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Abstract

We consider testing the null hypothesis of no spatial correlation against

the alternative of pure first order spatial autoregression. A test statistic based

on the least squares estimate has good first-order asymptotic properties, but

these may not be relevant in small or moderate-sized samples, especially as

(depending on properties of the spatial weight matrix) the usual parametric

rate of convergence may not be attained. We thus develop tests with more

accurate size properties, by means of Edgeworth expansions and the bootstrap.

Though the least squares estimate is inconsistent for the correlation parameter,

we show that under quite general conditions its probability limit has the correct

sign, and that least squares testing is consistent; we also establish asymptotic

local power properties. The finite-sample performance of our tests is compared

with others in Monte Carlo simulations.
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Keywords: Spatial Autocorrelation; Ordinary Least Squares; Hypothesis Test-
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1 Introduction

The modelling and analysis of spatially correlated data can pose significant

complications and difficulties. Correlation across spatial data is typically a pos-

sibility, due to competition, spillovers, aggregation and other circumstances, and

might be anticipated in observable variables or in the unobserved disturbances

in an econometric model, or both. In, for example, a linear regression model

with exogenous regressors, if only the regressors are spatially correlated the

usual rules for large sample inference (based on least squares) are unaffected.

However, if also the disturbances are spatially correlated then though the least

squares estimate (LSE) of the regression coefficients is likely to retain its con-

sistency, its asymptotic variance matrix reflects the correlation. This matrix

needs to be consistently estimated in order to carry out statistical inference,

and its estimation (whether parametric or nonparametric) offers greater chal-

lenges than when time series data are involved, due to the lack of ordering in

spatial data, as well as possible irregular spacing or lack of reliable information

on locations. In addition the LSE is rendered asymptotically inefficient by spa-

tial correlation, and developing generalized least squares estimates is similarly

beset by ambiguities.

A sensible first step in data analysis is therefore to investigate whether or

not there is evidence of spatial correlation, by carrying out a statistical test of

the null hypothesis of no spatial correlation. A number of such tests have been

developed, see e.g. Burridge (1980), Cliff and Ord (1981), Lee and Yu (2012),

Kelejian and Prucha (2001), Li et al (2007), Martellosio (2012), Moran (1950),

Pinkse (2004). A number of them have been directed against the (first-order)

spatial autoregression (SAR). For simplicity we stress the case of zero mean

observable data, and will also allow for an unknown intercept, but our work can

be extended to test for lack of spatial correlation in unobservable disturbances in

more general models, such as regressions. Given the n×1 vector of observations

y = (y1, ..., yn)
′
, the prime denoting transposition, the SAR model is

y = λWy + ε, (1.1)

where ε = (ε1, ..., εn)
′

consists of unobservable, uncorrelated random variables

with zero mean and unknown variance σ2, λ is an unknown scalar, and W is an

n×n user-specified “weight” matrix, having (i, j)-th element wij , where wii = 0

for all i and (in order to identify λ) normalization restrictions may be applied.
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Such restrictions imply that in general each element wij changes as n increases,

implying that W, and thus y, form triangular arrays (i.e. W = Wn = (wijn),

y = yn = (yin)) but we suppress reference to the n subscript. The element

wij can be regarded as a (scaled) inverse economic distance between locations

i and j, where symmetry of W is not necessarily imposed. Thus knowledge

of actual locations is not required, extending the applicability of the model

beyond situations when they are known, and entailing simpler modelling and

theory than is typically possible when one attempts to incorporate locations of

irregularly spaced geographical observations.

The null hypothesis of interest is

H0 : λ = 0, (1.2)

whence the yi are uncorrelated (and homoscedastic). An obvious statistic for

testing (1.2) is the statistic based on the LSE λ̂ of λ, which is given by

λ̂ =
y′Wy

y′W ′Wy
. (1.3)

Due to the dependence between right-hand side observables and disturbances

in (1.1), λ̂ is inconsistent for λ, as discussed by Lee (2002). However, λ̂ does

converge in probability to zero when λ = 0, so a test for (1.2) based on λ̂ might

be expected to be asymptotically valid. In particular, under (1.1), (1.2) and

regularity conditions a central limit theorem for independent non-identically

distributed random variables gives[
tr (WW ′) /

{
tr
(
W 2 +WW ′

)}1/2]
λ̂→d N (0, 1), (1.4)

as n→∞. Since the square-bracketed norming factor can be directly computed,

asymptotically valid tests against one-sided (λ > 0 or λ < 0) or two-sided

(λ 6= 0) hypotheses are readily carried out.

The accuracy of such tests is dependent on the magnitude of n, and the nor-

mal approximation might not be expected to be good for smallish n. Moreover,

under conditions described later and as shown by Lee (2004) for the Gaussian

maximum likelihood estimate (MLE) of λ, the rate of convergence in (1.4) can be

less than the usual parametric rate n1/2, depending on the assumptions imposed

on W as n increases. In particular if wij = O (1/h) is imposed, where the posi-

tive sequence h = hn can increase no faster than n, the rate is (n/h)1/2, which
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increases more slowly than n1/2 unless h remains bounded. This outcome ren-

ders the usefulness of tests based on first-order asymptotics more dubious than

in standard parametric situations.

Cliff and Ord (1971) noted that the limit distributions of tests for spatial

independence can be innacurate, and proposed an ad hoc correction. Higher-

order asymptotic expansions can offer theoretically justifiable improvements in

finite samples. Bao and Ullah (2007) derived the second-order bias and mean

square error of the Gaussian MLE of λ using a Nagar-type expansion, and Bao

(2013) gave extensions to models with exogenous regressors and non-normal dis-

turbances, but neither reference studied test statistics. Various refinements of

the Moran I/LM statistics have been presented by Cliff and Ord (1981), Terui

and Kikuchi (1994), Robinson (2008), Baltagi and Yang (2013) and Robinson

and Rossi (2013b). Validity of Edgeworth expansions for the distribution of

statistics in models involving SAR(1) processes has been established by Jin and

Lee (2012), Yang (2013). Earlier, in a quite general setting of irregularly-spaced

spatial observations, Garćıa-Soidán (1996) studied the validity of Edgeworth ex-

pansions for studentized and unstudentized estimates of a scalar parameter, ex-

tending work Götze and Hipp (1983) for mixing time series to coverage processes

defined on an expanding subset of <k, under the assumption of exponentially

decaying correlations.

Here we develop tests derived from Edgeworth expansion of the cumulative

distribution function (cdf) of λ̂, which unlike the MLE is advantageously explic-

itly defined. The cdf of λ̂ can be computed by simulation or other numerical

techniques, while bootstrap tests can be employed to match our higher-order

improvements, but our analytical approach sheds light on theoretical features

and the order of magnitude of corrections. This seems especially relevant for

the SAR model (1.1) because asymptotic theory depends on h as well as n, and

explains for example why tests against two-sided alternative can be more accu-

rate than one-sided tests. Our refined tests are justified under the assumption

of normality on the εi, but in this situation it would also be possible to develop

exact similar tests, based on ratios of quadratic forms and having certain op-

timality properties, but the same is true in many settings in which Edgeworth

refinements have been developed. Our tests are asymptotically similar, and the

consistency and asymptotic efficiency properties established later in the paper

do not rely on normality.

Formal Edgeworth expansions are established in the following section for

both λ̂ and for the LSE of an extended model that includes an unknown inter-
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cept. In Section 3 we deduce corrected critical values and corrected (asymptoti-

cally normal) test statistics and their properties against both one- and two-sided

alternatives. Section 4 compares finite sample performance of our tests with

bootstrap and Lagrange multiplier (LM) tests, and also compares Edgeworth

approximations to the cdf with numerical calculations. The simple test based on

(1.4) generally performs worse than the others, but Section 5 shows that under

quite general conditions it is consistent against fixed alternatives, indeed the

asymptotically biased λ̂ actually exaggerates spatial dependence, while against

local alternatives the left side of (1.4) has the same limit disribution as both the

LM statistic and the Wald statistic based on the MLE, so it is efficient. Some

final comments are offered in Section 6. Proofs are left to an appendix.

2 Edgeworth expansions for the least squares

estimate

The present section develops a (third-order) formal Edgeworth expansion for

λ̂ (1.3) under the null hypothesis of no spatial correlation (1.2). We introduce

some assumptions.

Assumption 1 The εi are independent normal random variables with mean

zero and unknown variance σ2.

Normality is an unnecessarily strong condition for the first-order result (1.4),

but it provides some motivation for stressing a quadratic form objective function

and is familiar in higher-order asymptotic theory. Edgeworth expansions and

resulting test statistics are otherwise complicated by the presence of cumulants

of εi. Assumption 1 implies that under (1.2) the yi are spatially independent.

