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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Graphene FET Circuit-level Device Modelling
by Ime J. Umoh

This thesis presents models for a graphene based field effect transistor (GFET). The
graphene material has been widely studied since its synthesis in 2004 and the material
holds promise for the next generation electronic applications. Therefore, there is a need

to model its device characteristics.

In this respect the contributions presented here are, firstly, a SPICE-compatible model
for both dual gate and single gate graphene transistors. The derivation of the carrier
transport of both hole and electron conduction results in a set of analytical equations.
These derivations cover the three identified regions of operation as well as the bound-
ary voltage conditions that define the regions. The Jacobian entries are shown to be

continuous across the region boundaries.

Secondly, circuit levels model of a single-layer GFET and multi layer GFET suitable
for a direct implementation in SPICE. In this contribution, a more accurate threshold
voltage compared to other models is derived. This contribution also shows how models

can be extended to as many layers the graphene channelled transistor has.

Finally, the introduction of a thermionic resistance, which is modelled in parallel with the
resistance due to gate induced charges, provides a model for the temperature dependent
channel resistance. The contribution goes further to derive equations between the off
current and the vertical electric fields. Thus, giving a good estimation of the tunable

bandgap opening in graphene.

The models in this contributions are validated against experimentally measured transis-
tor characteristics which have been carried out by other research groups and the models
show a good agreement in all cases validated. The thesis equally presents the use of a
floating gate to optimize the transistors characteristics. To illustrate these contributions,
algorithms of the models have been implemented on the following CAD tools, HSPICE,
VHDL-AMS and Berkeley SPICE. During the course of this work one journal and five

conference papers have been published.
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Chapter 1

Introduction

Bare graphene is a two dimensional structure of tightly bound carbon atoms with a honey
combed lattice. This structure can be wrapped up into a zero-dimension buckminster-
fullerene, a one-dimension carbon nanotube and a three-dimensional stacked graphene
commonly called graphite. In the last two decades there has been a lot of research into

the behaviour and possible application of both carbon nanotubes and graphene.

1.1 Carbon nanotubes

The carbon nanotube (CNT) was first synthesised in the early 1990s [1, 2, 3] with
many potential applications in the fields of nanoelectronics, optics and material science.
The nanotube is categorized into two groups, single-walled and multi-walled. A single-
walled nanotube is formed by rolling just one atomically thin graphene sheet while a
multi-walled nanotube refers to the rolling of two or more stacks of graphene sheets.
Experiments and theory have shown that both of the nanotube categories can be either
metallic [4, 5] or semiconducting [6]. Either of the forms of CNTs has potential appli-
cation in future generation integrated circuits (ICs). As such there have been a number
of compact models developed [7, 8, 9, 10, 11]. With one of the models [11] using cubic
spline approximations to ensure shorter circuit simulation time. Since CNT is analysed
as a rolled up two-dimensional graphene, therefore its remarkable electrical properties

originates from the electronic structure of graphene [12, 13]

1.2 Graphene

The isolation of graphene from graphite came much later than the CNT in 2004 [14],
by mechanical exfoliation. Like the CNT, two dimensional graphene holds a lot of

prospects as a possible candidate to complement silicon in the next generation ICs

1



2 Chapter 1 Introduction

because of its high carrier mobility and high current density. Graphene being flat makes
it easy to be integrated into the current CMOS lithographic process [15]. Similar to
the categorization in CNTs, graphene has single-layers, bilayers, trilayer and so forth.
For eleven and greater stacked layers of graphene sheets, the structure is considered to
be three-dimensional graphite [16, 17] and between three to ten layers, the structure is

referred to as few layer graphene [16].

Particular interest will be given to devices with single-layer to a few layers. Other than
mechanical exfoliation, few layered graphene has been grown epitaxially by chemical
vapour deposition on metal substrates [18, 19, 20, 21] as well as by thermal deposition
on silicon carbide (SiC) [22]. Chemical vapour deposition in making transistors is more
commercially viable than mechanical exfoliation and also a more viable route to elec-
tronic applications. One of the most remarkable features of graphene is its high carrier
mobility at room temperature [23]. To put this in perspective, suspended graphene has
a recorded mobility in excess of 200,000cm?/V s [24] at room temperature compared to
1,400em?/V's for silicon and 8,500cm?/V's for gallium arsenide [25]. In terms of cut-off
frequency and high speed electronics, graphene currently out-performs other semicon-
ductors with a cut-off frequency of up to 300GHz [26, 27, 28]. Both graphene and CNT
transistor were used to implement a ring oscillator. The graphene based ring oscillator
had a frequency as high as 1.28GGHz while the CNT based ring oscillator was limited to
52MHz [29].

1.2.1 Graphene Transistor Modelling

Despite its remarkable carrier mobility among other physical properties, graphene does
not have a bandgap. It is referred to as a semi-metal because both its conduction and
valence bands touch at the Fermi level. The gapless nature of graphene is the reason it
is modelled as an ambipolar device [14, 30, 31] whereby carriers can be tuned from being
hole-like to electron-like. The main aim of modelling graphene transistors is to be able
to predict its performance in circuit designs. As the fabrication of graphene becomes
more controlled, the current models will be greatly improved to predict the behaviour

of a transistor prior to fabrication.

1.3 Research Challenges

The need to design circuits has prompted a lot of research into developing model targeted

for circuit simulations. The modelling still has a number of challenges.

e A number of simulation program with integrated circuit emphasis (SPICE) com-

patible models have been reported which use either a numerical [32, 33] or an
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analytical [34] approach to model the transport behaviour, yet the models do not

show the boundary voltage conditions for all the three regions of operation.

e Determining the threshold voltage is very important in circuit design as the thresh-
old voltage accounts for the off-state of a field effect transistor. Models adopt a
simple linear relationship to determine the behaviour of the threshold voltage in
graphene which has shown a good agreement for some experiments and large de-
viations for others. Therefore there is a need to develop graphene layer specific

models which will give a good agreement against all measured threshold voltages.

e A tunable bandgap has been successfully opened in two or more layered graphene.
Therefore, there is a need to model the off-current resulting from the opening of a

bandgap.

e Published experimental analysis of graphene devices are carried out at varying
temperatures. Some at room temperature and some at temperatures as low as
4.7 Kelvin, therefore it is important to know how the device is dependent on

temperature to accurately model its characteristics.

1.4 Research Aims and Contributions

In light of the challenges faced by the currently available modelling, the aim of this re-
search is to develop a graphene model that is both SPICE compatible so as to facilitate
circuit design and closely predicts the behaviour of the graphene field effect transis-
tor (FET) at various bias and temperature conditions. This research develops both a
compact model which is analytical for a single-layer and a numerically intensive model.
The compact model guarantees a fast simulation time which is necessary for very large
scale designs such as in digital circuits. Furthermore, to facilitate development of cir-
cuit designs, the research focuses on the implementation of the model in popularly used

computer aided design (CAD) tools. These contributions include:

e Ambipolar saturation transport modelling:

This contribution presents an analytical equation for modelling the transport char-
acteristics in the ambipolar saturation region that is observed in the graphene bi-
layer field effect transistor. Being able to determine and model this region is very
important because this region can make the transistor draw a destructive amount
of current leading to its breakdown. This work presents derived equations that
capture the device physics over the phenomenological expressions used in previous
literature [34, 35, 36, 37]. This contribution has been published in the IEEE Trans-
action in Nanotechnology [38]. Three conference papers [35, 36, 37] describing this

model have been published in the 55* ETRAN (electronics, telecommunication,
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computers, automatic control and nuclear engineering) conference [35], the FDL
(Forum on specification & Design Languages) 2011 conference [36] and the Vir-
tual Worldwide Forum for PhD Researchers in Electronic Design Automation 2011

conference [37] respectively.

Transistor current region boundaries:

Another contribution of this work is the derivation of the analytical equations of
the boundary voltages for the respective regions of operation of the transistor. This
is the first presentation of an analytical equation that distinguishes the unipolar
saturation region from the ambipolar saturation region. The Jacobian entries
have been shown to be continuous across these boundaries, which indicates that
the proposed model is suitable for SPICE implementation. This contribution has
been published in IEEE [38].

Behavioural model implementation:

This contribution presents the development of behavioural models for computer
simulation of graphene bilayer field effect transistors. This models are based on
close analytical equations which allows them to be very fast and take up low
computation power. The models are also very efficient since they do not use
numerical analysis to approximate the drain current characteristics. Behavioural
models of two commercial CAD tools have so far been published; one in HSPICE
[35] and the other in VHDL-AMS [36].

Circuit level implementation:

This contribution presents the development of a circuit level implementation of
the transistor in Berkeley SPICE. Berkeley SPICE is an open source SPICE simu-
lator and in this work the graphene transistor library has been integrated into the

simulator.

Floating gate and digital logic implementation:

This contribution presents the use of a floating gate to control charge density in
the transistor. The control of the charge density has been exploited to develop a
inverter with symmetrical transfer characteristics. This is the first presentation of
the use of a floating gate on a graphene bilayer transistor. This technique shows
promise for optimising the graphene transistor. A conference paper [39] has been

published based on this contribution.

Accurate threshold voltage modelling:

In this research one of the main contributions is accurate calculation of the thresh-
old voltage. The threshold voltage is calculated from the proposed equivalent
circuit model. This confirms that the equivalent model presented here better fits
the transistor device. This contribution has been published in IEEE [40]
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e Temperature dependence and bandgap estimation:

Furthermore, another contribution of this work is the development of a phenomeno-
logical equation that models the channel conductance dependence on temperature.
This allows for the estimation of the amount of bandgap opening and how the band
gap is tuned by varying model parameters. This contribution has been published
in IEEE [40] and has been presented in a conference [41, 42].

1.5 Thesis Organisation

This thesis is organised into seven chapters. Of the seven chapters the last five focus

solely on my work.

Chapter 2 is a literature review of the state-of-the-art in graphene electronics. The
chapter presents techniques researchers are exploring to engineer a band gap in graphene.
It also presents the energy dispersion and the quantum capacitance of graphene and the
role it plays in the carrier transport characteristics. This chapter explores the transport

mechanism of carriers as well as the tunneling using a floating gate.

Chapter 3 proposes an analytical derivation of the drain current characteristics of a
graphene transistor. The general model used here can apply to any graphene FET. Layer
specific models for single-layer and few layer graphene transistor can be mapped to the
general model to calculate the respective transport characteristics. Two sections show
the derivation for both hole and electron conduction. For each of the carrier conduction
modes, the analytical derivation covers the three regions of operation namely, unipolar,
unipolar saturation and ambipolar saturation and their respective voltage boundaries.
Work carried out in this chapter has been published in the IEEE Transaction in Nan-

otechnology [38] as well as presented in conferences and workshops [35, 36, 37].

Chapter 4 presents a single-layer specific model. The equivalent circuit model with
derivation the effective capacitance and the threshold voltages for both a single and a
dual gated transistor are presented. The chapter explains how the single-layer specific
model of either the single or dual gate can be mapped to the general model to calculate
the transport characteristics. Operational temperature analysis of the single-layer is also
discussed. The model is validated against published experimental data and a comparison

is presented. Work carried out in this chapter is to be presented in a conference [42].

Chapter 5 describes a multi-layer graphene FET model. It focuses mostly on the bilayer
graphene and a four layer graphene transistor. The salient feature of the multi-layer
model is that it can be extended to a graphene channel with an arbitrary number of
layers. The chapter also shows how such a model can be mapped to the general model
to calculate its drain current and the channel resistance transfer characteristics. Also a

temperature analysis is performed and equations of the channel resistance dependence
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on temperature are presented. The off-current and its dependence on the electric field is
also derived. Using the model of the off-current, an estimation of the bandgap opening
is obtained. The model presented is validated against published experimental data and
a comparison made. Work carried out in this chapter has been submitted for a journal
publication in the IEEE Nanotechnology Transaction [40] where it is currently under

review and has been presented in a conference [41].

Chapter 6 describes CAD tools used in the project and the optimization of the transistor
using a floating gate. Supporting this work, the model has been implemented in three
CAD tools which are HSPICE, VHDL-AMS and Berkeley SPICE. Work in this chapter
shows how the model is implemented in the various CAD tools and how the model
interacts with the CAD tool simulator. Also the concept of a floating-gate has been
exploited to implement a logic inverter. Work carried out in this chapter had been

presented in various conferences [35, 36, 39, 43].

The final chapter provides a general conclusion of the work carried out so far and presents

areas further work is to be carried out.



Chapter 2

Literature Review

Carbon has six electrons making it a Group IV element in the periodic table. The
four valence electrons in its outer shell allows carbon to undergo one of three forms of
hybridization; sp3, sp? or sp which is the mixing of atomic orbitals. In sp? hybridization,
each of the carbon atoms shares a double bond with an adjacent carbon atom. Fig. 2.1
shows three stable forms of carbon with sp? hybridization that has been successfully

synthesised; fullerenes [44], carbon nanotubes [1] and graphene [14].

FIGURE 2.1: A two-dimension graphene rolled into a zero-dimension fullerene (left),

one-dimension carbon nanotube (middle) and stacked into three-dimension graphite

(right). Reprinted with permission from [16]. Copyright 2007, Rights Managed by
Nature Publishing Group.
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TABLE 2.1: Allotropes of graphene [45]

Dimension 0-D 1-D 2-D 3-D

Allotrope Fullerenes Carbon nanotubes Graphene Graphite
Structure Spherical Cylindrical Planar Stacked planar
Hybridization sp? sp? sp? sp?

FElectronic properties Semiconductor Metal or semiconductor Semi-metal Metal

2.0.1 Single-Layer Tight Binding

Table (2.1) shows that despite carbon having an sp? hybridization, it can have a varying
structure, allotrope and electrical properties. Owing to the six electrons, carbon has
electrons in the following orbitals; 1s, 2s, 2p, and 2p,. The 2s and 2p orbital interact
to form three hybrid orbitals, 2p,, 2p, and 2p.. In bonding, three o bonds are formed
with a 7 bond. The ¢ bonds are strong covalent bonds with electrons localized along the
plane of the bond between the carbon atoms, while the m bond is weakly bound to the
nuclei and originates from the 2p, electrons [45]. With loosely bound electrons, the 7
bond determines the electrical properties of graphene. For both carbon nanotubes and

graphene the crystal lattice is cyclohexane in structure (see Fig. 2.2(a)).

The hexagonal lattice structure has a carbon to carbon distance of approximately
0.142nm. From Fig. 2.2(a), each of the carbon atoms in the lattice has two set of
carbon atoms with analogous bonds. One set of analogous bonding atoms are coloured

black and the other gray.

<
x

~

(a) Graphene honeycomb lattice (b) The reciprocal lattice of graphene

FIGURE 2.2: The lattice structure of an atomic layer of graphene
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2.0.1.1 Brillouin Zone

Crystal lattices are often described by their Bravais lattice. In an array of atoms, there
exist an atom or a collection of atoms whereby the orientation is always the same when
looking at other atoms from that atom or collection of atoms. This representation at
any point in the structure is referred to as Bravais lattice while the number of atoms in

the collection is called its basis. Graphene’s honeycomb lattice has a basis of two.

From Fig. 2.2(a), an atom is projected to its two analogous atoms with primitive vectors
a; and ag. These primitive vectors in Eqn. (2.1) are associated with the Bravais lattice

vector R = niaj +nsas where ny and ny are integers and a = |a;| = |az| also a = v/3a._.

\/ga a \/ga a
ap = <2,2> , a2 = (2,—2> (2.1)

The primitive vectors and the Bravais lattice describe the direct lattice or real lattice.
The central feature of electrons in crystalline solid is periodicity and regularity [45]. The
primitive vectors allow us to view the lattice in say the time domain. In order to view
the lattice in the frequency domain, a discrete Fourier transform of the direct lattice is

required which gives a reciprocal lattice.
When considering a 3-D lattice, the primitive vectors |a1]|, |az| and |az| have correspond-
ing reciprocal vectors |b;|, |b2| and |bs|, which is represented by Eqn. (2.2).

ag X as az X ay a1 X a9

g =2r—> L py =g (2.2)

b1 =27 3
al.(ag X a3)7 al.(ag X CL3)

al.(ag X ag)
But the graphene direct lattice is a 2-D lattice, therefore Eqn. (2.2) will be reduced to
Eqn. (2.3) [45].

Rgo(az) _o Rgo(—a1)

by = 27— 90\42) o tt00lTAL)
! Wdet(al,ag)’ 2 7Tdet(al,ag)

(2.3)
In Eqn. (2.3), Ry is an operator that rotates the vector clockwise by 90 degrees. For
example rotation on a vector v = v1Z + vay gives Roo(£v) = H(v1Z — v27).

Applying Eqn. (2.3) to the primitive vectors, Eqn. (2.1) yields:

2 2w 2r 27
by — =) b= —, - 2.4
1 (\/ga a ) ’ <\/§a a > 24
It can be seen that the corresponding reciprocal lattice vectors in Eqn. (2.4) are either

parallel or normal to the associate primitive vectors. The reciprocal vectors are shown
in Fig. 2.2(b).
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In the reciprocal lattice there are some points of interest; the I'-point, the K -point and
the M -point. These points describe the first Brillouin zone. The Brillouin zone is used
to investigate the electronic band structure in crystals. The I'-point is in the center
of the Brillouin zone and the M-point is midway the K - K’. Therefore, there are six

K-points and six M-points.

2.0.1.2 Energy Dispersion

AN

7

(a) Valence band energy (b) Conduction band energy

(c) The graphene energy band

FIGURE 2.3: The energy band spectrum for graphene in the Brillouin zone

In the graphene lattice, each carbon atom with its four valence electrons forms 2s and 2p
orbitals. The resulting atomic orbitals electronic wave functions overlap. The overlap
between the 2p, and the 2s, 2p, or 2p, have zero symmetry as such the 2p, is treated
independently [46]. The 2p, are responsible for the 7 electrons which determine the
electronic properties of graphene. The energy spectrum of the first Brillouin zone is
therefore calculated from the Schrodinger wave equation along with Bloch’s theorem

which states that a wave function is periodic with the length of its lattice [45].

Hence, the energy dispersion in the first Brillouin zone is given by Eqn. (2.5) [46].

E(l@)jE = :|:7\/1 + 4 cos \/gakx coS gky + 4 cos? gky (2.5)
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Eqn. (2.5) is plotted for E(k)~, E(k)* and E(k)* and can be seen in Fig. 2.3(a), Fig.
2.3(b) and Fig. 2.3(c) respectively.

2.0.2 Bilayer Tight Binding

The device bandgap greatly influences the channel conductivity. In the bilayer graphene
the electric field opens the bandgap by creating an asymmetry between the layers [47].

2.0.2.1 Bernal Stacking

(a)

Az

A,
N e
-2
» a=1
zZ 0
A © o=

-1

., / \

) -1 0 1 2
vply,

FIGURE 2.4: (a) bilayer lattice in Bernal stacking. (b) low energy bands near the
K-points

Fig. 2.4-a considers Bernal stacking of the two layers in bilayer graphene such that one
corner of the hexagon on the top sheet is directly above the center of the hexagon in the
bottom sheet. Every As (black circles) site on the top layer lies directly above every B
(black circle) site on the bottom layer, but other sites By (gray circle) and A; (white

circle) are not directly opposing each other.

By applying the tight-binding model of graphite to describe the electronic band structure
of bilayer graphene [48, 49, 50, 51], it is taken that the in-plane couplings between sites
Ay and By (y4,B,) as well as between Ay and By (v4,B,) are equal and equivalent to
vo. Also, the inter-layer couplings between sites Ay and B; (v4,p,) are equivalent to
~1. Although, there are other inter-layer couplings such as between sites A1 and By but

these are weaker than +; and they have been ignored.
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2.0.2.2 Energy Dispersion

The in-plane velocity, v, in Fig. 2.4 is v = (v/3/2)ayo/h, where a is the lattice constant
and h is the reduced Plank’s constant. Given the wave vector k, the momentum, p, with
respect to the wave vector is p = fik. A accounts for the asymmetry between inter-layer
site energies. Taking A into account, the energy dispersion is given by Eqn. (2.6) [47,
49].

o, A7 2,2 oh
e = ?1—1—?4—1) p° + (—=1)* Z1+v2p2('y%+A2) (2.6)
Fig. 2.4-b shows the normalized energy dispersion for a coupled bilayer graphene with
A =0, a = 0.246nm, 79 and ; are 3.0eV and 0.35eV respectively. At the K-points

where both the conduction and valence bands touch, the momentum p = 0.

2.0.3 Energy Dispersion Close to the K-points

In the graphene lattice, there are six K-points (see Fig. 2.3), these points are referred to
as Dirac points and they are shown in Fig. 2.2(b). In Eqn. (2.7), the energy dispersion
close to the Dirac points can be simplified to a linear dispersion, E(k), whose gradient
is given by the product of the reduced Plank’s constant A, the Fermi velocity vr and

the spherical coordinate k [52].

E(k) = thopy/k2 + k2 (2.7)

Thus, for both single-layer and bilayer graphene, Fig. 2.5 displays the energy dispersion
around the Dirac point. The single-layer shows a clearly linear dispersion in Fig. 2.5-i
and since both bands touch it is a semi-metal with a zero bandgap. But by slicing the
single-layer into a few nanometer wide ribbon, a measure of bandgap opens as shown in
Fig. 2.5-ii. Equally, in the case of bilayer as shown in Fig. 2.5-iii, at the Dirac point
both bands touch but in the case of the bilayer the dispersion is parabolic. On applying

an electric field a tunable bandgap opens as shown in Fig. 2.5-iv.

2.0.4 Electron Confinement Using a Potential Barrier

In metallic single walled carbon nanotube (SWCNT), there is an absence of backscatter-
ing even in the presence of scatters, this makes the metallic SWCNT a good conductor
[54]. Any potential drop in the metallic SWCNT is across its contact resistance, while
conduction through the channel is ballistic [55]. On the other hand, the semiconductor

SWCNT shows a large voltage dependent resistance along the nanotube channel. This
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FIGURE 2.5: The energy dispersion close to the K-points for i) single-layer ii) nanorib-

bons iii) bilayer with zero electric field and iv) bilayer in the presence of an electric

field. Reprinted with permission from [53]. Copyright 2010, Rights Managed by Na-
ture Publishing Group.

resistance confirms the presence of backscattering in semiconducting SWCNT. Thus, by
having backscattering for semiconducting SWCNT and not for metallic SWCNT implies
that the chirality plays a dominant role in the backscattering.

In taking the case of a finite rectangular potential barrier of height V, and width D,
when an electron of energy F is incident on the barrier as shown in Fig. 2.6-b, ideally,
the transmission energy through the barrier decays exponentially with the height and
width of the barrier. As such no transmission is expected through the forbidden region
in classical mechanics [57]. By solving the transmission probability for a p-n-p junction,
transmission in graphene is perfect at an angle normal to the barrier [56] as shown in
Eqn. (2.8):

cos?p

T —
1 — cos(qzD)sing

where ¢ is the angle on incidence and g, is a wave factor.

Carriers from the green (red) branch, which are electron-like (hole-like) in Fig. 2.6-a for
a single-layer and Fig. 2.6-c for a bilayer at zero energy, can only be scattered into states
of the same branch. A flip in pseudospin will be required to scatter into an alternate
branch. Hence, a hole-like carrier can enter the barrier via the red branch, transmute
into an electron-like carrier and exit via the green branch. This is possible because
Dirac particles cannot be confined by an electrostatic potential [58]; Dirac particles have
both positive and negative energy states and their transmission probability is weakly
dependent on the barrier height [57].
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FIGURE 2.6: (a) Single-layer energy dispersion. (b) Rectangular potential barrier and
(c) Bilayer energy dispersion. Reprinted with permission from [56]. Copyright 2006,
Rights Managed by Nature Publishing Group.

2.1 Graphene Transistor Modelling

Graphene can have carriers travel ballistically between submicron distances, giving it an
excellent electronic property. High carrier mobility [23] plays a vital role in its electronic
property as the dimension of the channel is reduced due to scaling. Carrier mobility in
graphene is in the vicinity of 2 x 103em?V 157! to 15 x 103em?V ~1s7! for a substrate

supported sample [30, 59] and 2 x 10°cm?V ~1s7! for a suspended sample[59, 60].

2.1.1 Carrier Scattering

Currently, suspended graphene has the highest mobility but compared to graphene on
substrates their conductivity at the Dirac point is strongly dependent on temperature.
Above 100K the transport carriers suffer from thermal scattering and approach ballistic

transport at temperatures of liquid helium [60].

Thermal scattering is independent of the channel length. As the device geometric di-
mensions are scaled further into the nano-level other secondary effects become more
prominent, while phonon and acoustic scattering become negligible. The mean free

length for phonon scattering is estimated at I, = 0.77um [61].
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In ballistic transport, for lengths lower than [,, other secondary effects such as; Coulomb
scattering by charged impurities near the interface between graphene and the substrate
(t4c), surface roughness (ps,), line-edge roughness (ue,-) and short range scattering (u,)
due to lattice defects will limit the conductivity [62, 63, 64, 65]. Thus, the effective
mobility can be formulated with Mathiessens rule [66] which is represented by Eqn.
(2.9).

Popp O po b it e ! (2.9)

2.1.2 Metal Contact

A very important function performed on the transistor is that of getting carriers into
and out of the transistor. In the absence of backscattering, especially in the single-layer
graphene, ballistic transport is expected. Therefore, any limiting current is due to the
presence of a contact resistance. Fig. 2.7 shows the schematic (see Fig. 2.7(a)) and the
characteristics of the contact resistance against changes in the contact spacing (see Fig.

2.7(b)) for a metal contact on a thin semiconductor.

Slope = Rew/W
Rtotal

™~

X< | | | | | R )

Al ' !

(_T “RS R3S RS RS R C— Do

I % % % % % Pl

R R R R R t | Channel length
2L+
(a) Distributed resistor network schematic of the con- (b) The total contact resistance against the channel
tact resistance length. Reprinted with permission from [67]. Copy-
right 2011, Rights Managed by Nature Publishing
Group.

FIGURE 2.7: Characteristic of a metal on a thin semiconductor

This technique of modelling the total contact resistance has been applied in investigating
the behaviour of a metal contact on the graphene channel [67, 68, 69]. Solving Fig.
2.7(a) results in a differential equation for both current and voltage with respect to the
distance, z. The contact resistance Ry = pg/W Az and the semiconductor resistance
Ry = Ry Ax/W. Where R., W, pg and R, are the total resistance of the contact,

width, the contact resistivity and the channel sheet resistance respectively.

Specifically, in the case of metal on graphene, there is a presence of charge carriers at the
infinitesimally small spacing between the metal and the graphene layer as shown in Fig,
2.8-b [67]. Both the work functions of the metal and graphene separated by a dielectric

constitutes a band profile. As such, Fig. 2.8-c¢ confirms that the contact resistance
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bution between the graphene and metal contact. (c¢) Energy level for a sweep in the

gate voltage. Reprinted with permission from [67]. Copyright 2011, Rights Managed
by Nature Publishing Group.

is modulated by the gate voltage and the contact resistance shows a dependence on

temperature; decreasing against a decrease in temperature.
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(a) Contact resistance R.W versus the sheet re-
sistance of graphene channel pg for different
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from [68]. Copyright 2011, Rights managed by AIP
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F1GURE 2.9: Comparison of various contact resistance and the gate modulation of Ti
contact resistance on graphene

Palladium (Pd) and Titanium (Ti) are one of the most commonly used metal contacts

on graphene, owing to their ability to adhere to graphene.

Ti has a contact resistance which is about twice that of Pd [67]. This is illustrated with

a Gold (Au) on Ti, Ti/Au, contact which gave the largest resistance of about 7500Qum,

an Au on Nickel (Ni), Ni/Au, contact shows a smaller resistance compared to Ti/Au,

of around 2100Q2um and the lowest contact resistance was given by Ti/Pd/Au, which is

around 750Qum [68]. In the last case, Ti is used primarily to provide better adhesion

between Pd and the substrate while contact resistance is dominated by Pd. Fig. 2.9

shows the contact resistances of these two metals with respect to changes in the gate

voltage.
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Two things are to be taken into consideration when determining a suitable contact for
graphene: 1) the work function difference between the metal and graphene. Metals
with higher work function difference such as Pd gave better results. 2) The interaction
between the metal and graphene. Ti gives a stronger interaction and has been used to
improve adhesion, but gives higher resistance because charges doped under Ti are not

easily modulated by the gate [67].

