synthesis was performed as

per manufacturer’s instructions using an RNeasy Plus kit (Qiagen,

West Sussex, UK) and High Capacity cDNA Reverse Transcrip-

tion Kits (Applied Biosystems, Cheshire, UK). cDNA was

amplified using gene specific primers (Table S2 in File S1) using

step cycles (denaturing for 30 sec at 94uC; annealing for 30 sec at

60uC and extension for 30 sec at 72uC for 35 cycles unless

indicated otherwise). Electrophoresis was performed on a 1.5%

agarose gel. Real time quantitative PCR experiments were

performed using Rotor-gene 6000 (Qiagen, Manchester, UK).

Primers and FAM-labeled probes were designed and manufac-

tured by PrimerDesign (PrimerDesign Ltd, Southampton, UK;

Table S3 in File S1). Other PCR reagents and amplification

protocol were obtained from the same commercial provider.

Samples were analysed in duplicate and normalised to Gapdh

expression level by the 22DDCt method.

Cell transplantation
LNS cells passages 3–5 were used for transplantation. Following

transfection with a lentiviral-eGFP vector (kind gift from Professor

Andrew Dick, University of Bristol) at a concentration of 5 MOI

(multiplicity of infection), Green fluorescent protein (GFP) was

observed in over 95% of LNS cells 72 hours post-transfection.

LNS cells were dissociated into single cells with Accutase (Sigma-

Aldrich), washed twice with PBS and resuspended at a concen-

tration of 4,000–10,000 cells/ml in DMEM media (Invitrogen).

P1–3 mice were subjected to inhalation anaesthesia using 50%

isoflurane (Sigma-Aldrich) mixed with 50% oxygen. Animals

received cell transplants (0.8–1.0 ml) via a transcleral injection into

the subretinal space using a 34 gauge hypodermic needle

(Hamilton, Switzerland), connected to a Hamilton syringe

(Hamilton). Needle insertions were made tangentially though the

lateral superior sclera, and cells were injected slowly to produce

retinal detachments. Mice were sacrificed 2–3 weeks after

transplantation. After enucleation, the eyes were fixed with 4%

PFA in PBS, and cryoprotected in 20% sucrose, before embedding

in OCT (TissueTek, Thatcham, UK). Cryosections (16 mm thick)

were cut and affixed to poly-L-lysine coated slides (Thermo

Scientific, Hertfordshire, UK).

Statistical Methods
All results are presented as mean 6 SEM (standard error of the

mean) unless otherwise stated; n represents the number of

replicates. Statistical comparisons were made using a Student’s t-

test or one way analysis of variance (ANOVA) with a significance

threshold of p,0.05. GraphPad Prism Software (GraphPad, San

Diego, USA) was used for statistical analysis.

Results

Generation of neurospheres from adult mouse and
human limbal cells

We previously demonstrated that neural colonies (neurospheres)

can be generated from mouse adult corneal limbus in serum free

medium in the presence of mitogens [24].

By using the same culture system, we sought to enrich the neural

stem-like cells from both adult mouse and aged human corneal

limbus. Limbal tissue was harvested from adult mice (6–8 weeks,

Fig. S1 in File S1, File S2) and aged donors (72–97 years of age),

and cultured in the serum free neurosphere culture system. The

mouse and human limbal sphere-clusters started forming on day 5

and day 7 in vitro, respectively. Approximately 100–120 LNS, size

ranging from 50–150 mm in diameter, were generated from aged

individual human eyes after 10–14 days (Fig. 1). The numbers

were significantly less than those generated from single young

adult mouse eyes (392618, p,0.001). This may be due to the age

of the human donor eyes as well as low cell viability after 5–28

days tissue storage at the local eye bank. We examined the

phenotype of the cells within the human LNS. As revealed by

immunocytochemistry, human limbal sphere clusters expressed

neural stem cell markers, including the transcription factor Sox2

and intermediate filament protein nestin. The proportions of Sox2

and nestin positive cells were 31.2610.2% and 34.862.2%

respectively (Fig. 1). This is similar to our previous findings in

mouse LNS [24]. Co-expression of both markers was observed in

26.369.7% of cells.

