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Abstract—Modelling behavioural biometric patterns is a key  [17] characterize the load profile by considering each mofil
issue for modern user centric applications, aimed at better mon-  as time series of load measurements, and employ different
itoring users’ activities, understanding their habits and detectirg unsupervised learning techniques to cluster data (suclelas S

thelr |dent|ty FO”OWlng th|S trend, thIS paper inVestigates Whether Orgar"Zlng Maps K_means and Hldden Markov Models)
the electrical energy consumption of a user can be a distinctive '

behavioural biometric trait. In particular we analyse daily and Here, we take a different perspective with respect to such
weekly load profiles showing that they are closely related to previous work, and investigate whether load profiles can be
the identity of the users. Hence, we believe that this level of considered a distinctive biometric trait, hence allowirge t

analysis can open interesting application scenarios in the field of jqentification of a specific user. To the best of our knowledge

energy management and it provides a good working framework s has never been investigated in the literature, ancpéigier
for the continuous development of smart environments with is a first step in this direction.

demonstrable benefits on real-world implementations.
In more detail, our goal is to identify a specific user (i.@., a
. INTRODUCTION electricity meter) among several users, considering tleesus
load profiles (i.e., a series of consumption data, acquited a
Biometric technology [1] is a powerful tool to identify indd-  fixed interval during a day), over a given period of time (i.e.
uals upon some distinctive physiological characteristic&h  one month of data in our case). To do so, we investigate
as face, fingerprints or iris patterns [2], [3], [4] or even®&E different representations for the load profiles, includiagy
signals, footprints, ears, and many others [5], [6]. measurements, frequency characterizations and typieal lo
shape indexes [14], [16]. Based on these representations we
Sxperiment two classification approaches. The former, base
on the classical Nearest Neighbor rule, assigns an unknown
object to the class of the nearest neighbor point; the seisond
a classical Bayesian scheme, based on Hidden Markov Models
(HMM — [18]), a probabilistic tool widely used to charactegi
sequential data, which has been recently applied also &t lo
rofiles grouping (in particular to characterise relatfops
etween electricity consumption and consumers’ prefagnc
or behaviors — e.qg., lifestyle — [17]).

Recently, a number of biometric approaches have gon
beyond the typical physiological characteristics of therss
and consider also behavioral aspects, such as gait [7Rhtsign
[8], or even HCl-related behaviors [9], such as keystrokes
mouse dynamics [10], [11] or Internet browsing historie2][1
All these approaches fall under the context lwéhavioral
biometrics [9] and provide key tools to build accurate medel
of the users. Such models are particularly important whe
considering the growing popularity of ubiquitous, context
aware computing and user-centric application developspent
which aim at improving and personalizing existing servittes We empirically evaluate our approach on a database of real
specific users’ needs [13]. energy consumption data acquired in the UK over a single
ontinuous month, considering up to 400 meters. Our results

Against this background, in this paper, we analyse an‘iuggest that the energy load profile is indeed a promising

assess the suitability of a novel trait: the electrical gmer opavioyral trait: in a problem with 100 users, our best
consumption profile of a user (or load profile), i.e., the g'ser '

i f electrical ; iod | classification scheme can correctly identify a given uséhiwi
consumption of electrical eénergy Over a given peroad. Nye fist 20 answers of the system in 89.36% of the cases.

S$uch rate significantly increases if we aggregate more days
to characterize a given user, reaching 94.5% when using 7
gdays. This is even more interesting considering that a rando
classifier would have a recognition rate of 20% in such sgttin
Finally, we also assess the scalability of the method by &igpw

t the performances of our classification schemes do not
grade when increasing the number of users (up to 400 in
é)ur experiments).

infrastructure coupled with the energy market liberalaat
in many countries around the world, result in a increasin
availability of fine-grained electrical consumption datedan
an increasing interest in analysing users’ load profiles-Co
sequently, analysts have begun to use these data with the a
of discovering and categorizing groups of users, to op&miz de
energy allocation and purchasing, or to help retailersgphési
new pricing models for implementing more accurate deman
and supply profiles[14], [15], [16], [17]. For example, ir4]1 Notice that the data acquired by a single meter can incor-
authors propose a framework to characterize users based porate the presence of more people (i.e., all the inhalksitait
their energy consumption so as to provide decision suppothe households that the meter is monitoring). Hence, we are
tools for defining adequate market strategies. In this eonte not strictly identifying the behaviour of one specific pergas
users’ load profile are typically represented by a set olfest in most biometric approaches), but rather the behaviour of a
called load shape indexes (e.g., Load Factor, Lunch Impatt a group of people. Nevertheless, this is a natural conseguenc
Night Impact) [14], [16]. In contrast, other approaches][15 of the peculiar type of data that we are considering (i.e.,