2.1.3 Parasitic Capacitance and Series Resistance

Along side the contact resistance is the access resistance. This is the resistance of the
ungated region between the source/drain and the gate. Both the contact and the access
resistance are referred to as series resistance. In field effect transistor design, there is a

trade-off between series resistance and the parasitic overlap capacitance.

Drain Source Drain | L ¢, | Source
I I
. ~— Rn G —~—
Ra Rs
(a) Series resistance transistor schematic (b) Overlapping capacitance transistor schematic

FI1GURE 2.10: Field effect transistor layout

Fig. 2.10 shows two transistor layouts, one of which results in large series resistance (see
Fig. 2.10(a)) and the other, results in an overlapping capacitance (see Fig. 2.10(b)).
The series resistance limits the drain current. In RF applications, a half-fold reduction
in the series resistance can yield a four-fold increase in the transconductance [26]; greatly

increasing the transistor’s cut-off frequency.
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FIGURE 2.11: The transconductance and cut-off frequency versus the series resistance.
Reprinted with permission from [26]. Copyright 2010, Rights Managed by IEEE.

The behaviour of the the transconductance, g.,, against the series resistance, is illus-
trated in Fig. 2.11. The measured g,, increases with a decrease in the series resistance.

This illustrates the need to reduce the series resistance for high speed circuit applications.

Graphene (b)

@)  Fs

BG »

(d) (c)
S D | :4:_:1..:

¢

FIGURE 2.12: The fabrication process for a self-align graphene FET. Reprinted with
permission from [70]. Copyright 2010, Rights managed by AIP Publishing LLC.

Research is on-going into using self-aligned techniques in the fabrication of graphene
FET. Fig. 2.12 demonstrates one of the steps used in the fabrication process. Using
the technique shown, an access length as low as 20nm has been achieved [70]. From
Fig. 2.12(a), on the wafer, which is the back-gate (BG) and the BG oxide, graphene is
deposited. On the deposited graphene, a top-gate (TG) oxide and a TG is deposited.
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The idea of this is to used the formed active area to align the source (S) and drain (D)
terminals. Next, a thin oxide layer is deposited as shown in Fig. 2.12(b). This thin
oxide acts as a spacer between the TG to S/D terminals. The thin oxide is etched off
where contact need to be make. That is, on the graphene channel and on the TG. From
Fig. 2.12(c), metal is deposited and in Fig. 2.12(d) the S/D contacts are formed.

2.1.4 Channel Conductance

(a) Single-layer graphene with colour yellow-brown (b) Multilayer graphene flake on an oxidized Si
on a dark brown SiOs surface wafer

\_ 4 /

I um

(c) Schematic of a graphene transistor (d) Scanning electron microscope image of the
graphene transistor

F1GURE 2.13: Device feature of the graphene transistor. Reprinted with permission
from [14]. Copyright 2004, Rights Managed by American Association for the Advance-
ment of Science.

On SiOg, the a single-layer graphene flake has a distinguishing yellow-brown (see Fig.
2.13(a)) in contrast to the purple of a multilayer graphene flake with many layers as
shown in Fig. 2.13(b). The colour is one of the indicators used to confirm the num-

ber of layers especially when fabricating a single-layer graphene transistor. The device
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schematic is shown in Fig. 2.13(c) and its scanned electron microscope image in Fig.

2.13(d).

p (k)

R, (KQ/T)

FIGURE 2.14: Transport characteristic of the field effect graphene (A) dependence of
the resistivity on the gate voltage (B) A plot of the conductivity against the gate voltage
(C) The Hall coefficient Ry versus the top-gate (D)The dependence of the carrier
concentration on the temperature. ep is the Fermi energy and Je is the overlap between
the conduction and valence bands. Reprinted with permission from [14]. Copyright
2004, Rights Managed by American Association for the Advancement of Science.

2.1.4.1 Conductance Against Changes in Gate Voltage

Using samples of the prepared films in Fig. 2.13, a study of the transport characteristics
was carried out as shown in Fig. 2.14. The dependence of the resistivity p (o = 1/p)
on the gate bias V,; shows a peak resistance at a particular value of V; regardless of the
channel temperature. The respective temperatures are 5, 7 and 300 Kelvin from top to
bottom. For a DC sweep of the gate voltage, an analysis of the Hall coefficient Ry gives

an insight into the resistivity of the channel.

A sharp reversal of value of Ry is seen where the transistor shows a peak resistivity.
This phenomenon indicates an ambipolar conduction. The carrier density of holes and
electrons in graphene are in the order of 103c¢m ™2 [14]. These carriers are electrostat-

ically doped in the channel as a result of the capacitive coupling between the gate and
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the substrate [71, 72, 73|. The electrostatic doping shows a linear relationship between

the carrier density and the gate bias given by:

n = egeVytorq (2.10)

where n is the carrier density, ¢y and € are the permittivity of free space and SiOa, t,,
is the thickness of SiO2 and ¢ is the electron charge. The charge density takes into
consideration a minimum charge density due to impurities [74]. Doping the channel

shifts the position of the Fermi energy which determines the transistor conductance.

Single-layer Conductance
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FI1GURE 2.15: Electronic transport in single-layer graphene FET. Reprinted with per-

mission from [70]. The transport characteristics of the top-gate voltage Vr¢ against the

drain current Ip. Inset is the is relationship between Vg and the back-gate voltage,
Vea. Copyright 2010, Rights managed by AIP Publishing LLC.

The single-layer shows the same level of the minimum current irrespective of the value of
Vis. Fig. 2.15 displays the current characteristics against variations in the gate voltage
for steps in the back-gate voltage. Thus, Vg only acts in the capacity of determining
the threshold voltage. The threshold voltage, that is the value of Vpg at which the

current is minimum, shows a linear relationship with Vpg (see inset in Fig. 2.15) [70].

A three port transistor with no back-gate is also being researched [75, 76]. In the three

port transistor, only one threshold voltage is achievable.
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FIGURE 2.16: Electronic transport in bilayer graphene FET. Reprinted with permission

from [77]. The transport characteristics of the top-gate voltage Vi, against the drain

current for a sweep of the back-gate voltage V;4. Copyright 2010, Rights Managed by
American Chemical Society.

Bilayer Conductance

Unlike in the case of a single-layer, in the bilayer channel, the minimum current is
dependent on Vj,. Fig. 2.16 shows an ambipolar current characteristics similar to that
of the single-layer but the minimum current slopes downwards with an increase in the
gate voltage from OV. An increase in the on-off current ratio is observed with the lower
values of the minimum current. The same threshold model used in the single-layer

transistor has shown a good agreement for some bilayer transistors [33].

2.1.4.2 Drain Current Against Changes in Drain Voltage

Ambipolar conduction equally manifests in the drain current characteristics against
changes in the drain voltage. For larger gate voltages, the characteristics appear similar
to those of silicon MOSFETs. However, for lower gate voltages, it is evident that the
graphene transistor has three regions of operation [53, 33, 78]. Fig. 2.17 displays the
three regions indicated as regions I, IT and III respectively. In the third region it is

assumed that carriers are injected from the drain [33].

This phenomenon is not only peculiar to 2-D graphene transistors; ambipolar conduction

has also been reported in carbon nanotubes, silicon nanowires and organic semiconduc-

tors [79, 80, 81, 82, 83].
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FIGURE 2.17: The regions of operation of a graphene transistor for variations in the
drain voltage. Reprinted with permission from [53]. Copyright 2010, Rights Managed
by Nature Publishing Group.

2.1.5 Quantum Capacitance

A large gate capacitance is undoubtedly good for the transistor as the gate voltage has
more control over the electrostatically doped carriers. As the transistor is scaled into the
nano regime, scaling the gate oxide naturally results in a higher gate capacitance and
high-k dielectrics are equally used to prevent tunneling [84]. This large gate capacitance
now becomes comparable with the quantum capacitance in the semiconductor. The
quantum capacitance is essentially a measure of the energy required to pump in carriers

from the source into the channel [45].

The quantum capacitance is derived from the two-dimensional gas model [86] shown in
Eqn. (2.11):

2kpT qVen,
Co=q¢—2"_log|2(1 h 2.11
9= 9 T (hwy)? og[ ( s kBTﬂ (211)

where V., is the surface potential of graphene, g is the electronic charge, A is the reduced
Plank’s constant and vy is the Fermi velocity. Eqn 2.11 can be approximated to Eqn.
(2.12) [87].

_ 22 q|Ven|

Co=4 7 (hvy)?

(2.12)

This equation applies irrespective of whether the gate is metallic [85] or an ionic elec-

trolytic liquid which gives an electrochemical gate voltage [88]. Fig. 2.18(a) shows the
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FicUrReE 2.18: Interaction of the quantum capacitance in the graphene channel.
Reprinted with permission from [85]. Copyright 2011, Rights Managed by American
Chemical Society.

quantum capacitance dependence on the surface potential. Although the gate capac-
itance is constant, the effective capacitance that is responsible for modulation of the
channel conductance varies with the quantum capacitance and is modelled in series with

the quantum capacitance as shown in Fig. 2.18(b).

2.1.6 Thermal Transport

H 6 u 6 e
+ Y P
L L 4 § -
- -1 | =025 4 b
E,=+0.158Vnm i + _~E,=+0.158V nm-~'
5F ; st i ; -
3 | 3 3 -0.2 0 02 % i
= G E,Vnm-) -
< i E,=+0.141Vnm~ < % E,=+0.141Vnm~'
— L] & 4+ /"/ i -~
5—4*'1. = 5::, & L I
= 5, E,=+0.123Vnm-! = o - « — E=+0.123Vnm~
_?, . Fo e o
- //.: i
3—? . - 3 T
58 E,= +0.088V nm- e E,=+0.088Vnm™
r z I z
1 1 n 1 n 1 n 1 1 1 1
0 5 10 15 0 1 2 3
7 (K“) T-13 (K“/3)

FIGURE 2.19: Thermal transport in bilayer graphene. Reprinted with permission from
[89]. Copyright 2008, Rights Managed by Nature Publishing Group.

Currently graphene can operate at a range of temperatures from close to 0K to room
temperature. In semiconductor devices the thermal transport of carrier gives insight to
the band structure. Fig. 2.19 shows the relationship between the channel resistance and

temperature. The relationship deviates from that seen in silicon devices given by the
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equation R = Rintrinsic exp(lgEB—%) but aligns better with models used in thermistors [90,
91].

2.2 Improving the Transistor

Despite the impressive electronic properties of graphene, research is on-going to develop
a lithographic process whereby the charged impurities which makes graphene fall short in
terms of the current ratio and reduces the off-current can be controlled. The impurities
have been widely assumed not to emanate from the graphene itself, but assumed to be
from other sources such as the presence of surface dangling bonds which form a coupling
with graphene, resulting in either a hole or electron doping [92] and the substrate on
which the graphene sits [65, 93].

A report reveals that the explanation of hole and electron puddles emerging from the
extrinsic substrate only applies in the case of perfect graphene. That is, a suspended
graphene which has no substrate will have no hole and electron puddles. As the chemical
potential variation observed in graphene is probably due to charge impurities above
and below the layer [94]. But both theory and experiment agree that the anomalous
behaviour of a non zero minimal conductivity at a zero density of state can be explained
by the presence of puddles. Both the substrate and the gate dielectric that sandwiches
the graphene layer play a prominent role in improving the transistor behaviour. A
number of gate dielectrics and dielectric substrates have been investigated [95, 96, 97,
98, 99].

2.3 Graphene Bandgap Engineering

Bare graphene is a semi-metal with a zero bandgap. The graphene sheet has a zero
bandgap because the conduction and valence band touch at the K point in the Brillouin

zone as can be seen in Fig. 2.3.

Having a bandgap is an essential feature in a semiconductor, and as such a number of
techniques have been employed to open up a band gab in graphene. These techniques can
be classified into two groups [100]: The methods that destroy the honeycomb structure

and the methods that preserve the honeycomb structure.

2.3.1 Methods That Destroy the Honeycomb

This class includes graphene nanoribbons, graphene nanomeshes and chemical function-
alization. The disadvantage of this method is that the FET suffers a reduction in both

the carrier mobility and the on-state current as a result of destroying the honeycomb
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structure. The destruction also introduces scattering centers, enhances the carrier effec-

tive mass and produces a non-tunable bandgap [100].

2.3.1.1 Graphene Nanoribbons

Slicing of the graphene sheet into one dimension nanoribbons as shown in Fig. 2.20 is
being looked at as a technique of creating a bandgap. Consider that a single graphene
hexacyclone structure has six K-points (refer to Figs. 2.2(b), 2.3(a), 2.3(b) and 2.3(c)).
It is at this K- point that the conduction and valence bands touch. Outside the K-point

an energy bandgap exists.

FIGURE 2.20: Schematic of graphene nanoribbon FET.

Slicing pristine graphene into nanoribbons confines the 2-D graphene into a 1-D graphene
structure which gives rise to a finite bandgap [101, 52]. It is expected that the 2-D
graphene energy dispersion will split into a number of 1-D modes [102]. Some set of
1-D modes will bypass the intersections where the valence and conduction bands touch
giving rise to a finite bandgap. To achieve a high bandgap a narrow diameter of the
ribbon is required. It has been reported that with a diameter of 5nm a corresponding
bandgap of 0.5¢V is expected [103].

A published report of sub-10 nm wide graphene nanoribbon field-effect transistors showed
semiconducting properties with an Ion/Ioff ratio of up to 10%, an on-state current density
as high as 20004 /pm, a carrier mobility of approximately 200cm?/V s and a scattering
mean free path of 10nm [104].

There are problems that hinder the use of nanoribbons for digital circuits;

e Nanoribbons are not compatible with the current complementary metal-oxide-
semiconductor (CMOS) lithographic process [15].
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e The lithographic process cannot guarantee accuracy for the diameter of the nanorib-
bons required to produce an acceptable bandgap [103]. To give graphene nanorib-
bons a high mobility compared to silicon it is expected that the bandgap is less
than 0.5eV [105].

e An increase in the bandgap will degrade the carrier mobility [105, 102].

e The bandgap depends on how many 1-D modes pass through the intersection
between the valence and conduction bands. Therefore, it is challenging to develop
an analytical association between the bandgap energy and the diameter of the

nanoribbon.

Graphene nanoribbons have an electronic bandgap which depends on the orien-
tation of the ribbon edges and the ribbon width which is similar to chirality in
CNTs [105, 106]. However, the advantage of the graphene nanoribbon over the
CNT is that for sub-10nm with an ultra-thin diameter (d <~ 2nm) semiconducting

properties are guaranteed [104].

2.3.1.2 Graphene Nanomeshes

While in the case of graphene nanoribbons a bandgap is opened by cutting the graphene
material, in the case of graphene nanomesh (GNM) an array of nanoscale holes are
punched into a single or few layers of graphene using a self-assembled block copolymer

thin film as the mask template [107], as shown in Fig. 2.21.

a B
Source b

FIGURE 2.21: a) Transistor layout with graphene nanomesh b) SEM image of a GNM
device. Reprinted with permission from [107]. Copyright 2010, Rights Managed by
Nature Publishing Group.

Compared with graphene nanoribbons, nanomeshes have a comparable current on/off
ratio but nanomeshes support higher currents than nanoribbon in the order of 100 times
for a variable periodicity and a neck width as low as 5nm [107]. Periodicity is the distance

between the centre of one nanohole to the center of an adjacent nanohole. Neck width is
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the distance between the edges of the closest nanoholes. Controlling the periodicity and

the neck width is important in controlling the electronic properties of the transistor.

This can be easily understood by looking at the nanomesh as various interconnections of
nanoribbons. The width of the nanoribbon has been reported to influence the bandgap.
Therefore, the transport characteristics are dependent on the current’s critical pathway.
Nanomeshes also have an added advantage that they are compatible with the current

fabrication process.

2.3.1.3 Chemical Functionalization

In this method of bandgap engineering, chemical elements such as hydrogen [108] or
fluorine [109] have been induced into the single-layered graphene flakes. In graphene,
carbon is a two dimensional structure with sps hybridization. As such, pristine graphene
is a gapless material. The absence of a bandgap implies that there is a small resistance
difference between the Dirac point voltage and the voltage of large carrier concentration
areas. This translates to a low off /on current ratio. Therefore, by functionalization of
graphene with suitable elements such as hydrogen and fluorine, the two dimensional sps
bonds will transform into three dimensional sps bonds, resulting in an expected bandgap
of 3.8eV and 4.2eV respectively[109]

The absorption of hydrogen into the graphene flakes alters its electronic properties,
thereby presenting a means of altering the electronic behaviour of graphene. Although
hydrogen barriers present a promising way to control the electronic property of graphene
[110, 111], a report indicates that graphene conductivity due to hydrogenation is itself
uncontrolled [110]. However, selective hydrogen absorption on graphene is being inves-
tigated [108].

In both cases of inducing graphene with fluorine and hydrogen, the electronic behaviour
shows an increase in the on/off ratio, presenting a tunable electronic transport of
graphene [112]. On the other hand, to be used in large scale electronics the degree

of functionalization has to be controlled.

2.3.2 Methods That Preserve the Honeycomb

In these methods, the honeycomb structure of graphene is maintained, and as a result
both the high carrier density and mobility is maintained. Techniques which open a
bandgap and yet maintain the structure include; graphene substrate interaction, the

application of strain and the application of an electric field.
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2.3.2.1 Graphene Substrate Interaction

To open up a bandgap in graphene, perturbation has to be induced. In the case of
graphene nanoribbon, cutting the graphene sheet breaks the translational symmetry
thus introducing these perturbations. Another means of inducing perturbations is by
breaking the A and B sublattice symmetry, which opens up a bandgap. Breaking the
A and B sublattice symmetry in graphene was first reported by epitaxially growing
graphene on a Silicon Carbide (SiC) substrate[113] resulting in energy bandgap as high
as 0.26eV. This has been validated by various reports of substrate interactions when
graphene is grown on Ni(111) [114], graphene is grown on boron nitrite substrate[115]
with a bandgap of 53meV and suspended graphene on graphite substrate [116] with a
bandgap of 10meV. The various bandgap energies of graphene on different substrates

shows an interaction between the graphene m bonds and substrate bonds.

2.3.2.2 Strain Application

Strain is a process whereby the graphene structure is stretched. Strains can either be
uniaxial or isotropic [117]. Uniaxial strain can be induced by bending of the substrate
on which graphene lies thereby elongating the graphene structure. It has been reported
that no significant bandgap opens for isotropic strain on graphene with the energy bands
strongly dependent on the direction of the strain [117]. A set of reports of theoretical
calculation from first principles using tight-binding description of graphene shows that
strain graphene does not open up a bandgap [117, 118]. However, there is other work
which reports the opening of a bandgap in asymmetrically strained graphene and a zero

bandgap for symmetrically strained graphene [119, 120].

Fig. 2.22 shows an asymmetrically strained graphene perpendicular to the C-C bonds.
The dispersion indicates a band opening in the strained graphene. This is due to the
creating of an asymmetry in the layers. For about 1% strain a bandgap of up to 300meV
is expected [120]. Fig 2.23 shows the relationship between the bandgap and an applied

strain.

Recent work [121] into the effect of strain on the electronic properties of graphene reports
that both single-layer and bilayer graphene show a change in their electronic properties.
For single-layer graphene both the energy dispersion and the gapless characteristics were
retained while there was a change in the Fermi velocity. However, for bilayer graphene
the energy dispersion characteristic was retained while the direction of the strain could
either enlarge or reduce its band overlap. Therefore, the strained graphene is equivalent

to a vertical electric field by the strained layers [100].
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FIGURE 2.22: a) Uniaxial strain on multi layer graphene. Energy dispersion for b)
unstrained and c) strained graphene. Reprinted with permission from [120]. Copyright
2008, Rights Managed by American Chemical Society.

2.3.2.3 Electric Field Application

Application of a vertical electric field can be used to break the sublattice symmetry.
This method does not however apply to single-layer graphene (SLG) because the two
sublattices remain equivalent under the vertical electric field as shown in Fig. 2.24.
However, SLG on boron nitride layers as the substrate will open a tunable bandgap
using an electric field [100] as is done for bilayer graphene (BLG). An electric field
applied to a single-layer graphene SLG channel has been reported to open up a tunable
bandgap, ranging from 0.16eV to 0.32eV for strong electric fields[100] when sandwiched

between boron nitride.

In this method of bandgap opening, a transverse electric field is applied to a Bernal
stacked bilayer graphene which renders the A and B sublattices non-equivalent [77, 89).
Fig. 2.25(a) shows the structure of a suspended bilayer graphene transistor and Fig.
2.25(b) shows the lattice structure. The bandgap opening works on the principle that a
transverse electric field to the channel creates a strong coupling in the bilayer graphene.
This strong coupling distorts the lattice symmetry (A; and By in Fig. 2.25(b)) that
exists thereby creating a bandgap [103]. Using this method, a bandgap opening as high
as 300meV has been reported [77, 95].
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FIGURE 2.23: The predicted bandgap against the amount of uniaxial strain. Reprinted

with permission from [120]. Copyright 2008, Rights Managed by American Chemical
Society.
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FIGURE 2.24: Energy dispersion and the sublattice structure for a) single-layer, b)

bilayer graphene without electric field and c) bilayer graphene with vertical electric

field applied. Reprinted with permission from [89]. Copyright 2008, Rights Managed
by Nature Publishing Group.

This technique preserves the intrinsic properties of bilayer graphene and the bandgap
created in this method is tunable. This method is compatible with the current CMOS
lithographic process, making bilayer graphene a likely method for fabricating transistors

targeted for digital circuits [15].
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FIGURE 2.25: Fabricated bilayer transistor and corresponding sublattice interaction.
Reprinted with permission from [77]. Copyright 2010, Rights Managed by American
Chemical Society.

2.4 Existing Graphene Device Circuit Models

Due to the absence of sufficient bandgap opening [95] only a small on-off current ratio
is achievable thus limiting digital logic applications. However, this does not exclude
analog and radio frequency (RF) applications, as there has been extensive research into
graphene FET radio frequency performance [26, 27, 122]. Equally, RF models have been
published with good firax and fr performance for some devices [123, 32, 124, 125, 126].

In addition to the growing research into RF performance, there have been a number
of experimental results on the characterization of graphene transistors with respect to
the drain DC current transport characteristics [77, 33, 127, 89]. The availability of
experimental data as well as the need to design circuits has led to extensive research
into compact models which supplement the RF models [33, 34, 128, 129, 130, 131, 132].

Source Gate Drain
V=0 V= VGS-mp.ext V= VDS.ext
1" ‘1
Source Drain
Graphene

S —
x=0 x=L X

Back-gate oxide (SiO,)

Graphene layer

oxide layer

Doped Si wafer

Highly Doped Silicon Wafer

Back Gate

V= VGS—ba:k,ext Vbl
Back gate

(a) The dual-gate graphene transistor layout. (b) The single-gate graphene transistor layout
Reprinted with permission from [32]. Copyright 2010,
Rights managed by AIP Publishing LLC.

FIGURE 2.26: Schematic of the graphene transistor

The dual-gate transistor design (see Fig. 2.26(a)) has attracted a lot of attention in

terms of modellings and experiments compared to the single-gate transistor (see Fig.
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2.26(b)) because the former can have its threshold optimized by Vjs while the channel
is modulated by V.

2.4.1 Modelling Assumptions

Models of the graphene transistor use the drift equation to model the transport charac-
teristic for both small signal and large signal. Some models assume a constant quantum
capacitance in their calculation [33, 34] while others used the simplified quantum capac-
itance (see Eqn. (2.12)). No model has so far used Eqn. (2.11) in its calculations. By
simplifying calculations of the channel charge, an analytical model has been reported

for graphene [34].

Another assumption is the linear relationship between the threshold voltage, that is
the voltage at charge neutrality, against the back-gate voltage for a dual-gate bilayer
graphene transistor. This assumption has been supported by a number of experimental
validations [33]. However, there is a report [131] and experimental measurement [77]
that shows the linear relationship does not apply in all cases. This report models the

threshold using a second order polynomial of V.
A field dependent drift velocity derived from silicon has been used in graphene modelling

as shown in Eqn. (2.13) [133, 134, 135]:

uE
(1+ (,UE/Usat)c)l/c

Vg = (2.13)
where FE is the electric field between the source and drain,  is the carrier mobility, vgqes =
uE,. is the saturation velocity, E. is the critical electric field and ¢ is a characteristic
constant. 1 < ¢ < 2 has been found to match experimental data [136, 137, 138] with
¢ = 1 for holes and ¢ = 2 for electrons. Models use equal values of ¢ for both holes
and electrons, while some use ¢ = 1 which gives a simplified drift velocity, ¢ = 1.8 has

equally been used [130].

The series resistance shows a dependence of the charge doping between the contact and
the graphene as well as the charge density of the un-gated area. Thus, it is expected
that the source and drain side should have different series resistances [139]. However,

all models assume equal series resistance at both ends.

2.4.2 Equivalent Circuit

The field effect graphene transistor derives most of its modelling technique from the way

silicon is modelled. A similar derivation is the small signal model shown in Fig. 2.27



34 Chapter 2 Literature Review

Crop
——v
—AM—

R Vs

FIGURE 2.27: Graphene FET small signal model

Clop is the effective gate capacitance which takes into consideration the geometric gate
capacitances and the quantum capacitance. Cy,), is dependent on the capacitance model
used to model the graphene charge distribution. There are two widely used capacitance

models, one is shown in Fig. 2.18(b) and the other is shown in Fig. 2.28

|

Vi

=) Ven

Ven (C;q

s

l
7

FI1GURE 2.28: The capacitance model for a graphene FET. Reproduced with permission
from [32]. Copyright 2010, Rights managed by AIP Publishing LLC.

2.4.3 Popular CAD Tools Used for Graphene Modelling

Computer-aided design plays a vital role in designing VLSI systems. Companies such as
Accellera, Synopsys, Cadence and Mentor develop some of the most popular electronic
design automation tools used nowadays. As the production volume of integrated circuits
continues to increase and the need for production cost to reduce, CAD tools will always

play a role in the development of electronic systems. The objectives for the use of CAD



Chapter 2 Literature Review 35

tools include; shortening the design time, providing an accurately generated representa-
tion of the final system and performing complex design analysis in a very short amount
of time [140]. They also provide an enabling environment for developers to optimize
designs as well as a knowledge domain where concepts of the circuit components can be

learned.

There are a number of CAD tools developed for circuit designs; some of which are com-
mercial tools such as HSPICE [141] by Synopsys, VHDL-AMS by Mentor Graphics [142]
implemented in the SystemVision simulator [143] and Verilog-AMS [144] by Accellera.
The Berkeley SPICE CAD tool by University of California, Berkeley using the ngspice

simulator [145] is open source.

Although, Mathematical Laboratory (MATLAB) is not used for circuit simulation, the
MATLAB tool is used in the development of CAD libraries. MATLAB provides a
convenience of drawing up the mathematical expressions that govern the physics of the

transistor before implementing such expressions in electronic design tools.

2.4.4 Tunneling Through Gate Oxides

Floating-gates were first reported in 1967 [146] and have since been widely used as a
mechanism for nonvolatile data storage. They are charged by transferring electrons
between the floating-gate and a terminal, such that a positive or negative charge can be
induced in the floating-gate. Charge in the floating-gate interacts with the conductance
of the transistor resulting in a threshold shift [147, 148].

With a high quality insulator, charges stored in floating-gates can stay permanently,
hence providing long term memory. Estimates of 15 years have been reported for charges
in a floating-gate [149]. Aside digital memory, floating-gates have been applied; to solve
mismatches in temperature compensating transistors [150] and to optimize high precision
amplifiers [151].

