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ABSTRACT
We review different modeling and computational methods to determine the Q-tensor representation of the director field
alignment in the absence of defects. Under this condition it is possible to represent the reorientation dynamics of the
director field as the motion of the Q-tensor over an invariant manifold. This new representation allows us to develop very
accurate codes for the alignment that are orders of magnitude faster than an equivalent full Q-tensor code. We illustrate
this principle by discussing the case of a pure liquid crystal with or without flow and the case of a liquid crystal doped with
fixed metallic nano-inclusions.
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1. INTRODUCTION
Liquid crystalline materials find application in a wide range of electro-optical devices such as hybrid two beam coupling
cells,1 optical wave guides,2 spatial light modulators3 and displays.4 Mathematical modeling and numerical simulations
are valuable tools in optimizing these devices and understanding their operating mechanism. Traditionally, there are two
approaches to model liquid crystal alignment. In the Oseen-Frank formalism5 the director field is represented with a unit
vector n̂, while the Landau de Gennes framework6 represent the director field using a 3 × 3 traceless, symmetric tensor,
the Q-tensor.

From a computational point of view the two approaches have both pros and cons. The vector representation of the
director gives rise to equations with only one time constant that are, hence, computationally efficient. On the other hand,
this formalism suffers from the intrinsic ambiguity that n̂ and −n̂ represent the same director alignment. The Q-tensor
representation, instead, is generic and can represent without any ambiguity any director alignment. It also embodies the
nematic symmetry automatically. Moreover, this theory takes into account the orientational order of the liquid crystal
by including the thermotropic energy in addition to the elastic counterpart. On the other hand, due to the two energy
contributions, the corresponding dynamical equations for the director alignment have two considerably different time
scales and the resulting computational model is, hence, very stiff and hard to compute efficiently. In this paper, we use
the Q representation of the liquid crystal alignment and present computationally efficient numerical approximations that
exploit the difference in scales between different contributions to the free energy away from defects to model the following
three systems of relevance to liquid crystal based electro-optical devices: (a) a pure nematic liquid crystal; (b) a pure
nematic liquid crystal that flows; (c) a nematic liquid crystal with fixed inclusions.

A salient feature of these systems is the existence of an invariant manifold defined by the thermotropic free energy
which dominates the free energy of the system away from the defects. The elastic, electrostatic, and flow effects act as
perturbations that drive the dynamics of the liquid crystal along this manifold. By defining the invariant manifold based
on the dominant thermotropic energy and rewriting the dynamic equations constrained to the manifold a set of non–stiff
equations are obtained. In the absence of defects these equations are accurate, computationally efficient and capture all the
relevant features of the microscale dynamics through a set of effective macroscopic parameters. These models are ideal
for solving liquid crystal alignment in electro-optical devices that often do not have topological defects in the bulk in order
to minimize scattering losses and are doped with nanoparticles to improve their response to the applied electro-magnetic
fields.
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Section 2, presents the approximation to compute the liquid crystal alignment far away from defect in pure nematic
liquid crystals. This approximation is named the Defect Free Q-tensor approximation (DFQTA); section 3 and 4, extends
this approximation to include the effects of fluid flow and systems doped with fixed inclusions respectively.

2. DEFECT FREE Q-TENSOR APPROXIMATION (DFQTA) FOR PURE LIQUID CRYSTALS
In this section, the Q-tensor that describes the alignment of liquid crystals is introduced and the free energy of the liquid
crystal and the equations that describe the dynamics of liquid crystal are presented. The concept of invariant manifold and
DFQTA equations that describe this manifold and dynamics of liquid crystal alignment on the manifold are given. Com-
putation of alignment in a typical liquid crystal cell using this approximation is also presented to illustrate the application
of the model. Full details of the mathematical derivation of the equations can be found in Daly et al.7

2.1 Modeling nematic liquid crystals
The tensorial order parameter Q̃ that quantifies the structure of a nematic liquid crystalline phase with scalar order param-
eter S̃ and biaxial order parameter β̃ is given by