load profiles) which naturally leads to a mapping betweerNormalized load shape indexesThese features represent a
a meter and a user. In fact, this mapping has been used wolassical set of values directly extracted from the loadilero
previous work on energy profile segmentation [17] and is thehey have been shown to be adequate to characterize groups of
typical mapping performed by utility companies, which ac¢ n users [14], [19]; since they are widely used in many studies,
interested in the composition of the group that is served by a&e decided to include them in our work, even if in our case
specific meter. Moreover, we believe that this level of asialy the task is different — i.e. classification rather than drieg.
(i.e., considering a group of people living together as glsin In particular, in our work we employed the selection made in
user) leads to interesting application scenarios as itallm  [14], where the following three indexes were used:
track and monitor the coherence of the behaviours of a user:
if we can accurately characterize the behaviour of a group of 1) Load Factor:
inhabitants based on their energy consumption, we cantdetec
drastic changes in such behaviours (e.g., due to a change in LF = 2
the group of people living in the households). maz,day
where Py, 44, 1S the average of the profile during the
whole day, wherea®,.» 40y represents the highest
peak.
2) Night Impact:

Pav,day

1)

The rest of the paper is organized as follows: Section Il
describes our methodology for user recognition, detaithme
different types of representation and the classificatidreses
we adopt. Section Ill discusses our empirical evaluation of
the method and Section IV concludes the paper providing 1 Pov night
suggestions and directions for future investigations. NI = gm (2)

where P,, nignt IS the average of the profile during

. PROPOSED METHODOLOGY the night, assumed to last for 8 hours from 11pm to

In this section we detail our methodology for user identifi- 7am.
cation. The starting point is the “electrical load profil@/hich 3) Lunch Impact:
represents the energy consumption of each user throughout a p
day (every half hour in our experimental setting). Henceheac L] — - Zavlunch (3)
profile is a vector ofl" elements (wherd" = 48 in our case), 8 Pov,day
see Figure 1 for a visual representation of a series of load where P, juner is the average of the profile during
profiles. the lunch time, assumed to last for 3 hours from
Such profile can be characterized in different ways. In par- 11.30am to 2.30pm.

ticular here we employed three representations based @ tim ,
frequency and load shape indexes. Given these represmstati >uCh features are computed for every profile, each one thus
we then derive two different classification schemes, onedas represented as a 3 dimensional feature vector.

on the nearest neighbor rule and the other based on the HMM

plus the Bayesian rule. In this last case, since HMM are nsodelB. Classification

usable for sequential data, we restricted their employnent

the sole time representation. The main goal of our study is to assess the potentials of

the electrical load profile as a biometric trait for a givermus
] ) Specifically, in this first study, we aim at assessing idegatifi
A. Load profile representations tion performances (i.e. recognition), rather than autlation

Time representation. We use the raw signal, namely thHe (i-e. verificat!on). Therefore, we need to.desfign a claﬁiﬁq .
y scheme, which, given an unknown profile, is able to assign it

dimensional vector as given by the acquisition processs Thi , X

is a rather common choice in energy profile clustering _to one over a set of predetermined users. While the relevant
e.g. [15], [17]. We also applied a small level of GaussianIlterature offers a wide selection of classification scheme
smoothing, in order to remove some fluctuations due to thg!Nce our primary focus is to investigate the use of load

sampling intervals. We decided not to normalize the signal{rmcIIeS asa b|0rznetrf|c tra}lt, V\.’]? d?_md.e?hto fuse two bzsml (\j/vel
(e.g., with z-score normalization), in order to maintaih al nown approaches for classitication: the former 1S based on

possible information on the energy of the signal (e.g., thé'€ classical Nearest Neighbor rule, which assigns an umkno
absolute scale of the consumption profile) which might beggggfcg gzyggisa?] Osfctﬁgﬁgaﬁ,?;e%efﬁﬁ&gghntmg?folfm dels
useful to differentiate between different users (HMM — [18]): in the training phase, a single HMM is trained
Frequency representation.We apply a Fast Fourier Trans- for every user, using all its training profiles; in the cldissition

form to the original signal (smoothed or not), in order to case, an unknown profile is assigned to the user whose HMM
investigate whether the frequential content of the sigraf tre  shows the highest likelihood on such profile.

useful to discriminate between users. After a careful atan

of the frequency content of the profiles, only the first 10
coefficients have been retained.