For a real matrix A, let ||A|| be the spectral norm of A (i.e. the square root

of the largest eigenvalue of A′A) and let ||A||∞ be the maximum absolute row

sums norm of A (i.e. ||A||∞ = max
i

∑
j

|aij |, in which aij is the (i, j)th element

of A and i and j vary respectively across all rows and columns of A). Let K be

a finite generic constant.

Assumption 2

(i) For all n, wii = 0, i = 1, ....., n.
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(ii) For all sufficiently large n, W is uniformly bounded in row and column

sums in absolute value, i.e. ||W ||∞ + ||W ′||∞ ≤ K

(iii) For all sufficiently large n, uniformly in i, j = 1, ..., n, wij = O(1/h),

where h = hn is a positive sequence bounded away from zero for all n such

that h/n→ 0 as n→∞.

Parts (i) and (ii) of Assumption 2 are standard conditions on W imposed

in the literature. In particular, (ii) was introduced by Kelejian and Prucha

(1998) to keep spatial correlation manageable. If W is symmetric with non-

negative elements and row normalized, such that Σnj=1wij = 1 for all i, then

Assumption 2(ii) is automatically satisfied. Part (iii) covers two cases which

have rather different implications for our results: either h is bounded (when in

(1.4) λ̂ enjoys a parametric n1/2 rate of convergence), or h is divergent (when

λ̂ has a slower than parametric, (n/h)1/2, rate).

By way of illustration consider (see Case (1991)),

Wn = Ir ⊗Bm, Bm =
1

m− 1
(lml

′
m − Im), (2.1)

where Im is the m ×m identity matrix, lm is the m × 1 vector of 1’s, and ⊗
denotes Kronecker product. Here W is symmetric with non-negative elements

and row normalized, n = mr. Parts (i) and (ii) of Assumption 2 are satisfied,

and h ∼ m, where “∼” throughout indicates that the ratio of left and right

sides converges to a finite, nonzero constant. Thus in the bounded h case only

r →∞ as n→∞, whereas in the divergent h case m→∞ and r →∞.

Now define

tij =
h

n
tr(W iW

′j), i ≥ 0, j ≥ 0, i+ j ≥ 1, (2.2)

t =
h

n
tr((WW ′)2). (2.3)

Under Assumption 2 all tij in (2.2) and t are O(1) (because, for any real A such

that ||A||∞ ≤ K, we have tr(AW ) = O(n/h) ). To ensure the leading terms of

the expansion in the theorem below are well defined, we introduce

Assumption 3

lim
n→∞

(t20 + t11) > 0. (2.4)
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By the Cauchy inequality, Assumption 3 implies limn→∞t11 > 0, and the

two conditions are equivalent when W is symmetric or when its elements are

all non-negative. Assumption 3 is automatically satisfied under (2.1). It follows

from Assumptions 2 and 3 that in (1.4) the norming factor

tr(WW ′)

(tr(W 2 +WW ′))1/2
=

t11
(t20 + t11)1/2

(n
h

)1/2
∼
(n
h

)1/2
. (2.5)

Now define

a =
t11

(t20 + t11)1/2
, b =

t21
(t20 + t11)1/2t11

, c =
2t30 + 6t21

(t20 + t11)3/2
, (2.6)

d =
t

t211
, e =

12(t31 + t22)

(t20 + t11)t11
, f =

6t40 + 24t31 + 6t22 + 12t

(t20 + t11)2
, g =

1

t20 + t11
(2.7)

and

U(ζ) = 2bζ2 − c

6
H2(ζ), (2.8)

V (ζ) =
1

6
(e−6bc)ζH2(ζ)−(d−6b2)ζ3− 1

24
fH3(ζ)+

1

3
bcζ2H3(ζ)−2b2ζ5, (2.9)

where Hj(ζ) is the jth Hermite polynomial, such that

H2(ζ) = ζ2 − 1 H3(ζ) = ζ3 − 3ζ. (2.10)

Thus U(ζ) is an even, generally non-homogeneous, quadratic function of ζ, while

V (ζ) is an odd, generally non-homogeneous, polynomial in ζ of degree 5.

Write Φ(ζ) = Pr(Z ≤ ζ) for a standard normal random variable Z, and φ(ζ)

for the probability density function (pdf) of Z. Let F (ζ) = P
(

(n/h)1/2aλ̂ ≤ ζ
)
.

Theorem 1 Let (1.1) and Assumptions 1-3 hold. Under H0 in (1.2), for any

real ζ, F (ζ) admits the third order formal Edgeworth expansion

F (ζ) = Φ(ζ) + U(ζ)φ(ζ)

(
h

n

)1/2

+ V (ζ)φ(ζ)
h

n
+O

((
h

n

)3/2
)
, (2.11)

where

U(ζ) = O(1), V (ζ) = O(1), (2.12)

as n→∞.

Generally, U(ζ) and V (ζ) are non-zero, whence there are leading correction
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terms of exact orders (h/n)1/2 and h/n, and both terms are known functions of

ζ.

A corresponding result to Theorem 1 is available for the pure SAR model

with unknown intercept, i.e.

y = µl + λWy + ε, (2.13)

where µ is an unknown scalar and l = ln. The LSE of λ in (2.13) is

λ̃ =
y′W ′Py

y′W ′PWy
, (2.14)

where P = In − ll′/n. Under (1.2), the same kind of regularity conditions and

the additional

Assumption 4 For all n, Σnj=1wij = 1, i = 1, ..., n,

λ̃ has the same first-order limit distribution as λ̂, so (1.4) holds with λ̂ replaced

by λ̃. However the second- and higher-order limit distributions differ. In case

Assumption 4 is not satisfied also the first-order limit distribution of λ̃ under

(1.2) differs from that of λ̂ and, in particular, λ̃ converges to the true value at

the standard n1/2 rate whether h is bounded or divergent as n→∞. Since the

main goal of this paper is to provide refined tests when the rate of convergence

might be slower than the parametric rate n1/2, the case of model (2.13) when

W is not row-normalized is not considered here.

Define

Ũ(ζ) = U(ζ) + g1/2 (2.15)

and

Ṽ (ζ) =V (ζ) +

{
g

2
(1 + p) + 2bg1/2 − g4

2

}
ζ − 2bg2ζ3 +

cg1/2

6
H3(ζ), (2.16)

where

p = l′WW ′l/n. (2.17)

(WhenW is symmetric Assumption 4 implies p = 1). Let F̃ (ζ) = P ((n/h)1/2aλ̃ ≤
ζ).

Theorem 2 Let (2.13) and Assumptions 1-4 hold. Under H0 in (1.2), for any
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real ζ, F̃ (ζ) admits the third order formal Edgeworth expansion

F̃ (ζ) = Φ(ζ) + Ũ(ζ)φ(ζ)

(
h

n

)1/2

+ Ṽ (ζ)φ(ζ)
h

n
+O

((
h

n

)3/2
)
, (2.18)

where

Ũ(ζ) = O(1), Ṽ (ζ) = O(1), (2.19)

as n→∞.

The second- and third-order correction terms are again generally non-zero,

and of orders (h/n)1/2 and h/n respectively. Notice that Ũ(ζ) > U(ζ), so

the second-order approximate distribution function (df) of λ̃ is greater than

that of λ̂. The Edgeworth approximation in (2.18) is unaffected by µ (and the

approximations in both (2.11) and (2.18) are unaffected by σ2). Consequently

results can be similarly obtained when there is a more general linear regression

component than in (2.13), at least when regressors are non-stochastic or strictly

exogenous. Indeed, similar techniques will yield approximations with respect to

the model y − µl = λW (y − µl) + ε, or more general linear regression models

with SAR disturbances.

Theorems 1 and 2 continue to hold after replacing ε in (1.1) by w = f(ε)ε,

for almost surely nonzero, scalar functions f (so in general the elements of w

form a triangular array). For example, if f(ε) =
(
σ2n/ε′ε

)1/2
the elements

of w have zero mean and variance σ2 and are uncorrelated, but they are not

independent, indeed having a singular distribution for each n (as therefore do

the observations yi), being uniformly distributed on the n−sphere with radius(
σ2n

)1/2
.

3 Improved tests for no spatial correlation

We consider first tests of the null hypothesis (1.2) against the alternative

H1 : λ > 0 (3.1)

in the no-intercept model (1.1).

For α ∈ (0, 1) (for example α = 0.05 or α = 0.01) define the normal critical

value zα such that 1− α = Φ(zα). Write q = (n/h)1/2aλ̂. On the basis of (1.4)
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a test that rejects (1.2) against (3.1) when

q > zα (3.2)

has approximate size α. Theorem 1 readily yields more accurate tests that are

simple to calculate because the coefficients of U(ζ) and V (ζ) are known, W

being chosen by the practitioner.