2.4.4.1 Mechanisms of Tunnelling

As semiconductor channel lengths are scaled into the nano-level, the required gate di-
electric thickness has been further reduced such that 1.2nm - 1.5nm gate thickness were
required for sub—100nm CMOS [152]. For ultra-thin gate oxides, having a potential
drop of 1.8V can lead to large tunnelling current flow between the channel and the gate
terminal. For a gate oxide as thin as 1.5nm [153, 154, 155], long channels have been re-
ported to exhibit unusual electrical characteristics due to tunnelling, but not for shorter
channels, indicating that an increase in area will result in a higher tunnelling current as
shown in eqn. (2.14). There are two mechanism of electron tunneling through the gate

oxide, namely Fowler—Nordheim (FN) tunneling and Direct tunneling.
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FIGURE 2.29: Mechanisms for tunneling through the gate oxide
2.4.4.2 Electric Field Responsible For Tunneling

In FN tunneling the electrons tunnel through a triangular potential barrier into the
conduction band of the oxide as shown in Fig. 2.29(a). This takes place when Vy; > ¢.
Where V,, is the oxide potential and ¢, is the conduction band potential barrier of
the metal with respect to the oxide. Considering the case of direct tunneling shown
in Fig. 2.29(b), the electrons tunnel when V,, < ¢ through the forbidden bandgap
of the oxide. Unlike FN tunneling, direct tunneling barrier is through the trapezoidal
potential barrier. This mechanism of tunneling is predominant in short channels because

the normally operate at V,, < ¢. FN tunneling current is given by [156]:

Jrn = AE2, exp <— B ) (2.14)

oxr

3 4(\/2meyrg) i . .
_ — WIS f)T — Vo
627, B = 3ah , electric field, E,, = 7z, electronic chanrge, ¢,

reduced Plank’s constant, i, oxide potential barrier, ¢, electron effective mass, mcyy

where A =

and oxide thickness, t,;.

Direct tunneling is however limited to oxides thinner that 5nm because the tunnel prob-
ability for thicker oxides is small [157]. The direct tunneling current is presented in Eqn
2.15 [157].

_B <1 . (1 - ‘;b)w)

Eor

Jpr = AE?, exp (2.15)
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A major challenge in the semiconductor industry was to find a suitable gate oxide to re-
place silicon dioxide (Si03). As transistors are scaled into the nano-level, gate oxides are
made thinner therefore high permittivity oxides are required to reduce the electric field
for a given charge. Thinner oxides are more susceptible to tunneling, as such, gate oxides
with high barrier potentials are required to reduce the tunneling probability. Typical
values of the a critical electric field beyond which tunneling should be expected range
from 0.75/nm to 1.0V /nm [149, 158]. However, it has been reported for silicon dielectric
compounds that an increase in the dielectric constant tends to lead to a reduction in
the potential barrier [159].

2.4.4.3 Band Offset of Various Dielectrics

A variety of dielectrics and oxides are being considered such as hafnium oxide (H fO3)
[160, 161], aluminium oxide (AloO3) and boron nitride (BN) to replace SiOy [162,
163] in a graphene based transistor. AlyOs has been reported to have a conduction
band offset of 2.73¢V [164] for an 8nm thickness of the oxide with silicon and 3.5eV
[165] for a 16.1nm thickness based on experimental analysis and an offset of 2.8¢V [165]
based on theoretical predictions. Similarly, H fOs with a thickness of 16.1nm has an
experimentally calculated conduction band offset of 2.7¢V [165] with respect to silicon
while the theoretical calculation of 1.5eV [165] is predicted.

2.4.4.4 Work Function of Graphene

Graphene can be electrostatically doped by applying an electric field perpendicular to
the channel. The electric field causes a Fermi level shift thereby changing the work-
function of the channel giving graphene a tunable work- function. Work-function is the

energy difference between the Fermi level and the vacuum level [133].

Therefore the barrier height of doped graphene is expressed as:

a9y = q¢g = Ep (2.16)

where g¢g4 is the barrier height with no doping and the positive(negative) Ep is for
holes(electrons). Carriers have an effective mass of 0.041m, for electrons and 0.036m.
for holes [166].

On bare Si02 graphene has a work-function of 4.5eV [167]. Single-layer graphene and
bilayer graphene show different work-functions of 4.57eV and 4.69eV respectively [168]
with the work-function of bilayer graphene close to that of graphite [169].

Barrier height is defined as the difference between the electron affinity of the gate insu-

lator and the work-function of the metal. Electron affinity is a measure of the energy
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between the bottom of the conduction band and the vacuum level. Note that the work-

function of a semiconductor is given by [133]:

os =X + 12?; (2.17)
where ¢X is the electron affinity, I/, is the semiconductor bandgap. Barrier height can
also determined by interface states. Eqn. (2.17) assumes two conditions, one that the
interface states are a property of the semiconductor alone and independent of the metal
and two, that there is an intimate contact between the metal and semiconductor, and
the interfacial layer will be transparent to electrons but withstand the potential across
it [133].

2.5 Graphene and World Economics

The reason graphene is so extensively researched is because of its prospective applica-
tions. Its electronic and physical properties are remarkable despite the absence of a
bandgap and challenges in producing transistors with a small or zero mismatch in their
transfer characteristics. Though graphene was first synthesised in 2004 [14] Fig. 2.30

shows patents in graphene related research date to as far back as year 2000.
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FiGURE 2.30: Worldwide published patents and year of application. Reprinted with
permission from [170]. Copyright 2013, Rights managed by Intellectual Property Office.

However, from 2004 the application for patents have seen a steady rise to date with China
leading the number of published patents. It is no surprise that the countries perceived
to dominate the world markets are those reflected in promoting graphene research. This

is supported by taking the 2012 gross domestic product report by the World Bank (see
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Table 2.2) [171] and comparing it with number of published patents per country [170]
shown in Fig. 2.31. China, United States and Germany which are the top most ranked

countries in their continent are at the forefront in published patents.

TABLE 2.2: World Bank Gross Domestic Product 2012 [171]

Ranking Country millions of US dollars
1 United States 16,244,600

2 China 8,227,103

3 Japan 5,959,718

4 Germany 3,428,131

5 France 2,612,878

6 United Kingdom 2,471,784
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FiGURE 2.31: Worldwide published patents and year of application. Reprinted with
permission from [170]. Copyright 2013, Rights managed by Intellectual Property Office.

This goes to prove that electronics is at the center of the world economies and the
importance of prospective applications of graphene makes it tipped to be at the center

of the electronics industry.

2.6 Graphene Based Applications

It will still be a while before graphene based electronics will be on the shelves of su-
permarket stores. Currently, researchers have successfully built graphene based appli-

cations. The absence of a bandgap favours analog and mixed signal applications.
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2.6.1 Ring Oscillator

The ring oscillator is an important component in the semiconductor industry. It is
composed of a circle loop of an odd number of inverters. An inverter is the fundamental
building block of digital logic. Fig. 2.32 shows the design used to achieve a graphene

based ring oscillator.
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FIGURE 2.32: Schematic of a graphene ring oscillator. Reprinted with permission from
[29]. Copyright 2013, Rights Managed by American Chemical Society.

So far only one graphene ring oscillator has been reported [29]. A fourth inverter is
used in the design solely for decoupling the measurement device from the ring oscillator.
A major problem in ring oscillator is parasitic capacitance which limits the switching
frequency. Using various channel lengths the oscillator shows an increase in frequency

with a decrease in length and voltage swing.

Fig. 2.33 shows the frequency against L = 1um, 2um and 3um. The frequency (voltage
swing) of 350MHz (0.284V), 618MHz (0.208V) and 1.22GHz (0.136V) were obtained
respectively. The highest frequency so far measured is 1.28GHz and the highest swing
is 0.57V.

2.6.2 Frequency Mixer and Multipliers

Two radio frequency applications have been reported [172, 173, 174]. Both the frequency
mixer and multiplier utilize the ambipolar nature of graphene to achieve its function.
This is particularly interesting because the success achieved is hinged on the absence
of a bandgap. Fig. 2.34 shows the circuit design for the frequency mixer. Fig. 2.35
shows both the layout and the working behaviour of the graphene frequency multiplier.

In both cases the voltage at the minimum conduction is reference voltage.
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FIGURE 2.33: Operating frequency and output voltage for varying length. Reprinted
with permission from [29]. Copyright 2013, Rights Managed by American Chemical
Society.
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FIGURE 2.34: Operating frequency and output voltage for varying length. Reprinted
with permission from [173]. Copyright 2010, Rights Managed by IEEE.

2.6.3 Digital Applications

Success has been achieved with cut-off frequencies of up to 300GHz [122]. For semi-
conductors to be used in digital circuits it is essential that they meet the following
requirements[175]. Firstly, they should be able to be switched off otherwise it will not
be possible to pull-up or pull-down to the respective power rails. Secondly, they should
not suffer from excessive short channel effects and degraded electrostatics. Finally, the

charge carriers should have a high mobility to allow for fast switching.

Graphene falls short of these requirements compared to silicon when deployed in digital
circuits. Graphene, unlike silicon, does not have a bandgap, therefore the graphene

transistor cannot turn off, resulting in a V-shaped output conductance [176].
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FI1GURE 2.35: Mode of operation of graphene frequency multiplier. Reprinted with
permission from [174]. Copyright 2011, Rights Managed by IEEE.

However, there are a number of reports of digital logic circuits based on the bilayer
and single-layer graphene transistors [15, 177, 178, 179]. However, the inverter transfer

characteristics are not symmetrical.

Fig. 2.36 shows the characteristics of a complementary monolayer graphene inverter.
One transistor is made P-type and the other is made N-type (see Fig. 2.36(a)) splitting
the charge neutrality of the inverter into two as show in Fig. 2.36(b). The region between
both charge neutrality points is utilized to achieve the inversion characteristics. From
Fig. 2.36(c) it can be observed that this region also has the highest output gain as such
has also been utilised in designing voltage amplifiers [180, 181, 182, 183].

Analysing each transistor as a variable resistor, the output characteristics of the inverter
is given by the potential that divides both resistors. Fig. 2.36(d) shows the inversion
characteristic of the input signal. By setting the input signal at different frequencies,
the output signal shows visible distortion for higher frequencies. This is due to charging

and discharging parasitic capacitances.
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FIGURE 2.36: Properties of a graphene complementary inverter. Reprinted with per-
mission from [178]. Copyright 2009, Rights managed by AIP Publishing LLC.



Chapter 3

Graphene FET drift-current

perspective

This chapter presents a SPICE compatible general field effect transistor model with an
analytical derivation of the carrier transport characteristics for both hole and electron

conduction.

3.1 The Graphene Transistor

Fig. 3.1 shows a schematic of the transistor layout of a dual-gate graphene FET.
Graphene is commonly placed on an already prepared silicon wafer, composed of an
oxide, usually silicon-dioxide on a highly doped silicon substrate. The doped substrate
forms the back-gate contact. An oxide can also be sandwiched between the graphene
channel and a top-gate to form a dual-gate transistor. Each end of the channel is ter-

minated by source/drain contacts.

Metal contacts are used with a graphene channel. Unlike graphene, in silicon FET the
source/drain contacts are formed by ion implantation. Ion implantation makes the access
area highly electrically conductive. The access area of a transistor is the region between
the gate and the source/drain contact. The presence of an access area reduces parasitic
overlapping capacitance but leads to a current limiting series resistance. However, in

graphene, ion implantation introduces defects into the lattice structure.

Fig. 3.2 displays a circuit model for a dual-gate graphene transistor. Ci,, is the effec-
tive top-gate capacitance while Cpuer is the effective back-gate capacitance. They both
account for the top-gate and back-gate oxide geometric capacitance along with the ca-
pacitance due to the carriers induced in the channel. Contact and access resistance on
both the source and drain account for the series resistance and a current source accounts

for the gate voltage controlled drain current.

44
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FIGURE 3.1: Schematic layout of the graphene field effect transistor
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FIGURE 3.2: Proposed general circuit model schematic for the dual-gate graphene field
effect transistor

All potentials are evaluated in reference to the source. Vy, Vg, Vs and Vj, are the drain,

top-gate, source and back-gate voltage respectively.
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Fi1GURE 3.3: I-V characteristics showing the three regions identified as the triode region,
the unipolar saturation region and the ambipolar saturation region along with the
charge interaction in the channel.

In Fig. 3.3 the I-V characteristic of a graphene channel is divided into three regions:
the triode region, the unipolar saturation region and the ambipolar saturation region.
Carrier transport in the first two regions is unipolar, through either holes or electrons.
In the unipolar saturation region the channel is pinched off at the drain end. Further,
increase in the drain voltage bias enables transport in the channel to be performed by

both electron and hole carriers. This region is referred to as ambipolar saturation region.
Vs~ Vo
®

_C top

[ ds —
Vis e—AAN @4\/\/\,—
R, R, pp—

FI1GURE 3.4: A proposed general graphene model for both single-gate and dual-gate
field effect transistor. Vjs and Chp,er are represented by an offset voltage, V.

In graphene, ambipolar conduction means that the conduction medium can be electro-
statically doped by hole-like or electron-like carriers. The convention adopted here is
that the back-gate is responsible for doping the channel while the top-gate modulates
the carrier conduction. Hence, Vj, along with Cyger, Crop and other in-built voltage off-
sets determines the threshold voltage, V, of the transistor. The threshold voltage is the
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top-gate voltage at which the channel will experience charge neutrality. Fig. 3.2 can be
simplified to a single-gate model in Fig. 3.4. In the case of a single-gate model, V, will

be extracted from the transistor Dirac point voltage.
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FIGURE 3.5: Transfer characteristic of a graphene channel field effect transistor

Due to the gapless nature of graphene in an intrinsic state, the graphene channel supports
ambipolar transport. As such majority carrier conduction can be undertaken by both
holes or electrons. A plot of the channel resistance against the top-gate voltage is
shown in Fig. 3.5. Inserted in this figure is the plot of the drain current against the
top-gate voltage. The negative half of the normalised top-gate voltage for both plots
indicates that the majority carrier is hole-like while the positive half indicates electron-
like carriers. Thus, the ambipolar conduction is observed to have a V-shape characteristic

of conductance in respect to changes in V.

Holes or electrons can be majority carriers depending on the top-gate bias, hence, in
deriving the carrier transport using the drift-diffusion model, the hole conduction is

derived separately from the electron conduction.

3.2 Hole Conduction

The voltage overdrive (Vys — V), indicates how the channel is doped. For hole con-
duction Vys — V, < 0. In this region with holes as majority carriers, the drain current

characteristics with respect to changes in the drain voltage can be divided into three
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sub regions namely; the triode, the unipolar saturation and tne ambipolar saturation

regions.

3.2.1 The Triode Region

In field effect transistors the top-gate capacitance modulates the source potential barrier.

As such the net charge density is:

Q(x) = _Ctop(Vgs - V(:L’) - VO) (3'1)

where V' (z) is the channel potential at x. x is taken from the source to the drain. For
clarity in presentation the Cy,, will not be shown as a function of the surface potential.
The presence of an electric field between the source and the drain drifts carriers from
the source to the drain results in I4s which is represented by Eqn. (3.2) [134, 135]:

Iys = —WQ(z)vg(r) (3.2)

where W is the channel width and vg(z) is the carrier drift velocity. As the drain voltage
is increases, the lateral electric fields between the drain and the source equally increases
resulting in the carriers saturating at a saturation velocity. Hence, the field dependent
drift velocity is defined as [133]:

uE
(1+ (NE/Usat)c)l/c

Vg = (3.3)

where F is the electric field between the source and drain, p is the carrier mobility,
Usqt 18 the saturation velocity (vser = pE.), E. is the critical electric field and ¢ is a
characteristic constant. 1 < ¢ < 2 has been found to match experimental data [136, 137,
138].

Therefore in this model the parameter 8 has been introduced to Eqn. (3.3) to provide a

realistic approximation when ¢ > 1 and still produce a closed form analytical equation.

puE

Vp = ——————
1 +,ILE/’I)3at

(3.4)

1 < B < 1.4 is the boundary for 1 < ¢ < 2.

In this region the graphene FET shows a linear dependence on the drain-source voltage.
Considering a series resistance (Rs), at both the source and drain terminals, the electric
potential in the channel is V(0) = I;sRs and V(L) = Vys — I45Rs for the source end
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and the drain end respectively. This assumes that in Fig. 3.2 both series resistances are
equal [139].

By applying the above equations and using an electric field of E = —§V/dx, the general

current equation of this region is given by:

—BWp [y Crop(Vos = Vo = V(2))8V /62
ds —

fOL {1 4 ,u(—d\//dz)}

(3.5)

Vsat

where L is the length of the active area of the channel, and

1 Vs
Igs = c — Vds 2Y — VYou | —
* = 1R, [V Vas < 2 )

Vs 2
\/(‘fc + Vds +2Y ( ; - %v)) - 4ch‘/ds (36)

where Vo = Lvget /1, Y = BW et CropRs and Vo, = Vs — V, [34]

3.2.2 The Unipolar Saturation Region

The drain current as shown in Eqn. (3.6) has a quadratic relationship to the drain
voltage. The turning point of the drain current with respect to the drain voltage defines

the beginning of the saturation region. At the turning point §l5/0Vys = 0.

Therefore, the drain voltage at the onset of saturation is represented by Eqn. (3.7).

Vis—sat1 = (}/—f—ll)Q [2Von(1 + Y)—|-
(1=Y) (Vo= VVZ=2VVo(V + 1)) (3.7)

The resulting saturation current is shown in Eqn. (3.8).

Tioost = —— |
ds—sat — Rs(l +Y)2

VVZ =20+ Y)ViVi| (3.8)

_‘/c + (1 + Y)V;)U‘i‘

As shown in Fig. 3.3 the saturation drain current ([js_sq¢) is constant throughout this
region. Although the hole carriers saturate at Vs sqs1, the drain end of the channel

may not experience charge neutrality at this potential.
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From Eqn. (3.1) the drain end will have a zero charge at Vg, = Vs — V,,. Assuming that
there is a linear charge progression between Vys_sq1 and V,,,, where V;,, = Vs —V,. The

charge between these two voltages is shown in Eqn. (3.9).

Qdep = _7(’%11 - Vds—satlD (39)

At the end of this region @4, has to be overcome. The voltage Vjs_sqr2 marks the
end of the unipolar saturation region and the charge between Vi gq1 and Vis_sao,
—Ciop(Vias—sat1 — Vis—sat2) should thus be equal to Qgep. Hence, the second boundary

point of the unipolar saturation region can be calculated using Eqn. (3.10).

1
Vds—satQ = Vds—satl - §(|Vov - Vds—satlD (310)

At this point the channel is pinched-off as illustrated in Fig. 3.3.

3.2.3 Ambipolar Saturation Region

In the first and second regions the channel is unipolar and the carrier transport is by
holes. An additional increase in the drain voltage pushes the charge neutrality at the
drain end deeper into the channel, towards the source. As a result electrons are injected
into the channel from the drain end. Rather than having a depleted region between the
point of pinch-off and the drain terminal with fixed negative charges, these electrons are
mobile. This is as a result of a zero bandgap in 2D graphene and the phenomenon is

known as ambipolar transport [33].

L' to denote the position of the pinch-off region in the channel with respect to the source
terminal. From Eqn. (3.1), with V(L) = Vgs_sat2, the charge at the point of pinch off
is represented by Eqn. (3.11).

QL) = —Ciop(Vgs = V(L) = Vo) (3.11)

The potential in the channel at the drain end is V(L) = Vys. Thus, Eqn. (3.12) is the

corresponding charge at the drain end.

Q(L) = _Ctop(vgs - V(L) - ‘/0) (312)

As the charge in the channel is conserved, the injected charge is Qg = Q(L) — Q(L'), as
expressed in Eqn. (3.13) and Eqn. (3.14) respectively.
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Qd = _Ctop(vds - Vds—sat2) (3'13)
0Qq

—_C, 14

avds C’t 74 (3 )

For a drift velocity of ,un%. i, is the mobility of the alternative carriers. This may not
be equal to the mobility used in the triode region. Integrating Eqn. (3.2) using Eqn.
(3.14) gives rise to Eqn. (3.15).

W,Uan

Idisp = _2L(Ctop) (3.15)

Hence, from Eqns. (3.13) and (3.15) the saturation displacement current present when

the transistor enters this region is shown in Eqn. (3.16).

w Vi 2
Liisp = ———tin(Chop) V. — 1 3.16
disp 2Lun( tOp) ds—sat2 (Vds—satQ ) ( )
The charge in the channel between the source and the charge neutrality point is equiv-
alent to the charge at the onset of saturation. This charge yields the saturation current
in Eqn. (3.8). In addition, the charge between the pinched off point and the drain,

namely the depletion charge, ()4, gives rise to the saturation displacement current in
Eqn. (3.16).

Therefore, the total current flowing in the channel (Ij) is the algebraic sum of the

saturation current, Eqn. (3.8), and the saturation displacement current, Eqn. (3.16).

Iys = lgs—sat + Idisp (317)

3.3 Electron Conduction

In this section, the transport behaviour when Vj is positive is considered. From Fig.
3.5 electron conduction occurs when Vg > V,,. As previously shown for hole conduction,
electron conduction is composed of three regions namely; the triode region, the unipolar
saturation region and the ambipolar saturation region. The characteristics of each of
these regions are as shown in Fig. 3.3, with Iz, and Vs positive, in this case of electron

conduction.
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3.3.1 The Triode Region

Field effect transistors have both horizontal and vertical electric fields. The vertical
electric field is used to modulate the channel carrier drifted from the source to the drain
by the horizontal electric field. So, the vertical electric field will induce a net charge

density in the channel represented by Eqn. (3.18).

Q(x) = —Crop(Vgs = Vo = V(2)) (3.18)

This net charge is responsible for the drain current in Eqn. (3.19) that will flows from

the drain terminal to the source terminal.

Igs = —WQ(z)v(x) (3.19)

From Eqn. (3.19), W is the channel width and v(x) is the drift velocity for a length z
from the source to the drain. The drift velocity is expressed in Eqn (3.20):

—BpE
v(r) = ——— 3.20

(z) 1+ |E|/E. ( )
where £ = —§V/ox is the horizontal electric field. As previously demonstrated for
hole conduction, an equal series resistance is assumed for both the source and drain.
Therefore, the electric potential at the source is V(0) = I4sRs and the potential at the
drain end is V(L) = Vgs — I4sRs. Hence, the drain current in this region is shown in

Eqn. (3.21):

BWuf C’top (Vgs — Vo — V(2))0V/dz

Ijs = (3.21)

(JV/&E)

fO [1 + : Vsat ]

or;
1 Vis
I = 4R [V + Vgs — 2Y ( 5 Vov>

Vds 2

Vet Vag +2Y (205 = Vou ) | +4VeVa, (3.22)

where V, = Lvsat/,ua Y = BW'UsatCtopRs and V,, = gs — Vo
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3.3.2 The Unipolar Saturation Region

Eqn. (3.22) holds for Vs < Vgs_sqr1 where Vigs_gqs1 is the drain voltage at the onset of
saturation. At this voltage the current is said to be saturated. Therefore, the saturation

voltage is calculated by differentiating I;; with respect to Vy, at the turning point.

1
Vis—sat1 = m RV, Y(1+Y)+

(V= 1) (Ve = VVZH 20V (V + 1)) (3.23)

Thus the resulting saturation current is shown in Eqn. (3.24).

[ S
ds—sat — Rs(l—i-Y)z

VV2Z 420+ Y)VV,, (3.24)

Vet (1+Y)Vo—

To calculate the discontinuity in the drain current characteristics between the ambipolar
and unipolar saturation regions, Eqn. (3.9) gives the charge to be overcome at the onset
of ambipolar activity. Also, —Ciop(Vis—sat2 — Viis—sat1) is the charge at the drain end at
which this charge is overcome. Here, Vys_sqo indicates the voltage beyond which the
Eqn. (3.24) no longer holds.

1
VdsfsatQ = Vdsfsatl + 5("/;)1) - Vdsfsat1|) (325)

3.3.3 The Ambipolar Saturation Region

In this region the channel conduction is due to both electrons and holes and a second
linear drain current is experienced with an increase in the drain voltage. Similar to the
analysis carried out for hole conduction, by considering Eqn. (3.11 - 3.14) for a drift

velocity given by —u%, the saturation displacement current is shown below.

W Vi 2
Liisp = =~ tn(Ciop) Vi —= 1 3.26
disp 97, :un( tOP) ds—sat2 <Vdssat2 ( )
The total current flowing in the channel when the transistor enters this region is the
superposition of the saturation current and the saturation displacement current. Con-

sequently, the total current flowing in the channel is the algebraic sum of the saturation
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current, Eqn. (3.24), and the saturation displacement current, Eqn. (3.26) as stated in
Eqn. (3.17).

3.4 SPICE Jacobian Entries

The Jacobian entries in SPICE is a matrix of first order partial derivatives. The deriva-
tives with from the matrix are the conductance, the transconductance and the bulk

transconductance.

The output conductance is defined as the variation in the drain current with a small

variation in the drain-source voltage while keeping the gate-source voltage constant.

o 8Ids
OV,

9ds (3.27)

Vgsv%s
The transconductance is defined as the drain current variation with a gate-source vari-
ation while keeping the drain-source voltage constant. This is given by

o alds
= 8Vgs

9m (328)

Vds 7Vbs

The bulk transconductance measures the amount of drain current increase caused by
the increment in the back-gate bias while the gate-source and drain-source voltages are

constant

0l
Imb = 8%3

(3.29)

Vgsvvds

Using these derivatives SPICE calculates the voltage across each node of the transistor

and the current flowing through the each node.

3.5 Summary

This chapter presents a SPICE-compatible dc model for both dual-gate and single-gate
graphene transistors. Analytical equations have been derived for the drain transport of
both hole and electron conduction. In both modes of conduction the current charac-
teristics are divided into three regions with derived voltage boundary conditions. The

Jacobian entries are continuous across the region boundaries.

A saturation displacement current that models the drain current behaviour in the am-
bipolar saturation region has been derived. By superimposing the saturation displace-
ment current and the unipolar saturation current the model comprises the total drain

current, thus confirming the theory of ambipolar transport in graphene.



Chapter 4

Single-Layer graphene FET

model for circuit simulation

This chapter presents a model for both a dual-gate single-layer graphene field effect tran-
sistor (GFET) and a single-gate single-layer graphene FET. Here, the model investigates
the temperature dependence of the single-layer transistor, its drain transport character-
istics and the conductance transfer characteristics, and then compares the model with

the carrier behaviour of multi-layered channels.

4.1 Dual-gate Single-Layer

A dual-gate transistor has a distinguishing feature of shifting the threshold voltage of
the transistor using the electric field between the gates. Two models are presented,
one is a compact model based on closed form analytical equations and the other is a
numerical model. A SPICE implementable general model has been developed for both
hole and electron conduction, presented earlier in Chapter 3. This chapter only maps
the single-layer specific models for both cases to the general model to calculate the drain
current. The corresponding drain transport characteristics are used for validate against

experimental data.

4.1.1 Electrostatics

Currently, graphene transistors use metallic terminal contacts for the drain, top-gate,
source and back-gate as shown in Fig. 4.1. Graphene is used as a semiconductor that
creates a channel between the source and drain terminals. The channel is sandwiched
by dielectrics between the top-gate and back-gate terminal. C, and Cj, are the resulting

capacitance between the top-gate and the channel as well as the back-gate and the

55
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FIGURE 4.1: Structure of a dual-gate single-layer graphene transistor with geometric
capacitances.

channel. Both C, and Cj are fixed capacitances as a result of the dielectric geometry

and have a theoretical value represented by Eqn. (4.1) and Eqn. (4.2) respectively.

Ce = 6Ofl/tox (41)

Chy = €o€2/ Hsup (4.2)

In both equations, € is permittivity of free space, €1, is top-gate dielectric constant, €o,
is back-gate dielectric constant, t,, is top-gate dielectric thickness and Hg,, is back-gate
dielectric thickness. A number of top-gate dielectric materials have been used on the
graphene channel such as hafnium oxide, H fOs with a theoretical dielectric constant

value of 25 [160] and SiO2 with a dielectric constant value of 3.9.

Fig. 4.2 shows the equivalent circuit model for the single-layer transistor. The vertical
electric field induces mobile charges in the graphene channel. An energy is required
to pump carriers from the source into the channel [45]. The quantum capacitance is a
measure of this energy. It is a derivative of the net charge in the channel to the potential
of the channel. Therefore, the quantum capacitance, Cy, is a variable capacitance which

varies with the channel charge density.