In what follows we further describe such classification
schemes and their application for load profile classificatio

1Actually, we empirically evaluated different types of norimation, in Nearest Neighbor SchemeAs described before, the classifier
cluding the’z—score normalization; however in all our expemts (not shown assigns an ObJeCt to the class of its nearest nelghbor; the

here), the normalization schemes we tried decreased therparioe of the deﬁn_itiqn .Of a proper proximity measure (either s.imilarity
classification approach. or dissimilarity) is therefore crucial. In the following we



will introduce the ones used in our study, together with theMean Windows Max (2-lag) Cross Correlation
motivations.

The first two distances that we employ are the L1 and CCreanw2(P,q) = 1z:CCQ(W,-(p),wi(q)) 9
the L2 norms (i.e. the Manhattan and the Euclidean distances 7o

respectively). These are very common distances, widely ap-

plied in the Pattern Recognition community, and also specifMax Windows Max (2-lag) Cross Correlation

ically in the energy domains (as basis for clustering, as in
[15]). Given two profile representations = [z1, ..., z,,] and CCMazw2(P,q) = ax }002(Wi(p)7wi(q)) (10)
¥ = [y1, ..., yn], they are defined as follows: ! :

where wy(-),...,w,(-) are all possible overlapped sub-

L1 norm (Manhattan distance) windows lasting 4 hours extracted for a given profile.

Ll(x,y) = Z |25 — il (4)  Hidden Markov Model-based Bayesian classificationThis
p scheme is a classical Bayesian scheme, based on Hidden
Markov Models, a probabilistic approach whose usefulness h
L2 norm (Euclidean distance) been successfully applied in many different pattern reitmgn

scenarios. More in detail, a discrete-time first order HMM][1
is a probabilistic model that describes a stochastic segtien
L2(x,y) = Y (2 —yi)? () O = (01,0,,...,07) as being an indirect observation
i of a hidden Markovian random sequence of stafgs=
(@1, Q2,..., Qr),wherefort =1,...,.T,Q; € {1,2,...,N}
While these two distances make sense for all the represefithe set of states). Each state has an associated propabilit
tations, we also investigate some other measures spdyificaffunction that specifies the probability of observing eachspo
designed for the time signal representation, based on thle symbol, given the state. A HMM is thus fully specified by
concept of signal correlation [20], a standard and well igpl @ Set of parameter = {A, B, w} where A = (a;;) is the
method to compare time series. The first is the standarffansition matrix, i.e.q;; = P(Q;=j| Q-1 =1); © = (m) Is

Zero Lag Cross Correlation, which, given two profilps=  the initial state probability distribution, i.ex; = P(Q1 =1),
p1y.pr andq = qi, ..., g7, is defined as: and B = (b;) is the set of emission probability functions. In
our case, since the observations are continuous, we askame t
Zero Lag Cross Correlation eachb; is a Gaussian probability density function (leading to
S ) the so called Continuous Gaussian HMM).
CCo(p,q) = W (6) The training of the model, given a set of sequenpe® },

is usually performed using the standard Baum-Welch re-

. . estimation technique [18], which determines the pararseter
The second class of correlation measures is based on tt@g B, ) that maximize the probability?({0®}|A). The

assumption that activities for a user in different days maygya1uation step, i.e. the computation of the log probapilit
not be completely overlapped, but there can be a small Iag)g P(o|)), given a mode and a sequenceto be evaluated,