Define the exact critical value wα such that 1 − α = F (wα), so a test that

rejects when q > wα has exact size α. Also introduce the Edgeworth corrected

critical value

uα = zα −
(
h

n

)1/2

U(zα). (3.3)

Corollary 1 Let (1.1) and Assumptions 1-3 hold. Under H0 in (1.2), as n→∞

wα =zα +O

((
h

n

)1/2
)

(3.4)

=uα +O

(
h

n

)
. (3.5)

Corollary 1 follows follows immediately from Theorem 1. From Corollary 1,

the test that rejects (1.2) against (3.1) when

q > uα (3.6)

is more accurate than (3.2). Of course when the alternative of interest is λ < 0,

the same conclusion can be drawn for the tests which reject when q < −zα,

q < −uα, respectively.

Instead of correcting critical values we can derive from Theorem 1 a corrected

test statistic that can be compared with zα. Introduce the polynomial

G(ζ) = ζ +

(
h

n

)1/2

U(ζ) +
h

n

1

3

(
2b− c

6

)2
ζ3 (3.7)

which has known coefficients (see Yanagihara et al. (2005)). Since G(ζ) has

derivative (1 + ζ(2b− c/6)(h/n)1/2)2 > 0, it is monotonically increasing. Thus

F (ζ) = P (G(q) ≤ G(ζ)) and we invert the expansion in Theorem 1 to obtain

10



Corollary 2 Let (1.1) and Assumptions 1-3 hold. Under H0, as n→∞

P (G(q) > zα) = α+O

(
h

n

)
. (3.8)

Thus the test that rejects when

G(q) > zα (3.9)

has size that differs from α by smaller order than the size of (3.2).

Still more accurate tests can be deduced from Theorem 1 by employing also

the third-order correction factor V (ζ), but the above tests have the advantage

of simplicity. The V term, however, is especially relevant in deriving improved

tests against the two-sided alternative hypothesis

H0 : λ 6= 0. (3.10)

Because U(ζ) is an even function it follows from Theorem 1 that

P (|q| ≤ ζ) = 2Φ(ζ)− 1 + 2
h

n
V (ζ) +O

((
h

n

)3/2
)
. (3.11)

Thence define the Edgeworth-corrected critical value for a two-sided test,

vα/2 = zα/2 −
n

h
V (zα/2), (3.12)

noting that the approximate size-α two-sided test based on (1.4) rejects H0

against (3.10) when

|q| > zα/2. (3.13)

Also, define sα/2 such that P (|q| ≤ sα/2) = 1− α.

Corollary 3 Let (1.1) and Assumptions 1-3 hold. Under H0, as n→∞

sα/2 = zα/2 +O

(
h

n

)
(3.14)

= vα/2 +O

((
h

n

)3/2
)
. (3.15)
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Thus rejecting (1.2) against (3.10) when

|q| > vα/2 (3.16)

rather than (3.13) reduces the error to O((h/n)3/2). In fact, Theorem 1 can be

established to fourth-order, with fourth-order term that is even in ζ, and error

O((h/n)2), so the error in (3.15) can be improved to O((h/n)2).

As with the one-sided alternative (3.1), a corrected test statistic that can be

compared with zα/2 can be derived from Theorem 1. Define (Yanagihara et al.

(2005))

L(ζ) = ζ +
h

n
V (ζ)

+

(
h

n

)2
1

4

(
L2
1ζ +

L2
2ζ

5

5
+
L2
3ζ

9

9
+

2

3
L1L2ζ

3 +
2

5
L1L3ζ

5 +
2

7
L2L3ζ

7

)
,

(3.17)

where L1 = − 1
6 (e − 6bc) + 1

8f , L2 = 1
2 (e − 6bc) − 3(d − 6b2) − 1

8f − 3bc and

L3 = 5
3bc− 10b2, so L(ζ) is a degree-7 polynomial in ζ with known coefficients.

It is readily checked that V (ζ) has derivative L1 + L2ζ
2 + L3ζ

4, where L(ζ)

has derivative (1 + (h/n)(L1 +L2ζ
2 +L3ζ

4)/2)2 > 0 and is thus monotonically

increasing. Therefore, from (3.11), we obtain

Corollary 4 Let (1.1) and Assumptions 1-3 hold. Under H0, as n→∞

P (L(|q|) > zα/2) = α+O

((
h

n

)3/2
)
. (3.18)

The transformation in (3.17) and Corollary 4 follow from (3.11) using a

minor modification of Theorem 2 of Yanagihara et al. (2005). From the latter

result, we conclude that the test that rejects H0 against (3.10) when

L(|q|) > zα/2 (3.19)

has size which is closer to α than (3.13).

Improved tests can be similarly derived from Theorem 2 for the intercept

model in (2.13). We first consider tests of H0 in (1.2) against (3.1). Let q̃ =

(n/h)1/2aλ̃. A standard test based on first order asymptotic theory rejects (1.2)
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against (3.1) at approximate level α when

q̃ > zα. (3.20)

Define the exact and Edgeworth-corrected critical values w̃α, such that 1−α =

F̃ (w̃α), and ũα = zα − Ũ(zα)(h/n)1/2 = uα − g1/2(h/n)1/2, respectively.

Similarly to Corollaries 1 and 2, from Theorem 2 we deduce

Corollary 5 Let (2.13) and Assumptions 1-4 hold. Under H0 in (1.2), as

n→∞

w̃α = zα +O

((
h

n

)1/2
)

(3.21)

= ũα +O

(
h

n

)
. (3.22)

Notice that ũα < uα for any α, so that the second-order corrected critical

value is lower for the intercept model.

Let

G̃(ζ) = ζ +

(
h

n

)1/2

Ũ(ζ) +
h

n

1

3

(
2b− c

6

)2
ζ3 = G(ζ) +

(
h

n

)1/2

g1/2. (3.23)

Corollary 6 Let (2.13) and Assumptions 1-4 hold. Under H0 in (1.2), as

n→∞
P (G̃(q̃) > zα) = α+O

(
h

n

)
. (3.24)

Thus, tests that reject (1.2) against (3.1) when either

q̃ > ũα (3.25)

or

G̃(q̃) > zα, (3.26)

are more accurate than (3.20).

Also, from Theorem 2 improved tests of (1.2) against (3.10) can be deduced.
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From (2.18), since Ũ(ζ) is an even function we obtain,

P (|q̃| ≤ ζ) = 2Φ(ζ)− 1 + 2
h

n
Ṽ (ζ) +O

((
h

n

)3/2
)
. (3.27)

Define s̃α/2 such that P (|q̃| ≤ s̃α/2) = 1−α and ṽα/2 = zα/2− (n/h)Ṽ (zα/2). A

standard, approximate size α, two-sided test rejects (1.2) against (3.10) when

|q̃| > zα/2. (3.28)

From (3.27) we deduce

Corollary 7 Let (2.13) and Assumptions 1-4 hold. Under H0, as n→∞

s̃α/2 = zα/2 +O

(
h

n

)
(3.29)

= ṽα/2 +O

((
h

n

)3/2
)
. (3.30)

Finally, define

L̃(ζ) = ζ +
h

n
Ṽ (ζ)

+

(
h

n

)2
1

4

(
L̃2
1ζ +

L̃2
2ζ

5

5
+
L2
3ζ

9

9
+

2

3
L̃1L̃2ζ

3 +
2

5
L̃1L3ζ

5 +
2

7
L̃2L3ζ

7

)
,

(3.31)

where L̃1 = L1 + g
2 (1 + p) + 2bg1/2 − g4

2 −
cg1/2

2 , L̃2 = L2 − 6bg1/2 + cg1/2

2 .

Corollary 8 Let (2.13) and Assumptions 1-4 hold. Under H0, as n→∞

P (L̃(|q̃|) > zα/2) = α+O

((
h

n

)3/2
)
. (3.32)

From Corollaries 7 and 8, we conclude that the tests that reject H0 against

(3.10) when either

|q̃| > ṽα/2 (3.33)
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or

L̃(|q̃|) > zα/2 (3.34)

have sizes closer to α than that obtained from (3.28).