In the equivalent circuit in Fig. 4.2, the quantum capacitance is apportioned to the

source even though it is distributed along the channel.



Chapter 4 Single-Layer graphene FET model for circuit simulation 57

R;
/g? (@s)

q
Cy Ce

Y -+

FIGURE 4.2: Equivalent circuit model for a single layer graphene transistor

Based on the expression derived from the two dimensional free electron gas model, the

quantum capacitance is shown in Eqn. (4.3) [86]:

2¢°kgT

Covar (95) = G2 [2 (1 + cosh g;OT)} (4.3)

where ¢, is the potential difference between the channel and the source terminal, V;, vy
is the Fermi velocity, electronic charge is ¢ and the reduced Plank’s constant is A, kp is
the Boltzmann’s constant and 7" is the temperature in degrees Kelvins. Eqn. (4.3) can
be reduced to Eqn. (4.4) [87, 88].

22 qles|
™ (hvf)2

quar =q (44)

From Eqn. (4.4), a zero quantum capacitance is expected at a zero surface potential.
However, this is not the case. A non zero quantum capacitance at zero surface potential

is observed as a result of induced charge impurities around the Dirac point [85].

Charged impurities around the Dirac point account for the minimum charge density of
the channel, and in turn the off-current. Graphene semiconductors do not have a low
off-current relative to its on-current as silicon does, even though the density of states
vanishes at the Dirac point. Published works report a minimum carrier sheet density in
the vicinity of 0.5 x 10'2cm ™2 at the Dirac point[33, 26].



58 Chapter 4 Single-Layer graphene FET model for circuit simulation

Accounting for the presence of a minimum charge in the channel when the surface
potential is zero, the quantum capacitance at zero surface potential is given by Eqn.
(4.5):

2
Cymin = Vo (4.5)
Vrhug

where the minimum carrier density is ng. From the Drude model, the charge density in
the channel is n = y/n3 4+ n2 where n, is the charge density caused by the gate potential.

Hence, the quantum capacitance of the layer is given by Eqn: 4.6.

C(?mm + 2(quar(908)/2)2
V Comin + Caoar(0:)/2)?

Colps) = (4.6)

A simpler model can be equally assumed, of which both the minimum charge density

and the induced charge density are superimposed such that n = ng + n..

Cq(QOS) = Cqmin + quar(@s) (47)

The quantum capacitance of the later yields a model that is analytical, while that of the

former results in a numerical model.

4.1.2 Surface Potential

An analytical model is usually preferred in cases where the model is to be used to
simulate large digital circuits, to reduce the simulation time. However, in the case of
analogue and RF applications which use a few transistors, a more accurate numerical

model is preferred.

4.1.2.1 Analytical model

From Eqn. (4.4), the quantum capacitance is a function of the surface potential. By

solving the equivalent circuit in Fig. 4.2 ¢4 is given by Eqn 4.8:

. Ce(vgs - V;]%) + Cb(vbs B ng)
N Ce + Cb + Cqmin + %quar(@s)

Ds (4.8)

where Vgos is the top-gate to source Dirac voltage and ng is the back-gate to source
Dirac voltage. Both Vgos and ng are voltage offsets to Vs and Vj, similar to a flat band

voltage in silicon transistor.
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Both Eqns. (4.4) and (4.8) have to be solved self-consistently in computing ¢s. An
analytical solution of @ is possible. The analytical solution of ¢, gives rise to two
separate equations, one half solves for a positive value of ¢ and the other half solves

for a negative value of ;.

When the surface potential is positive, @y is represented by Eqn. (4.9):

6qua7"
Ps = — (5(,05 [Cb + Ce + Cqmzn_
5qua7" 9

and when the surface potential is negative, ¢, is represented by Eqn. (4.10):

5quar
Ps = 5905 [Cb + Ce + C(qmm_
5quar
-2 5o Ce(Vgs — Vo) 4+ (Cp + Ce + Cymin)? (4.10)

where V,, is the threshold voltage and 5%’% = qQ% (mqf)z. Between Eqns. (4.9) and

(4.10) the two conditions have to be satisfied by the surface potential. One, the surface
potential must be a real value and two, the result must have the assumed sign used in

calculating (Eqns. (4.9) and (4.10) must produce a positive or negative ¢, respectively).
An algorithm for solving the self-consistency is shown in Algorithm 1.

Data: The geometric capacitances Cy, Cy, Cgmin, the inbuilt voltages, ng, Vg%, the
gate voltages, Vs, Vis and g, h, vy

Result: The surface potential ¢

vs+ = Eqn. (4.9)

ps— = Eqn. (4.10)

if ps1 >0 and w5t s real then

| ¥Ys = Ps+;
else
| Ps = Ps—
end

Algorithm 1: Solving self consistency in single-layer GFET
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4.1.2.2 Numerical model

In this model, the Drude model is taken into consideration in calculating the charge
density of in the channel. Therefore, the surface potential of the layer is expressed by
Eqn. (4.11).

0=—Ce(Vygs — Vg% —s1) — Cp(Vos — %(?s —@s1) + st \/(quar(@sl)/2)2 + Cgmin (4.11)

To calculate the correct surface potential, s has to be self consistent with both Eqns.
(4.4) and (4.11)

4.1.2.3 Comparison of both models

Surface potential [V]

FIGURE 4.3: The surface potential, g, as a function of Vs for V4, of 20V, 0V and
—20V for both the analytical (dash) and numerical model (solid)

Fig. 4.3 (see parameter values in Table 4.2) shows the behavior of ¢s as a function of
Vys for Vs = 20V, OV and —20V respectively for both the analytical (dash lines) and
numerical model (solid lines). Positive values of ¢ indicates the Fermi level is in the
conduction band, in the valence band for negative values and charge neutrality point at

a zero value [14].

Both models converge at threshold voltage, where the surface potential is zero and
diverge a further away from the threshold voltage. From Fig. 4.4, both models will have

an equal quantum capacitance at the threshold voltage.

Fig. 4.4 (see parameter values in Table 4.2) shows the behaviour of the quantum ca-

pacitance as a function of the top-gate voltage for both models. In the case of the
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FIGURE 4.4: The quantum capacitance against variation in V, for a minimum charge
density of 0.5, 2 and 5 x10"2¢m ™2 respectively

analytical model in Fig. 4.4(a) the quantum capacitance characteristic translates ver-
tically with variations in the minimum charge density, such that the lines are parallel
to each other. On the other hand, the numerical model in Fig. 4.4(b) translates as
the analytical model but the lines are not parallel to each other. The more pronounced
parabolic characteristics with increased impurity density is consistent with reports on
the quantum capacitance [88]. Thus, the numerical model tends to the analytical model

at lower minimum charge densities.

4.1.3 Threshold Voltage

The threshold, V,, for a given Vjs represents the value of Vs at which the channel will
experience charge neutrality. V, has been reported to have a linear relationship with V4
[33], of which the slope is the ratio of the back-gate and top-gate capacitances. At the
charge neutrality point (CNP), the surface potential is zero. Thus, solving for s = 0 in
Eqns. (4.8) and (4.11) Vs = V.

Vo =V + (Cy/Ce) (Vi — Vis) (4.12)

4.1.4 Effective Gate Capacitance

In matching the equivalent circuit in Fig. 4.2 with the general GFET circuit model in
Fig. 3.2, the gate capacitance of both gates is modelled in series with the quantum

capacitance.

Cqu(gos)
Ce+Cyp+ Cq(gos)

Ctop = (4.13)
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CoCq(eps)
Cy+Ce + Cq(@s)

Chack = (4.14)

4.2 Off-current Hole/Electron Activation Energy

Graphene layer

®

(+)

S

(+)

FIGURE 4.5: Schematic of a single-layer graphene with metallic gate terminal showing
the electric field. The dash lines show the Gaussian surface which is induced by the
electric field between the layers

Insulators and semiconductors exhibit a resistive dependence on the operating tempera-
ture. In the graphene semiconductor, thermal excitations of the carriers from the valence
band to the conduction band creates mobile carriers in both bands. These mobile carri-
ers limit the maximum resistance at the charge neutrality point where the transistor is

in an intrinsic state.

The maximum channel resistance is determined by charged impurities between the
graphene layer and the substrate. Therefore, the potential energy between the graphene

channel and the back-gate is responsible for modulating the charged impurities.

4.2.1 Electric Field Dependent Energy

In the presence of an electric field due perpendicular to the channel, the single-layer
graphene FET shows a shift in its threshold voltage as shown in Eqn. (4.12). A bandgap
is not created by the presence of an electric field. The electric field will create an induced

charge on the channel quantum capacitance.
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QS = %quar“psl) (415)

Thus, the corresponding potential energy is shown below.

Ust = 75 Cavar(pa1)) (4.16)
An index number 1 is used for consistency even though the channel in Fig. 4.5 has only
one layer. At the condition of charge neutrality, ¢s = 0, the potential energy in Eqn.
(4.16) diminishes. Thus, there can be no bandgap creation with respect to the presence
of an electric field. However, outside the charge neutrality condition there is a potential

energy in the layer.

A Gaussian cylinder is inserted between the channel and the back-gate as shown in Fig.
4.5. Assuming a uniform electric field through the cylinder. A parallel plate capacitor
of capacitance Cy between the graphene layer and the back-gate can be considered. The
resulting potential energy between the graphene layer and the back-gate is 1/ QCbe%.

Where Vg is the potential difference as a result of a uniformly distributed charge.

22U
Ve = 4.17
F Ch (4.17)

For a given temperature, Vg being a reflection of the energy band should satisfy the
relationship R, o< exp(Vg/Vr) where in silicon FET Vp = kgT'/q.

R, = RYexp(Vg/Vr) (4.18)
From Eqn. (4.18), R? is the resistance at intrinsic state, that is at charge neutrality
condition, and Vr is a constant voltage.
Based on the Drude model used in characterising graphene devices R is given by Eqn.

(4.19):

0 L

S

= 4.19
Wanop ( )

where L is the channel length, W is the channel width, ¢ is the electronic charge, n, is

the minimum charge density and p is the carrier mobility.
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4.2.2 Temperature Dependence of the off-current

Assuming that there are no defects in the insulators, for a sharply defined bandgap which
is sufficiently large enough, electrons in the valence band are thermally excited to the
conduction band using the relation exp(qoparrier/kBT). A large single-layer graphene
channel displays a weak dependence of the output conductance against variations in
the temperature [89]. A weak dependence of the channel resistance against changes in

temperature suggests that the bandgap opened is too small.

The relationship Iofr oc exp((7,/T)") [89] fits the graphene FET in which n = 1/3.
The exponent parameter n = 1/3 suggests the presence of localized impurities in the

bandgap.

Aside from graphene, in other semiconducting materials the temperature dependence has
equally been modeled using the exponent n = 1/3 in the Steinhart and Hart equation

[90] and using the exponent n = 1/4 in the Hoge-3 equation [91].

However, in this model a reference temperature is introduced, 7.y such that I,r; o
exp((To(1/T — 1/Tyef))") where n = 1/3.

A factor Ry in Eqn. (4.20) is thereby multiplied to Eqn. (4.18) to capture the channel

resistance dependence on temperature.

B 1/3
Ry = exp ((W) ) (4.20)

Eqn. (4.20) holds as long as the condition 7" < T..s is satisfied. For validations against
experimental measurements, 7.y set to room temperature gives a good agreement. Also,
the intrinsic resistance, R? is the resistance at room temperature. For the single-layer

graphene FET T, is a constant temperature.

Thus, the resulting off-current due to R, is shown in Eqn. (4.21).

Irr = VdS/Rq, (4.21)
T(Tper —T)\ /3
Ry = R exp (<(TTff)> ) exp(Ve/Vr) (4.22)

R, is integrated into the calculation of the drain current in chapter 3, in taking into
consideration the assumptions on the charge density in the channel. In the case of the

analytical model, the drain current is shown below:
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Lis = Iopp + Lgss (4.23)

where [js, is the drift current as calculated in chapter 3 (see Equn. (3.17)). For the
numerical model, the Drude model is used to calculate charge density, thus, the drain

current is shown below.

Igs = \J12; + 13, (4.24)

o

4.3 Single-gate Single-Layer

A three port graphene FET which uses only a single-gate, is much easier to fabricate
than the dual gate and interest in its behaviour is attracting attention [75]. Chemical
doping can be used to control the channel making it possible to obtain high ON-OFF
ratio with just a single-gate graphene transistor. Models have been centred on the dual-

gated structure of the graphene field effect transistor, and none so far on the single-gate

structure.

4
—

FIGURE 4.6: Schematic diagram of a single-layer graphene FET

doped Si

4.3.1 Graphene Device Fabrication

The single-gated, single-layer graphene transistor shown in Fig. 4.6 is fabricated by
micromechanical cleaving of natural graphite [14]. The graphene used in the transistor
is identified to be single-layer graphene. Electrical contacts to the flake source and drain
was made by deposition of a Ti/Au bilayer (5/60 nm thick) giving the graphene channel
the following dimensions; W = 1um, L = 6um. The flakes are deposited onto SiOy (300
nm thick) sitting on a highly doped silicon. The doped silicon substrate is used as the
device gate [76].
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4.3.2 Capacitance Model

The circuit level schematic of the single-layer graphene transistor is shown in Fig. 4.7.
Fig. 4.7 is a modification of the earlier equivalent circuit in Fig. 4.2. C. is the gate
capacitance, Cy(,,) is the quantum capacitance, R; is the series resistance and R, is the

off-current resistance.

Here, the quantum capacitance is a function of the surface potential, and Eqns. (4.4) and
(4.5) apply. For an accurate modeling of the gate capacitance, a quantum capacitance

is modeled in series with the gate capacitance.

R R,
Vy ——W~ v,

Co(P s)

)H;I Ps ” *Ve

FI1GURE 4.7: Equivalent circuit-level diagram for a single-gate graphene field effect
transistor

4.3.2.1 Using a simplified analytical method

Solving the equivalent circuit, the surface potential is given by Eqn. (4.25):

_ Ce(‘/gs - V;))
Ce + Cqmin + %quar(@s)

Ps (4.25)

where V,, is the gate to source Dirac voltage. With a single-gate, the gate both electro-
statically dopes the channel and modulates the doping intensity. Eqn. (4.25) has to be
solved self-consistently with the quantum capacitance in computing ¢s. Two analytical

solutions of ¢4 are obtained depending whether ;4 is positive or negative.

When the surface potential is positive ¢, is expressed by:
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7 (hvy)?
Ps = _5 q:]; [Ce + Cqmin_
24 4 2
q ; (h’l)f)z Ce(Vgs - V;)) + (Ce + Cqmzn) (426)

and when the surface potential is negative p; is represented by Eqn. (4.27)

7 (hvy)?
Ps = 5 C]g [Ce + Cqmin_
24 q 2
—-q ; (th)2 Ce(vqu - Vo) + (Ce + Cqmzn) (427)

Equally, the self consistency here can be solved as shown in Algorithm 1 where Eqns.
(4.9) and (4.10) are replaced by Eqns. (4.26) and (4.27) respectively. From Eqn. (4.26)
and (4.27) the gate offset voltage is the threshold voltage of the device in contrast to
the dual-gate where back-gate optimizes the threshold value (see Eqn. (4.12)). With
a single-gate, there is only one possible threshold voltage, which is the gate offset, V.
Only through chemical doping can the threshold voltage be shifted.

4.3.2.2 Using the Drude model

Using the Drude model to approximate the charge in the channel of the equivalent

circuit, the respective potential gives rise to Eqn. (4.28).

0= _Ce(‘/gs -V, — SDsl) + ©s1 \/(quar(@sl)/2)2 + Cqu'm (428)

Eqn. (4.28) has to be solved for ;.

4.3.2.3 Comparison between both methods

For an Si0O3 on Si wafer with an oxide thickness of 300nm (see parameters in Table 4.1)
the models are compared for a sweep of the gate overdrive, that is Vs — V,,, from -50V
to 50V. Fig. 4.8 shows the surface potential of both models for ng = 0.5 x 106m =2,

In Fig. 4.8, for a negative surface potential, the Fermi level is in the valence band and
the conduction is by holes, while for a positive surface potential, the Fermi level is in
the conduction band and the conduction is by electrons. A charge neutrality point is at

a surface potential of zero.
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FIGURE 4.8: Surface potential for both an analytical model and the Drude based
numerical model.

The deviations between the surface potential of both models becomes pronounced at
high overdrive voltages. Compared to the case of a dual-gate, where an overdrive of
about 3V produced large deviations in the surface potential between both models, here,
about twenty times the overdrive is needed to produce similar deviations in the surface

potentials.

-50 -40 -30 -20 -10 ] 10 20 30 40 50 -50 -40 -30 -20 -10 0 10 20 30 40 50
Vo M Vo, V1

(a) Quantum capacitance using the simplified (b) Quantum capacitance using the Drude

analytical model based numerical model

FIGURE 4.9: Quantum capacitance for a single-gate single-layer transistor

Also, the behaviour of the quantum capacitance is compared using three sets of minimum
sheet charge densities. Fig. 4.9(a) shows the characteristics of the quantum capacitance
using the analytical model, while Fig. 4.9(b) shows the same characteristics using the
Drude based model. It can be observed that the analytical model shows sharp V-shaped
quantum capacitance at the Dirac point irrespective of the minimum charge density,

while the numerical model shows a parabolic characteristics.

Fig. 4.10 illustrates that despite the prominent differences in the quantum capacitances
between both plots in Fig. 4.9, the effective capacitance which is responsible for modu-
lating the doped carriers in the channel closely approximate to each other. This is as a
result of the gate capacitance, C¢, being so small compared to the quantum capacitance.

Therefore, the quantum capacitance has negligible effect on the overall capacitance.
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FIGURE 4.10: Effective gate capacitance against variations in the gate voltage

4.3.3 Singe-gate Activation Energy of the off-current
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FIGURE 4.11: Schematic of a single-layer graphene with a single metallic gate terminal
showing the electric field and the excess charge.

Taking a close look at the perpendicular electric field and the resulting channel conduc-
tance, Fig. 4.11 is a parallel plate capacitor between the graphene channel and the gate.
Assuming the gate is positively charged as shown in the figure, the electric field ema-
nating from the gate will charge one side of the graphene semiconductor with a negative
charge. Thus, irrespective of the potential at the gate, R, has a constant resistance
given by RY in Eqn. (4.29).

Since the channel has a non zero charge density at the charge neutrality point, n,, with

a carrier mobility, y, the channel has a limiting channel resistance RY.
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O L

S

= Wanon (4.29)
This resistance is represented by R, in the equivalent circuit diagram (see Fig. 4.7). R,
is a constant irrespective of the number of layer of the graphene channel. A published
experimental result for a bilayer graphene transistor using a single-gate shows a transfer
characteristic similar to a single-layer [75]. That is, the transistor has a zero bandgap
opening. Comparing the single-gate transistor with the dual-gate one, from Eqn. (4.18)

it is observed that the exponential increase in 14 is due to the presence of two gates.

At the charge neutrality point, the total resistance of the channel is given by R,. As the
gate voltage moves away from the charge neutrality point and the channel begins to be

doped. Doping the channel makes the total channel resistance less than R,.

Well away from the charge neutrality point, the carriers reduce the channel resistance
much less than Ry, thereby closely approximating the channel carrier transport. There
are published models that use only the electrostatic doping of the charge to estimate the
carrier transport behaviour, and give a good agreement with experimental data away

from the charge neutrality point [34, 38].

Here, the carrier transport is obtained by matching this model with the general model

shown in Fig. 3.4.

4.4 Experimental Validation

Both models described in this chapter are validated against experimental measurements.
Experimental measurements published elsewhere [89] are used in validating the dual-gate
graphene model, while the experimental measurements used in validating the single-gate

graphene model are presented in this work.

4.4.1 Single-gate Case

Table 4.1 shows the model parameters. Here, only the analytical model is used because

the gate capacitance is very small compared to the quantum capacitance.

Fig. 4.12 shows the channel resistance plotted against the gate voltage at room tem-
perature for both the experimental data and the model. The model uses a constant
Vs = 0.01V with series resistances of 10£2. The transistor has a maximum resistance
of 18k€) at the Dirac point voltage of Vys = 80V, and a minimum resistance of ap-
proximately 4kQ at Vs = —20V. Thus, having an ON/OFF current ratio of about
4.5.
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TABLE 4.1: Model parameters for single-gate monolayer graphene FET

Model parameter Parameter value

L(um) 6
W (pm) 1
tox(nm) 300
€1 3.9
VA(V) 80
R, (k) 18
no(m=2) 0.5 x 1016
pnlem?/V.s] 1000
pe[cm?/ V.5 800
4
18X 10
1.6
g 1.4
3
é 1.2
9
4 1
o
2
5_—% 0.8
@)
0.6
0.4
-20 0 20 40 60 80 100
V. V]

FIGURE 4.12: Transfer characteristics of a single-gate monolayer transistor at room
temperature [76].

To fit with experimental data, the model uses a mobility of yj, = 1000em?/V.s for hole
conduction and j = 800cm?/V.s for electron conduction. Both carrier fitting values,
compared to silicon based channels where the hole mobility is lower than that of the
electron, show an approximately equal hole and electron mobility. This is as a result of

the symmetry between the valence and conduction bands [53].

4.4.2 Dual-gate FET

Model parameters of the transistor are shown in Table 4.2. For this test case the graphene

channel is sandwiched between two Si0Os dielectrics.
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TABLE 4.2: Model parameters for monolayer graphene FET

Model parameter Parameter value

L(um) 1
W (pm) 1.1
tox(nm) 15
€1 3.9
€9 3.9
0
VoV) 2.22
Vs (V) -35
Hgyp(nm) 285
Vr(V) 2
RY(kQ) 4.65
no(m=2) 0.5 x 1016
25
2, 4
15r 1
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FIGURE 4.13: Experimental data (circles) [89] and the proposed model (solid line) of
the threshold voltages of a single-layer graphene FET

The equation of the threshold voltage in Eqn. (4.12) shows that a positive back-gate
voltage will shift V, toward a negative value, and a negative back-gate voltage will result
in a more positive V,,. The shift leads to a linear relationship between V, and Vs as
shown In Fig. 4.13.

In the case of a single-layer graphene FET the potential energy, Uy, of the layer tends
to zero as the device approaches charge neutrality (see Eqn. (4.16)). A zero potential
energy indicates that the device is in the intrinsic state with a zero band-gap opening. For
any back-gate voltage the device is always at intrinsic state at the charge neutrality point.
Therefore, any known back-gate voltage with its corresponding threshold voltage can be
used as the reference voltages in calculating other back-gate voltages and threshold
voltages. Here, the reference voltages used are a device threshold voltage of 2.22V and

Vs = —35V [89).



Chapter 4 Single-Layer graphene FET model for circuit simulation 73

FIGURE 4.14: The effective top-gate capacitance, Cy,p, against a sweep of Vi, for both
the analytical (dash) and Drude numerical (solid) models from -3V to 3V for Vs = 10V.

The top-gate to source capacitance varies with the quantum capacitance as can be seen
in Fig. 4.14. From Fig. 4.14, the capacitance is bound by Ce > Ciop > CeClymin/(Ce +
Cymin + Cp) for Ce = 230nF/em™2 and Cymin = 887nF/em™2. It is observed that the

device has a minimum capacitance at the charge neutrality point.

FIGURE 4.15: Characteristics of R, against V, for Vjs of 25V, 10V, OV and —35V
respectively. Plots of the characteristics for an analytical (dash) and a Drude numerical
(solid) model.

Alongside Ciop, Ry varies with the gate voltage, showing an exponential relationship
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against the surface potential, indicated in Eqn. (4.18). R, limits the channel conduc-
tance about the charge neutrality point as the density of states vanishes. Here, the
resistance due to the induced charge density is far greater than R,. Fig. 4.15 shows the

transfer characteristics of the current due to R, at a constant operating temperature of
52K.

It can be observed that R, has a minimum value at the charge neutrality point equal to
RY. Away from the charge neutrality point the parallel conductance due to the induced
charge quickly becomes comparable to R,, or even much less than R,. Therefore, to

achieve very high ON/OFF current ratios, techniques of increasing R? is a prerequisite.

From Fig. 4.15, R? is 4.65kQ2, which is low for digital circuit applications; leading to a
high off current. It is assumed that a complementary transistor configuration is used to

develop digital logic.

Irrespective of the back-gate voltage, R, always has a minimum value given by RY at the
charge neutrality point. This implies that for a single-layer GFET, no tunable transport
bandgap is formed.

Channel resistance [KQ]

FIGURE 4.16: Experimental data (o ¢ 0) [89], the analytical model (dash) and the
Drude numerical model (solid) for the channel resistance against Vy, at a temperature
of 4.7K, Vps of 25V, 10V and -35V respectively and Vs = 0.01V

Fig. 4.16 shows the variation of the channel resistance with changes in the top-gate
for Vs = 0.01V and an operational temperature of 4.7K. The model gives the best fit
against experimental data [89] with fitting parameters shown in Table 4.3 and Table 4.4

for the analytical and Drude model respectively.
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TABLE 4.3: Experimental data fitting parameters using analytical model

hole electron
VealV] RO jnlem®/Vis] R[] prelem®/Vis)
25 720 1600 720 2200
10 720 2200 850 2200
-35 200 5200 200 2500

TABLE 4.4: Experimental data fitting parameters using Drude model

hole electron
VislV]  Rs[Q] pn[em®/Vis] Rs[Q]  pelem?/V.s]
25 850 3200 720 3200
10 720 3200 850 3200
-35 200 7200 500 5500

For both models, Table 4.3 and Table 4.4 shows a mobility and a series resistance that
is dependent on Vj,, this is due to V;s modulating the un-gated regions of the transistor.
The Drude model estimates a higher mobility and gives a better fit to the experimental

data than the analytical model.

6000

5000

4000

3000

Channel Resistance [Q]

2000

FIGURE 4.17: Experimental data (cross and star) [89] and the Drude based model
(solid and dash lines) of the channel resistance against V,, for temperatures of 4.7K
and 52K respectively, at V;s of OV

In Fig. 4.17, the model is applied to data for temperatures 4.7K and 52K respectively.
Table 4.5 which shows the fitting parameters for the experimental data at tempera-
tures 4.7K, 14.4K and 52K respectively; shows no carrier mobility and series resistance

dependence on the temperature.
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FIGURE 4.18: Interpolation of the dependence of the maximum channel resistance with
respect to changes in temperature for a temperature sweep from 0.05K to 250K

TABLE 4.5: Experimental data fitting parameters using the Drude based model

hole electron
Temp K] R pnler®/Vis] Ro[Q]  jielem?/Vs
4.7 400 4000 500 4000
14.4 400 4000 500 4000
52 400 4000 500 4000

However, the thermionic resistance shows a slight dependence on temperature with val-
ues ranging between 5.1k} and 5.8k€) for temperatures of 52K to 4.7K respectively.
For an operating temperature of 14.4K, the model estimates R, = 5.4k as the maxi-
mum channel resistance which agrees with experimental data [89]. R, shows a depen-
dence on temperature given by Eqn. (4.20), where the fitting temperature parameter
T, = 0.052K.

By plotting the maximum channel resistance against a sweep of the operating tem-
perature from 0.05K to 250K as shown in Fig. 4.18, the device shows a very small
change in resistance to large changes in temperature, for temperatures above 50K. The
temperature dependent resistance shows a current ratio of 1 between room temper-

ature and 0.05K (from inset diagram in Fig. 4.18 the current ratio is calculated as

Log(Ry(1=0.05)) — Log(Ry1=300)))-

In comparing both transistor layouts, the single-gate transistors shows more promise
to attaining very high ON/OFF current ratio. With reference to Fig. 4.12 and Fig.
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4.15, at room temperature, a single-gate has an off state resistance of 18k{) compared
to 4.65k€) of the dual-gate. Also, a single-gate has a series resistance as low as 10€2
compared to a dual-gate with series resistance in hundreds of ohms. This improvement
in series resistance is attributed to the absence of un-gated regions in the single-gate
transistor. Also, the electron and hole carrier mobility are approximately equal in the

single-gate transistor.