Q̃ =

√
3

2
S̃ (n̂⊗ n̂)

[S]
+

√
3

2
β̃ (m̂⊗ m̂)

[S]
. (1)

This normalized Q̃ is symmetric and traceless and Tr
(
Q̃2
)

= S̃2 for β̃ = 0. The unit directors n̂ and m̂ represents major
and minor axis along which the liquid crystal molecules are aligned. The superscript [S] denotes a symmetric and traceless
tensor. A generic 3× 3 tensor N can be made symmetric and traceless by

(Nij)[S]
=
Nij +Nji

2
− 1

3
Nkkδij , (2)

where δij is the Kronecker delta.

The steady state alignment of a nematic liquid crystal is the solution of the Euler-Lagrange equation for the minimum
of the free energy. A generic free energy, F̃ , of a nematic liquid crystal is of the form

F̃ = F̃t
(
Q̃
)

+ F̃d
(
Q̃, ∇̃Q̃

)
+ F̃e

(
Q̃, Ẽ

)
, (3)

where F̃t, F̃d and F̃e are, respectively, the thermotropic, elastic, and electrostatic free energies. Ẽ is the symmetric and
traceless electric field tensor defined by

Ẽ =

√
3

2

(
Ẽ ⊗ Ẽ

)[S]

. (4)

Here Ẽ is the electric field, given by Ẽ = −∇̃ϕ̃, where ϕ̃ is the electric potential.

In order to minimize the algebra, in this paper we assume that the free energy costs for splay, twist and bend defor-
mations of the director field are all equal (single elastic constant approximation). However, it is possible to apply the
methodology outlined in this paper also to liquid crystal with different elastic constants. Therefore, we write the free
energy (3) as

F̃ =
Ã

2
(T̃ − T̃ ∗) Tr(Q̃2)−

√
6B̃ Tr(Q̃3) +

C̃

2
Tr2(Q̃2) +

L̃1

2
|∇̃Q̃|2 − χ̃a Tr(Q̃Ẽ), (5)

where the first three terms represent the thermotropic energy and the last two the elastic and the electrostatic energy,
respectively. In this expression T̃ is the temperature of the bulk of the liquid crystal; T̃ ∗ is the pseudo-critical temperature,
i.e. the temperature at which the isotropic phase becomes unstable; Ã, B̃ and C̃ are the bulk thermotropic coefficients
independent of temperature; L̃1 is defined as L̃1 = K̃/

(
3S̃2

)
where K̃ is the single elastic constant of the liquid crystal

material; χ̃a is the dielectric anisotropy coefficient.



To ensure that the traceless and symmetric properties of Q̃ and Ẽ are respected, we follow the approach of Sonnet et
al.8 and express Q̃ and Ẽ in terms of their components on the basis of the traceless 3× 3 symmetric tensors,

Q̃ =

5∑
p=1

ãpT
(p) and Ẽ =

5∑
p=1

ẽpT
(p), (6)

where

T (1) =
1√
6

(−ê1 ⊗ ê1 − ê2 ⊗ ê2 + 2ê3 ⊗ ê3) ,

T (2) =
1√
2

(ê1 ⊗ ê1 − ê2 ⊗ ê2) , T (3) =
1√
2

(ê1 ⊗ ê2 + ê2 ⊗ ê1) , (7)

T (4) =
1√
2

(ê1 ⊗ ê3 + ê3 ⊗ ê1) , T (5) =
1√
2

(ê2 ⊗ ê3 + ê3 ⊗ ê2) ,

where êk for k = 1, 2, 3 are the Cartesian basis vectors, and ãp and ẽp are the p-th components of the vectors ã, ẽ
respectively.