Expression of photoreceptor specific markers in mouse
LNS cells following co-culture with developing retinal
cells

To promote differentiation of LNS into photoreceptor like cells,

mouse LNS cells were co-cultured with neonatal retinal cells. As

previously described, cultured PN1–3 murine retinal cells release

diffusible rod promoting factors, which can promote stem cell

differentiation or transdifferentiation towards rod photoreceptors

[25,26]. Cell inserts with a semi-permeable membrane were

utilised to avoid cell contamination. Mouse LNS cells formed a

monolayer following withdrawal of mitogens, with cells displaying

neural morphologies. Expression of retinal progenitor cell markers

Pax6, Lhx2 was observed by RT-PCR after 2–4 days of co-culture.

Following 7–10 days in co-culture, mouse LNS cells were

immunopositive for the photoreceptor specific marker Rhodopsin

(1363%) (Fig. 2). Rhodopsin positive cells had a dendritic

morphology, with staining in both the cell body and cytoplasmic

processes. Under control conditions (without co-culture), a few

Rhodopsin positive cells were detected (1.1960.39%). Statistical

analysis showed a significant difference between the two groups in

the presence and absence of co-culture (P,0.001, unpaired t-test).

Expression of both Rhodopsin and Rhodopsin kinase was also

detected at the RNA level by RT-PCR (Fig. 2), although the

expression level was significant lower than native neonatal retinal

tissues (,1%, P,0.001, ANOVA). Approximately 8–10% of cells

exhibited strong immunoreactivity to Syntaxin3, a major compo-

nent of synapses within the retina (Fig. 2) [27].

Differentiated LNS cells displayed ultrastructural changes

following co-culture. We previously reported that cellular junctions

such as gap junctions and immature adherens junctions were

found in LNS [24]. TEM revealed loss of junctions within the LNS

and presence of non-motile primary cilia (Fig. 2A, arrow) after

differentiation. The cilia noted in co-cultured LNS were identified

as sensory cilia, consisting of an axoneme of nine doublet

microtubules, with a lack of a key central pair of microtubules

Photoreceptor-Like Cells from Adult Limbal Neurospheres
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that are involved in ciliary motility [28]. Although not specific to

retinal lineage cells, this subtype of sensory cilia is present in

photoreceptor and RPE cells.

Potential of mouse LNS cells differentiation to retinal
lineage in vivo

To investigate the differentiation of mouse LNS cells in vivo,

eGFP expressing donor cells between passage 3–5 were trans-

planted into the sub-retinal space (SRS) of P1 wild-type C57BL/6

mice. P1 mice were selected as hosts since their retinas were

undergoing rod photoreceptor genesis. This produces an optimal

microenvironment to stimulate cell differentiation and integration

[25].

Following injection of a suspension of dissociated LNS cells,

identified by their eGFP tags, grafted mouse LNS cells were found

in the SRS or the vitreous (Fig. 3). Donor cells did not appear to

migrate into the host retina. Mouse LNS cells located in the SRS

showed small round cell bodies. Immunohistochemical analysis

using photoreceptor specific antibodies against rhodopsin, reco-

verin and syntaxin3 demonstrated expression of these markers in

eGFP cells, indicating differentiation of mouse LNS cells along a

photoreceptor lineage in vivo. This concurs with our observations

following in vitro co-culture using mouse LNS cells. Interestingly,

mouse LNS cells located in the vitreous cavity, incorporated into

the lens epithelium. However, photoreceptor markers were not

detected in these eGFP tagged LNS cells (Fig. 3). This was possibly

due to the ‘‘non-permissive’’ environment of the vitreous cavity.