4 Monte Carlo comparison of finite sample per-

formance

In this section we report and discuss a Monte Carlo investigation of the finite

sample performance of the tests derived in Section 3 and of bootstrap tests,

given that in many circumstances the bootstrap is known to achieve a first-

order Edgeworth correction (see e.g. Singh (1981)). We focus here on the no-

intercept model (1.1), corresponding results for the intercept model (2.13) can

be found in Robinson and Rossi (2013a). For the no-intercept model (1.1) the

bootstrap test is as follows (e.g Paparoditis and Politis (2005)). We construct

199 n× 1 vectors ε∗j for j = 1, ...., 199, where each ε∗j is obtained by resampling

with replacement from yi−
∑n

1 yi/n, i = 1, ...., n. The bootstrap test statistic is

q∗j = (n/h)1/2aε∗
′

j W
′∗
j /ε

∗′
j W

′∗
j , j = 1, ....., 199, its (1− α)th percentile being u∗α

which solves
∑199
j=1 1(q∗j ≤ u∗α)/199 ≤ 1 − α, where 1(.) indicates the indicator

function. We reject (1.2) against the one-sided alternative (3.1) when

q > u∗α. (4.1)

Defining the (1 − α)th percentile of |q∗j | as the value v∗α solving
∑199
j=1 1(|q∗j | ≤

v∗α)/199 ≤ 1− α, we reject (1.2) against the two-sided alternative (3.10) if

|q| > v∗α. (4.2)

We we also compare our tests with ones based on the (signed) square root

of the LM statistic and its mean-variance corrected version (Moran (1950), Cliff

and Ord (1981)), defined respectively as

L =
n

(tr(WW ′2))1/2
y′MWMy

y′My
(4.5)

and

CL = γ−1/2
(
y′MWMy

y′My
− β

)
, (4.6)
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where

β = − n

n− k
tr((I−M)W ), γ =

n2tr(MWMW +MWMW ′)

(n− k)(n− k + 2)
−2n2(tr((I −M)W ))2

(n− k)2(n− k + 2)
,

(4.7)

in which we take k = 0, M = I for the no-intercept model (1.1) and k = 1,

M = P for the intercept model (2.13). For the respective statistics, we reject

H0 (1.2) against (3.1) when

L > zα, (4.8)

and when

CL > zα, (4.9)

while we reject H0 (1.2) against (3.10) when

|L| > zα/2, (4.10)

and when

|CL| > zα/2. (4.11)

In the simulations we set σ2 = 1 in Assumption 1 and choose W as in

(2.1), for various m and r. Recalling that orders of magnitudes in Theorems 1

and 2 are affected by whether h diverges or remains bounded as n → ∞, we

represent both cases by different choices of m ∼ h. We choose (m, r) = (8, 5),

(12, 8), (18, 11), (28, 14), i.e. n = 40, 96, 198, 392, to represent “divergent”

h, and (m, r) = (5, 8), (5, 20), (5, 40), (5, 80), i.e. n = 40, 100, 200, 400 to

represent “bounded” h. For each of these combinations we compute λ̂ across

1000 replications. In all tests α = 0.05.

Empirical sizes are displayed in Tables 1-4, in which “normal”, “Edgeworth”,

“transformation”, “bootstrap”, “L” and “corrected L” refer respectively to tests

using the standard normal approximation, Edgeworth-corrected critical values,

Edgeworth-corrected test statistic, bootstrap critical values, LM statistic and

LM corrected statistic, and the respective abbreviations N, E, T, B, L, CL will

be extensively used in the text.

(Tables 1 and 2 about here)

Tables 1 and 2 cover one-sided tests (3.2), (3.6), (3.9), (4.1), (4.8), (4.9) in

the no-intercept model (1.1), when h is respectively “divergent” and “bounded”.

Test N is drastically under-sized for each n in both tables. The sizes for E are
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somewhat better, and improve as n increases, in particular for “divergent” h

the discrepancy between empirical and nominal sizes is 18% lower relative to N,

on average across sample size. Both T and B perform well for all n. Indeed, on

average, when h is “divergent” empirical sizes for T and B are 80% and 86%,

respectively, closer to 0.05 than those for N, with a similar pattern in Table

2. From Table 2, the average improvements offered by E, T and B over N are

about 41%, 89% and 88%, respectively. Overall, T and B perform best among

the tests based on LSE. Tables 1 and 2 are consistent with Theorem 1 in which F

converges to Φ at rate n1/2 when h is bounded, but only at rate (n/h)1/2 when

h is divergent. Indeed, for N, when h is “bounded”, the difference between

empirical and nominal size decreases by 20% as n increases from n = 40 to

n = 400, while this difference only decreases by 2% in case h is “divergent” as

n increases from n = 40 to n = 392. From Tables 1 and 2, L and CL drastically

outperform both N and E, but on average sizes for T are, respectively, 53% and

52% closer to 5% than those of L and CL when h is “divergent”. The latter

figures are 54% and 51% when h is “bounded”.

(Tables 3 and 4 about here)

Tables 3 and 4 cover two-sided tests for the no-intercept model (1.1), namely

(3.13), (3.16), (3.19), (4.2), (4.10) and (4.11). Again, N is very poor, though

contrary to the one-sided test case the problem is now over-sizing, and E, T and

B all offer notable improvements. Instead, both L and CL appear to be under-

sized. When h is “divergent” the difference between empirical and nominal sizes

is reduced respectively on average across sample sizes by 87%, 59% and 91%

for E, T and B relative to N, and by 86%, 59% and 69% when h is “bounded”.

In case h is “divergent”, L and CL are closer to the nominal 0.05 than both

T and N. However, on average E outperforms L by 37%, while CL and E are

comparable. When h is “bounded”, again L and CL perform better than N and

T, but E offers a significant improvement over both L and CL of 67% and 55%,

respectively. From Robinson and Rossi (2013a), the pattern of results for the

intercept model (2.13) is similar to that displayed in Tables 1-4.

Monte Carlo results for our tests of (1.2) against a two-sided alternative can

be compared with the LM-based Edgeworth-corrected tests derived in Robinson

and Rossi (2013b). Sizes for E and T in Tables 3 and 4 are relatively satisfac-

tory also in light of those in Robinson and Rossi (2013b). In particular, for

“bounded” h the deviation of empirical sizes for both E and T from the nomi-

nal 5% appears to be similar to that for their Edgeworth-corrected tests, while
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for “divergent” h only E has a similar performance to theirs, T only offering a

modest improvement over N. In general the Edgeworth-corrected tests in Robin-

son and Rossi (2013b) are under-sized, while from Tables 3-4 it is clear that the

problem here is over-sizing.

(Figure 1 about here)

To illustrate the effect of the transformation G(.) used in Section 3, in Fig-

ure 1 we plot the histograms with 100 bins of q and G(q) obtained from 1000

replications when m = 28 and r = 14. The figure suggests that the density of

q is very skewed to the left and that most of the skewness is removed by the

transformations, as in Hall (1992).

(Tables 5 and 6 about here)

In Tables 5 and 6 we assess power against a fixed alternative, i.e.

H1 : λ = λ̄ > 0 (4.12)

when h is “divergent” and “bounded” respectively. These are non-size-corrected

tests. Exept for the smallest sample size when h is “divergent”, even N performs

well for the largest λ̄ = 0.8, as do all other tests in all settings. N also does

comparably well to E, T and B when h is bounded and λ̄ = 0.5. But overall N is

outperformed by the other tests, with T and B offering the greatest power among

the LSE-based tests. Tables 5 and 6 suggest that T is slightly outperformed by

L and CL for almost all sample sizes considered, but the opposite holds true for

the intercept model in (2.13), as reported in Robinson and Rossi (2013a).

A direct comparison with empirical powers of corrected-tests in Robinson

and Rossi (2013b) is not possible because here we are focussing on tests of

H0 against a one-sided alternative, (4.12), while in their Monte Carlo study

empirical powers of tests of H0 against H1 : λ = λ̄ 6= 0 are reported. From

Robinson and Rossi (2013b), however, it is clear that Edgeworth-corrected tests

display similar power to that of the standard χ2 test. Thus, we might expect

that one-sided Edgeworth-corrected tests based on L would have similar power

to that of L reported in Tables 5 and 6.

Finally we calculate numerically F (ζ) for various ζ by means of Imhof’s

(1961) procedure and find that Theorem 1 approximation works fairly well.

Numerical algorithms do have limitations; Lu and King (2002) surveyed the
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numerical evaluation of the cdf of normal quadratic forms. Let

F3(ζ) = Φ(ζ) + U(ζ)φ(ζ)

(
h

n

)1/2

+ V (ζ)φ(ζ)
h

n
(4.13)

be the third-order Edgeworth corrected cdf of q. Tables 7 and 8 compare F3(ζ)

for ζ representing one- and two-sided 5% normal critical values with numerical

calculations for “divergent” and “bounded” h, respectively, and in both Tables

“Edgeworth” refers to (4.13), while “exact” refers to the numerical procedure.