To facilitate the comparison of the magnitude of the various contributions to the free energy, we non-dimensionalise
the free energy given in eq. (5) with the following set of scaling relations

(x, z) = (x̃, z̃)/L̃ Scaled lengths; L̃ is the typical cell length

F =
81C̃3

16B̃4
F̃ Scaled free energy

Q =
3C̃

2B̃
Q̃ Scaled alignment tensor

a =
3C̃

2B̃
ã Scaled alignment tensor components

E = Ẽ

(
L̃

ϕ̃0

)2

Scaled electric field tensor, ϕ̃0 typical voltage

e = ẽ

(
L̃

ϕ̃0

)2

Scaled electric field tensor components

T̃c − T̃ ∗ =
2B̃2

9ÃC̃
, Tc clearing point temperature,

T0 =
1

2

T̃ − T̃ ∗

T̃c − T̃ ∗
, Scaled temperature

ξ2
0 =

9K̃C̃

2B̃2L̃2
, Non-dimensional elastic constant

χa = χ̃a
27ϕ̃2

0C̃
2

2L̃2B̃3
, The dielectric anisotropy coefficient

t =
t̃

τ̃0
Scaled time

τ̃0 =
9C̃

4B̃2
ζ̃1, Time constant for scaling time; ζ̃1 is the rotational viscosity

(8)

The dimensionless free energy in terms of a and e is

F =
T0

2
|a|2 −

√
6
∑
p,q,r

Tr
(
T (p)T (q)T (r)

)
apaqar +

1

2
|a|4︸ ︷︷ ︸

Ft

+
ξ2
0

2
|∇a|2︸ ︷︷ ︸
Fd

−χa a · e︸ ︷︷ ︸
Fe

(9)
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Figure 1. Graphical representation of the invariant manifold that corresponds to the minimum of the thermotropic free energy (circle), of
the fast motion towards the manifold (straight red radial segment) and of the slow reorientation motion along the manifold (red circular
trajectory). The dashed line represents a numerical solution of eq. (10). [From Daly et al.7]

where ap and ep are the components of a and e respectively, T0 is the scaled temperature, ξ2
0 is the scaled elastic constant,

and χa is the scaled dielectric anisotropy coefficient. The corresponding equation of motion describing the dynamics of
liquid crystal alignment is given by Euler-Lagrange equations which minimize eq. (9):

ξ2
0∇2a + χae +M(a)a =

∂a

∂t
, (10)

where t is the scaled time, see eq. (8). M is the thermotropic matrix given by

M(a) = T0I +



3a1 −3a2 −3a3
3
2a4

3
2a5

−3a2 −3a1 0 3
2

√
3a4 − 3

2

√
3a5

−3a3 0 3a1
3
2

√
3a5

3
2

√
3a4

3
2a4

3
2

√
3a4

3
2

√
3a5

3
2a1 + 3

2

√
3a2

3
2

√
3a3

3
2a5 − 3

2

√
3a5

3
2

√
3a4

3
2

√
3a3

3
2a1 − 3

2

√
3a2


, (11)

and I is the identity matrix.

For length scales of typical devices T0 ∼ O (1), while ξ2
0 ∼ O

(
10−7

)
and χa ∼ O

(
10−6

)
. Therefore, away from

defects, where∇2a ' O(1/ξ2
0), the term M(a)a in eq. (10) is O(1) while the other two are O(10−6). In other words, the

large difference in magnitude of the thermotropic part of the free energy with respect to the elastic and electrostatic parts
results in the appearance of two vastly different time scales in the dynamic alignment eq. (10), which make it stiff and hard
to integrate numerically. A variety of techniques such as adaptive meshing and director renormalization has been attempted
to address this issue.9 In this work, we demonstrate the existence of an invariant manifold in these systems and develop an
approximation that harnesses the separation of scale to obtain equations that describe the reorientation dynamics of liquid
crystals away from the defects. This is achieved by treating the elastic and electrostatic free energy contributions as a
perturbation to the thermotropic free energy, resulting in equations of motion that are non-stiff. At the core of the defect,
∇2a ' O(1/ξ2

0) and Fd is of the same order as that of Ft. In this case the approximation does not hold any more and one
must resort to integrating the full Q-tensor eq. (10).