Potential of human LNS cell differentiation towards
retinal lineages in vitro and in vivo

To investigate the potential of human LNS cells to transdiffer-

entiate towards retinal-like cells, both neonatal mouse retinal cells

and early human developing retinal cells were used for the co-

culture assay. In addition, the previously reported extrinsic factors

Shh/Taurine/RA were utilised to promote cell differentiation to

retinal cells [15,29]. Low levels of Lhx2 and Pax6 were detected in

all samples co-cultured with P1 mouse retinal cells or Shh/

Taurine/RA conditions. The retinal homeobox gene (Rx) was

expressed in 50% of the above samples. On the contrary, human

LNS cells co-cultured with early developing human retinal cells or

in control conditions where only differentiation media was applied,

did not express Lhx2 or Pax6 (Fig. 4A, C–E). Mature photore-

ceptor specific markers such as Rhodopsin were not detected in

human LNS cells at either the transcript or protein level as shown

by RT-PCR and immunocytochemical analysis.

We further investigated whether the in vivo permissive envi-

ronment of neonatal mouse retina could induce human LNS cells

to differentiate into retinal like cells. Following transduction of cells

Figure 1. Generation of neurospheres from adult mouse and human limbal cells. Upper panel: (A–B) illustrates the murine limbal region
used for generation of LNS. (C) Phase contrast image of adult mouse LNS. (D–F) LNS cells expressed neural stem/progenitor cell markers nestin, Sox2
and Tuj1. Lower panel: Human donor limbal rim (from age 72–97 years) were obtained after corneal graft surgery (G–H). Limbal region between the
two lines was used for generation of LNS. (I) Phase contrast image of human LNS. (J–L) LNS cells expressed neural stem/progenitor cells marker
nestin, Sox2 and Tuj1. Scale bar: 1 mm (A), 50 mm (B, I), 100 mm (C), 26 mm (D–F & J–L) and 10 mm (G–H).
doi:10.1371/journal.pone.0108418.g001
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Figure 2. Mouse LNS cells differentiated towards retinal lineage following co-culture with developing retinal cells in vitro. TEM of
mouse LNS cells following differentiation (A–B): 9+0 non-motile cilia (A, arrow), were present in induced limbal cells, whilst cell junctions were not
apparent (B). Histograms illustrating the percentage of rhodopsin positive cells (C, Mean 6 SEM, t test, P,0.001) and RT-qPCR on gene expression
level (D) in mouse LNS cells following differentiation in co-culture vs control condition (Mean 6 SEM, ANOVA, P,0.001). Retinal progenitor cell
markers & photoreceptor specific genes were detected by RT-PCR (E–F) and immunocytochemistry (a–c, e–g, j–l). Mouse retinal sections were used as
positive controls for antibody specificity tests (d, h, i); Cell nuclei were counter stained in blue with DAPI. Rho: rhodopsin, Synt3: Syntaxin3, GL:

Photoreceptor-Like Cells from Adult Limbal Neurospheres
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with eGFP, human LNS were subsequently transplanted into the

SRS of wildtype PN1-3 mice. The human xenografts survived for

25 days in the absence of immuno-suppression (longest observa-

tion time). They formed cell clusters, and displayed dendritic

processes. However, their processes didn’t extend towards the

ONL, but mainly spread horizontally. Adjacent to the site where

human LNS cells were grafted, host retinas displayed an

upregulation of glial fibrillary acidic protein (GFAP) and an

aberrant host retinal structure. This was more severe than in the

recipient retinas transplanted with allogeneic mouse LNS cells.

The histology suggested formation of a glial scar due to an

immune response to the xenograft. Similarly with co-cultured

human LNS cells, photoreceptor markers, such as rhodopsin and

recoverin, were not detected in any grafted human eGFP-LNS

cells (10 eyes, Fig. 4). This suggests that human LNS cells failed to

differentiate towards a photoreceptor lineage following transplan-

tation into the SRS of developing mouse eyes. This implies that

more comprehensive intrinsic and extrinsic regulation is required

to drive human LNS cells differentiation towards retinal-like cells.

Discussion

We have previously demonstrated that adult mouse LNS are

neural crest-derived limbal stromal stem/progenitor cells [24].