(Tables 7 and 8 about here)

In Tables 7 and 8, the “exact” results confirm that F (ζ) is heavily skewed

to the left, all values being above the normal cdf ones, for all sample sizes

considered. Although skewness decreases with increasing n, F (ζ) converges

quite slowly, especially for “divergent” h, confirming the theory. For very small

n, (4.13) returns some values that slightly exceed 1, but the problem disappears

as n increases. Otherwise, the agreement between Edgeworth-corrected and

exact values in the lower tail leaves something to be desired, especially for

the intercept model (2.13) as reported in Robinson and Rossi (2013a), but it

improves quickly as n increases. In the upper tail the agreement is instead very

satisfactory, for both “divergent” and “bounded” h.

5 Consistency and local power of LSE-based test-

ing

As previously remarked, λ̂ and λ̃ are inconsistent when λ is non-zero. Therefore,

if it should be the case that p limn→∞ λ̂ < λ (> λ) when λ > 0 (λ < 0), it

might feared that for some λ p limn→∞ λ̂ = 0 as n → ∞, with the same

possibility for λ̃. Then the standard and corrected tests would be inconsistent.

The following theorem shows that under fairly general conditions the direction

of inconsistency of λ̂ and λ̃ follows the sign of λ, so that the tests are actually

consistent against fixed alternatives. We relax Assumption 1 to:

Assumption 1’ The εi are independently and identically distributed with zero

mean, variance σ2 and finite fourth moment.
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Theorem 3 Let Assumptions 1’ and 2 (i) hold, let

lim
n→∞

t11 > 0 (5.1)

with h as defined in Assumption 2 (iii), and let

lim
n→∞

‖W‖ ≤ 1 (5.2)

and

lim
n→∞

tr
(
W 2
)

tr (W ′W )
→ τ > 0. (5.3)

If also (a) W has non-negative elements for all sufficiently large n, then for all

λ ∈ [0, 1),

p lim
n→∞

λ̃ = p lim
n→∞

λ̂ = λ(1 + ξ (λ)), (1− λ)
2
τ ≤ ξ (λ) ≤ (1 + λ)

2

1− λ
, (5.4)

or if

(b) W is similar to a symmetric matrix for all sufficiently large n, then for

all λ ∈ (−1, 1)

p lim
n→∞

λ̃= p lim
n→∞

λ̂ = λ(1 + ξ(λ)),
(1− |λ|)2

1 + |λ|
τ≤ ξ (λ)≤ (1 + |λ|)2

1− |λ|
. (5.5)

The proof is in the Appendix. Both sets of conditions on W are clearly

satisfied in the case (2.1). An example of a non-symmetric W for which (b)

holds arises when an initially symmetric matrix is row-normalized. Condition

(5.3) holds automatically if W is symmetric, when τ = 1. Note that we do

not necessarily require that limn→∞ t11 exists, and that as |λ| ↑ 1 the upper

bounds for ξ (λ) tend to infinity while the lower bounds tend to zero, whereas

as λ→ 0 both bounds under condition (b) tend to 1 while under (a) the upper

and lower bounds respectively tend to 1 and τ ≤ 1. But most significantly,

for each |λ| ∈ (0, 1) the bounds are finite and positive, so the asymptotic bias

λξ (λ) of both λ̂ and λ̃ is finite and shares the sign of λ, indeed λ̂ and λ̃ tend

to exaggerate the spatial correlation. We stress that (a) rules out any negative

λ, wij , in which situation we have been unable to obtain a suitable lower bound

under simple conditions, but λ > 0 seems the case of main practical relevance

and negative λ, wij are covered under (b). Recalling that q = (n/h)1/2aλ̂,

a = t
1/2
11 (t20/t11 + 1)−1/2, it follows from (5.1) and (5.3) and Theorem 3 that
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when λ > 0, q →p ∞ as n→∞, so for (1.1) P (q > zα)→ 1, P (q > uα)→ 1 and

P (G(q) > zα) → 1 as n → ∞, while for (2.13) P (q̃ > zα) → 1, P (q̃ > ũα) → 1

and P (G̃(q̃) > zα) → 1 as n → ∞, with similar results when λ < 0 under

condition (b), and obvious implications for two-sided tests.

We now consider behaviour in the presence of local alternatives, namely

λ = λn = δ

(
h

n

)1/2

, δ 6= 0. (5.6)

Theorem 4 Let Assumptions 1’ , 2, (5.2) and (5.3) hold, and let

ω = lim
n→∞

t11 (5.7)

exist and be positive. Then as n→∞,

tr(WW ′)

(tr(W 2 +WW ′))
1/2

λ̂→d N (ω1/2(1 + τ)1/2δ, 1), (5.8)

tr(WW ′)

(tr(W 2 +WW ′))1/2
λ̃→d N (ω1/2(1 + τ)1/2δ, 1). (5.9)

Since ω(1 + τ) is the asymptotic information, it follows that the limit distri-

butions in (5.8) and (5.9) are the same as those for the Wald statistic based on

the MLE of λ and for the LM statistic, so tests based on the normal approxi-

mation for λ̂ and λ̃ are efficient.

6 Final comments

We have developed tests for lack of spatial correlation based on the LSE of the

correlation parameter λ in pure SAR and SAR with intercept, that have im-

proved higher-order properties, and compared their finite-sample performance

with other tests via Monte Carlo simulations. Though the LSE is inconsistent,

we have shown under quite general conditions that LSE-based tests are consis-

tent against fixed alternatives and locally efficient, to add to their computational

appeal. Our methods can straightforwardly extended to derive improved LSE-

based tests in models involving regressors.
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Appendix

Proof of Theorem 1

Under H0, λ̂ = ε′W ′ε/ε′W ′Wε and thus P (λ̂ ≤ x) = P (ς ≤ 0), where

ς = ε′(C+C ′)ε/2, C = W ′−xW ′W and x is any real number. We proceed much

as in, e.g., Phillips (1977). Under Assumption 1, the characteristic function (cf)

of ς is

E(e
it
2 ε
′(C+C′)ε) =

1

(2π)n/2σn

∫
<n

e
it
2 ξ
′(C+C′)ξe−

ξ′ξ
2σ2 dξ

=
1

(2π)n/2σn

∫
<n

e−
1

2σ2
ξ′(I−itσ2(C+C′))ξdξ

= det(I − itσ2(C + C ′))−1/2 =

n∏
j=1

(1− itσ2ηj)
−1/2, (A.1)

where the ηj are eigenvalues of C + C ′ and det(A) denotes the determinant of

a generic square matrix A. From (A.1) the cumulant generating function (cgf)

of ς is

ψ(t) = −1

2

n∑
j=1

ln(1− itσ2ηj) =
1

2

n∑
j=1

∞∑
s=1

(itσ2ηj)
s

s

=
1

2

∞∑
s=1

(itσ2)s

s

n∑
j=1

ηsj =
1

2

∞∑
s=1

(itσ2)s

s
tr((C + C ′)s). (A.2)

Denoting by κs the s−th cumulant of ς, from (A.2)

κ1 = σ2tr(C), (A.3)

κ2 =
σ4

2
tr((C + C ′)2), (A.4)

κs =
σ2ss!

2

tr((C + C ′)s)

s
, s > 2. (A.5)
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Let ςc = (ς − κ1)/κ
1/2
2 . The cgf of ςc is

ψc(t) = −1

2
t2 +

∞∑
s=3

κcs(it)
s

s!
, (A.6)

where

κcs =
κs

κ
s/2
2

, (A.7)

so the cf of ςc is

E(eitς
c

) = e−
1
2 t

2

exp{
∞∑
s=3

κcs(it)
s

s!
}

= e−
1
2 t

2

{1 +

∞∑
s=3

κcs(it)
s

s!
+

1

2!
(

∞∑
s=3

κcs(it)
s

s!
)2 +

1

3!
(

∞∑
s=3

κcs(it)
s

s!
)3 + .....}

= e−
1
2 t

2

{1 +
κc3(it)3

3!
+
κc4(it)4

4!
+
κc5(it)5

5!
+ {κ

c
6

6!
+

(κc3)2

(3!)2
}(it)6 + .....}.

(A.8)

Thus by Fourier inversion, formally

P (ςc ≤ z) =

z∫
−∞

φ(z)dz+
κc3
3!

z∫
−∞

H3(z)φ(z)dz+
κc4
4!

z∫
−∞

H4(z)φ(z)dz+ .... . (A.9)

Collecting the above results,

P (λ̂ ≤ x) = P (ς ≤ 0) = P (ςcκ
1/2
2 + κ1 ≤ 0) = P (ςc ≤ −κc1)

= Φ(−κc1)− κc3
3!

Φ(3)(−κc1) +
κc4
4!