(consider for_examplg when people have dinner). In ord_e[S performed using théorward-backward procedurd8].
to capture this behaviour, we compute the cross correlation

measure by allowing 1 and 2 time steps of lag, retaining at Given a C-class problem, the standard classification
the end the maximum of the correlations. This reasoningsleadscheme (i.e. the Bayes rule) is realized in the following way

to the following two measures: for every class:, a HMM A, is trained, using only the training
. sequences belonging to such class — obtaining at the endtthe s
Max (1-lag) Cross Correlation of C models\1, ..., Ac. Then, in the testing phase, an unknown
sequenc® = (o1, ..., or) is assigned to the class whose model
CCi(p,q) = max 2P - (45 +m)) (7)  shows the highest likelihood (assigning to each class tiesa
me{~1,0,1} Ipllall prior probability), namely the label(o) is determined as
Max (2-lag) Cross Correlation {(0) = argmaxlog P(o|A.) (1)
COr(p.q) = i >i(pi - (¢ +m)) (®) ll. EXPERIMENTAL EVALUATION
me{-2,-1,0,1,2} [plllall

In this section we describe our experimental evaluation.
) _ ) First, we introduce the experimental details. Then, a |agfe

Finally, we also tried to model the fact the lags displace-of experiments are presented, analysing the differenesemr-
ment in the daily activities can be differently displace®oVv (aiions and the different classification schemes. Subsgigue
the day: in order to capture this behaviour we repeated the, 4nalysis of the scaling capabilities of the methods will
computation of the Max 2-lag cross correlation (as definedye gescribed. A final experiment, aimed at investigating the

before) in small overlapping windows of 4 hoqrs (with an possible aggregation of more days, is finally proposed.
overlap of two hours) — this allows to best align differenttpa

of the day — taking at the end the mean or the max value. IN 2we adopt the common convention of writing stochastic vargbigth
formula: upper case and realizations thereof in lower case.




. . TABLE . RESULTS ON THE DATASET WITH100SUBJECTS
A. Empirical details

Nearest Neighbor Classifiers

The dataset is derived from data typically employed in the

K . r Representation Classifier norm AUC
collective energy purchasing domain, where energy congime : -
. Time Rep. L1 + Nearest Neighbor 0.855
form groups to purchase energy at better prices [21]. In more .

. . X ime Rep. L2 + Nearest Neighbor 0.798
detail, a profile records the energy consumption of a hoddeho Time Rep. C'Cy + Nearest Neighbor 0725
at fixed intervals (every half hour in our case) collectedsrov Time Rep. CC; + Nearest Neighbor 0.752
a month in 2009, from different households in UK. Please  tine rep. CC» + Nearest Neighbor 0.755
note that all profiles are recorded during the same month, fime rep. CChrteanwa + Nearest Neighbor 0.780
in order to avoid the possible presence of discriminative  Time Rep. CCrrawwa + Nearest Neighbor 0.699
information derived from seasonality and not from person- ~ smoothed Time Rep. L1 + Nearest Neighbor 0.868
specific characteristics. Examples of profiles (from défer Smoothed Time Rep. L2 + Nearest Neighbor 0.839
users and relative to different days) are displayed in Fig. 1 Smoothed Time Rep. CCo+ Nearest Neighbor 0.759

Smoothed Time Rep. CC;+ Nearest Neighbor 0.766

Smoothed Time Rep. CC>+ Nearest Neighbor 0.763
,\_,\_/\/\_/-\_/\/‘\ ,«,.M-/\./\_ M Smoothed Time Rep. CChaseanwat Nearest Neighbor 0.781
Smoothed Time Rep. CChsq.wa+ Nearest Neighbor 0.749
I/\\_\_h/\"\ W\nz\ M Frequency Rep. L1 + Nearest Neighbor 0.848
Frequency Rep. L2 + Nearest Neighbor 0.845

- “\ M Load Shape Indexes L1 + Nearest Neighbor 0.722

Load Shape Indexes L2 + Nearest Neighbor 0.722

l\ _L\ MA,_'\A/\ M HMM based Bayesian classifiers

Representation Classifier norm AUC
AM-\J\'H W M Time Rep. HMM + Bayes Rule 0.927

Smoothed Time Rep. HMM + Bayes Rule 0.905
A AL MMA/JV\«M/\ _,_,\,M\,___ experiments. As for the smoothing of the raw load profile