An investigation is carried out into validating the single-layer model for a multilayer
channel with two or more layers. This will give an insight into whether the single-layer

model can be used as a general graphene FET model.

4.4.3 Single-layer Model Applied To Bilayer Graphene

Here, the single-layer model is validated against a bilayer transistor. The transistor
is in intrinsic state with V3, = 2.7V. At this voltage the transistor behaves like a
single-layer. Experimental analysis are however published for V,s = 40V and —40V
[33] which suggests band-gap opening. To validate the model against the published
experiment measurements, two test cases are used. One test case uses a Vj; of -40V and
the other test case uses a Vjs of +40V. Table 4.6 shows the model parameters that fit

the experimental data in both test cases.

TABLE 4.6: Model parameters for bilayer graphene FET

Model name Model parameter

L(um) 1

W (pm) 2.1
toz(nm) 15
Hgyp(nm) 285
€1 8.8
€9 3.9
Vo (V) 1.45
Ve (V) 2.7
RY(KQ) 12.88
Vir (V) 2

From Table 4.6, the top-gate dielectric, H fO3, is estimated to have a dielectric constant
of 8.8. However, the theoretical dielectric constant for H fOs is 25 [160], which indicates
that the top-gate oxide has been unintentionally doped or the top-gate has more than
one layer of oxide. Also, from the published experimental data, the top-gate oxide is
estimated to have a dielectric constant of 16 [33]. The discrepancy between both reports
is as a result of the equation used to estimate the dielectric constant. Here, the slope
of the threshold voltage is given by the ratio between C} and C,, while in the published
report the slope used is the ratio between C,C,/(Cp + C;) and C.C,/(Ce + Cy). Where

C, is assumed to be a constant value of 2uFem™2.
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FIGURE 4.19: Threshold voltage against Vj, (Experimental data(+) [33], proposed
model(—))

Fig. 4.19 shows the threshold voltage against Vjs. The best fit for the threshold voltage
points estimates the top-gate dielectric to be 8.8.
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FIGURE 4.20: Experimental data (+) [33] and the proposed model (-) at an operating

temperature of 1.7K for negative 15 vs negative V4, characteristics at Vys=-40V. V4

is varied from 0 to -3V for top-gate voltages of 0V, -1.5V, -1.9V and -3.0V (from bottom
to top)

For the first test case, Fig. 4.20 shows the I-V characteristics for the transistor with a
Vs of -40V and Vi, of 0V, -1.5V, -1.9V and -3V. A good agreement with experimental
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data is achieved with Vp
pn, = 320em?/V.s.

2, Ry = 80002, E. = 4.5kV/em, pup, =

800cm?/V.s and

94 [S]

FIGURE 4.21: Characteristics of the channel output conductance against the top-gate
voltage for Vs = —40V (Experimental data(o) [33], proposed model(-))

4.5

ys [S]

FIGURE 4.22: Characteristics of the channel output conductance against the top-gate
voltage for Vi, = 40V (Experimental data(o) [33], proposed model(-))

The output conductance, gg4s, is defined as the variation in the drain current with a small

variation in the drain-source voltage while keeping the gate-source voltage constant.

In Fig. 4.21, g4, is plotted for a range of Vs with V4 of —40V. Carrier transport fitting
parameters for both hole and electron conduction are shown in Table 4.7.
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FIGURE 4.23: Characteristics of the channel transconductance against the top-gate
voltage for Vs = —40V (Experimental data(+) [33], proposed model(-))

TABLE 4.7: Experimental data fitting parameters for output conductance

hole electron
VeolV] Ro[O] jilem?/Vis] R[] prelem®/Vis)
-40 530 800 850 800
40 1100 600 850 600

In Fig. 4.22, g5 is plotted for a range of V,, with V;, of 40V. Carrier transport fitting

parameters for both hole and electron conduction are shown in Table 4.7.

Both figures of the output conductance show a good agreement against the experiment
data. Using the intrinsic resistance extracted from the experimental data [33] in the

model, the model accurately estimates the conductance at the charge neutrality point.

Back-gate voltages used are approximately 40V away from the intrinsic back-gate voltage
of 2.7V, as such a pronounced difference between R, in the model and the maximum
measured resistance from the original work is expected, due to the opening of a tunable
band-gap [14, 47]. Therefore, this phenomenon implies that one layer of the transistor
is torn. This is why the minimum conductance approximately 40V away from intrinsic

state is the same as the intrinsic conductance.

The transconductance, g,,, is defined as the variation in the drain current with a small

variation in the Vs while keeping the Vy, and Vj, constant.

In Fig. 4.23, absolute g,, is plotted against Vg for a Vg = 0V and a V;,s = —40V. The
best fit with experimental data is for Ry = 5409, uj, = 1300ecm?/V.s and E,. = 4.5¢5V/m
and p, = 702cm?/V.s. Fig. 4.22, 4.21 and 4.23 confirm that the Jacobian entries are

continuous across the boundary points for all regions of operation.
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The series resistance accounts for the contact resistance and the un-gated resistance
(access resistance) between the contacts and the active area of the channel. For optimal
RF application, the series resistance should be at a minimum. Between V34 of 40V and
Vs of —40V for hole conduction, in Table. 4.7, the series resistance is halved resulting

in an enhancement of the transconductance [26].

4.4.4 Single-layer Model Applied To a Four Layer Graphene Channel

The model is validated against a four-layer GFET. With respect to a bilayer GFET,
increasing the number of graphene layers results in a reduction in the tunable bandgap

opened. Table 4.8 shows the model parameters.

TABLE 4.8: Model parameters for a four-layer GFET
Model parameter Parameter value

L(pum) 10
W (um) 5
toz(nm) 40
E.(KV/em) 8

€1 25.0
€9 3.9
VA(V) 0.75
Vin(V) 0
Hgyp(nm) 500
Vos(V) 0
no(m=2) 0.5 x 1016

The top-gate dielectric used is H fOq with a dielectric constant of 25 [160, 161] giving
a capacitance, C, = 553nF/cm~2 and a temperature of 300K. Fig. 4.24 shows the

effective gate-to-source capacitance, Cy,p, for a sweep of the top-gate voltage from —2V
to 3V for Vs = 0V.

Fig. 4.25 plots the variation of the drain current with changes in Vs for a Vg of
0.1V. Table 4.8 shows the model parameters of the transistor. The single-layer model
gives the best fit against experimental data [127] using the following parameter fitting
values; Ry = 300Q and u; = 5000ecm?/V.s for hole conduction, and Ry = 320Q and
pe = 2800cm?/V.s for electron conduction, Vi = 8V and RY = 3.7kQ.

Fig. 4.26 shows the variation of the drain current against changes in the drain voltage.
The model is validated against experimental data [127] for a Vs of 0V and Vs of -
1.25V, -0.75V, -0.25V , 0.25V and 0.75V. The following model parameters show a good
fit against experimental measurements; Vy = 8, R, = 400Q , pj, = 10000cm?/V.s and
i, = 2700cm? /V.s.

For low horizontal electric field, the channel transport is determined by RY at a Vys of

0.75V, the displacement saturation current becomes pronounced at high electric fields.
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FIGURE 4.24: The effective top-gate capacitance, C,, against a sweep of Vg, from -3V
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F1GURE 4.25: Characteristics of the channel Drain current against the top-gate voltage
for Vgs = 0.1V at room temperature(Experimental data(+) [127], proposed model(-))

The single-layer model gives a good agreement for a multi-layer transistor, especially
at the region of the transistor where transport is dominated by the induced charges.
When the transistor is in intrinsic state as shown in Fig. 4.25, the single-layer model
also accurately estimates the current at the charge neutrality point. The shortfall of

this model is that it does not estimate the minimum conductance when Vs # V}g.
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FIGURE 4.26: Experimental data (+) [127] and the proposed model (-) for negative I

vs negative Vg4, characteristics at room temperature for Vys= 0V. V4, is varied from 0

to -1.4V for top-gate voltages of -1.25V, -0.75V, -0.25V, 0.25V and 0.75V (from top to
bottom between cross-section A; and As)

4.5 Summary

This chapter presents a circuit level model of a single-gate single-layer graphene field
effect transistor (GFET) and a dual-gate single-layer GFET suitable for a direct im-
plementation in SPICE. Both models have been validated against experimental data
published by another research group [89] and experimental data as part of this work.

All validations show a good agreement.

Equations that calculate the drain current characteristics for both electron and hole
conduction has been presented in a previous chapter. In this chapter, the model is

mapped to the general model used to calculate the current transport.

To map this model to the general models, the surface potential is calculated self-
consistently with the channel quantum capacitance and the gate-to-source capacitance.
The effective gate capacitance is modelled as a series combination of the gate capaci-
tance and the channel’s quantum capacitance. The thermionic resistance is modelled in

parallel with the resistance that results due to the induced charges in the channel.

From the current transport, this chapter provides an accurate estimation of the channel
conductance. The model has been validated against published experimental data and
shows a good agreement. Unlike silicon based channels with lower hole mobilities, an

approximately equal hole and electron mobility is used in the model. The model also
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accurately estimates the conductance at the charge neutrality point. This chapter derives
a linear relationship between the threshold voltage and the back-gate voltage in the case
of a dual-gate transistor, the slope of the relationship being the ratio of both gate
capacitances. The threshold voltage gives the voltage of the top-gate at which the
channel will experience charge neutrality, that is minimum conduction. In the case
of a single-gate transistor, only one threshold voltage exists, with no bandgap opened

irrespective of the number of graphene layers.

Computing the potential energy in the layers, the model establishes that at the charge
neutrality point there is a zero potential energy. Thus, a single-layer GFET is a zero
bandgap device. Also, the single-layer currently developed shows a high minimum con-
ductance at room temperature, in the order of millisiemens. This is not suitable for
digital circuitry applications. Equally, the conductance does not change remarkably be-
tween room temperature and 50K. To get any off state resistance meaningful for digital

circuits the device has to be operated close to 0K.

In validating the model against experimental results from a multi-layer graphene, the
model shows a good agreement for both the drain current against the drain voltage
and against the gate voltage. In cases where a band-gap opening occurs, the model
cannot determine the resulting maximum channel resistance. Thus, a modification to

the equivalent model is necessary depending on the number of layers.



Chapter 5

Dual-gate multi-layer graphene
FET model

This chapter presents models specific to a two and four channel graphene transistor. For
the multi-layer specific models, the chapter shows how the models are extended from

the single-layer model described in chapter 4.

The model provides an accurate estimation of the conductance at the charge neutrality
point (CNP). Features of the model presented here include; equations for the channel
resistance at the CNP, off-currents for a range of electric fields perpendicular to the
channel, channel resistance dependence on temperature and an estimation of the amount

of bandgap opening created by the application of an electric field.

A number of models of the transfer characteristics for a bilayer graphene FET have
been published [33, 38, 34, 129, 130, 131, 132]. These models show a good agreement
with experimental data. However, these models cannot estimate the amount of bandgap
opening and how this bandgap influences the off-current. This work is first to present a
model that can calculate the off-current as a result of the opening of a tunable bandgap

in graphene as well as the dependence of the off-current on temperature.

As done in the case of the single-layer model in chapter 4, the multilayer specific circuit-
level model is mapped to the equivalent general model. Thus, the equation derived in

Chapter 3 will be used to calculate the drain current.

Some models [33, 38, 34] use a linear relationship of the back-gate voltage to calculate
the threshold voltage (that is the top-gate voltage at the CNP). Although this method
proves a simple way to estimate the threshold voltage and it is accurate for the single-
layer graphene FET (see Fig. 4.13), an experiment [77] shows that the linear relationship
can deviate substantially for back-gate voltages further away from the back-gate voltage
at the Dirac point. In this work, the equivalent circuit presented is used to calculate the

threshold voltage.
85
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5.1 Bilayer Capacitance Model

Compared to existing models, this work introduces an interlayer capacitance which is
used in calculating the channel surface potential and the channel resistance at the charge
neutrality point (CNP). Fig. 5.1 shows the schematic of a bilayer transistor. The bilayer
graphene composes of two layers of graphene held together by Van der Waals forces. It
is assumed in this work that the a free space exists between the layers. The inter-
layer capacitance has been used in determining the layer asymmetry and consequently

estimating the bandgap opening [49, 47].

Ve

1 v,

” |
Top Gate

Source [ C Drain
— T Le

C p Graphene layer
q
C,=—— free space
Graphene layer

= () Silicon oxide

Highly Doped Silicon Wafer

Back Gate

Vb

Ficure 5.1: Bilayer graphene transistor layout

Fig. 5.2 shows an equivalent circuit for a bilayer graphene FET. single-layer samples
of graphene have been reported to have a measured quantum capacitance [88] which is
a function of the surface potential [86]. The proposed model uses a quantum capaci-
tance for each layer namely Cy(ps1) and Cy(ps2) as shown in Fig. 5.2. Both quantum
capacitances are separated by an interlayer capacitance, C,. In naming the layers the
convention used here numbers the layers relative to the top-gate, with the closest layer

as 1, 2 for the next layer and so forth.
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FI1GURE 5.2: Proposed equivalent circuit for a bilayer graphene transistor
5.1.1 Surface Potential

For the top-layer, the quantum capacitance varies by its surface potential, (41, repre-
sented by Eqn. (5.1):

2 Q‘SO31|
C, var\¥sl) = 22 5.1
q (90 1) q T (h?]f)2 ( )

where vy is the Fermi velocity [87], electronic charge ¢ and the reduced Plank’s constant
h. At @51 = 0 the channel has been reported to have a charge density, ng [70, 74].

Taking ng into consideration, at ¢s; = 0 the resulting capacitance is shown below.

2
RVALTI]
Camin = (5:2)

From the Drude model the charge density in the channel is n = \/nZ 4+ n2 where n, is
the charge density caused by the gate potential. Hence, the quantum capacitance of the

layer is Cy(ps).
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C(?mm + Q(quar(%)/2)2
Cylips) = —=
Camin + (Cquar(#5)/2)?

(5.3)
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FIGURE 5.3: The surface potential ¢, and ¢ of the layers as a function of Vg, at
Vis = 50V
From the capacitance model in Fig. 5.2 the surface potentials can be solved, given that
C. is the capacitance due to the dielectric between the top-gate and the channel, Cj is
the capacitance between the channel and the back-gate, Vg, V, Vi and V}, are the drain,
top-gate, source and back-gate voltages respectively. Therefore, the surface potential of

the second layer is shown in Eqn. (5.4):

1
Ps2 = 5 [_Ce(‘/gs - Vg%) + 9051(06 + Co)+

@611/ Cavar(9)/2)2 + Cliin| (5.4)

where Vg% is the top-gate-to-source Dirac point voltage and ng is the back-gate-to-source

Dirac point voltage. Equally, the first layer surface potential is shown below.

1
Ps1 = 6 [_Cb(‘/bs - VE;%) + ‘PSZ(Ce + Co)+

Ps2 \/(quar((PsZ)/Q)z + Cgmm (5.5)

vs1 determines the conduction state of the channel. For example, Fig. 5.3 (see parameter
values in test case B of Table 5.2) shows the behavior of the surface potential of both
layers as a function of Vs for Vs = 50V. Algorithm 2 shows how ¢4 and g are

calculated. Positive values of ¢g; indicates the Fermi level is in the conduction band,
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Data: The capacitances Cy, Cy, Co, Cymin;Cqvar, the inbuilt voltages, V}g, V;]%, the
gate voltages, Vs, Vis

Result: The surface potentials g1 and pgo

Initialize @4 to a value

for i = start value to stop value do

vs2 = Eqn. (5.4)

Osinew = Eqn. (5.5)

Compare = Compare @sinew and @s1

if Compare is less than error tolerance range then
Retain the values of ¢4 and g0

End iterations
else

if 51 > Psinew then
| Increment g

else
| Decrement @41

end

end

end
Algorithm 2: Solving self-consistency in bilayer GFET

negative values indicates the Fermi level is in the valence band and a zero value indicates

a charge neutrality point [14].

5.1.2 Effective Gate Capacitance

Since the top-gate capacitance is comparable to the quantum capacitance, to accurately
model the capacitance between V;; and V the quantum capacitance has to be taken into

consideration. This gives an effective capacitance, Cyp, shown below.

Ce(CGC(Sos2) + (Co + Cq(9082) + Cb)cq(‘Psl))
CoCqlps2) + (Co + Cy(s2) + Cp)(Cy(ps1) + Ce)

Ctop =

5.1.3 Threshold Voltage

Eqns. (5.4) and (5.5) are the surface potential of both layers as a function of V. At
charge neutrality, ¢51 = 0 and the value of V,, which satisfies this condition is referred
to as the threshold voltage, V.

Co
V, = ‘/gos - @526 (57)
e
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5.2 Four-layer Capacitance Model

A major feature of the models presented here is that the quantum capacitance is com-
puted layer by layer as shown in Fig. 5.4. The model avoids representing the entire

channel by a single quantum capacitance irrespective the number of channel layers.

Cb CO Co Co Ce
| I I I v,
Vo ™| | | T 1
Co(Ps4) ¥ Cq((p53)7| Cq(§032)2 Ca(Ps1) Z
V4 7 7 7 v

FIGURE 5.4: schematic four-layer graphene transistor capacitance model

The quantum capacitance of each layer is calculated the same way that each layer is done
for the bilayer transistor in section 5.1. In each layer, C, is composed of two parallel
capacitances; a variable capacitance, Cyyqr, given by Eqn. (5.1) and a fixed capacitance,
Cymin, given by Eqn. (5.2). Equally here, the naming convention is maintained with

the layer closest to the top-gate assigned an index number 1.

5.2.1 Surface Potential

Between each layer is an interlayer capacitance, C,. By solving the capacitance model
shown in Fig. 5.4 the surface potential of each layer can be calculated. For multilayer
cases, it is mathematically challenging to deduce an analytical expression for the surface

potential. Hence, numerical analysis is used.

The equation of the surface potential for each of the layers is given by the following

equations.

1
Ps2 = E [_Ce(‘/gs - va% - (Psl) + (Pslco

Psl \/(quar(@sl)/2)2 + CgmmJ (5.8)

1
Ps3 = C. [9032 \/(quar(so82)/2)2 + Cgmm + 2905200] — Pl (5'9)

o
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1
Ps4 = Fo [9083 \/(CQUaT(SOS3>/2)2 + Cgmm + 2905300] — Ps2 (5'10)

To establish self consistency of the surface potential in the various layers, Eqn. (5.10)

has to be within a tolerance range to Eqn. (5.11).

1
Ps4 = 6 [_Cb(vbs - Vl?s - 9033) + 903300

Ps3 \/(quaT((pS3)/2)2 + C(?m'm (511)

In a similar fashion, the initially guessed value of ¢ has to be in tolerance range with
Eqn. (5.12):

1

Ps1 = 60 [9052 \/(CQvar(9032)/2)2 + Cq2mm + 2805200] — Ps3 (5'12)

where both g3 and @4 are re-calculated from ¢gy in Eqn. (5.11).

Data: The capacitances Cy, Cy, Co, Cymin, Cquvar, the inbuilt voltages, ng, Vgos, the
gate voltages, Vs, Vis

Result: The surface potentials g1, g2, @s3 and @y

Initialize @g; to a value

for i = start value to stop value do

vs2 = Eqn. (5.8)

vs3 = Eqn. (5.9)

wsa = Eqn. (5.10)

Osinew = Eqn. (5.12)

Compare = Compare Qsinew and @g1

if Compare is less than error tolerance range then
Retain the values of g1, w2, ps3 and @gy

End iterations
else

if Y51 > Ysinew then
| Increment g

else
| Decrement @4

end

end

end
Algorithm 3: Solving self-consistency in four layer GFET

Using Algorithm 3, Fig. 5.5 shows the surface potential of each of the four layers for
variation in the top-gate voltage. The surface potential of layer 1 determines the carrier
doping of the channel as done for the bilayer model. Its positive sign indicates electron-

like conduction and its negative sign indicated hole-like conduction.
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FIGURE 5.5: The surface potential for each of the four layers as a function of Vi, at
Vis = OV

5.2.2 Effective Gate Capacitance

To successfully map this model to the general model in order to compute its drain

current, the capacitance model has to be represented by an effective capacitance Cy,p.

o CCilew)
Co + Cq(‘pszl) + C’b
Cy = Co(C3 4+ Cy(ps3))
Co,+Cs+ Cq(gﬁs3)
C) = Co(C2 + Cylps2)
C’o + 02 + Cq((/)s2)
Ctop = Celr ¥ Cq((Psl) (5'13)

Co+Ci + Cq((psl)

5.2.3 Threshold Voltage

By following the convention of charge neutrality when ¢4 = 0, the threshold is calculated

by solving Eqn. (5.8).

Co
Vo= va% - 90526 (514)
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Thus, both the bilayer transistor (see Eqn. (5.7)) and the four layer transistor (see Eqn.
(5.14)) show a dependence of the threshold on @g. @so at charge neutrality can be
calculated using Algorithm 4.

Data: The capacitances Cy, Cy, Co, Cgmin,Cqvar, the inbuilt voltages, ng, Vgos, the
gate voltages, Vs, Vis

Result: The surface potentials g, g3 and gy

Initialize @42 to a value

for i = start value to stop value do

vs3 = Eqn. (5.9)

ws4a = Eqn. (5.10)

solve Ysonew from Eqn. (5.12)

Compare = Compare @sonew and @go

if Compare is less than error tolerance range then
Retain the values of g2, g3 and gy

End iterations
else

if Ps1 > Pslinew then
| Increment g

else
| Decrement g1

end

end

end
Algorithm 4: Surface potential at threshold voltage in four layer GFET

The threshold voltage of any dual-gate multilayer graphene channel irrespective of the
number of layers is a linear relationship against the ¢s2. The slope of which is determined
by the ratio of the interlayer capacitance and the top-gate capacitance. Equally, for a

single-layer channel a similar linear relationship of the threshold is deduced.

5.2.4 Bilayer Electric Field Gap

In the presence of an electric field perpendicular to the channel, the Ay and B site
(see section 2.0.2) inter-layer coupling breaks giving rise to a bandgap which is tunable.
The value of this tunable bandgap is calculated at the threshold voltage. In the case
of multi-layered channels, each layer will have a surface potential which will result in a
band energy. The potential energy at the threshold voltage determines this minimum

band energy referred to as the bandgap.

Considering the bilayer graphene shown in Fig. 5.6 with interlayer capacitance, C,, the

charge density on the first layer is Q51 and the charge density of the second layer is Qso.

Qsl = %quar(gpsl) (515)
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Graphene layers

FIGURE 5.6: Schematic of a bilayer graphene with metallic gate terminal showing the
electric field. The dash lines show the Gaussian surface which is induced by the electric
field between the layers

QSZ = %quar(stQ) (516)

At charge neutrality the charge density of layer 2 corresponds to the excess charge
density. The corresponds change in potential energy is represented by Eqn. (5.17).

9022
AU = 68 qua’r(@s2)) (517)

Note that g2 used in Eqn. (5.17) satisfies the condition of charge neutrality, ps1 = 0.
The change in the potential energy AU, determines the layer asymmetry [47]. The
charge distributed throughout the layer gives rise to the electric field between the layers
and the resulting change in potential energy determines the asymmetry between the
layers [47].

Introducing the bare asymmetry [47, 49] for a non zero density the total potential energy
is given by Eqn. (5.18).

2
U, = %qu(gosl)) 1 AU, (5.18)

While AUj is constant for a given back-gate voltage, the potential energy of layer 1 (the
first part of Eqn. (5.18)) varies by the top-gate voltage.
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The interaction of the electric field from graphene to the back-gate results in a poten-
tial energy 1/2C,VA. Where Vg is the potential difference as a result of a uniformly
distributed charge.

2U,
Cy

Vg = (5.19)
For a given temperature, Vg being a reflection of the bandgap opening should satisfy
the relationship R, o exp(Vg/Vr).

Ry = R)exp(Vi/Vr) (5.20)

Where RY is the resistance at intrinsic state, that is at charge neutrality condition with

zero bandgap opening and Vr is a constant voltage.

Based on the Drude model used in characterising graphene devices, RY can be obtained

from Eqn. (5.21):
L

RY =
Wanop

S

(5.21)

where L is the channel length, W is the channel width, ¢ is the electronic charge, n, is

the minimum charge density and g is the mobility.

The bandgap opening is determined for a zero charge density, when the channel expe-
riences charge neutrality, for a given back-gate voltage. Eqn. (5.20) gives a channel

resistance 2.

2
SOSQCQ'U@T(SOSQ)
R, =R’ Ts2 quarirss; 5.22

q S exp ( 3V720b ( )

5.2.5 Four-layer Electric Field Gap

Fig. 5.7 shows the general schematic of a multi-layer graphene with m channels. In the
case of more than two layers the potential energy is given by the summation of both
the bare asymmetry and the potential difference between adjacent layers. Given that
for a four-layer channel Uy, Us, Us and Uy are the respective potential energies. The
potential difference between layer 1 and 2 (Uya = Uy — Us) is as shown in Eqn. (5.17).
Hence, AUj is given by Uyg + Usg + Usy.

AU, = %quar(‘:@%)) (5.23)
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Graphene layers

FIGURE 5.7: Schematic of a multi-layer graphene with metallic gate terminal showing
the electric field. Where m is the number of graphene layers. The dash lines show the
Gaussian surface which is induced by the electric field between the layers

Note that Eqn. (5.23) is a constant for a given V5. The excess charge used to calculate

the change in potential energy must satisfy the condition of charge neutrality, @51 = 0.

Hence, it can be observed that the change in potential energy is given the excess charge
in the m*" layer. In the case here of a four-layer channel m = 4. Eqn. (5.23) is then used
in Eqns. (5.18), (5.19) and (5.20) to calculate the off-current resistance with respect to
variations in the electric field.

5.2.6 Temperature Dependence

Analytical equation that model the dependence of the channel conductance against
temperature has been presented in section 4.2.2. These equations equally apply to a

multi-layer graphene transistor.

The factor Ry is thereby multiplied to Eqn. (5.20) to capture the resistance’s dependence

on temperature.

_ 1/3
Ry = exp ((T(iT’;efTv ) (5.24)

By decreasing the electric field, the fitting parameter T, equally decreases. T, relates

with surface potential at the threshold voltage by a phenomenological equation.

T, = T, exp ("gﬂ (5.25)
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where 7, T, and ¢, are characteristic, temperature and voltage fitting constants respec-

tively. @go is the surface potential at the CNP when ¢g; = 0.

Therefore, the off-current is shown below.

Ios; = Vis/ Ry (5.26)

The drain current is a root of the sum of squares of both the off-current, I,¢; and the
drift current, I4.. (see Chapter. (3), Eqn. (3.17)).

Ios = \/12p; + I3, (5.27)

For a semiconductor with appreciable bandgap and sharply defined energy bands, the off-
current has a exponential relationship against 7-'. The bandgap opening is estimated
relative to the general Schottky barrier equation, exp(AE/2kgT), where AFE is the

bandgap and kg is the Boltzmann’s constant.

T (T — T, )\® Vg
AE = 2kpT | [ ~22——rel) _E 2
B << T, > 7 (5.28)

5.3 Experimental Validation

The presented model is validated against published experimental data for both a bilayer
and a four-layer graphene FET. Five test cases are used in the validation process. An
interlayer separation, t;;, of 0.335nm between the top and bottom layer in the graphene
channel is assumed. This is consistent with experiment and theory [49, 50, 51] for Bernal
stacking structure of two layer graphene. Thus, C,, has a capacitance of 2.64uFcm ™2

using a dielectric constant of 1.

5.3.1 Test Case A

Test cases A transistor use H fOs as the top-gate dielectric with SiOy for back-gate

dielectric. The model parameters are shown in Table 5.1

For test case A, Fig. 5.8 shows a plot of the threshold voltage against Vjs. A good fit
against experimental data is attained with C, ~ 319nFem ™2, thus the top-gate dielectric

constant, €7, is estimated to be 5.4.

Fig. 5.9 shows a plot of the off-current of the transistor for three sets of Vj, values.