Φ(4)(−κ′1) + ... . (A.10)

From (A.3), (A.4) and (A.7),

κc1 =
tr(C)

( 1
2 tr((C + C ′)2))1/2

. (A.11)

The numerator of κc1 is

tr(W )− xtr(WW ′) = −xtr(WW ′) = −n
h
xt11, (A.12)
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while its denominator is

(
1

2
tr(C + C ′)2)1/2 = (tr(W 2) + tr(WW ′)− 4xtr(W 2W ′) + 2x2tr((WW ′)2))1/2.

=
(n
h

)1/2 (
t20 + t11 − 4xt21 + 2x2t

)1/2
. (A.13)

Thus

κc1 =
−xt11(n/h)1/2

(t20 + t11 − 4xt21 + 2x2t)1/2
=

−xt11(n/h)1/2

(t20 + t11)1/2(1− 4xt21−2x2t
(t20+t11)

)1/2
. (A.14)

Choose

x =

(
h

n

)1/2
(t20 + t11)1/2

t11
ζ = (

h

n
)1/2a−1ζ, (A.15)

where a was defined in (2.6). By Taylor expansion

κc1 = −ζ
(

1− 4xt21 − 2x2t

(t20 + t11)

)−1/2
= −ζ − 2

(
h

n

)1/2
t21

t11(t20 + t11)1/2
ζ2

+
h

n

t

t211
ζ3 − 6

h

n

(
t21

(t20 + t11)1/2t11

)2

ζ3 +O

((
h

n

)3/2
)

= −ζ − 2

(
h

n

)1/2

bζ2 +
h

n
dζ3 − 6

h

n
b2ζ3 +O

((
h

n

)3/2
)
, (A.16)

where b and d were defined in (2.6) and (2.7). Then by Taylor expansion and

using

(−d/dx)jΦ(x) = −Hj−1(x)φ(x), (A.17)

we have

Φ(−κc1) = Φ

(
ζ + 2

(
h

n

)1/2

bζ2 − h

n
dζ3 + 6

h

n
b2ζ3 +O

((
h

n

)3/2
))

= Φ(ζ) +

(
2

(
h

n

)1/2

bζ2 − h

n
dζ3 + 6

h

n
b2ζ3

)
φ(ζ) + 2

h

n
b2ζ4Φ(2)(ζ) +O

((
h

n

)3/2
)

= Φ(ζ) + 2

(
h

n

)1/2

bζ2φ(ζ) +
h

n

(
−dζ3 + b2(6ζ3 − 2ζ4H1(ζ))

)
φ(ζ) +O

((
h

n

)3/2
)

= Φ(ζ) + 2

(
h

n

)1/2

bζ2φ(ζ) +
h

n

(
−dζ3 + b2(6ζ3 − 2ζ5)

)
φ(ζ) +O

((
h

n

)3/2
)
.

(A.18)
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Similarly,

Φ(3)(−κc1) = Φ(3)(ζ) + 2

(
h

h

)1/2

bζ2Φ(4)(ζ) +O

(
h

n

)
=

(
H2(ζ)− 2

(
h

h

)1/2

bζ2H3(ζ)

)
φ(ζ) +O

(
h

n

)
. (A.19)

From (A.5), (A.7),

κc3 =
tr((C + C ′)3)

( 1
2 tr((C + C ′)2))3/2

.

By standard algebra, for x defined in (A.15),

1

2
tr((C + C ′)2) =

n

h

(
t20 + t11 − 4

(
h

n

)1/2
(t20 + t11)1/2t21

t11
ζ +O

(
h

n

))

=
n

h
(t20 + t11)− 4

(n
h

)1/2 (t20 + t11)1/2t21
t11

ζ +O(1), (A.20)

tr((C + C ′)3) =
n

h

(
2t30 + 6t21 − 12

(
h

n

)1/2
(t20 + t11)1/2(t31 + t22)

t11
ζ +O

(
h

n

))

=
n

h
(2t30 + 6t21)− 12

(n
h

)1/2 (t20 + t11)1/2(t31 + t22)

t11
ζ +O(1)

(A.21)

and thus

κc3 =
n
h (2t30 + 6t21)− 12

(
n
h

)1/2
(t20 + t11)1/2(t31 + t22)t−111 ζ +O(1)(

n
h

)3/2
(t20 + t11)3/2

(
1− 4

(
h
n

)1/2
t21t
−1
11 (t20 + t11)−1/2ζ +O

(
h
n

))3/2
=

((
h

n

)1/2
2t30 + 6t21

(t20 + t11)3/2
− 12

h

n

t31 + t22
t11(t20 + t11)

ζ +O

((
h

n

)3/2
))

×

(
1 + 6

(
h

n

)1/2
t21

t11(t20 + t11)1/2
ζ +O

(
h

n

))

=

(
h

n

)1/2
2t30 + 6t21

(t20 + t11)3/2
− 12

h

n

t31 + t22
t11(t20 + t11)

ζ +
h

n

6(2t30 + 6t21)t21
(t20 + t11)2t11

ζ +O

((
h

n

)3/2
)
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=

(
h

n

)1/2

c− h

n
(e− 6bc)ζ +O

((
h

n

)3/2
)
, (A.22)

where b, c and e were defined in (2.6) and (2.7).

Similarly,

3tr((C + C ′)4) =
n

h
(6t40 + 24t31 + 12t+ 6t22) +O

((n
h

)1/2)
(A.23)

and thus

κc4 =
h

n

6t40 + 24t31 + 12t+ 6t22
(t20 + t11)2

+O

((
h

n

)3/2
)

=
h

n
f +O

((
h

n

)3/2
)
,

(A.24)

where f was defined in (2.7).

Substituting (A.15), (A.18), (A.19), (A.22) and (A.24) in (A.10) and rear-

ranging using (2.8) and (2.9) completes the proof.

Proof of Theorem 2

Under H0 and by Assumption 2(i), λ̂ = ε′W ′Pε/ε′W ′PWε. Proceeding as

before, P (λ̃ ≤ x) = P (ς ≤ 0), which can be written as the right side of (A.10),

with ς = ε′(C + C ′)ε/2 and

C = W ′P (I − xW ). (A.25)

Derivation of the cumulants κj of ς is very similar to that in the proof of

Theorem 1, and so is not described in detail. From (A.25), (2.2) and (2.17),

κ1 = σ2tr(C) = −σ2
(

1 + xtr(W ′W )− x

n
(l′WW ′l)

)
= −σ2

(
1 + x

n

h
t11 − xp

)
.

(A.26)

Similarly, since

l′W iW
′j l = O(n) for all i ≥ 0, j ≥ 0, (A.27)
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κ2 =
σ4

2
tr((C + C ′)2)

= σ4

(
tr(W 2) + tr(W ′W )− 1− 1

n
l′W ′Wl − 4x(tr(WW ′W ) +O(1)) + 2x2(tr((W ′W )2) +O(1))

)
= σ4

(n
h

(t20 + t11)− 1− p− 4x
(n
h
t21 +O(1)

)
+ 2x2

(n
h
t+O(1)

))
.

(A.28)

Proceeding as in the proof of Theorem 1, the first centred cumulant of ς is

κc1 =
−xnh t11 − 1 + xp(
n
h (t20 + t11)

)1/2
(

1−
1 + p+ 4x

(
n
h t21 +O(1)

)
− 2x2

(
n
h t+O(1)

)
n
h (t20 + t11)

)−1/2
.

(A.29)

Setting x as in (A.15) and by Taylor expansion,

κc1 = −
(
ζ +

(h/n)1/2

(t20 + t11)1/2
− h

n

p

t11
ζ

)
×

(
1 +

(
h

n

)1/2
2t21

t11(t20 + t11)1/2
ζ +

h

n

(
1

2(t20 + t11)
+

1

2

p

t20 + t11
− t

t211
ζ2 +

6t221
t211(t20 + t11)

ζ2
))

+O

((
h

n

)3/2
)

= −

(
ζ +

(
h

n

)1/2

g1/2 − h

n

p

t11
ζ

)(
1 +

(
h

n

)1/2

2bζ +
h

n

(g
2

+
g

2
p− dζ2 + 6b2ζ2

))

+O

((
h

n

)3/2
)

= −ζ −
(
h

n

)1/2

(2bζ2 + g1/2)− h

n

(g
2
ζ +

g

2
pζ − dζ3 + 6b2ζ3 + 2bg1/2ζ

)
+O

((
h

n

)3/2
)
,

(A.30)

with b, d, g and p defined in (2.6), (2.7) and (2.17). Similarly, by standard

algebra and using (A.27),

tr((C + C ′)3) =
n

h
(2t30 + 6t21)− 12

(n
h

)1/2 (t20 + t11)1/2(t31 + t22)

t11
ζ +O(1),

(A.31)

agreeing with the corresponding formula in the proof of Theorem 1, so that the

27



third centred cumulant of ς, κc3, is (A.22), whereas the fourth centred cumulant

of ς, κc4, is again (A.24).