2.2 A simple example of invariant manifold
In order to demonstrate the concept of invariant manifold, we present the simpler case of a 2× 2 Q-tensor: this represents
a nematic director confined to a plane. Its vector representation a has only two components, a1 and a2, so that it is easy to



visualize the evolution of the Q-tensor in the (a1, a2)-plane, as shown in figure 1. The equations of motions consist of a
rotationally symmetric thermotropic part M(a)a =

[
T0 + 2|a|2

]
a, perturbed by small symmetry breaking contributions

from the elastic and electrostatic energies, L (a, e,∇a) = ξ2
0∇2a + χae. As the thermotropic term M(a)a is SO(2)

invariant its critical points form a circle M0, with equation a2
1 + a2

2 = −T0/2, in the two dimensional (a1, a2)-plane (see
figure 1). This is an invariant manifold for the dynamics of the liquid crystal, if we exclude the effect of the elastic and
electrostatic energies. From a generic initial condition, the dynamics rapidly converges on a fast timescale to the manifold
M0 (red radial segment in figure 1) and in the absence of elastic or electrostatic forces, moves no further.

The effect of the perturbation L is to break the symmetry and to collapse the invariant manifold to two critical points
(one stable and one unstable). The system evolves on a slow time scale towards the stable one of these. If the perturbation
is small then the orbit lies very close to the invariant manifold M0. This is the case illustrated in figure 1, where we can
see that the numerical solution (dashed blue line) remains very close to the equilibrium circle M0.

This observation forms the basis of the approximation scheme summarized in the next section. We assume that the
system is at equilibrium with respect to its thermotropic part, i.e. M(a)a = 0, so that the Q-tensor lies on the invariant
manifoldM0 (the circle in figure 1). We then restrict the time derivative of theQ-tensor components, ȧ, to be tangent to the
manifold, so that the reorientation dynamics of the Q-tensor is described by an orbit on M0 (circular red arch in figure 1).
Therefore, the configuration of the liquid crystal is described by a set of algebraic equations to identify the manifold and a
set of differential equations for the slow motion tangent to it. The key advantage is that the dynamical equations have only
one time scale and can therefore be integrated numerically very efficiently.

2.3 The DFQTA equations
The ideas outlined in the previous section can be applied to the full Q-tensor eq. (10) to obtain alignment equations for a
3× 3 Q-tensor in the absence of defects.

We take η = ξ2
0 as a small parameter and expand the components of a as a power series an = an,0 + ηan,1 + O(η2),

n = 1, . . . , 5. We also introduce fast, t0 = t, and a slow, t1 = ηt, time variables so that ∂t = ∂t0 + η∂t1 in eq. (10). We
assume that the system is at equilibrium on the fast time scale, i.e. it is on the invariant manifold, and set ∂t0an,q = 0, so
that we can write the three dimensional Euler-Lagrange eq. (10) that describes the dynamics of the liquid crystal as

η
(
∇2a + χae

)
+M(a)a = η

∂a

∂t1
. (12)

where χ0 = χa/ξ
2
0 .

Formally, the procedure outlined in the previous section consists in expanding this equations in powers of η, collecting
terms at each order and applying the required solvability conditions.7 The end result is a set of two equations that describe
the 3-manifold in the five-component space and a set of three differential equations that describe the reorientation dynamics
tangent to the manifold. The manifold equations are

S2
0 ≡

5∑
p=1

a2
p,0 =

[
3 +

√
(9− 8T0)

4

]
, (13a)

S3
0 = a3

1,0 + 3a2
1,0 (S0 − a1,0) +

3
√

3

2

[
a2,0

(
a2

4,0 − a2
5,0

)
+ 2a3,0a4,0a5,0

]
. (13b)

The first equation fixes the value on the manifold of the leading order term in the power series expansion of the scalar
order parameter, S = S0 + O(η). The second equation states that on the invariant manifold the leading order term of the
biaxial order parameter expansion, β = β0 +O(η) is zero.