In this test case, the model shows a good agreement with the transistor measurements
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TABLE 5.1: Model parameters for bilayer graphene FET in test case A

Model parameter Parameter value

Ref [33]
L(um) 1

W (um) 2.1
toz(nm) 15
ti(nm) 0.335
€9 3.9
Va(V) 1.45
Vi) 27
Vr(V) 2.0
Hgyp(nm) 285
RY(kQ) 12.88

FIGURE 5.8: The threshold voltage, V,, against V4 for the Experimental data (4) [33],
the proposed model (solid line)

at Vs = 2.7 using the following fitting parameters; V3 = 2.0V, C, ~ 319nFem ™2,
T = 300K, ng = 1.0 x 101m~2 and an intrinsic resistance, R? = 12.88kQ2. For the
other two measured points, Vs = 40V and Vs = —40V, shown in Fig. 5.9 there is
a deviation between the model and the measured data. The measured data shows an
equal resistance for all three points, a behaviour consistent with a single-layer graphene

FETs where there is no bandgap opening due to electric field.

Hence, the bilayer model estimates a lower conductance than is measured by the exper-
iment. This can be attributed to a tear in one of the layers resulting in the minimum

conductance that is well captured by a single-layer model.

The output conductance, gy, is defined as the variation in the drain current for a small

variation in the drain-source voltage while keeping the gate-source voltage constant.
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FIGURE 5.9: A plot of the device off-current against Vjs for Vgs = 1mV shows the
proposed model against experimental data for case A (experimental data (OJ) [33]) at

room temperature
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F1cURE 5.10: Transfer Characteristics of the channel output conductance at room
temperature against the top-gate voltage for Vs = 40V for published experimental

data(+) [33] and the proposed model(-)

In Fig. 5.10 gqs is plotted against Vy, from -3V to 3V with Vj, = 40V and V4, = 0.01V.
For the best fit against the experimental data, R. = 1000Q and p = 3000cm?/V's for

hole conduction and R, = 700§ and p = 2700em?/Vs for electron conduction.

In Fig. 5.11 g4, is plotted against a sweep of Vs from -3V to 3V with V,, = -40V
and Vg = 0.01V. For the best fit against the experimental data, R. = 515 and
p = 4400cm? / Vs for hole conduction, and R, = 3009 and u = 2700cm?/V s for electron

conduction.
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1 O

FicURE 5.11: Transfer characteristics of the channel output conductance at room
temperature against the top-gate voltage for Vs = —40V for published experimental
data(+) [33] and the proposed model(-)

When this experiment is validated using a single-layer model, C, was estimated to have
a dielectric constant of 10 compared to a dielectric constant of 5.4 in this test case. This
shows that the measuring of the device parameters is strongly dependent on the model

used in characterizing the transistor.

5.3.2 Test Case B

In Test case B the top-gate dielectric is a stack of H fOs on a derivative of polyhydrox-
ystyrene (the polymer NFC 14003CP manufactured by JSR Micro, Inc) with SiOy as
back-gate dielectric. Table 5.2 shows the model parameters that fit the experimental

data in all cases.

TABLE 5.2: Model parameters for bilayer graphene FET
Model Name Model value

Ref [77]
L(pm) 3

W (um) 1.6
toz(nm) 10
tiy(nm) 0.335
€9 3.9
Vo(V) -0.066
Wi 0
Vi (V) 1.75
Hgyp(nm) 300
RO(kQ) 8.08
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FIGURE 5.12: Threshold voltage, V,, against Vj for published experimental data (+)
[77], the proposed model (solid line) and the best fit of a straight line (dash lines)

To accurately determine the top-gate capacitance, the model is validated against the
extracted threshold voltage for a range of V5. Fig. 5.12 gives a good fit against the
experiment results with C, ~ 133nFem ™2 which estimates the top-gate dielectric €; to
be 1.5.

By using a line of best fit in the plot of V, against Vj, it is observed that a straight line
greatly diverges from the experiment for large values of V;s. This shows that although
a single-layer model presents a simple technique of characterizing the transistor, it may

not be sufficient in some cases.

Since the threshold voltage is the point of charge neutrality for a given V, it is also
the top-gate voltage at which the off-current for a given V44 flows. Fig. 5.13 shows the
drain current of V, against Vjs with Vzs = 1mV at room temperature. The model shows

a good agreement against experiment [77] for Vp = 1.75V.

The model shows a good agreement against the experiment data [77] in this test case
using the following parameters: Vp = 1.75V, C. ~ 133nFem™2, T = 300K, nyg =
1.2 x 1016m~2 and RY = 8.08k€). The current characteristics depicts that the device is
in intrinsic state when Vs = 50V. At this value of Vj, the device has a zero bandgap.
From the surface potential characteristics shown in Fig. 5.3, both ¢4 and @, equal to

zero at the threshold voltage.

Fig. 5.14 shows the transfer characteristics of the drain current plotted against variations
in Vs for a set of Vs values from 80V to -120V in steps of 40V. Also, Fig. 5.15 shows
the transfer characteristics of the drain current plotted against variations in Vi for a set

of Vps values from 60V to -100V in steps of 40V. All experimental measurements of the
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F1GURE 5.13: Validation of the transistor off-current against various back-gate volt-

ages for published experimental data (4) [77] and the proposed model (-) at room

temperature. Analysis is carried out at a constant drain voltage, Vi = 1mV. Inset: A
logarithm plot of the off-current against V4

gs

FIGURE 5.14: Transfer characteristics of the transistor drain current against variations

in Vg5 at room temperature. Validation between published experimental data (+) [77]

and the proposed model (-). Vs is varied from 80V to -120V in steps of 40V at a
constant drain voltage, Vys = 1mV
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FIGURE 5.15: Transfer characteristics of the transistor drain current against variations
in Vg5 at room temperature. Validation between published experimental data (+) [77]

and the proposed model (-).

Vs is varied from 60V to -100V in steps of 40V at a
constant drain voltage, Vys = 1mV

original work [77] were taken at room temperature. Hence, Ry = 1 from Eqn. (5.24)

because T;..; of 300K is assumed for all the analysis carried out in this work.

The model shows a good agreement against experiment. The model accurately captures

the minimum conductance. Different carriers mobilities for holes and electrons are used

to fit the model to experimental data.

parameters.

Tables 5.3 and 5.4 shows the fitting model

TABLE 5.3: Experimental data fitting parameters for Fig. 5.14

hole electron
VislV]  Rs[Q] pn[em®/Vis] Ryl pelem®/V.s]
-120 330 5000
-80 330 4500 300 500
-40 330 4000 300 700
0 330 3200 300 1100
40 330 2500 300 2500
80 330 1100 300 2700
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TABLE 5.4: Experimental data fitting parameters for Fig. 5.15

hole electron
VeolV] RO jilem?/Vis] R[] prelem®/Vas)
-100 330 4800 300 400
-60 330 4300 300 500
-20 330 3700 300 800
20 330 3000 300 1800
60 330 1500 300 2500

Unlike for a dual-gate single-layer graphene transistor where for various Vs values an
averagely equal mobility is expected for both the holes and electrons, here the difference
in the electron and hole mobilities is attributed to the symmetry of the conduction
and valence bands away from the Dirac point. From both Table 5.3 and Table 5.4
a see-saw behaviour is observed for the carrier mobilities. For a Vs of about -80V,
the conductance shows a hole mobility far greater than the electron mobility. Also,
for a V3, of about 80V the conductance shows a greater electron mobility than a hole
mobility. And both electron and hole mobilities more closely equate each other as Vi
tends to 50V. With respect to an equal mobility expected in the single-layer, the bilayer
transistor at Vps = 50V is in an intrinsic state. In other words, it behaves as though it

was a single-layer transistor.

Therefore, it can be assumed that there is a suppression of either the holes or the
electrons as the transistor moves away from its intrinsic state. This is presented in Fig.
5.16 showing the suppression of the respective bands. When the transistor is in intrinsic
state, the Fermi energy and the intrinsic energy both coincide. Here, both bands are

symmetrical as such equal hole and electron mobilities are observed.

Away from the intrinsic state towards Vs = —120V, the negative back-gate voltage
dopes the transistor with positive charges. As the top-gate modulate the channel carriers
from being hole-like to being electron-like, the back-gate induced positive charges favour

hole conduction and restrict electron conduction (a p-n-p junction is formed).

The reverse holds away from the intrinsic towards Vs = 80V. The action of the back-
gate induces negative charges in the transistor making it N-type. Therefore, modulation
of the channel by the top-gate results in an n-p-n junction for hole-like carriers and an

n-n-n junction for electron-like carriers.

To avoid any confusion, in this work two conventions are used. The first assumes that
the action of the top-gate induces and modulates carriers that behave as either holes or
electrons. The other, assumes that the back-gate determines if the transistor P-type,

N-type or intrinsic.
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FIGURE 5.16: Representation of the energy levels and the conduction and valence
bands symmetry for the characteristics of the off-current against variations in Vis. E;
and Ey are the intrinsic and Fermi energy levels.

5.3.3 Test Case C

In this test case the model is validated against result of a transistor with 15nm thick
Si0- top-gate dielectric. Table 5.5 shows the model parameters that fit the experimental
data.

TABLE 5.5: Model parameters for bilayer graphene FET

Model parameter

Parameter value

Ref [89]
L(pum) 8

W (um) 1
toz(nm) 15
ti(nm) 0.335
€2 3.9
Vo (V) -0.195
Vin(V) 0
Vr(V) 1.1
Hgyp(nm) 285
RY(kQ) 1.23

As done earlier, by fitting the model to the threshold voltages for a variation of Vg, the

top-gate capacitance is obtained. Due to the uncontrolled doping in the fabrication pro-

cess, there is the possibility of unintentional doping which alters the dielectric constant

from the theoretically expected value. For example, C, of approximately 130nFcm 2

provides a good agreement for the threshold points. This estimates a dielectric constant

of approximately 2.2 compared to the theoretically expected value of 3.9 for SiO.
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FI1GURE 5.17: The threshold voltage, V,, against Vs for published experimental data
(+) [89] and the proposed model (solid line)

In this case, it can seen that a line of best fit will shows a good agreement against

extracted threshold voltage points.

In this test case the transistor is measured at various operating temperatures. Fig.
5.18 shows a temperature analysis of the device channel resistance for various electric
fields. The proposed model shows a good agreement against experimental data using a
reference temperature, T,y = 300K, Vy = 1.05 and R = 1.23k). Eqn. (5.24) is used

in modeling the channel’s dependence on temperature.

By decreasing the electric field the fitting parameter T, equally decreases. For the
following electric fields, 0.158Vnm ™2, 0.141Vnm =2, 0.123Vnm ™2 and 0.088Vnm =2, the
following values of T,, 1.0K, 0.275K, 0.066K and 0.003K gave a good fit. The electric
field is calculated using (Vps — Vo) /(tox + Hsup) Where t,, and Hygyp are the thickness
of the top-gate and back-gate dielectric. Fitting parameters used in Eqn. (5.25) are,
To=6x10""K, ¢, = 0.0086V and = 1.

As the device tends towards its intrinsic state, T, tends towards zero. Equally, the chan-

nel resistance dependence on temperature increases against an increase in the electric

field.

Fig. 5.19 shows a validation of the model against experimental results of the channel
conductance at threshold voltage against V;s. The validation is done for three operating
temperatures, 53K, 4.2K and 0.055K respectively. The model shows a good agreement
against measured data for all operating temperatures. Fitting parameters used for the
electric field relation to temperature in Eqn. (5.25) are, T, = 6 x 107"K and ¢, =
0.0086V.
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FIGURE 5.18: A logarithm of the peak channel resistance against inverse cube root of

the temperature for a range of perpendicular electric fields ((Vys—V,)/(tor+ Hsup) Where

tor and Hg,p are the thickness of the top-gate and back-gate dielectric). Published
experimental data [89] is shown in crosses and the model is shown in a solid line
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FIGURE 5.19: A plot of the device charge neutrality conductance against Vs for test
case C. cross-section Bj to Bz (top to bottom) shows the proposed model against
experimental data [89] at a temperature of 53K (o), 4.2K (V) and 0.055K ()
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FIGURE 5.20: A logarithm of the maximum channel resistance against inverse cube
root of the temperature for various back-gate voltages. Back gate voltages are -50V,
-40V, -35V and -25V respectively

For positive values of ¢go at the threshold voltage, n = 1 gives a good fit, while for
negative values of o at the threshold voltage, n = 0.8 gives a good fit. It is assumed
that a negative value of (4 at the threshold voltage indicates a P-type transistor and a

positive value of g0 at the threshold voltage indicates an N-type transistor.

For the P-type with n = 1 Fig. 5.20 shows the maximum channel resistance against
temperature. At Vs = —50V, the transistor is P-type and has an electric field of
—0.175Vnm ™2 which is higher than both 0.141Vnm~2 and 158nm =2 of an N-type tran-
sistor yet has a lower current ratio (Log(Rr—o.005x)) — Log(R(r—250K))) than either of
them. This is due to the difference in n between a P-type and N-type transistor.

In mapping the modeling equation against that of the Schottky barrier general equation,
an estimate of the bandgap created is deduced. Fig. 5.21 shows an increasing bandgap by
increasing temperature, as well as a bandgap of less than 50meV at room temperature,

which confirms the dependence of the resistance on the exp(T~/3) factor.

The rising bandgap against increase in temperature explains why the transistor shows a
small current ratio between operating at room temperature and low temperatures. Be-
tween 300K and 53K only a very slight increase in the maximum resistance is observed,
especially under low electric field. It is expected that towards 0K the device bandgap

approaches zero.

It should be understood that graphene is a semi-metal filled with mobile carriers, un-
like silicon where carriers are bound in the lattice and are made available by breaking
the lattice either through thermal excitations or doping. Thus, by viewing the chan-

nel resistance in graphene relative to exponential relationship of the activation energy
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FI1GURE 5.21: Estimated energy bandgap created by varying the operating temperature

from 0K to 250K at various vertical electric fields. The electric fields are 0.158Vnm =2,

0.141Vnm™2, 0.123Vnm =2 and 0.088Vnm 2 respectively from top to bottom of cross
section Sy to Ss.
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FIGURE 5.22: Transfer characteristic of R, against Vg, at room temperature for Vi,
from 40V to -40V in steps of 20V
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Channel Resistance [KQ]

FIGURE 5.23: Transfer characteristics of the transistor output resistance at a tempera-

ture of 4.2K against V. Validation between published experimental data (+) [89] and

the proposed model (-) for Vi, of 50V, 40V, 25V, 0V, -25V and -50V respectively and
a constant Vg, = 1mV

given by the Arrhenius equation, the activation energy is shown to be tunable against

temperature. This is rightly so, because the carriers can be excited at low temperatures.

The off-current resistance in graphene limits the channel conductance at charge neutral-
ity. In Fig. 5.22, R, reflects the resistance due to thermal excitations and electric field
induced bandgap. R, shows a dependence on the electric field, with the field yielding
a higher resistance and equally a higher ON/OFF current ratio. However, the absence
of a bandgap in the intrinsic state of graphene, in a bias of Vs = 0, results in a very
low minimum resistance of about 1.23k€2. To achieve a high minimum resistance a very
large electric field is required. The gate oxide layer may suffer degradation or breakdown
before such a resistance is attained. For example, between 0V and 40V only a difference
of 1.5k() is attained.

As R, limits the off-current, the electrostatically doped carrier resistance limits the ON
current. Fig. 5.23 shows the output resistance of the channel for a set of Vj; values

between -50V to 50V. Table 5.6 presents the experimental fitting parameters.
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TABLE 5.6: Experimental data fitting parameters for Fig. 5.23

hole electron
VialV] RolQ] jlem®/Vis] R prelem®/Vis] n
-50 100 80000 100 60000 .8
-25 100 80000 100 60000 .8
0 100 80000 100 70000 .8
25 100 60000 200 70000 1
40 100 40000 200 70000 1
50 200 70000 1

5.3.4 Test Case D

The original transistor is measured at an operating temperature of 20K. H fO» is used as
the top-gate dielectric. Table 5.7 shows the model parameters that fit the experimental
data.

TABLE 5.7: Model parameters for bilayer graphene FET

Model parameter

Parameter value

Ref [77]
L(pm) 1.5
W (pm) 1.2
toz(nm) 29
ti(nm) 0.335
€1 6.0
€9 3.9
Va(V) 0.3
Vin(V) 10
To(pK) .6
Vr (V) 0.57
Hgyp(nm) 285
RY(kQ) 9.5
no(x1016m=2) 1

In the fabrication process of the transistor, an atomic layer deposition of H fOs is pre-
ceded by spin coating of organic seed. Thus, by fitting the threshold voltage point to
the model, the actual capacitance of the transistor can be determined. A good agree-
ment against extracted threshold voltage points in Fig. 5.24 is achieved with a dielectric

constant of 6.

By inspection, this is another case where the threshold voltage deviates from a best fit
line for back-gate voltages away from the intrinsic voltage. At a constant temperature
of 20K Fig. 5.25 shows the transfer characteristics of the drain current against V3¢ for
Vys at the respective threshold voltages. In the plot Vj, is varied from 0V to 120V.
The off-current decreases away from the intrinsic state due to the opening of a tunable

bandgap. The transistor fits experiment with T, = .6uK, ¢, = 0.017V and n = 1.
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FIGURE 5.24: The threshold voltage, V,, against Vs for published experimental data
(+) [77] and the proposed model (solid line)
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FIGURE 5.25: Transfer characteristics of the minimum drain current at the charge neu-

trality point against the respective V34 at an operating temperature of 20K. Published

experimental data [77] is shown in crosses and the model is shown in solid line. Inset:
A logarithmic plot of the minimum drain current with Vg
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FIGURE 5.26: Transfer characteristics of the transistor drain current against variations

in Vs at 20K. Validation between published experimental data (+) [77] and the pro-

posed model (-). Vp, is varied by 120V, 80V, 40V and OV respectively at a constant
drain voltage, Vjs = 1mV

By comparing 1 here and the transistor in test case C (see section 5.3.3), for the n/pq
expression, 1/0.0086 and 0.8/0.0086 are required for the P-type and N-type transistor
in test case C while in this test case, 1/0.017 fits both the both the P-type state and

N-type transistor. It is currently unclear what determines the 1/y, expression.

TABLE 5.8: Experimental data fitting parameters for Fig. 5.26

hole electron
VealV] RolO] jnlem?/Vis] R pelem®/Vis] 0
0 200 3000 200 2000 1
40 200 1500 200 2000 1
80 200 600 200 2300 1
120 200 2600 1

TABLE 5.9: Experimental data fitting parameters for Fig. 5.27

hole electron
VislV] Rs[Q] pnlem®/Vis] Rs[Q]  pelem?/Vis] n
20 200 2500 200 2000 1
60 200 600 200 2000 1
100 200 300 200 2600 1

In modulating V, for a given Vi, the is channel electrostatically dopes the channel on
the opened gap. By the action of Vi, for ¢4 away from zero, the change in potential
energy in Eqn. (5.18) increases. Using carrier fitting parameters in Table 5.8 and Table
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FIGURE 5.27: Transfer characteristics of the transistor drain current against variations

in Vs at 20K. Validation between published experimental data (+) [77] and the pro-

posed model (-). Vj, is varied by 100V, 60V and 20V respectively at a constant drain
voltage, Vys = 1mV

5.9, Figs. 5.26 and 5.27 show the drain current transfer characteristics for variations in

Vis:

As it is observed in all the earlier test cases, here the mobilities of both carriers show
the pattern of having a see-saw behaviour between the hole and electron carriers. The
hole mobility increasing from V35 = 120V towards Vs = 10V while the electron mobility
decreases. This confirms the assumption of carrier suppression of hole-like conduction

in an N-type transistor and electron-like conduction in a P-type transistor.

5.3.5 Test Case E

The multi-layer graphene is composed of stacks of graphene sheets held together by Van
der Waal forces. C,, is the interlayer capacitance. It is assumed that all layers are
equally spaced with an interlayer spacing, ¢;;, of 0.355nm. The capacitance model for a

four-layer graphene channel is shown in Fig. 5.4.
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TABLE 5.10: Model parameters for four-layer graphene FET for Fig. 5.30

Model parameter Parameter value

Ref [127]
L(pum) 10
W (um) 5
toz(nm) 40
ti(nm) 0.355
k1 17.0
ko 3.9
Vo(V) 0.75
Vs (V) 0
Hgyp(nm) 500
RO(kQ) 3.7

In a similar way the bilayer transistors were analysed in the earlier sections, the threshold
model is derived from the equivalent circuit. In this work the dielectric constants are
confirmed through the threshold modelling. Because in the original work [127], the
various threshold voltage points were not available, and the theoretical estimation of
the H fOs [160] has not been currently measured in a graphene transistor, a dielectric
constant of 17 is assumed [161]. This dielectric constant is in the range of a published
dielectric of H fO5 on graphene [33]. Using the model parameters in Table. 5.10, the
threshold voltage point is shown in Fig. 5.28.

From Table 5.10 the back-gate Dirac point voltage is assumed to be OV. For a DC sweep
of the top-gate voltage Fig. 5.5 shows the surface potential of each of the four-layers.
At the Dirac point the electric field is taken to be zero and there is no bandgap opening.

This is why the characteristics of the surface potential of each layer meet at 0V.

0.95 T T U U U T T U U

0.9
0.85
0.8

2,
< 0.75

>
07
0.65

0.6

I I r r r I I r r
053,40 30 =20 10 0 10 20 30 40 50
Vs V1

gs

F1GURE 5.28: The threshold voltage, V,, against Vj
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FIGURE 5.29: Transfer characteristics of the minimum drain current at the charge
neutrality point against the respective V;4 at an room temperature.

By plotting the drain current against Vj, for Vs at the various threshold voltages, it is
can be observed that the current peaks at the Dirac point. Fig. 5.29 shows the plot of

the drain current against Vs at room temperature for Vy, = ImV.

Fig. 5.30 shows the variation of the drain current against changes in the drain voltage.
The model is validated against experimental data [127] for V,s = 0V and Vi, of -1.25V,
-0.75V, -0.25V , 0.25V and 0.75V respectively. The model parameters are shown in
Table 5.10. A good fit against the experimental results is achieved using the following
fitting parameters, ng = 0.5 x 10'm=2, V3 = 3.0V, C. ~ 376nFem~2, R, = 39012,
E. = 15kV/em, hole carrier mobility p = 13,000em?/V.s and alternate carrier mobility
i = 2900cm? /V.s.

Comparing the gate bias of Vg = 0.25V and V,, = —0.75V, V, = 0.75V the transistor
shows only one region which is the ambipolar saturation region. This is because the
transistor is biased at its CNP resulting in a both unipolar saturation boundary voltages
being OV.

Fig. 5.31 shows the variation of the drain current against changes in the top-gate for
Vis = 0.1V. The model gives the best fit against experimental data [127] using the
following fitting parameters; R, = 290Q and p = 7000cm?/V.s for hole conduction and
R. = 2009 and p = 3200cm?/V.s for electron conduction.
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FIGURE 5.30: Experimental data (+) [127] and the proposed model (-) for negative I,

vs negative Vg, characteristics at Vys= 0V. Vg, is varied from 0 to -1.4V for top-gate

voltages of -1.25V, -0.75V, -0.25V | 0.25V and 0.75V (from top to bottom between
cross-section A; and As)
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F1GURE 5.31: Characteristics of the channel Drain current against the top-gate voltage
for Vs = 0.1V (Experimental data(+) [127], proposed model(-))



118 Chapter 5 Dual-gate multi-layer graphene FET model

5.4 Summary

In this chapter a circuit-level model that describes a dual-gate multi-layered graphene
transistor is presented. The model has been validated against published experimental
data [77, 33, 127, 89] for both a bilayer and a four-layered graphene transistor and
shows a good agreement. The validation against experimental data was done for the
channel output conductance, the drain current characteristics for changes in the drain
voltage, the device off-current for a range of back-gate voltages and the dependence of

the channel conductance on temperature.

In the presented model, surface potentials of all the layers are calculated for both the
bilayer and four-layer transistor. Each layer is represented by a quantum capacitance

that is a function of its surface potential.

Equally, the model uses the presented equivalent circuit in calculating the threshold
voltage. The model shows a good agreement for extracted experimental data of the
threshold voltage for a range of Vs. It is observed that although linear function of
Vis against the threshold voltages provides a quick method of evaluating the threshold
voltage, it may be insufficient in some cases. The method presented here proves to be ac-
curate for all the cases validated. Using the threshold model, the top-gate capacitance is
also calculated as it is the only parameter used to fit the model against experiment. The
use of organic seeds prior to deposition of oxide layer in current fabrication techniques
can lead to a top-gate capacitance being smaller than the expected theoretical value.

Therefore, this technique proves a suitable way of validating the top-gate capacitance.

Also, the presented model implements the transistor as having a channel resistance
which is determined by the both the electrostatically induced carries and an off-current
resistance. The off-current resistance limits the channel resistance and determines the
device off-current. The model estimated off-current shows a very good agreement against

experimental data [77, 89].

At a constant temperature, the channel resistance shows a exponential relationship
against the surface potential by varying the perpendicular electric field. This has been

demonstrated to consistent for both the bilayer and the four layer channel.

For a constant electric field and a varying the operating temperature, the surface poten-

tial equally determines how sensitive the channel resistance is to changes in temperature.

Using the Schottky barrier general equation, the presented model estimates the amount
of bandgap opening for a given back-gate voltage. The results agree with known theory
of a bandgap opening by the presence of a perpendicular electric field. Also the model
reveals an increase in the bandgap by increasing the operating temperature, resulting in

a zero bandgap OK.



Chapter 6

CAD Tool Design and Transistor

Optimization

Computer based circuit simulations are widely used by designers and students as a
valuable tool to validate a design and learn the behaviour of a component or system
without fabricating a physical circuit. As such with simulation, parameters of circuit
elements can be quickly changed which is often difficult or challenging to do in a physical

circuit.

Historically, circuit simulators have been tailored to support either analog or digital
simulation algorithms. An analog simulator models circuit response by iteratively cal-
culating Kirchhoff’s law over steps of an independent parameter which may be time in
the case of a transient analysis. Here, the behaviour of a circuit design is calculated by
the convergence of the numerical approximations to a stable value. On the other hand,
in a digital simulator, solutions to Kirchhoff’s law is not required as the simulator must

predict if a logic state is high or low.

In developing graphene FET libraries for use in CAD tools, this work focuses on an
analog simulator type model because fabricated graphene transistors are not currently
well suited for digital applications and the analog simulator can be extended to a digital
simulator by applying voltage levels to a logic high and a logic low. The only downside

to using an analog simulator as a substitute to digital one is the longer simulation time.

6.1 CAD Tool Development

Computer aided design tools play a major role in the creation, analysis and optimization
of designs. This has become a necessary tool to explore how an intended design will
behave when fabricated. There are currently a number of CAD tools targeted toward

electronic development automations. The commercial tools used in this project include

119
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HSPICE by Synopsis [141] and VHDL-AMS by Mentor [142]. Berkeley SPICE [145] is
the only open source simulator used in this project. The choice of these CAD tools is
only a matter of personal preference. This project has a resource website [43] where all
CAD tools developed are posted. In this project, library files for three simulators have

been developed.

Both the HSPICE and the VHDL-AMS are commercial tools in which only a behavioural
model can be implemented. The behaviour model implementation is itself restrictive.
As such, iterations required to calculate the surface potential are very challenging or
impossible, because these tools do not support loop statements. Therefore, the be-
havioural models presented are limited to the use of fixed quantum capacitances and

implementation of a general model which is better suited to a single-layer graphene FET.

6.2 HSPICE Project Library Development

HSPICE simulator has two main limitations. One is that it does not allow the logical
“if” command in sub-circuit descriptions which makes developing a behavioural model
difficult to troubleshoot and difficult to read. The other is that it does not support “for”

loops which makes numerical analysis challenging or even impossible.