They can generate functional neural-like cells in vitro [24]. We

now report that these cells have the potential for differentiation

towards a retinal lineage. Following co-culture with neonatal

retinal cells, LNS cells express retinal progenitor cell markers such

as Lhx2 and Pax6, and mature retinal specific markers including

Rhodopsin and Rhodopsin Kinase, with approximately 10% of

ganglion layer, OPL: Outer plexiform layer, INL: inner nuclear layer, OPL: Outer plexiform layer, ONL: outer nuclear layer, OS: outer segments, IS: inner
segments Scale bar: 200 nm (A–B); 13 mm (a–c, e–g, j–l); 26 mm (d, h, i).
doi:10.1371/journal.pone.0108418.g002

Figure 3. Expression of photoreceptor specific markers in mouse LNS cells following transplantation into the sub-retinal space
(SRS) of P1–3 mice. Immunohistochemistry was conducted on mouse eyes 2 weeks after injection of mouse LNS. eGFP tagged LNS cells were
present in the vitreous or SRS (green, A, D, G, J); Mouse LNS cells located in the vitreous cavity, incorporated into the lens epithelium, but did not
express rhodopsin (B, C). Photoreceptor specific markers were observed in donor cells (green) and host retinal tissue (red, E, H, K). Cell nuclei were
counter stained with DAPI (blue) in the merged images (C, F, I, L). Three-channel merged images showed co-expression of rhodopsin and recoverin in
donor cells and host retina (M-P). OPL: Outer plexiform layer, ONL: outer nuclear layer, INL: inner nuclear layer, OS: outer segments, IS: inner segments.
Scale bar: 26 mm (A, D, G, J); 50 mm (M).
doi:10.1371/journal.pone.0108418.g003
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cells becoming immunopositive for rhodopsin. The expression of

photoreceptor specific markers at a transcript level indicates

endogenous expression of these photoreceptor specific genes.

Moreover, the major retinal synapse component syntaxin3 and

sensory cilia were also observed, as would be expected in

differentiated retinal cells. After transplantation into the SRS,

expression of rhodopsin, recoverin and syntaxin3 were also

detected in grafted LNS cells. For the first time, this work

demonstrates that neural crest-originated limbal stromal stem/

progenitor cells have the potential to generate retinal-like cells

both in vitro and in vivo.

Figure 4. Mature retinal lineage markers were not detected in human LNS derived cells in vitro or in vivo. Upper panel: RT-PCR and
immunocytochemistry were performed on human LNS cells following culture under retinal differentiation promoting conditions. Condition 1: human
LNS cells co-cultured with mouse developing retinal cells; Condition 2: human LNS cells cultured in differentiation media in the presence of Shh/RA/
Taurine. Condition 3: human LNS cells co-cultured with human fetal retina (post conception 56 days). (A) Retinal progenitor markers Pax6, Lhx2, Rx
were detected in 50% of samples, but the mature photoreceptor marker rhodopsin was absent in all conditions and also in fetal retina. Human adult
retinal cDNA was used as a positive control for photoreceptor specific genes. Negative control (RT-) omitted reverse transcriptase. (B) Retinal sections
were used as positive controls for immunostaining. (C–E) Rhodopsin was not detected in human LNS cells when co-cultured with mouse/human
developing retinal cells, or when culture conditions were supplemented with extrinsic factors Shh/Taurine/RA. (F–H): human LNS cells were
transfected with LVV-eGFP (green) and transplanted into the sub-retinal space (SRS) of neonatal mice. Rhodopsin and Syntaxin3 were not detected in
cells grafted into the SRS. Upregulation of GFAP was observed in host retina at the graft sites. (I) GFAP upregulation was less apparent in host retina
receiving allogeneic mouse LNS cells (green). Cell nuclei were counter stained with DAPI (blue) in the merged images. Shh: Sonic hedgehog, RA:
Retinoic acid. Rho: Rhodopsin, Sytx3: Syntaxin3, GFAP: Glial fibrillary acidic protein, ONL: inner nuclear layer, ONL: outer nuclear layer, RPE: retinal
pigment epithelium, NR: neural retina; scale bar: 50 mm (B), 26 mm (C–I).
doi:10.1371/journal.pone.0108418.g004
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We further investigated whether LNS can be generated from

aged human eyes, and whether they have a similar potential to

generate retinal cells. We generated LNS from aged human limbal

tissue from donors up to 97 years of age. The upregulation of

retinal progenitor markers such as Lhx2, Pax6 and Rx was noted

following culture in permissive conditions in vitro. To the best of

our knowledge, this is the first evidence showing that human LNS

have the plasticity to express retinal progenitor markers. However,

mature photoreceptor markers were not observed. The lack of

further cell maturation suggests that more comprehensive intrinsic

and extrinsic regulation is needed cf. mouse cells. Extrinsic factors

released by PN1–3 mouse retinal cells may be insufficient in

promoting further differentiation of human cells towards a mature

retinal cell lineage.