Next,

Φ(−κc1) = Φ(ζ) +

(
h

n

)1/2

(2bζ2 + g1/2)φ(ζ) +
h

n

(g
2
ζ +

g

2
pζ − dζ3 + 6b2ζ3 + 2bg1/2ζ

)
φ(ζ)

+
1

2
(2bζ2 + g1/2)2Φ(2)(ζ) +O

((
h

n

)3/2
)

= Φ(ζ) +

(
h

n

)1/2

(2bζ + g1/2)φ(ζ)

+
h

n

(
g

2
ζ +

g

2
pζ − dζ3 + 6b2ζ3 + 2bg1/2ζ − 1

2
(2bζ2 + g1/2)2H1(ζ)

)
φ(ζ)

+O

((
h

n

)3/2
)

(A.32)

and

Φ(3)(−κc1) = Φ(3)(ζ) +

(
h

h

)1/2

(2bζ2 + g1/2)Φ(4)(ζ) +O

(
h

n

)
=

(
H2(ζ)−

(
h

h

)1/2

(2bζ2 + g1/2)H3(ζ)

)
φ(ζ) +O

(
h

n

)
. (A.33)

Substituting (A.15), (A.22), (A.24), (A.32) and (A.33) in the right side of

(A.10) complete the proof.

Proof of Theorem 3

Define S(x) = I − xW . We have

λ̃− λ =
ε′PWS−1(λ)ε

ε′S−1′(λ)W ′PWS−1(λ)ε

=
ε′WS−1(λ)ε− ε′ll′WS−1(λ)ε/n

ε′S−1′(λ)W ′WS−1(λ)ε− ε′S−1′(λ)W ′ll′WS−1(λ)ε/n
. (A.34)

Now

E
∣∣ε′ll′WS−1(λ)ε

∣∣ ≤(E (ε′l)
2
E
(
l′WS−1(λ)ε

)2)1/2
= σ2n1/2

(
l′WS−1(λ)S−1′(λ)W ′l

)1/2
≤σ2n

∥∥S−1(λ)
∥∥ ‖W‖ . (A.35)
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From (5.2),

lim
n→∞

∥∥S−1(λ)
∥∥ ≤ ∞∑

j=0

|λ|j lim
n→∞

‖W‖j ≤ (1− |λ|)−1 , (A.36)

and thus (A.35)= (1− |λ|)−1O (n). Likewise

E(ε′S−1′(λ)W ′ll′WS−1(λ)ε) =σ2l′WS−1(λ)S−1′(λ)W ′l ≤ σ2n
∥∥S−1(λ)

∥∥2 ‖W‖2
= (1− |λ|)−2O (n) . (A.37)

Thus

λ̃− λ =
(h/n)ε′WS−1(λ)ε+ (1− |λ|)−1Op (h/n)

(h/n)ε′S−1′(λ)W ′WS−1(λ)ε+ (1− |λ|)−2Op (h/n)
. (A.38)

The subsequent proof will show that the leading terms of both numerator and

denominator are of larger order than the remainder terms, and so the latter

may be ignored and it suffices to examine

λ̂− λ =
ε′WS−1(λ)ε

ε′S−1′(λ)W ′WS−1(λ)ε
. (A.39)

Now

V ar(ε′WS−1(λ)ε) = σ4tr
(
WS−1(λ)WS−1(λ) +WS−1(λ)S−1′(λ)W ′

)
+ κ

n∑
i=1

u2i ,

(A.40)

where κ is the 4th cumulant of εi and ui is the ith diagonal element of U =

WS−1(λ). The first term on the right is bounded by 2σ4tr
(
WS−1(λ)S−1′(λ)W ′

)
≤

K
∥∥S−1(λ)

∥∥2 tr (W ′W ) , using the Cauchy inequality and the inequality tr(A′B′BA) ≤
‖B‖2 tr(A′A). Denoting by w′i the ith row of W and ei the n× 1 vector whose

ith element is 1 and remaining elements are 0, we have u2i =
(
w′iS

−1(λ)ei
)2 ≤

‖wi‖2
∥∥S−1(λ)

∥∥2 and so
∑n
i=1 u

2
i ≤ K

∥∥S−1(λ)
∥∥2 tr (W ′W ) also. Thus (A.40)

is bounded by K
∥∥S−1(λ)

∥∥2 tr (W ′W ) = (1− |λ|)−2O(n/h). Likewise

V ar
(
ε′S−1′(λ)W ′WS−1(λ)ε

)
= 2σ4tr

(
S−1′(λ)W ′WS−1(λ)S−1′(λ)W ′WS−1(λ)

)
+ κ

n∑
i=1

v2i ,

(A.41)
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where vi is the ith diagonal element of V = U ′U. Proceeding as before, the

first term on the right is bounded by K
∥∥S−1(λ)

∥∥4 ‖W‖2 tr (W ′W ) . Since vi =

e′iV ei ≤ ‖V ‖,

n∑
i=1

v2i ≤‖V ‖
n∑
i=1

vi

= ‖V ‖
n∑
i=1

e′iS
−1′(λ)

n∑
j=1

wjw
′
jS
−1(λ)ei

= ‖V ‖
n∑
j=1

w′jS
−1(λ)

n∑
i=1

eie
′
iS
−1′(λ)wj

= ‖V ‖
n∑
j=1

w′jS
−1(λ)S−1′(λ)wj

≤‖V ‖
∥∥S−1(λ)

∥∥2 n∑
j=1

‖wj‖2

≤‖W‖2
∥∥S−1(λ)

∥∥4 tr (W ′W ) . (A.42)

It follows that (A.41) is bounded byK
∥∥S−1(λ)

∥∥4 tr (W ′W ) = (1− |λ|)−4O(n/h).

Thus

λ̂− λ =
tr
(
WS−1(λ)

)
+ (1− |λ|)−1Op

(
(n/h)1/2

)
tr (S−1′(λ)W ′WS−1(λ)) + (1− |λ|)−2Op

(
(n/h)1/2

) . (A.43)

We obtain upper and lower bounds for the leading terms in denominator and

numerator. First, as already found,

tr
(
S−1′(λ)W ′WS−1(λ)

)
≤ (1− |λ|)−2 tr (W ′W ) , (A.44)

whereas

tr
(
S−1′(λ)W ′WS−1(λ)

)
≥ ‖S(λ)‖−2 tr (W ′W ) ≥ (1 + |λ|)−2 tr (W ′W ) ,

(A.45)

since

‖S(λ)‖ ≤ 1 + |λ| . (A.46)
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Next note that

tr
(
WS−1(λ)

)
= tr

W ∞∑
j=0

λjW j

 = λtr

W 2
∞∑
j=0

λjW j

 = λtr
(
W 2S−1(λ)

)
.

(A.47)

Now under condition (a) all elements of S−1(λ) are non-negative so tr
(
W 2S−1(λ)

)
≥

0, and by the Cauchy inequality

tr
(
W 2S−1(λ)

)
≤
(
tr (W ′W ) tr

(
WS−1(λ)S−1′(λ)W ′

))1/2
≤
∥∥S−1(λ)

∥∥ tr (W ′W ) ≤ (1− λ)
−1
tr (W ′W ) . (A.48)

Under condition (b), W is similar to a symmetric matrix W ∗, so W =

Q−1W ∗Q, for some non-singular matrix Q. Thus with S
∗
(λ) = In − λW ∗, we

have S−1(λ) = Q−1S
∗−1(λ)Q, tr

(
W 2S−1(λ)

)
= tr

(
W ∗2S∗−1(λ)

)
. The Cauchy

inequality gives

tr
(
W ∗2S∗−1(λ)

)
≤
(
tr
(
W ∗2S∗−2(λ)

)
tr
(
W ∗2

))1/2
≤
∥∥S∗−1(λ)

∥∥ tr (W ∗2
)

= (1− |λ|)−1 tr
(
W

2
)

≤ (1− |λ|)−1 tr
(
W
′
W
)
. (A.49)

As for lower bounds, under condition (a) all elements of S(λ) − In are non-

negative, so

tr
(
W 2S−1(λ)

)
≥ tr

(
W 2
)
, (A.50)

whereas under condition (b),

tr
(
W
∗2S

∗−1(λ)
)
≥‖S∗ (λ)‖−2 tr

(
W
∗2
)
≥ (1 + |λ|)−1 tr

(
W
∗2
)

= (1 + |λ|)−1 tr
(
W 2
)
. (A.51)

Thus under both sets of conditions

λ̂− λ =
tr
(
WS−1(λ)