6.2.1 Structure of the graphene FET library

Two files have been developed in the behavioural model which are param.lib and gfet.lib.
Listing. B.1 and Listing. B.2 shows the code of the files created for both the param.lib
and gfet.lib. The param.lib contains the fixed device parameters definition. The gfet.lib
contain the mathematical expression that govern the device physics of the graphene

transistor. Their interaction with a testbench file can be seen in Fig. 6.1.

i i Executable simulator Simulatel
Other HSPICE Libraries results

A

[ Testbench.sp j
A

FIGURE 6.1: Interaction between the behavioural model and the simulator

In making the behavioural model, gfet.lib library has the transistor instances declared as
a sub-circuit. A sub-circuit is a SPICE circuit element that has a user specified number

of nodes which can be connected in the main circuit.
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In the testbench file, the gfet.lib file has to be included. This allows the testbench to call
the transistors instance. Using the device instance declaration beginning with the letter
“X”, the HSPICE simulator knows that a sub-circuit is being referred to [141]. The
working bilayer transistor model with a testbench can be downloaded from the project

transistor resource [43].

6.2.2 Simulating with the HSPICE graphene library

TABLE 6.1: HSPICE Model parameters for bilayer graphene FET

HSPICE symbol Parameter Name Parameter Value [33]
Hsub Back-gate dielectric thickness 285 x 1079
tox Top-gate dielectric thickness 15 x 107
L Channel length 1 %1076
W Channel width 2.1 x 1076
Cgio Top-gate capacitance factor 0.8072
Ec Critical electric field
Rs Series resistance
mu Carrier mobility
ntop Charge density 2.1209 x 1016
Vgs0 Gate voltage at Dirac point 1.45
Vbs0 Back-gate voltage at Dirac point 2.7
k_sub Back-gate dielectric constant 3.9
k Top-gate dielectric constant 16
00+
-0.2m 4
< -04m - Vgs=0
é -0.6m 4
a Vgs=-1.5
§ “08m1 Vgs=-1.9
@
- -1.0m -
‘o Vgs=-3
S i2m/
-14m A
| | T 1 | | |
-3.0 -25 -2.0 -1.5 -1.0 -05 0.0
Drain Source Voltage (V)

FIGURE 6.2: An HSPICE plot of the drain current I as a function of the drain voltage
Vs for a back-gate voltge Vs = —40V for the top-gate voltages 0V, -1.5V, -1.9V and
-3V respectively
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FIGURE 6.3: An HSPICE plot of the drain current I as a function of the drain voltage
Vgus for a back-gate voltge Vs = +40V for the top-gate voltages -0.8V, -1.3V, -1.8V,
-2.3V and -2.8V respectively

Table 6.1 shows the HSPICE symbols and the description of the symbols. The I-V
characteristics of the behavioural model is plotted for two test cases using parameters
of a fabricated transistor [33], where V;s = —40V and Vjs = 40V

For the case V3 = —40V, HSPICE model parameters of mu = 700, Rs = 800 and
and Ec = 4.5 x 10°) are taken. Fig. 6.2 shows the HSPICE modelling of the I-V
characteristics for a sweep of Vy, is from 0V to -3V at the following V,: 0, -1.5, -1.9 and
-3V.

Also, for test case Vi3 = +40V, HSPICE model parameters of mu = 1200, Rs = 1500
and and Ec = 15 x 10°) are taken. Fig. 6.3 shows the result of the HSPICE model. The
I-V characteristics are plotted for a drain voltage from 0 to -3V and a top-gate voltage
of -0.8V, -1.3V, -1.8V, -2.3V and -2.8V respectively. The testbench listing is shown in
Listing. 6.1.

.TITLE ’IV Characteristics for GFET Transistor’

.options POST

.options AUTOSTOP

.options INGOLD=2 DCON=1
*.options GSHUNT=1e-20 RMIN=1e-20
.options ABSTOL=1e-5 ABSVDC=1e-4
.options RELTOL=1e-2 RELVDC=1le-2
.options NUMDGT=4 PIVOT=13
.param TEMP=27

.1lib ’gfet.lib’ gfet



Chapter 6 CAD Tool Design and Transistor Optimization 123

*Beginning of circuit and device definitions
*Supplies and voltage params:

.param Supply=-3

.param Vg=-3

.param Vd=’Supply’

.param Vb=40

*0veride GFET parameters

.param W_bg =285e-9 $Width from back-gate to Channel
.param W_tg =15e-9 $Width from top-gate to Channel
.param L_g =1e-6 $Length of top-gate

.param CH_Wdt =2.1e-6 $Channel layer width

.param impurity_coef = 0.8072

* Define power supply

vdd Drain Gnd vd
Vss Source Gnd 0

Vgg Gate Gnd Vg
Vsub Sub Gnd Vb

* Main Circuits

* pFET

XFET1 Drain Gate Source Sub pGFET Hsub=W_bg tox=W_tg L=L_g
W=CH_Wdt Cgio=impurity_coef Ec=15e5 Rs=1500 mu=1200e-4

* Measurements

* test gFETs, Ids vs. Vgs

.DC vdd START=’0’ STOP=’-3’ STEP=’-.01"
Vgg POI 5 -0.8 -1.3 -1.8 -2.3 -2.8

.print I(Vdd)

.end

LisTING 6.1: Testbench of the HSPICE graphene library in file gfetmodel.sp

6.3 VHDL-AMS Project Library Development

Like HSPICE, VHDL-AMS is commercial software. Unlike HSPICE, VHDL-AMS allows
the use of the logical-if statment. This project is carried out using the SystemVision
simulator [143]. The VHDL-AMS simulator builds on the VHDL one by providing a

mechanism for analogue and mixed signal behaviour specification.

6.3.1 Structure of the VHDL-AMS Project Library

For DC analysis of the behavioural model, four files have been created. Fig. 6.4 shows
how the library files communicated in the whole design. Two of the files, gfetmodel.vhd
(see Listing. B.5) and gTransistor.vhd (see Listing. B.6), contain expressions that govern
the behaviour of the bilayer transistor. A function in gfetmodel.vhd calculates the drain
current characteristics of the transistor. The gTransistor.vhd library file is a top-level

model that connects the gfetmodel.vhd to external voltage or current sources.
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- - Simulation
xecutable simulator results
Y

[ testbench.vhd ]
I A

gfetmodel.vhd gTransistor.vhd v_source.vhd F—> v_pulse.vhd

FIGURE 6.4: Layout of the interactions of the VHDL-AMS files used in the behavioural
model

Other VHDL-AMS
libraries

Mentor Systemvision simulator has a fundamental limitation that it cannot carry out a
DC sweep of a voltage source connect to a node. Therefore, as a work-around this limita-
tion, two library files have been created, v_pulse.vhd (see Listing. B.3) and v_source.vhd
(see Listing. B.4) respectively. Both library files implement a time dependent voltage

ramp which is used to run dc analysis of the transistor’s behavioural model.

The complete model of the implementation of the behavioural model in VHDL-AMS is
available in the project transistor resource [43]. The resource contains all the library

files as well as the top-level testbench script.

6.3.2 Simulating with the VHDL-AMS graphene library

Tl

0.0m Vgs =00V
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0.1m— Vgs=-19V
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.0.2m—
| Vbs = - 40V
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o i
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o B
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FIGURE 6.5: A VHDL-AMS plot of the drain current I;; as a function of the time
for a back-gate voltge V;,s = —40V for the top-gate voltages 0V, -1.5V, -1.9V and -3V
respectively (from top to bottom).
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FIGURE 6.6: A VHDL-AMS plot of the drain current I;s as a function of the drain
voltage Vs for a back-gate voltge V;s = +40V for the top-gate voltages -0.8V, -1.3V,
-1.8V, -2.3V and -2.8V respectively (from top to bottom).

Table 6.1 shows the VHDL-AMS symbols and the description of the symbols. The I-V
characteristics of the behavioural model is plotted for two test cases of an originally
fabricated transistor [33], where V43 = —40V and Vjs = 40V.

For the case Vj, = —40V, VHDL-AMS model parameters of mu = 700, Rs = 800 and
and Fc = 4.5 x 105) are taken. Fig. 6.5 shows the I-V characteristics for a sweep of Vg,
is from OV to -3V at the following Vi,: 0, -1.5, -1.9 and -3V.

Also, for test case Vs = +40V, VHDL-AMS model parameters of mu = 1200, Rs = 1500
and and Ec = 15 x 10°) are taken. Fig. 6.6 shows the I-V characteristics are plotted for
a drain voltage from 0 to -3V and a top-gate voltage of -0.8V, -1.3V, -1.8V, -2.3V and
-2.8V respectively. The testbench listing is shown in Listing. 6.1.

When implemented in VHDL-AMS the current characteristics shows a transient analysis
of the drain current. To create a dc sweep of the drain voltage a negative ramp voltage
source is applied to the drain. For convenience a slope of -1V /s is used. This is the slope
that will be used throughout the simulation with VHDL-AMS. This allows the use of
the transcient analysis in VHDL-AMS to carry out a dc sweep analysis over the voltage
range (Vs varied from OV to -3V in this case). Separate transistor instances are used
for each value of the top-gate voltage being considered. The testbench architecture of

the test circuit is shown in Listing. 6.2.

--Testbench

library IEEE;

use IEEE.math_real.all;

use IEEE.electrical_systems.all;

entity test_gTransistor is

end entity test_gTransistor;



126 Chapter 6 CAD Tool Design and Transistor Optimization

architecture test of test_gTransistor is
terminal Vd, Vg0_0,Vgl_5,Vgl_9,Vg3_0, Vb: electrical;
alias ground is ELECTRICAL_REF;
begin
vb_dc: entity v_source generic map (VDC=>-40.0)
port map (V_term=>Vb, V_ref=>ground);
vi: entity v_pulse generic map (pulse=>-3.0,
tchange=>3sec) port map(po=>Vd,ne=>ground);
-- for Vgs = 0.0
vg_dc0_8: entity v_source generic map (VDC=>0.0)
port map (V_term=>Vg0_0, V_ref=>ground);
transistorl: entity gTransistor generic map (Cgio=> 0.8072)
port map (drain=>Vd, gate=>Vg0_0, back_gate=>Vb,
source=>ground) ;
-- for Vgs = -1.5
vg_dcl_5: entity v_source generic map (VDC=>-1.5)
port map (V_term=>Vgl_ 5, V_ref=>ground);
transistor2: entity gTransistor generic map (Cgio=> 0.8072)
port map (drain=>Vd, gate=>Vgl_5, back_gate=>Vb,
source=>ground) ;
-- for Vgs = -1.9
vg_dcl_9: entity v_source generic map (VDC=>-1.9)
port map (V_term=>Vgl_9, V_ref=>ground);
transistor3: entity gTransistor generic map (Cgio=> 0.8072)
port map (drain=>Vd, gate=>Vgl_9, back_gate=>Vb,
source=>ground) ;
-- for Vgs = -3.0
vg_dc3_0: entity v_source generic map (VDC=>-3.0)
port map (V_term=>Vg3_0, V_ref=>ground);
transistor4: entity gTransistor generic map (Cgio=> 0.8072)
port map (drain=>Vd, gate=>Vg3_0, back_gate=>Vb,
source=>ground) ;

end architecture test;

LI1STING 6.2: Testbench of the VHDL-AMS test circuit

6.4 Berkeley SPICE Project Library Development

Berkeley SPICE offers the advantage over HSPICE and VHDL-AMS by being an open
source simulator. Therefore, a circuit-level model can be developed as compared to a
behavioural model. Berkeley SPICE is written in C/C++ programming language, so
the numerical analysis required in the transistor modelling can be implemented. In Fig.
6.7, the model libraries are integrated into the simulator, with the testbench telling the

simulator to invoke the respective models.

6.4.1 Important Files to be updated

The developed library GNT is derived from the existing MOSFET template. This allows
the developed library to be invoked in the same way MOSFETSs are invoked in SPICE.
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Configuration files »

Executable simulator »  Simulation result

testbench

FIGURE 6.7: Layout of the interactions of the Berkeley SPICE files used in the model

Fig. 6.8 shows the important files that form the structure of the fully working model

and the locations for these files.

ngpsice\src\

Makefile.am

.\src\spicelib .\src\xpice\ipc

ipctiein.c

.\spicelib\parser

’7 —‘ ..\spicelib\devices—‘
inp2m.c inpdomod.c Makefile.am

..\devices\gnt

gnt.c gntdefs.h gntload.c gntmask.c gntmpar.c

FIGURE 6.8: A tree of the Berkeley SPICE files updated in the project

File named Makefile.am tells the compiler of all the library files to compile. Update to

this file is done to enable the compiler develop the respective object files.

Three files; ipctiein.c, inp2m.c and inpdomod.c tells the simulator that a command

invoked in the testbench is directed towards the gnt model. The simulator will in turn

make the required function call to the gnt model and transfer any model parameters to

the model.

The following are files that describe the graphene FET, gnt.c gntload.c, gntdefs.h, gntm-

par.c and gntmask.c. The gnt.c is a table that assigns all the model parameters of the
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transistor. The model parameters are defined in the file gntdefs.h. The file gntmpar.c,
sets the required flag for user defined parameters and updates the respective parameter
with the user defined values. The gntmask.c file assigns the model parameter with the
default value in the event that a user defined value is not available. The gntload.c file

contains the mathematical expression that determine the device physics of the model.

6.4.2 Installing the simulator

The version of Berkeley SPICE simulator used is the ngspice. Ngspice is a direct deriva-
tive of spice3f5 from UC Berkeley. An executable Berkeley SPICE simulator can be
generated on both the Linux and Windows platform. In the Linux system, the following

commands are run to generate an executable file:
./autogen.sh

./configure

make

make install

Administrative privileges are required in generating the executable file. The command
‘sudo’ is used before every to assume administrator rights. The simulator executable file

is named ngspice.

Installing in the Windows platform, in the visualc folder MS Visual C++- files vngspice.sln
(project starter) and vngspice.veproj (project contents) allow to compile and link ngspice
with MS Visual Studio 2008 or later. An executable file is created by running the build
solution command. The created executable file is named vngspice.exe. Also, applica-
tions that allow the running of native Linux commands on Windows, such as Cygwin,
can be used to generate a Windows compatible executable file. Here, the installation
commands used on the Linux platform apply. The resulting generated executable file

will be name ngspice.exe.

6.4.3 Running the SPICE simulator

This work uses the .sp extension for SPICE scripts files, although any naming of the
input script file and the output log file is acceptable by the simulator. In the Linux and
Linux related platforms (i.e Cygwin) executing a SPICE script takes the form

ngspice [-b] [-o logfile] [SPICE script]

In the Windows case, the command ngspice is replace with vngspice. The —b argument
allows the simulator to run in batch mode and the —o argument tells the simulator

where to save the output prints or plots.
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Table 6.2 shows the various command line options that can be used with the ngspice

simulator.
TABLE 6.2: Command Line option for ngspice [145]

Option Long option Meaning

- Don’t try to load the default data file “rawspice.raw”) if no
other files are given (ngnutmeg only).

-n no-spiceinit Dont try to source the file “.spiceinit” upon start-up

-t TERM terminal=TERM The program is being run on a terminal
with mfb name term (obsolete)

-b batch Run in batch mode. Ngspice reads the default input source
(e.g. keyboard) or reads the given input file and performs
the analyses specified

-S server Run in server mode.

-1 interactive Run in interactive mode.

-r FILE rawfile=FILE Use rawfile as the default file into which the results of the
simulation are saved.

-0 output=FILE All logs generated during a batch run (-b) will be saved in outfile.

-h help A short help statement of the command line syntax

-v version Prints a version information.

-a autorun Start simulation immediately, as if a control section

soa-log=FILE

.control

rUun

.endc

had been added to the input file.

output from Safe Operating Area (SOA) check

6.4.4 Simulating with the graphene FET library

Since the developed graphene FET library is a derivative of the MOSFET template, the
device instance in SPICE scripts have to start with the letter ‘M’. Table 6.3 shows the
modelling parameters of the graphene FET library.
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TABLE 6.3: Ngspice Model parameters for the graphene FET library

Parameter symbol Parameter description

1 Channel length

w Channel width

gnt Model name

T Operating temperature

u0 Hole-like surface mobility

k1l Top-gate dielectric constant

k2 Back-gate dielectric constant

vgs0 Vys at the Dirac point

vbs0 Vis at the Dirac point

ef Critical electric field

hsub Thickness of bulk substrate

rSp hole-like conduction series resistance

rsn electron-like conduction series resistance

n0 Minimum carrier density

ul electron-like surface mobility

ufl Alternative carrier mobility factor in electrons-like conduction
uf0 Alternative carrier mobility factor in holes-like conduction
nl Number of layers

vef Constant voltage due to electric field

rvbs0 Maximum resistance at the Dirac point

t_alpha Temperature constant parameter

eta_p Constant for resistance slope in the p-type region
eta_n Constant for resistance slope in the n-type region
vtemp Voltage constant parameter for the temperature
tref Reference temperature

Vv, V]

FIGURE 6.9: Experimental data (o) [127] and the Berkeley SPICE simulator model (-)

for Isq vs Vg4 characteristics at Vys= 0V. Vg4, is varied from 0 to -1.4V for top-gate

voltages of -1.25V, -0.75V, -0.25V , 0.25V and 0.75V (from top to bottom between
cross-section A; and As)
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This model allows the user to simulate an arbitrarily number of graphene channels. The
model is limited to about 100 layers in the transistor. Taking the case of a four layer
graphene channel, Fig. 6.9 shows a validation of the SPICE model with experimental
measurement [127] for a sweep of Vs at different V.. The netlist used to achieve the

I-V characteristics is shown in Listing. 6.3.

.TITLE ’IV Characteristics for four layer GFET Transistor’

vd vdd Gnd 0
Vs Vss Gnd 0
Vg Var Gnd 0.75
Vb Vbs Gnd 0

M2 Vdd Var Vss Vbs gnt 1=10e-6 w=be-6 temp=26

.model gnt gnt nl=4 u0=13000e-4 tox=40e-9 ef=15eb

+k1=17 k2=3.9 vgs0=0.75 vbs0=0 hsub=500.0e-9 rsp=390
+ul1=2900e-4 rvbs0=.37e4 eta_p=.8 eta_n=.8 vtemp=0.0086
+vef=3 tref=300 t_alpha=6e-7 n0=.5e16 uf0=0.223 uf1=0.223

+rsn=290

.op

.dc Vd -1.4 0 0.1 Vg 0.75 0.75 -.5
.dc Vd -1.4 0 0.1 Vg 0.25 0.25 -.5
.dc Vd -1.4 0 0.1 Vg -0.25 -0.25 -.5
.dc Vd -1.4 0 0.1 Vg -0.75 -0.75 -.5
.dc Vd -1.4 0 0.1 Vg -1.256 -1.25 -.5

.print dc I(Vs)
.end

LisTING 6.3: Netlist for a four-layer graphene FET I;; Vs Vs characteristics shown
in Fig. 6.9

The model shows good agreement with the experimental data. Also, for the four layer
channel the model shows good agreement when validated against experiment for a sweep

of Vg, as a constant Vy, in Fig. 6.10. The netlist is shown in Listing. 6.4.

.TITLE ’Ids Vs Vgs Characteristics for four layer GFET Transistor’

vd vdd Gnd 0.1
Vs Vss Gnd 0
Vg Var Gnd 0
Vb Vbs Gnd 0

M2 Vdd Var Vss Vbs gnt 1=10e-6 w=5e-6 temp=26

.model gnt gnt nl=4 u0=7000e-4 tox=40e-9 ef=15eb

+k1=17 k2=3.9 vgs0=0.75 vbs0=0 hsub=500.0e-9 rsp=290
+ul1=3200e-4 rvbs0=.37e4 eta_p=.8 eta_n=.8 vtemp=0.0086
+vef=3 tref=300 t_alpha=6e-7 n0=.5e16 uf0=0.223 uf1=0.223
+rsn=200

.dc Vg -2 3 0.1

.print dc I(Vs)
.end
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FIGURE 6.10: Characteristics of the channel Drain current against the top-gate voltage
for V4 = 0.1V (Experimental data(o) [127], Berkeley SPICE simulator model(-))

LISTING 6.4: Netlist for a four-layer graphene FET I, Vs Vg, characteristics shown
in Fig. 6.10

Both Fig. 6.9 and Fig. 6.10 show good agreement with experimental data. This confirms
that the SPICE model accurately simulates all the regions of operation of the transistor

and the Jacobian entries are also accurate.
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FIGURE 6.11: Characteristics of the channel resistance against Vg at Vs = 0V for

various operating temperatures. Result from the SPICE simulator is shown in solid

line for temperatures 4.7K (blue), 14.4K (black) and 53K (red) (top to bottom). The
experimental measurement [89] is shown in O (53K) and o (4.7K)
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In changing the nl (see Table. 6.3) model parameter from 4 to 1, the model can be
used to simulate a single-layer graphene transistor. In Fig. 6.11, the model is validated
against experimental data [89] for a plot of the channel resistance against V. This test
case is simulated at the following operating temperatures: 4.7K, 14.4K and 53K. The

netlist is shown in Listing. 6.5.

.TITLE ’IV Characteristics for GFET Transistor’

vd vdd Gnd 0.01
Vs Vss Gnd 0
Vg Var Gnd 0.5
Vb Vbs Gnd 0

M2 Vdd Var Vss Vbs gnt 1l=1e-6 w=1.1le-6

.model gnt gnt nl=1 u0=4000e-4 tox=15e-9 ef=4.5eb

+k1=3.9 k2=3.9 vgs0=2.22 vbs0=-35 hsub=285.0e-9 rsp=400
+ul1=4000e-4 rvbs0=4.65e3 eta_p=1 eta_n=1 vtemp=0.0086
+vef=2 tref=300 t_alpha=0.052 n0=.5e16 uf0=0.223 uf1=0.223

+rsn=500

.op

.dc Vg -3 3 0.05 temp -268.3 -268.3 1
.dc Vg -3 3 0.05 temp -258.6 -258.8 1
.dc Vg -3 3 0.05 temp -221 -221 1

.param par(Vdd,Vs)=’V(Vdd)/I(Vs)’
.print dc par(Vdd,Vs) V(vdd) I(Vs)

.end

LISTING 6.5: Netlist for a Single layer graphene FET channel resistance Vs Vg, char-
acteristics shown in Fig. 6.10

6.4.5 Example circuits

In this section the graphene FET library will be validated using two test circuits; a
small signal voltage amplifier and a frequency multiplier. For analog and RF applica-
tions, graphene FET based voltage amplifiers [180, 181, 182] and frequency mixers and
multipliers [172, 173, 174] have been reported. Although, graphene FET transistor are
not currently suitable for making digital circuits, the ability to achieve a complementary

transistor [15, 183] by shifting the threshold voltage is exploited in analog designs.

6.4.5.1 Voltage Amplifier

The circuit shown in Fig. 6.12(a) is simple two transistor voltage amplifier. This circuit
design utilises two complementary transistors where transistor ‘M1’ can be viewed as
P-type in the MOSFET sense and transistor ‘M2’ as N-type. The circuit design is the

same as that used to achieve inversion by a complementary inverter [15]. In this circuit,
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both transistors use a single-layer graphene channel. The SPICE netlist is shown in
Listing. 6.6.

-«
M 1 6000
5500
5000
In out 2 4500
R— — @
£ 4000
i
2 3500
o
T 3000
M2 £ 2500
» o /
L S
2000~
1500
— 1000; 1 0 1 2 3
Gate Voltage [V]
(a) Complementary graphene FET (b) The conductance of each of the transistors
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0.9r 1
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o 0.66 1
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8
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0.51 1
0.4 A
0.7 .845 0.9 1
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(c) A voltage sweep of the gate voltage around the voltage
amplifier bias point

FIGURE 6.12: Circuit design and characteristics of the voltage amplifier

.TITLE ’GFET Transistor Voltage Amplifier’

vd vdd Gnd 1.5
Vs Vss Gnd 0

Vb Vbs1l Gnd 25
Vb2 Vbs2 Gnd -25

Vg Var Gnd SINE(0.85 .01 1k)

M2 one Var Vss Vbsl gnt 1=1e-6 w=1.1le-6 temp=-268.3

.model gnt gnt nl=1 u0=4000e-4 tox=15e-9 ef=4.5eb

+k1=3.9 k2=3.9 vgs0=2.22 vbs0=-35 hsub=285.0e-9 rsp=400
+ul1=4000e-4 rvbs0=4.65e3 eta_p=1 eta_n=1 vtemp=0.0086
+vef=2 tref=300 t_alpha=0.052 n0=.5e16 uf0=0.223 uf1=0.223

+rsn=500

M1 Vdd Var one Vbs2 gnt 1l=1e-6 w=1.1le-6 temp=-268.3
.model gnt gnt nl=1 u0=4000e-4 tox=15e-9 ef=4.5eb
+k1=3.9 k2=3.9 vgs0=2.22 vbs0=-35 hsub=285.0e-9 rsp=400
+ul1=4000e-4 rvbs0=4.65e3 eta_p=1 eta_n=1 vtemp=0.0086
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+vef=2 tref=300 t_alpha=0.052 n0=.5e16 uf0=0.223 uf1=0.223

+rsn=500

.op

.tran 50u .01

.print tran V(var) V(one)

.end

LisTING 6.6: Netlist for a single-layer graphene FET Voltage Amplifier shown in Fig.

6.13
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FIGURE 6.13: Normalized single-layer graphene FET characteristics of a small signal
voltage amplifier

Fig. 6.12(b) shows the conductance of each of the transistors in the circuit. Biasing
transistor ‘M1’ with ‘Vjs1’ (Vs = 25V) a positive gate threshold voltage relative to the
source voltage, ground, is achieved. This ‘M1’ serves as an N-type transistor in the
complementary transistor circuit. Biasing transistor ‘M2’ with ‘Vis’ (Vps = —25V) a
negative gate threshold voltage relative to the source voltage, ‘Vgq' is achieved. Thus,
‘M2’ is acts like a P-type transistor in the complementary transistor circuit. A sweep
of the gate voltage will result in an inverter-like output characteristic as shown in Fig.
6.12(c).

Of particular interest is the linear voltage output where the both transistors experience
charge neutrality point splitting. A DC voltage is used to bias the transistor at this
region. Thus, for a small AC signal with a frequency of 1kHz, an amplitude of 20mV
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and a DC offset of 0.85V, the AC gate voltage is amplified at the output. Fig. 6.13

shows about a four times amplification of the input voltage.

6.4.5.2 Frequency multiplier
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FIGURE 6.15: Single-layer graphene FET characteristics of a frequency doubler

This circuit generates an output signal whose frequency is twice that of the input fre-
quency. The circuit diagram is shown in Fig. 6.14 and the SPICE netlist is shown in
Listing. 6.7.

.TITLE ’IV Characteristics for GFET Transistor’
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vd vdd Gnd 1.5
Vs Vss Gnd
Vb Vbs Gnd 0

Vg Var Gnd SINE(0.37 .3 1k)

M2 one Var Vss Vbs gnt 1l=1e-6 w=1.1le-6 temp=-268.3

.model gnt gnt nl=1 u0=4000e-4 tox=15e-9 ef=4.5eb

+k1=3.9 k2=3.9 vgs0=2.22 vbs0=-35 hsub=285.0e-9 rsp=400
+u1=4000e-4 rvbs0=4.65e3 eta_p=1 eta_n=1 vtemp=0.0086
+vef=2 tref=300 t_alpha=0.052 n0=.5e16 uf0=0.223 uf1=0.223
+rsn=500

R1 one Vdd 1K
.op
.tran 30u .01

.print tran V(var) V(one)

.end

LisTING 6.7: Netlist for a Single layer graphene FET frequency doubler circuit

A single-layer graphene transistor is used in this analysis. The circuitry utilised the
ambipolar ability of the graphene transistor to achieve a doubling of the frequency
similar to the action of a full wave rectifier. A DC voltage offset is used at the gate to
bias the transistor at its threshold voltage. In this case an offset of 0.37V is required.

The gate signal has a frequency of 1kHz and an amplitude of 300mV.

Fig. 6.15 shows both the input and output voltage characteristics. Assuming a nor-
malised input voltage centred at OV. The operation of the frequency doubler is such
that during a positive cycle of the AC input signal, the transistor ‘M2’ become electron-
like (similar to an N-type MOSFET) and thus allows conduction of electron-like carrier
in the channel from the ground terminal to ‘Vy;’ and the resulting current flows in the
opposite direction. In the second half of the cycle when the input signal is negative, the
transistor then becomes hole-like (similar to a P-type MOSFET) and allows conduction
of hole-like carrier from ‘Vyq’ to the ground. The resulting current conduction is in the

same direction as the carriers.