We also co-cultured human LNS with fetal week (Fwk) 7–8

human retinal cells. LNS did not appear to differentiate towards a

retinal lineage in this circumstance. This may be due to the fact

that retinal tissue/cells at the gestational stage of Fwk 7–8, have

not started rod genesis [30]. Our observation is consistent with a

previous report that rod promoting activity is only observed in

retinal cells at the peak of rod genesis, but not at an early

developmental stage or in adult retinal cells [25]. Due to ethical

concerns, we were unable to access later stage human fetal retinal

tissues. However, it is encouraging that human LNS expressed

retinal progenitor markers when exposed to several defined factors

including Shh, Taurine and RA. Shh has been shown to be

involved in the formation of the ventral optic cup, specification of

dorso-ventral polarity in the optic vesicle, and governing of ocular

morphogenesis [31]. Besides specification of the eye field during

embryonic development, Shh also has been implicated in the

control of retinal development in vertebrates [32,33] and is

required for the maintenance of retinal progenitor cell prolifera-

tion [34]. Another factor, RA, plays an important role in early eye

development as well as in the differentiation, maturation and

survival of photoreceptors [35]. Similar to the effect of co-culture

with neonatal (P1–3) mouse retinal cells, the combination of Shh,

Taurine and RA promoted upregulation of retinal progenitor

markers in human LNS. This suggests that defined culture

conditions may replace the use of animal tissue in the future.

We did not observe LNS cell migration or integration into the

host retina following sub-retinal transplantation into neonatal

mice. Cell integration into the retina remains challenging. Despite

being derived from the same origin as neural retina, iris or CB

derived cells have also shown limited ability for retinal integration

[36]. The proportions of cells which integrate into embryonic

retinal explants or retina from degenerate animal models are

small. Studies using retinal progenitor cells from embryonic retina

have also shown little integration into host retina, although mature

retinal phenotypes have been observed following sub-retinal

transplantation [37,38]. MacLaren et al. investigated the optimal

cell resource for functional integration into adult retina [2,6]. The

cells which migrated and integrated were shown to be post-mitotic

rod precursor cells. Therefore, the ontogenetic stage of trans-

planted cells is important for successful cell integration. Grafted

LNS cells in this study were not fully committed post-mitotic cells.

This may explain why cell integration was not observed. The host

microenvironment is also essential for inducing cell differentiation

and migration. In a study involving transplantation of IPE derived

cells [39], the grafted cells expressed the photoreceptor specific

marker rhodopsin when they were transplanted into the SRS of

embryonic chicken (E5) eyes. On the contrary, they did not

express rhodopsin or other neural markers when they were

transplanted into the vitreous cavity. This is in accordance with

our observation that the LNS cells transplanted into the vitreous

do not express photoreceptor markers.

LNS display plasticity, the potential to cross the tissue/germ

layer boundary and generate cells other than their origin [15,24].

However, LNS have limited potential to generate photoreceptor-

like cells. The highest rhodopsin expression level noted using LNS

derived cells was ,3% of that observed compared to using

neonatal mouse retinal tissue. Reports on other ocular stem-like/

progenitor cells also show limited success in the generation of

photoreceptor regardless of cell origin. Recently two independent

groups showed CE-derived cells failed to give rise to photoreceptor

cells [16,17]. Retinal neurosphere cells derived from neonatal mice

also had a low efficiency (1–2%) in generation of rhodopsin

positive cells during spontaneous differentiation [40].