) (
1 + (1− |λ|)−1Op

(
(n/h)1/2/tr

(
WS−1(λ)

)))
tr (S−1′(λ)W ′WS−1(λ))

(
1 + (1− |λ|)−2Op

(
(n/h)1/2/tr (S−1′(λ)W ′WS−1(λ))

))
=

(h/n)tr
(
WS−1(λ)

) (
1 + (1− |λ|)−1Op

(
(h/n)1/2

))
(h/n)tr (S−1′(λ)W ′WS−1(λ))

(
1 + (1− |λ|)−2Op

(
(h/n)1/2

))
31



=
tr
(
WS−1(λ)

)
tr (S−1′(λ)W ′WS−1(λ))

(
1 +

(1− |λ|)−2 op (1)

1 + (1− |λ|)−2 op (1)

)

=
tr
(
WS−1(λ)

)
tr (S−1′(λ)W ′WS−1(λ))

(
1 + (1− |λ|)−2 op (1)

)
. (A.52)

Further, from the previous calculations, under condition (a)

tr
(
W 2
)

(1− λ)
−2
tr (W ′W )

≤
tr
(
W 2S−1(λ)

)
tr (S−1′(λ)W ′WS−1(λ))

≤ (1− λ)
−1
tr (W ′W )

(1 + λ)
−2
tr (W ′W )

,

(A.53)

and under condition (b)

(1 + |λ|)−1 tr
(
W 2
)

(1− |λ|)−2 tr (W ′W )
≤

tr
(
W 2S−1(λ)

)
tr (S−1′(λ)W ′WS−1(λ))

≤ (1− |λ|)−1 tr (W ′W )

(1 + |λ|)−2 tr (W ′W )
.

(A.54)

For all sufficiently large n, the factors tr (W ′W ) cancel in the upper bounds

in both (A.53) and (A.54), since η(n/h) ≤ (n/h)limn→∞t11 ≤ tr (W ′W ) ≤
n ‖W‖2 ≤ n for some η > 0, and application of (5.3) completes the proof.

Proof of Theorem 4

In view of previous calculations we give only the proof of (5.8). We have

tr(WW ′)

(tr(W 2 +WW ′))
1/2

λ̂ =
(n
h

)1/2
a

ε′S−1′(λn)WS−1(λn)ε

ε′S−1′(λn)W ′WS−1(λn)ε
. (A.55)

This can be written

(n
h

)1/2
a

ε′(I + λnW + λ2nW
2S−1(λn))′W (I + λnW + λ2nW

2S−1(λn))ε

ε′(I + λnW + λ2nW
2S−1(λn))′W (I + λnW ′W + λ2nW

2S−1(λn))ε

=
(n
h

)1/2
a

ε′Wε+ λnε
′(WW ′ +W 2)ε+Op(1)

ε′W ′Wε+ λnε′(W ′W ′W +W ′WW )ε+Op(1)

=a
(h/n)1/2ε′Wε+ δhε′(WW ′ +W 2)ε/n+Op((h/n)1/2)

hε′W ′Wε/n+ λnhε′(W ′W ′W +W ′WW )ε/n+Op(h/n)

=(ω1/2(1 + τ)−1/2 + o(1))
(h/n)1/2ε′Wε+ σ2δω(1 + τ) + op(1)

σ2ω + op(1)

=ω−1/2(1 + τ)−1/2
(
h

n

)1/2
ε′Wε

σ2
+ δω1/2(1 + τ)1/2 + op(1), (A.56)
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from which (5.8) readily follows.
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m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal 0 0 0.001 0.001

Edgeworth 0.004 0.008 0.010 0.016

transformation 0.036 0.038 0.040 0.047

bootstrap 0.048 0.055 0.038 0.042

L 0.078 0.072 0.064 0.074

corrected L 0.077 0.066 0.061 0.067

Table 1: Empirical sizes (nominal α = 0.05) of tests of H0 (1.2) against H1 (3.1) in no-

intercept model (1.1) when h is “divergent”.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal 0.001 0.001 0.001 0.011

Edgeworth 0.001 0.025 0.028 0.034

transformation 0.042 0.045 0.043 0.052

bootstrap 0.059 0.052 0.043 0.046

L 0.069 0.060 0.064 0.055

corrected L 0.065 0.061 0.060 0.53

Table 2: Empirical sizes (nominal α = 0.05) of tests of H0 (1.2) against H1 (3.1) in no-

intercept model (1.1) when h is “bounded”.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal 0.132 0.130 0.126 0.106

Edgeworth 0.062 0.058 0.060 0.057

transformation 0.105 0.088 0.073 0.060

bootstrap 0.064 0.048 0.046 0.045

L 0.033 0.036 0.038 0.033

corrected L 0.036 0.040 0.042 0.044

Table 3: Empirical sizes (nominal α = 0.05) of tests of H0 (1.2) against H1 (3.10) in

no-intercept model (1.1) when h is “divergent”.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal 0.096 0.078 0.068 0.061

Edgeworth 0.062 0.051 0.049 0.052

transformation 0.055 0.025 0.042 0.052

bootstrap 0.044 0.053 0.047 0.059

L 0.032 0.043 0.044 0.044

corrected L 0.039 0.044 0.042 0.045

Table 4: Empirical sizes (nominal α = 0.05) of tests of H0 (1.2) against H1 (3.10) in

no-intercept model (1.1) when h is “bounded”.

36



λ̄
m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal

0.1

0.5

0.8

0

0

0.257

0

0.335

0.994

0.005

0.673

1

0.009

0.854

1

Edgeworth

0.1

0.5

0.8

0.001

0.200

0.957

0.008

0.562

0.998

0.013

0.764

1

0.019

0.904

1

transformation

0.1

0.5

0.8

0.059

0.680

0.986

0.087

0.854

0.999

0.129

0.924

1

0.130

0.958

1

bootstrap

0.1

0.5

0.8

0.085

0.738

0.990

0.130

0.886

1

0.165

0.928

1

0.168

0.973

1

L

0.1

0.5

0.8

0.109

0.758

0.998

0.137

0.885

1

0.168

0.940

1

0.183

0.978

1

corrected L

0.1

0.5

0.8

0.124

0.775

0.995

0.148

0.884

0.998

0.165

0.938

1

0.174

0.960

1

Table 5: Empirical powers of tests of H0 (1.2) against H1 (4.12), with nominal size α = 0.05

in no-intercept model (1.1) when h is “divergent”.

λ̄
m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal

0.1

0.5

0.8

0.010

0.551

0.999

0.083

0.988

1

0.187

1

1

0.363

1

1

Edgeworth

0.1

0.5

0.8

0.016

0.676

1

0.095

0.992

1

0.200

1

1

0.375

1

1

transformation

0.1

0.5

0.8

0.122

0.858

1

0.172

0.993

1

0.280

1

1

0.420

1

1

bootstrap

0.1

0.5

0.8

0.127

0.872

1

0.204

0.991

1

0.291

1

1

0.441

1

1

L

0.1

0.5

0.8

0.135

0.873

1

0.194

0.993

1

0.293

1

1

0.442

1

1

corrected L

0.1

0.5

0.8

0.146

0.894

0.997

0.190

0.995

1

0.277

1

1

0.454

1

1

Table 6: Empirical powers of tests of H0 (1.2) against H1 (4.12), with nominal size α = 0.05

in no-intercept model (1.1) when h is “bounded”.
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ζ
m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

1.96
Edgeworth

exact

0.986

0.999

0.992

0.999

0.995

0.999

0.996

0.999

1.645
Edgeworth

exact

1.002

0.999

1

0.999

1

0.999

1

0.998

−1.645
Edgeworth

exact

0.208

0.180

0.181

0.161

0.164

0.149

0.153

0.140

−1.96
Edgeworth

exact

0.185

0.145

0.154

0.127

0.136

0.111

0.124

0.107

Table 7: Comparison between (4.13) and “exact” cdf for various values of ζ for the no-

intercept model (1.1) when h is “divergent”.

ζ
m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

1.96
Edgeworth

exact

1

0.999

0.998

0.998

0.994

0.994

0.989

0.990

1.645
Edgeworth

exact

1

0.999

0.989

0.988

0.979

0.979

0.971

0.971

1.645
Edgeworth

exact

0.142

0.132

0.104

0.100

0.086

0.085

0.075

0.074

−1.96
Edgeworth

exact

0.112

0.097

0.073

0.069

0.056

0.054

0.046

0.045

Table 8: Comparison between (4.13) and “exact” cdf for various values of ζ for the no-

intercept model (1.1) when h is “bounded”.

Figure 1: Histograms of q (left picture) and G(q) (right picture) for 1000 replications,

m = 28, r = 14
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