(when used), we employ a simple Gaussian filtering, with
_ _ _ _ _ sigma varying in the range [0.6 - 2.2]. We compute the
E\'/%rl-ro V?‘ég‘ri;:]osf'fziifzr‘ggt %ﬂ“m” contains profiles from zedsifit user;  CMC curves for all the parametrizations and all classifarati

y v schemes, reporting the normalized Area Under the Curve

In all experiments, in order to maintain separated trainindMUC) in table I. As a general comment, we can observe
and testing sets, we used the first 14 days for training théhat the system works reasonably well, reaching in the best
system, testing it with the remaining 15 days. Instead opgim €@S€ an NAUC of 0.927 — quite high nAUC if we consider that
computing classification errors, we computed the more expre W aré dealing with a behavioral biometrical trait. Conaggn

sive Cumulative Match Curve (CMC), a common performancef€ two classification approaches, it seems evident that the
measure in the field of biometrics [22]: given a test prof”e’Bayeman scheme outperforms the nearest neighbor rulleisin t

we compute its proximity to all the users. The curve thenC@Se, the leaming phase present in the HMM scheme seems to
tells the rate at which the correct user is found within theP€ €ssential to capture and model the unique characteretic
first k matches (namely within the figt nearest users), with €Very user. Nonetheless, also the NN rule works quite well,
all possiblek spanned on the x-axis. An useful measure tha€SPecially with L1 and L2 measures for the Time and the
can be extracted from the CMC is the normalized Area Undegrequency representations. On the contrary, the comelati

,N

the Curve (NAUC), which, as in the ROC curve, represents a ased measures do not work as well as the others: probably the

aggregate measure able to express how good is the recagnitiffeXibility introduced by the different versions capturesne
rate (the higher the better). the variations between classes rather than the intractess o

In all the experiments HMM training has been performed Concerning representations, we h_ave to notice th_at Load
using the standard Baum-Welch procedure, stopping aﬁ&hape Indexes represent a poor choice: it seems ewdent that
likelihood convergence. Initialization has been carried, as  thiS representation, which was adequate for clustering and
in many applications involving Continuous Gaussian HMM, 9eneral data-mining [14], [19], is not very informative whe
with a clustering based on Gaussian mixture models. Th&Ying to identify the differences between users. As a final
number of states, which represents the free parameter of tH8Mark, it is important to observe that smoothing the signal
model, has been set in an automatic way starting only fron z_ilmost always beneﬂqa_l in all the versions of the Nearest
the training data, following the procedure described in[23 Neighbor rule, whereas it is not for the HMM scheme.

B. Experiment 1: different variants of the scheme C. Experiment 2: scalability

As a first set of experiments we analysed a dataset con- In this section we tried to investigate whether the proposed
taining 100 different users, investigating the differeapne-  strategies scale well with the number of users, i.e. if the
sentations and the different variants of the two classificat performances do not significantly degrade when increasing
schemes. Here our main goal is to investigate the best conhe dataset size. In particular we selected from the results
figuration for both schemes, to be used in the subsequeif the previous experiment the best configurations for both



TABLE II. RESULTS ON THE DATASET WITH INCREASING NUMBER OF

SUBJECTS 0.868 to 0.941, whereas it increases from 0.927 to 0.971

for the HMM-based scheme. In the former case, the best

Classes  Nearest Neighbor Scheme HMM Bayesian Scheme improvement is obtained while averaging different signals
;gg 2'222 g-ziz whereas in the second case the best improvement is obtained

while concatenating. This is somehow expected: the NN rule

300 0.860 0.932 strongly depends on the goodness of single instances (since
400 0.860 0.929 the comparison is pairwise), which is possibly enriched and
improved via the averaging operation — some instance specifi
TABLE III. R ESULTS ON THE DATASET WITH INCREASING NUMBER OF noise may be removed; the HMM-scheme, on the contrary,
DAYS CONSIDERED FOR EVERY SUBJECT is able to build a model by simultaneously considering all
Days Scheme 100 classes 200 classes the training sequences, thus being less sensitive to tree noi
Aver.  Concat.  Aver.  Concat. of the single profile. On the contrary, such scheme can suffer
1 L1+NN 0868 0.868 0.866  0.866 from the lower cardinality of the training set which is oloiadl
1 HMM 0.927 0927 0931  0.931 when averaging: this is confirmed by the experiments, where
2 LL+NN 0893 0876 0888 0872 the concatenation approach largely outperforms the awveyag
2 HMM-Bayes 0.906 0945 0905  0.948 scheme.
2 H;lMTBgses %Z?l %27523 %2?)15 %ZZ% To provide a clearer idea of _the _performances of the
7 T+NN 092l 0886 0915 0878 proposed approach, we reported in Fig. 2 the CMC curves
4 HMM-Bayes 0893 0957 0897  0.965 for the different configurations, using the averaging sahem
5 1+NN 0927 0875 0920 0866 and the L1 distance for the Nearest Neighbor rule and the
5 HMM-Bayes 0905 0960 0902  0.967 concatenation scheme for the HMM-based approach. From the
6 [1+NN 0939 0872 0937 0875 figure it is possible to note the full potentials of the progabs
6 HMM-Bayes 0900 0971 0904  0.972 trait: using just one day, in the 89.4% of the cases we can
7 LL+NN 0941 0892 0933 0877 correctly identify a given subject in the first 20 answershef t
7 HMM-Bayes 0.910 0963 0901  0.970 HMM-based rule. Such rate increases if we aggregate more