It has been suggested that cell reprogramming is likely to be

needed for robust photoreceptor cell production. LNS cells would

also be an optimal cell resource for reprogramming and/or trans-

differentiation and subsequent retinal repair. They are readily

accessible, highly proliferative and multipotent ocular stem cells.

iPSCs have been generated from mouse and human somatic cells

by ectopic expression of four transcription factors including

OCT4, SOX2, c-Myc and KLF4. Due to risks such as insertional

mutagenesis or tumour formation, it is desirable to use the

minimal number of transcription factors and to eliminate

oncogenic factors [41–43]. This goal can be achieved through

optimal selection of candidate cell resources. For example, Kim et
al. generated iPSCs from adult mouse and human neural stem

cells by ectopic expression of a single transcription factor Oct4

[41–43]. As we previously demonstrated [24], a diverse range of

neural stem markers including Sox2, were detected on LNS cells.

The multipotent capability of limbal stroma derived stem/

progenitor cells have been reported by different research groups

[22,23,44–46]. Dravida et al. showed that stem cells derived from

human corneal-limbal stroma, expressed the ESC marker SSEA-4

(stage specific embryonic antigen-4) and other stem cell markers

important for maintaining an undifferentiated state [45]. There-

fore, LNS cells may become an ideal cell resource for single-factor

reprogramming and subsequent retinal repair due to their existing

stem/progenitor cell properties, multipotency and plasticity.

In summary, this data demonstrates the potential of mouse and

human LNS to differentiate into retinal lineages in vitro and

in vivo. The regulation of human LNS differentiation to a retinal

lineage appears more comprehensive than with mouse LNS cells.

As a readily accessible progenitor cell resource that can be derived

from individuals up to 97 years of age, limbal neurosphere cells

remain an attractive cell resource for the development of novel

therapeutic approaches for degenerative retinal diseases.

Supporting Information

File S1 Table S1, Primary antibodies used for immunocyto-

chemical analysis. Table S2, Primer sequences used for phenotypic

analysis and expected product sizes. Table S3, Primer and probe

sequences for real time quantitative PCR analysis.

(PDF)

File S2 Mouse corneal limbus dissection.

(WMV)

Acknowledgments

We thank David Johnson for instruction and help on confocal imaging, Dr

Anton Page for TEM processing and analyses, Professor David Wilson for

providing developing human retinal tissue; Professor Andrew Dick for

providing lentiviral eGFP vectors, and Miss Helen Griffiths for performing

PCR during manuscript revision.

Photoreceptor-Like Cells from Adult Limbal Neurospheres

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e108418



Author Contributions

Conceived and designed the experiments: XC HT AL. Performed the

experiments: XC HT JS. Analyzed the data: XC HT PH AL. Contributed

reagents/materials/analysis tools: JC PH. Wrote the paper: XC HT AL.

References

1. Lotery A, Xu X, Zlatava G, Loftus J (2007) Burden of illness, visual impairment
and health resource utilisation of patients with neovascular age-related macular

degeneration: results from the UK cohort of a five-country cross-sectional study.
Br J Ophthalmol 91: 1303–1307.

2. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, et al. (2006)

Retinal repair by transplantation of photoreceptor precursors. Nature 444: 203–
207.

3. Singh MS, Charbel IP, Butler R, Martin C, Lipinski DM, et al. (2013) Reversal
of end-stage retinal degeneration and restoration of visual function by

photoreceptor transplantation. Proc Natl Acad Sci U S A 110: 1101–1106.

4. Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, et al.
(2013) Photoreceptor precursors derived from three-dimensional embryonic

stem cell cultures integrate and mature within adult degenerate retina. Nat
Biotechnol 31: 741–747.

5. Leveillard T, Mohand-Said S, Sahel JA (2007) Retinal repair by transplantation
of photoreceptor precursors. Med Sci (Paris) 23: 240–242.

6. West EL, Pearson RA, Barker SE, Luhmann UF, MacLaren RE, et al. (2010)

Long-term survival of photoreceptors transplanted into the adult murine neural
retina requires immune modulation. Stem Cells 28: 1997–2007.

7. Tucker BA, Park IH, Qi SD, Klassen HJ, Jiang C, et al. (2011) Transplantation
of adult mouse iPS cell-derived photoreceptor precursors restores retinal

structure and function in degenerative mice. PLoS One 6: e18992.