In both test circuits the simulator performed as reported graphene voltage amplifiers
[182] and frequency multiplier [173]. This means that the graphene library is correctly
integrated into the SPICE simulator and can be used to simulate its behaviour in both
graphene and non-graphene based circuit designs. Also, the results show that the SPICE
simulator does not have DC convergence problems and it can accurately calculate the

operating points of the various nodes in circuits.
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6.5 Transistor Optimization using a floating-gate

Here a floating-gate is added to a transistor whose result has been published[33]. A
floating-gate has not currently been fabricated on a graphene transistor, therefore a

simplified model will be adopted here to show the feasibility of the concept.

6.6 Carrier Tunnelling

The general device structure of a graphene field effect transistor with a floating-gate is
depicted in Fig.6.16. In Fig. 6.16 the floating-gate is between the channel and the back-
gate. By means of Fowler-Nordheim tunnelling[156] carriers can tunnel into and out of
the floating-gate resulting in a threshold shift in the channel. Injection of electrons can

be controlled by a separate circuit [158].

Cren Silicon Oxide Substrate

Highly Doped Silicon Wafer

Vi

FIGURE 6.16: Transistor layout.

The following capacitances are created in the transistor, Cy between the top-gate and the
channel, C., between the floating-gate and the channel and C', between the floating-

gate and the back-gate terminal.

From Fig. 6.17, Vy is the potential of the floating-gate, V; is the source potential, Vj is
the drain potential and V}, is the back-gate potential.
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FIGURE 6.17: The capacitor and transistor equivalent of the floating-gate transistor

As C increases due to scaling of the transistor, it becomes comparable to the quantum
capacitance [86], Cy, in the graphene channel. Therefore, for accurate modelling, C,
and C; are in series, yielding Cy,, = CyCq/(Cy + Cy).

Chack 18 the capacitance between the floating gate and the channel taking into account

the quantum capacitance, Cpaer = CrenCy/(Cren + Cy).

As the transistor is further scaled into the nanoscale, direct tunneling will become an
issue when the gate oxide is as thin as 1.5nm [154, 155]. assuming that there is no
direct tunneling between the floating-gate and the terminals, then electrons will tunnel
through the dielectric by Fowler-Nordheim tunneling [156] resulting in a current density
given by

Jrun = aF% exp ( _’8) (6.1)
EOCE

where a and [ are constants and FE,, is the electric field in the oxide between the floating-

gate and the channel. Typical values of the critical electric field beyond which tunneling

should be expected, range from 0.75/nm to 1.0V/nm [149, 158]. The tunnelling current

density in Eqn. (6.1) shows a strong dependence on the electric field.

on — M (62)

€k

From Eqn. (6.2), Qg4 is the charge density in the floating-gate, Q. is the charge density
of the channel and € is permittivity of the dielectric oxide. A proportionality of E,,
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with 1/€; implies that for ultra thin gate oxides very high-k dielectric constant will be

required to prevent tunneling.

6.7 Electronic Transport and Channel Resistance

The channel has a built-in potential at the Dirac point with the floating-gate-to-source
at the Dirac point denoted by VJPS and the top-gate-to-source at the Dirac point, Vgs.
The threshold voltage V, is given by Eqn. (6.3):

Vo= Vg(?s + Cback/ctop(VJ?s — st) (63)
where Vi, is the floating-gate-to-source voltage. Vy, creates carriers in the graphene

channel while the top-gate modulates the potential barrier in the channel to adjust the

conductivity of the channel [71].

As the charge has to be conserved, the charge in the transistor is given by @ .

be = Ctop(‘/gs - Vg(?s) + Cback:(vf —Vs— VJQS) + Ofb(Vf - ‘/b) (64)

Thus, the channel carrier density in Eqn. (6.2) is shown below.

Qch = Ctop(vgs - Vo) (65)

Based on the transistor terminal voltages, the potential of the floating-gate considering

any possible tunnelling of carrier is given by Eqn. (6.6)

Qp(tiv1) — Crop(Vgs — V) N Chack (Vs + V) + CroVs

Vie(t; =
f( +1) Chack + Cfb Chack + Cfb

(6.6)

where t;,7 = 0,1, ... is the time index, At = t;31 — t; is the step size. For each step
of the iteration the resulting charge @ y4(ti+1) will force a change in the floating-gate
voltage in Eqn. (6.6). The electric field, E,;, causes current to tunnel into or out of
the floating-gate from Eqn. (6.1). Current tunneling between the floating-gate and the

channel alters the charge in the floating-gate because ag{ 4 = Jun. Due to tunnelling

the charge in the floating-gate is shown below.

Qtq(tiv1) = Qrg(ti) + At(Jrun(t:)) (6.7)
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Vy modulates the source potential barrier thereby controlling the resistance of the chan-

nel [74]. The total resistance of the channel is represented by Eqn. (6.8):

Rtotal - 2Rs (6'8)

L
* W pgy/n3 + n?
where R, is the series resistance which accounts for the contact resistance and the access
resistance (the resistance between the contact and the active area of the channel), L is
the length of the active area, W is the width, p is the carrier mobility, ng is the residual
carrier concentration and n = Q./q with ¢ being the carrier charge. ng is usually
extracted by fitting experimental data, its value usually lie in the vicinity of 10''em =2

[33, 74, 26] and it accounts for the drain current when Vg, = V5.

6.8 Simulations of Transistor characteristics

In the simulation of a bilayer graphene transistor with a floating-gate, physical param-
eters [33] of an experimentally tested standard bilayer graphene transistor are used.

Table. 6.4 shows the model parameters.

TABLE 6.4: Simulation Model Parameters

Model parameter Value Description

L(pm) 1 Channel length

W(pm) 2.1 Channel width

t oz (nm) 15 Hafnium oxide thickness
Cy(uFem™2) 2 Quantum capacitance

ky 16.0 Hafnium Oxide relative dielectric
ko 3.9 Silicon oxide relative dielectric
Va(V) 1.45  Top-Gate to Source Dirac voltage
V2(V) 2.7 Back-gate to source Dirac voltage
Hgyp(nm) 285 Floating-gate to channel thickness
Rs(2) 1000  Series resistance

p(em?/V.s) 300 mobility

X tg(nm) 285 floating-gate to back-gate thickness

In the transistor using the transistor equations for the original transistor without a

floating-gate, a mobility of 300cm?/Vs closely matches the experimental data.

The channel resistance against changes in the top-gate voltage is shown in Fig. 6.18 for
Vis = 0V, Vis of 10V, OV and -10V respectively and a DC sweep of Vi, from -3V to 3V.
The characteristics has a peak resistance at Vg5 = V,, which is 1.29V for V3, = 10V and
1.73V for Vs = —10V. A back-gate bias of 68.73V is required to achieve a Dirac point
voltage of OV.
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FIGURE 6.18: Channel resistance characteristics for graphene bilayer FET without a
floating-gate

Gold Graphene

Gold
Graphene

FIGURE 6.19: Electrons injected into the floating-gate

For a floating-gate attached, the device parameters o and f in Eqn. (6.1)are to be
3

extracted from the transistor. These parameters have theoretical values of o = m,
4(y/2m, 1.5 . .
B = (y/2m é’ ;rz(q%) [156], where electronic charge, ¢, reduced Plank’s constant, ki, oxide

potential barrier, ¢, electron effective mass, m. sy are the parameter definitions.

Fig. 6.19 illustrates the band diagram for electrons to be injected into the floating-gate.
Voz is the potential across the oxide. Using gold, Au, as the floating-gate with dimen-
sions given in Table. 6.4. Au has a work-function of 5.1eV with SiOy corresponding
to a conduction potential barrier, ¢, of 4.0eV also bilayer graphene on SiOs has a
work-function of 4.69¢V [168] and a conduction potential barrier of band 3.59eV. The
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conduction potential barrier is considered as the difference between the electron affinity
of Si03 [162] and the work-function of the metal. This assumes that no layer of other
dielectric is introduced into the SiO2 between the floating-gate and the channel. This
will considerable change the band offset due to a change in the band-gap [163].

o = 3.8704 x 1077A/V? and 8 = 5.4885 x 101°V/m are the predicted device parameters
for electrons to tunnel from the floating-gate. Here, the effective mass, mery = 1.0me,

where m, is the free electron mass.

The graphene channel can be electrostatically doped by the electric field perpendicular
to the channel. This doping causes a shift in the Dirac voltage giving rise to a tunable
work-function [167] as the carriers can be by holes or electron, depending on the gate
bias. Accordingly, for a positive (negative) Vo, (Vo = Vgs — V5), implies the carrier
is by electrons (holes). The excess carriers density induced by electrostatic doping is
shown below [72].

n = 1|Vl (6.9)

The coefficient 7 =~ 7.2 x 101%m =2V =1, The excess carrier density is a reflection of a

shift from the graphene Dirac point [73].

Ep = hvpymn (6.10)

From Eqn. (6.10), vp is the Fermi velocity. Therefore the barrier height of doped
graphene on Si0s is expressed by Eqn. (6.11):

9% = q¢g + Ep (6.11)

where g¢g4 is the barrier height with no doping, in this case 3.59eV, and the positive
(negative) Ep is for holes (electrons). Device parameters o and f3 for electron tunneling
from the graphene channel can now be calculated using an effective mass of 0.041m, for
electrons and 0.036m, for holes [166].

6.9 Complementary Inverter with Symmetrical Transfer

Characteristics

The ability of the floating-gate to modulate the channel resistance has been exploited to
develop an inverter. Two test cases are taken whereby one of the transistors, GFET1,

is taken to have an initial charge in the floating-gate of 8.4fC and the second transistor,
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FIGURE 6.20: Channel resistance vs the top-gate voltage for a graphene transistor with
and without a floating-gate
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FIGURE 6.21: Complementary inverter layout using a floating-gate

GFET?2, has a initial floating-gate charge of 27.3fC. For both transistors with Vs = 0V
and the back-gate is grounded. Their respective channel resistance for a DC sweep of
the top-gate from OV to 2V is shown in Fig. 6.20. For GFET1 both the source and
drain terminals are tied to ground while for GFET2, the source and drain are at 2V.
A complementary inverter is simulated. The layout of the inverter is shown in Fig.
6.21. V, indicates the source terminal that is connected to the 2V supply while V,, is

grounded.

GFET1 shows an n-channel like behaviour while GFET2 shows a p-channel like be-

haviour presenting a complementary behaviour. Fig. 6.20 shows that both transistors
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FIGURE 6.22: floating-gate complementary inverter characteristics for transistors in-
duced with 27.3fC and 8.4fC respectively.

have a peak resistance at 0.8V and 1.2V respectively. Between the peaks the inverter
will experience a charge neutrality point splitting which results in the inversion charac-

teristics shown in Fig. 6.22.

The output voltage of the inverter is shown in Fig. 6.22 for a DC sweep of the input
voltage, Vg, from 0 to 2V. In the simulation V;, = 0V, V,, = 2V and V,, = 0V. A
behavioural model was developed and simulated in HSPICE [141]. Bilayer graphene has
no intrinsic bandgap as such the transistor does not cut-off. From Eqn. (6.8) the channel
resistance of GFET1, R,,, and GFET2, R,, are voltage controlled variable resistances as

shown in Fig 6.22. Therefore, the inverter output voltage, Vg, is given by Eqn. (6.12):

R

Vy=Vyg—1— 6.12
¢ R TR, (6.12)

where Vg = Vi — Vi

6.10 Summary

In this chapter, the implementation of the the proposed model for graphene FET in
SPICE and the concept for a floating-gate graphene transistor is presented. The pro-
posed model is implemented in three CAD tools; HSPICE, VHDL-AMS and Berkeley
SPICE respectively. Using the circuit-level model developed in Berkeley SPICE, the
proposed model shows a good agreement when validated against experimental data.

Also, the experimentally validated transistor was used in simulating a voltage amplifier
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and a frequency doubler. Both circuits simulations showed characteristics which agree
with experimental observation of a similar circuits. Thus, the SPICE implementation

correctly calculates the respective node voltages and currents.

In the analysis of a floating-gate, it was shown how the charge in the floating-gate creates
an offset in the channel threshold thus making thee channel carrier density configurable.
The channel carrier density is controlled by a floating-gate between the channel and the
back-gate which results in a dependency of the Dirac point voltage on the charge in
the floating-gate. This capability has been exploited to achieve p-type like and n-type

behaviour.

The device parameter ensures that the inverter will be stable and there will be no tun-
nelling of electrons in and out of the floating-gate during the operation of the transistor.
Using a floating-gate, a symmetric transfer characteristic in the inverter is achieved,
with the voltage inversion centred at an input voltage of Vy;/2. To achieve this inverter
characteristics without a floating-gate, each of the transistor would require a separate
back-gate voltage to set the Dirac point voltage. This results in a large routing space
and voltage sources in small designs because the Dirac point voltage is not controllable.
Therefore, a different back-gate voltage source would be required for every transistor,

while using a floating-gate allows both transistor have a common back-gate bias.
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Conclusion

In this thesis a novel SPICE-compatible models for the graphene transistor has been
presented and successfully demonstrated. The models have been validated against a
number of experimental measurements [77, 33, 127, 89] and shows a good agreement.
To accurately model the drain current characteristics over the three regions of operation,
both the hole-like and the electron-like conduction characteristics for each of the regions
were derived using the drift equation. The derivation here is two fold. One aspect
derives the transport characteristics within the region and the second aspect derives
the boundary voltages within which these characteristics hold. To be compatible with

SPICE, the Jacobian entries are shown to be continuous across the region boundaries.

By developing a layer specific capacitance model, an accurate relationship between the
threshold voltage and the back-gate is demonstrated. The derivations of the threshold
voltage carried out for both the single-layer and the bilayer transistor reveals that, in
the single-layer the threshold voltage has a linear relationship with the back-gate voltage
while in the bilayer, the linear relationship is against the surface potential of the second
layer. This demonstrates the need for a layer specific equivalent circuit to accurately

model the graphene transistor.

With a layer specific model, the change in potential energy between the layers accurately
calculates the channel conductance with respect to its conductance at the intrinsic state.
The models shows an equal conductance at the threshold voltages for a single-layer
transistor, while the conductance of the bilayer slopes from the Dirac point voltage. At
a constant temperature, the layer specific model can calculate the electric field induced
off-current for a channel with an arbitrary number layers. Also, it is presented here that,
in the bilayer transistor the surface potential of the second layer influences the degree
to which the channel conductance is sensitive to changes in temperature. Therefore, an
estimate of the bandgap of the graphene transistor is possible. A bandgap is essential if

the transistor is to be used in future digital circuits.

147
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In line with the growing need to design circuits with graphene transistors, a Berkeley
SPICE library was developed for the layer specific model. Example circuits show that
the model can be used for both digital and analog circuit designs. For easy use, the
library is a derivative of the MOSFET template which allows circuit designers to invoke
the library as it is currently done for MOSFETs. Also, to solve the problem of using
individual back-gate voltages to optimize each transistor, a floating gate approach is also

presented.

7.1 Chapter: Further Research

So far models use a fixed series resistance to model the transfer characteristics. Literature
on experimental measurement of the contact resistance shows that it is modulated by
the gate voltage. Depending on the transistor layout design, the transistor either has a
dominant parasitic capacitance or an un-gated access resistance. The series resistance
is combination of both the access and contact resistance and needs to be modelled to

accurately estimate the carrier mobility in the channel.

In deriving the dependence of the channel on the vertical electric field, a fitting parame-
ter, Vp is used. Vi gives a measure of the slope of the thermionic resistance with respect
to electric field. However, different values of Vi are used to fit all the validations carried
out. It is necessary in future work to determine model parameters that estimate V.
Similar to Vp is T, used in the single-layer transistor (see eqn. (4.20)) and T, in the
bilayer transistor (see eqn. (5.25)).

Section 2.6 of the literature review presents the current application of the graphene tran-
sistor which includes ring oscillator, frequency doubler and multiplier. So far just a little
work has been done in investigating applications that utilize the ambipolar conduction

of graphene. This is therefore an aspect for further work.

In the future engineering a bandgap in graphene to make it suitable for digital logic
may be possible, therefore current graphene models have to be improved to apply to the

graphene transistor with an intrinsic bandgap.
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CAD Tools

B.1 Behavioural model code for HSPICE

.protect
.PARAM q = 1.60217646e-19 $ electron charge
.PARAM T = ’temp+273’ $ Temperature of operation.
.PARAM Kb = 1.3806503e-23 $ Boltzmann’s constant
.PARAM pi=’355/113" $ Constant PI
.PARAM vf = 1e6 $ Characteristic electron velocity
.PARAM epsr = 8.85418782e-12 $ Permittivity of vacuum
.PARAM h = 6.626068e-34 $ Plank’s constant
.PARAM h_ba = ’h/2/pi’ $ Reduced Plank’s constant
.unprotect

Listing B.1: The HSPICE param.lib file
* Library name: "GFET.1lib"
.LIB gfet
.protect

.option EPSMIN=1e-99
.INCLUDE ’param.lib’

.SUBCKT pGFET Drain Gate Source Sub Hsub=285e-9 tox=15e-9 L=1e-6 W=2.1e-6
Cgio=1 Ec=4.5e5 Rs=800 mu=700e-4 ntop=2.1209e16 Vgs0=1.45 Vbs0=2.7 k_sub=3.9 k=16

.param Cq = ’sqrt(ntop/pi)*q~2/vf/h_ba’
.param Ce = ’Cgio*epsrx*k/tox’

.param Ctop = ’Cq*Ce/(Cq+Ce)’

.param Cback = ’epsr*k_sub/Hsub’

*V0 functions as a device threshold voltage controlled by the back gate

.param aVo(Vbs) = ’Vgs0 + (Cback/Ctop)*(VbsO - Vbs)’

.param aVc = ’Ec*L’

.param aVg0O(Vgs,Vbs) = ’Vgs - aVo(Vbs)’

.param Rc = ’1/((W/L)*mu*Ctop*aVc)’

.param Rnorm = ’Rs/Rc’

.param aVdsat(Vgs,Vbs) = ’2*Rnorm*aVg0(Vgs,Vbs)/(1+Rnorm)+(1-Rnorm)/
(1+Rnorm) "2*(aVc-sqrt (aVc"2-2*(1+Rnorm)*aVc*xaVg0 (Vgs ,Vbs)))’

.param alo(Vds,Vgs,Vbs) = ’2*%(W/L)*mu*xaVc*Ctop*(Vgs-aVo(Vbs)-Vds/2)’
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.param ans(Vds,Vgs,Vbs) = ’-(1/4/Rs*(Vds-aVc+alo(Vds,Vgs,Vbs)*Rs +

sqrt ((Vds-aVc+alo(Vds,Vgs,Vbs)*Rs) "2 -4*alo(Vds,Vgs,Vbs)*Rs*Vds))*(Vds>aVdsat (Vgs,Vbs))+
(Vds<=aVdsat (Vgs ,Vbs))*(Rnorm/Rs/(1+Rnorm) "2*(-Vc+(1+Rnorm)*aVg0(Vgs ,Vbs)+sqrt (aVc "2-2%
(1+Rnorm)*aVc*aVg0 (Vgs ,Vbs)))+mu*Cback*(abs (Vbs-Vgs) -

abs (Vbs0-Vgs0))*Vds*W/L/10*x(Vds/aVdsat (Vgs,Vbs) -1)72))°

K oK oK K oK oK K oK oK K oK oK K oK oK K oK oK K oK oK K o oK K oK oK K oK oK K K K K K KK K KK KK K

* capacitances and resistances

K KK K K KK KK K K K K K K K KoK K K KK KK R KK R K KK KK KK KKK KK K

Cgs_ch Gate Schannel ’0.5*xCtop*WxL~’
Cgd_ch Gate Dchannel ’0.5*%Ctop*W*L’
Cbs_ch Sub Schannel ’0.5xCback*WxL"’
Cbd_ch Sub Dchannel ’0.5*xCback*WxL"’
rs_ch Drain Dchannel ’Rs’

rd_ch Source Schannel ’Rs”’

rdummy drain source 12e12

>k 3k 3k 3k 3k 3k 3k %k 3k %k %k %k %k 5k 5k 5%k %k %k % %k %k %k %k %k %k %k >k >k >k >k >k %k %k % % % % % % % % % % %k

* voltage controlled current source

% %k %k ok >k ok %k ok ok 5k %k %k ok %k %k %k ok 3k >k 5k 5k %k %k k %k %k %k 5k %k %k % >k %k %k % %k %k %k 5k % %k %k %

GFET1 Schannel Dchannel CUR=’(V(Drain)<=V(Source))*
ans (V(Drain)-V(Source) ,V(Gate)-V(Source) ,V(Sub)-V(Source))’
GFET2 Dchannel Schannel CUR=’(V(Drain)>V(Source))*
ans (V(Source)-V(Drain) ,V(Gate)-V(Drain) ,V(Sub)-V(Drain))’

.ENDS pGFET

.unprotect

.ENDL gfet

LisTinG B.2: Graphene FET HSPICE library file gfet.lib

B.2 Behavioural model code for VHDL-AMS

library IEEE;
use IEEE.math_real.all;
use IEEE.electrical_systems.all;
entity v_pulse is
generic(
initial: real:= 0.0;
pulse : real:= 5.0;
tchange : time:= 10sec); -- initial to pulse
port (terminal po,ne: electrical);
end entity v_pulse;
architecture behaviour of v_pulse is
function time2real(tt : time) return real is
begin
return time’pos(tt) * 1.0e-15;
end time2real;
constant sign : real := pulse/abs(pulse);
constant slope:real := abs(pulse)/time2real(tchange);
quantity v across i through po to ne;

-- signal used in CreateEvent process below

signal pulse_signal : real := initial;
begin

v==sign*pulse_signal >slew(slope);

CreateEvent : process

begin

wait until domain = time_domain; -- run process in Time Domain only
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pulse_signal <=abs(pulse);
end process CreateEvent;

end architecture behaviour;

LisTiING B.3: Time dependent voltage sweep in v_pulse.vhd

library IEEE;
use IEEE.math_real.all;
use IEEE.electrical_systems.all;
entity v_source is
generic (VDC: voltage);
port(terminal V_term, V_ref: electrical);
end entity v_source;
architecture val of v_source is
quantity v across i through V_term to V_ref;
begin
v == VDC;

end architecture val;

LisTING B.4: Voltage sources in v_source.vhd

library IEEE;

use IEEE.math_real.all;

use IEEE.electrical_systems.all;

use IEEE.fundamental_constants.all;

library work;

package gfetmodel is
function Fgfet(Vds, Vgs, Vbs, Rs, mu, Ec, Cgio, Hsub, tox, L, W,
ntop, Cq, VgsO, VbsO, k, k_sub: real)
return real;

end package gfetmodel;

package body gfetmodel is

-- some physical constants:

--PHYS_EPSO --Permittivity of vacumm

--MATH_PI -- Constant PI

--PHYS_Q -- Electronic Charge

--constant vf : real := 1.0E6; -- Characteristic electronic velocity
--PHYS_H_OVER_2_PI -- Reduced Plank’s constant

--PHYS_K -- Boltzmann constant

function Fgfet(Vds, Vgs, Vbs, Rs, mu, Ec, Cgio, Hsub, tox, L, W, ntop, Cq,
VgsO, VbsO, k, k_sub: real) return real is
variable Ce, Ctop, Cback, Vc, Ids, Rc, Gamma, Vo, Vg0, Vdsat, Io: real:=0.

begin
--Cq := (ntop/MATH_PI)**0.5*PHYS_Q**2/vf/PHYS_H_OVER_2_PI;
Ce := Cgio*PHYS_EPSO*k/tox;
Ctop := Cq*Ce/(Cq+Ce);
Cback := PHYS_EPSO*k_sub/Hsub;

--Vo functions as a device threshold voltage controlled by the back gate

Vo := Vgs0 + (Cback/Ctop)*(VbsO - Vbs);

Vg0 := Vgs - Vo;

Vc := Ecx*L;

Rc := 1.0/ ((W/L)*mu*Ctop*Vc);

Gamma := Rs/Rc;

Vdsat := 2.0*Gamma*VgO/(1.0+Gamma)+(1.0-Gamma)/(1.0+Gamma)**2.0%
(Vc-sqrt (Vc*x*2.0-2.0%(1.0+Gamma)*Vc*xVg0)) ;

Io := 2.0*%(W/L)*mux*xVc*Ctop*(Vgs-Vo-Vds/2.0);

if Vds > Vdsat then
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Ids := 1.0/4.0/Rs*(Vds-Vc+Io*Rs + sqrt((Vds-Vc+Io*Rs)**2.0 - 4.0*xIo*Rs*Vds))
elsif Vds <= Vdsat then
Ids := (Gamma/Rs/(1.0+Gamma)**2.0*(-Vc+(1.0+Gamma)*VgO+sqrt (Vc*x*2.0-2.0%

(1.0+Gamma)*Vc*Vg0))+mu*Cback*abs (Vbs-Vbs0)*Vds*W/L/10.0%(Vds/Vdsat -1.0)*%2
else
Ids := 0.0;
end if;

return Ids;

end function Fgfet;

end package body

gfetmodel;

LisTING B.5: The graphene FET model package in gfetmodel.vhd

library IEEE;
library EDULIB;

use IEEE.math_real.all;

use IEEE.electrical_systems.all;

use IEEE.fundamental_constants.all;

library work;

use work.gfetmodel.all;

entity gTransistor is

generic( -- model parameters
Rs : real := 800.0;
mu : real := 700.0e-4;
Ec : real := 4.5eb;
Cgio : real := 0.8072;
Hsub : real := 285.0e-9; -- Substate thickness
tox : real := 15.0e-9; -- top gate dielectric thickness
L : real := 1.0e-6; -- Gate lenght
W : real := 2.1e-6; -- Channel Width
ntop : real := 2.1209el6; -- carrier concentration
Cq : real := 2.0e-2; -- quantum capacitance
VgsO : real := 1.45; -- Gate-to-Source voltage at the Dirac point
VbsO : real := 2.7; -- Bulk-to-Source voltage at the Dirac point
k : real := 16.0; -- Top gate dielectric
k_sub : real := 3.9 -- Back gate substrate dielectric

);

port (terminal drain, gate, back_gate, source: electrical);

end entity gTransistor;

architecture Characteristic of gTransistor is

--terminal values

terminal

quantity

quantity

quantity

quantity
begin

drainint, sourceint : electrical;
Vds across drain to source;

Vgs across gate to source;

Vbs across back_gate to source;

Ids through drainint to sourceint;

Ids == Fgfet(Vds, Vgs, Vbs, Rs, mu, Ec, Cgio, Hsub, tox, L, W, ntop, Cq,
VgsO, VbsO, k, k_sub);

-- Capacitances of the model

Cl: entity EDULIB.capacitor(ideal) generic map( cap=>(Cq*PHYS_EPSO * k * Cgio x*
W * L/ tox/(Cq+PHYS_EPSO * k * Cgio * W * L/ tox))* 0.5)

port map

(pl=>gate, p2=>sourceint);

C2: entity EDULIB.capacitor(ideal) generic map( cap=>(Cq*PHYS_EPSO * k * Cgio * W x*
L/ tox/(Cq+PHYS_EPSO * k * Cgio * W * L/ tox))* 0.5)

port map

(pl=>gate, p2=>drainint);
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C3: entity EDULIB.capacitor(ideal) generic map( cap=>PHYS_EPSO x*
k_sub * W * L * 0.5/Hsub)

port map (pl=>back_gate, p2=>sourceint);

C4: entity EDULIB.capacitor(ideal) generic map( cap=>PHYS_EPSO x*
k_sub * W * L * 0.5/Hsub)

port map (pl=>back_gate, p2=>drainint);

R1: entity EDULIB.resistor(ideal) generic map( res=>Rs)

port map (pl=>drain, p2=>drainint);

R2: entity EDULIB.resistor(ideal) generic map( res=>Rs)

port map (pl=>source, p2=>sourceint);

end architecture Characteristic;

LisTING B.6: Top level of the graphene FET model in gTransistor.vhd
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