days, in particular reaching 94.5% when using 7 days. This
is even more interesting considering that a random classifie
o ~would have a recognition rate of 0.2. The same interesting
the classification schemes: L1 norm on the Smoothed Timgehaviour can be observed for the experiment with 200 cdasse

Representation (for the nearest neighbor scheme) and thgere the random classifier would have a recognition rate of
HMM scheme on the original Time Representation. Then wey 1)

tested the two configurations with 200, 300 and 400 subjects.
Results are reported in Table Il. For sake of clarity we also
reported the results obtained with 100 subjects. As can be
noted from the table, the performance of the classificationThis paper investigated the possibility of identifying tse

schemes do not vary significantly when increasing the databa by monitoring their load profiles. The analysis was carried

IV. CONCLUSIONS AND FUTURE WORK

size. out over a significant data set of 400 users, by applying
different types of representation and two different cliéssiion
D. Experiment 3: enlarging the biometric trait schemes: one based on the Nearest Neighbour rule with

) ) ) ] ) ) different proximity measures and one based on Hidden Markov

The main goal for this experiment is to investigate themodels. The results clearly show that load profiles can be
possibility of aggregating more days to characterize everyonsidered as a distinctive biometric behavioural ¥rait our

user: in particular we perform experiments by consideriag aview, this is a very encouraging result that opens up several
a biometrical trait X consecutive days (with X ranging from 2 possibilities for further investigations of such noveltitistive

to 7). The rationale behind this is that energy consumptaom ¢ trajt, not only in biometrics but more in general for usertcien
significantly vary across different days of the week (e.@ek¢  applications.

days or week-ends). Given X days, we consider two simple
ways to aggregate them: averaging them, thus obtainingnagai
a T-dimensional profile, and concatenating them, obtairing _ o o
X times T long load profile. In the first case we are removing [1] AA-CJ,\"/’I‘”:; 'I- Z'3°”r?' a;‘d S. ';g”';%”t; E"’Z”Sgg'c identificati” Commun.
some noise / attenuating intraclass variation, while inshe- W VO 23, NO. 2, pp. SU=E8, Fen., 2L _
ond case we can consider a richer set of (possibly noisy) data[z] S. Li and A. Jain,Handbook of Face Recognition Springer, 2005.
To run the experiments we used the dataset with 100 subject®’] Eﬁr']‘{'?'etgggnﬁi'o';";'ga é'dJa'g'p ﬁﬂge?' ;ggghak“a”dboo" of Finger-
and the one with 200 subjects selecting, as in the previou ) ' § L .

. . - . 14] M. Burge and K. BowyerHandbook of Iris Recognition Springer,
section, the best configuration as suggested by the previou 2013
experiments: thg nearest nelghbo'r scheme with the L1 norm o 5] A Abaza, A. Ross, C. Hebert, M. Harrison, and M. Nixon, $arvey
the SmQOthe_d Time Representatlon and the HMM scheme on ~  on ear biometrics ACM Comput. Suryvol. 45, no. 2, pp. 22:1-22:35,
the original Time Representation. Results are reportecbiel 2013.
Il (for sake of clarity we also reported results with 1 da&s

f SN . SActually, it would be really interesting to investigate hawbust is the

we can see, there is a beneficial impact in the performanc%%posed approach with respect to the seasonability — is anti@ned on

obtained when aggregating more days. In partic_ular, With 10 spring profiles usable also for Summer profiles? Unfortunagelghe moment
users, the nAUC of Nearest Neighbor scheme increases frome do not have data permitting such evaluation.
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