8. Comyn O, Lee E, MacLaren RE (2010) Induced pluripotent stem cell therapies
for retinal disease. Curr Opin Neurol 23: 4–9.

9. Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, et al. (2009) Protective
effects of human iPS-derived retinal pigment epithelium cell transplantation in

the retinal dystrophic rat. PLoS One 4: e8152.
10. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, et al. (2009)

Derivation of functional retinal pigmented epithelium from induced pluripotent

stem cells. Stem Cells 27(10): 2427–34.
11. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, et al. (2011) Self-

organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:
51–56.

12. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, et al. (2012) Self-

formation of optic cups and storable stratified neural retina from human ESCs.
Cell Stem Cell 10: 771–785.

13. Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain:
expression of neuronal phenotypes in adult mice. Science 290: 1775–1779.

14. Hermann A, Liebau S, Gastl R, Fickert S, Habisch HJ, et al. (2006)
Comparative analysis of neuroectodermal differentiation capacity of human

bone marrow stromal cells using various conversion protocols. J Neurosci Res

83: 1502–1514.
15. Zhao X, Das AV, Bhattacharya S, Thoreson WB, Sierra JR, et al. (2008)

Derivation of neurons with functional properties from adult limbal epithelium:
implications in autologous cell therapy for photoreceptor degeneration. Stem

Cells 26: 939–949.

16. Gualdoni S, Baron M, Lakowski J, Decembrini S, Smith AJ, et al. (2010) Adult
ciliary epithelial cells, previously identified as retinal stem cells with potential for

retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells 28:
1048–1059.

17. Cicero SA, Johnson D, Reyntjens S, Frase S, Connell S, et al. (2009) Cells

previously identified as retinal stem cells are pigmented ciliary epithelial cells.
Proc Natl Acad Sci U S A 106: 6685–6690.

18. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, et al. (2000) Retinal
stem cells in the adult mammalian eye. Science 287: 2032–2036.

19. Joly S, Pernet V, Samardzija M, Grimm C (2011) Pax6-positive Muller glia cells
express cell cycle markers but do not proliferate after photoreceptor injury in the

mouse retina. Glia 59: 1033–1046.

20. Bhatia B, Jayaram H, Singhal S, Jones MF, Limb GA (2011) Differences
between the neurogenic and proliferative abilities of Muller glia with stem cell

characteristics and the ciliary epithelium from the adult human eye. Exp Eye
Res 93: 852–861.

21. Giannelli SG, Demontis GC, Pertile G, Rama P, Broccoli V (2011) Adult human

Muller glia cells are a highly efficient source of rod photoreceptors. Stem Cells
29: 344–356.

22. Du Y, Funderburgh ML, Mann MM, SundarRaj N, Funderburgh JL (2005)
Multipotent stem cells in human corneal stroma. Stem Cells 23: 1266–1275.

23. Yoshida S, Shimmura S, Nagoshi N, Fukuda K, Matsuzaki Y, et al. (2006)
Isolation of multipotent neural crest-derived stem cells from the adult mouse

cornea. Stem Cells 24: 2714–2722.

24. Chen X, Thomson H, Hossain P, Lotery A (2012) Characterisation of mouse
limbal neurosphere cells: a potential cell source of functional neurons.

Br J Ophthalmol 96: 1431–1437.

25. Watanabe T, Raff MC (1992) Diffusible rod-promoting signals in the developing
rat retina. Development 114: 899–906.

26. Altshuler D, Cepko C (1992) A temporally regulated, diffusible activity is

required for rod photoreceptor development in vitro. Development 114: 947–
957.

27. Morgans CW, Brandstatter JH, Kellerman J, Betz H, Wassle H (1996) A

SNARE complex containing syntaxin 3 is present in ribbon synapses of the
retina. J Neurosci 16: 6713–6721.

28. Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, et al. (2004) Efficient

generation of neural stem cell-like cells from adult human bone marrow stromal
cells. J Cell Sci 117: 4411–4422.

29. Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, et al. (2008) Toward

the generation of rod and cone photoreceptors from mouse, monkey and human
embryonic stem cells. Nat Biotechnol 26: 215–224.

30. Hendrickson A, Bumsted-O’Brien K, Natoli R, Ramamurthy V, Possin D, et al.

(2008) Rod photoreceptor differentiation in fetal and infant human retina. Exp
Eye Res 87: 415–426.

31. Carter-Dawson LD, LaVail MM (1979) Rods and cones in the mouse retina. II.

Autoradiographic analysis of cell generation using tritiated thymidine. J Comp
Neurol 188: 263–272.

32. Zhao L, Saitsu H, Sun X, Shiota K, Ishibashi M (2010) Sonic hedgehog is

involved in formation of the ventral optic cup by limiting Bmp4 expression to the
dorsal domain. Mech Dev 127: 62–72.

33. Kobayashi T, Yasuda K, Araki M (2010) Coordinated regulation of dorsal bone

morphogenetic protein 4 and ventral Sonic hedgehog signaling specifies the
dorso-ventral polarity in the optic vesicle and governs ocular morphogenesis

through fibroblast growth factor 8 upregulation. Dev Growth Differ 52: 351–

363.

34. Amato MA, Boy S, Perron M (2004) Hedgehog signaling in vertebrate eye

development: a growing puzzle. Cell Mol Life Sci 61: 899–910.

35. Wang Y, Dakubo GD, Thurig S, Mazerolle CJ, Wallace VA (2005) Retinal
ganglion cell-derived sonic hedgehog locally controls proliferation and the timing

of RGC development in the embryonic mouse retina. Development 132: 5103–

5113.

36. Akagi T, Akita J, Haruta M, Suzuki T, Honda Y, et al. (2005) Iris-derived cells

from adult rodents and primates adopt photoreceptor-specific phenotypes. Invest
Ophthalmol Vis Sci 46: 3411–3419.

37. Akita J, Takahashi M, Hojo M, Nishida A, Haruta M, et al. (2002) Neuronal

differentiation of adult rat hippocampus-derived neural stem cells transplanted
into embryonic rat explanted retinas with retinoic acid pretreatment. Brain Res

954: 286–293.

38. Canola K, Angenieux B, Tekaya M, Quiambao A, Naash MI, et al. (2007)
Retinal stem cells transplanted into models of late stages of retinitis pigmentosa

preferentially adopt a glial or a retinal ganglion cell fate. Invest Ophthalmol Vis

Sci 48: 446–454.

39. Sun G, Asami M, Ohta H, Kosaka J, Kosaka M (2006) Retinal stem/progenitor

properties of iris pigment epithelial cells. Dev Biol 289: 243–252.

40. Mansergh FC, Vawda R, Millington-Ward S, Kenna PF, Haas J, et al. (2010)
Loss of photoreceptor potential from retinal progenitor cell cultures, despite

improvements in survival. Exp Eye Res 91: 500–512.

41. Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, et al. (2009) Direct
reprogramming of human neural stem cells by OCT4. Nature 461: 649–3.

42. Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, et al. (2009) Oct4-

induced pluripotency in adult neural stem cells. Cell 136: 411–419.

43. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, et al. (2008) Pluripotent stem cells
induced from adult neural stem cells by reprogramming with two factors. Nature

454: 646–650.

44. Uchida S, Yokoo S, Yanagi Y, Usui T, Yokota C, et al. (2005) Sphere formation
and expression of neural proteins by human corneal stromal cells in vitro. Invest

Ophthalmol Vis Sci 46: 1620–1625.

45. Dravida S, Pal R, Khanna A, Tipnis SP, Ravindran G, et al. (2005) The
transdifferentiation potential of limbal fibroblast-like cells. Brain Res Dev Brain

Res 160: 239–251.

46. Brandl C, Florian C, Driemel O, Weber BH, Morsczeck C (2009) Identification
of neural crest-derived stem cell-like cells from the corneal limbus of juvenile

mice. Exp Eye Res 89: 209–217.

Photoreceptor-Like Cells from Adult Limbal Neurospheres

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e108418