The time dependent equations of motion on the manifold are

V (n) · ∂a0

∂t1
= V (n) ·

(
∇2a0 + χae

)
, n = 1, 2, 3, (14)



Figure 2. The 3D director plots for a twist cell for a 5 Volt spatially modulated electric field computed using the DFQTA equations (14).
The shading and the color bar corresponds to the voltage through out the cell measured in Volts.

where a = a0 + ηa1 +O(η2) and V (n) are three vectors that span the space tangent to the manifold at a0. In terms of the
components of the alignment vector a0 they are

V (1) =


0

−2a3,0

2a2,0

−2a5,0

2a4,0

 , V (2) =


−
√

3a4,0

a4,0

a5,0√
3a1,0 − a2,0

−a3,0

 , V (3) =


√

3a5,0

a5,0

−a4,0

a3,0

−
√

3a1,0 − a2,0

 . (15)

Equations (14) are the end result of the DFQTA: they describe the reorientation dynamics of the liquid crystal on the defect-
free manifold. They are non-stiff and can be easily solved on a desktop PC even for complex geometries. Computing the
director alignment using this approximation uses a fraction of the computation resources required to solve the stiff full
Q-tensor equations (10): two order of magnitude speed gains can be easily achieved.7

We demonstrate the method by solving the DFQTA equations (14) for a twist cell, an interesting device that allows for
three dimensional orientation of the liquid crystals. The test geometry is a square in the (x, z)–plane. Periodic boundary
conditions are imposed in the x-direction and Dirichlet boundary conditions corresponding to strong planar anchoring are
imposed at z = 0 and z = Lz . The liquid crystal director lie in the (x, z)–plane at z = Lz and perpendicular to it at
z = 0. Figure 2 shows the computed 3D director profile for a 5 Volt spatially modulated electric field. The MATLAB
codes that solves the DFQTA equations using spectral methods used to compute the alignment and generate the director
plots presented in the figure can be downloaded from the following link: http://www.personal.soton.ac.uk/dales/DFQTA/.

3. EXTENDING THE DFQTA TO INCLUDE FLOW
In liquid crystal devices, switching between different states is usually achieved by applying or removing an electric field.
In order to understand the physics underlying their switching mechanism and kinetics, incorporating the effect of flow of
liquid crystalline material is essential. One approach to numerically simulating the switching dynamics of these devices is
to obtain the alignment and fluid flow equations from the most generic dissipation function that satisfies the symmetries of
the system. In this section we explore how it is possible to extend the defect freeQ approximation developed in section 2 to
include the hydrodynamics of the liquid crystal. By constraining the temporal evolution of the alignment of liquid crystals
on to the invariant manifold, the resulting equations are non-stiff. A first validation of the model has been the successful
verification that in the limit of a planar cell, the approximations reduce to dynamic equations in terms of director angle θ
derived by Clark and Leslie.10 Further validations and the numerical integration of the resulting equations are in progress.
Here we explain why the DFQTA can be applied to the Q-tensor equations with flow. The derivation of the equations and
their complete verification is deferred to a future publication.11

http://www.personal.soton.ac.uk/dales/DFQTA/


3.1 Dynamic equations
The dissipation function formulated by Sonnet et al12 has been used to derive the coupled dynamics of flow and alignment
of a uniaxial nematic liquid crystal. As in the case of the DFQTA, it is essential to write the dissipation function in non-
dimensional variables in order to identify correctly the relative size of each term. The dissipation function and the dynamics
equations are made non-dimensional by using the following set of scaling laws in addtion to those in eq. (8):

R = R̃
τ̃3
0

L̃2ρ̃
, Non-dimensional dissipation function, ρ̃ is the density

ṽ0 =
L̃

τ̃0
, Typical speed, used as velocity scaling coefficient

v =
ṽ

ṽ0
, Non-dimensional velocity

Σk =
ζ̃k τ̃0

L̃2ρ̃

(
2B̃

3C̃

)αk

, Non-dimensional viscosities for flow equation, k = {1, . . . , 8}

T = T̃ τ̃2
0

L̃2ρ̃
, Non-dimensional stress tensor

p =
p̃

p̃0
, Non-dimensional pressure

p̃0 =
L̃2ρ̃

τ̃2
0

, Reference pressure

K =
16B̃4τ̃2

0

81C̃3L̃2ρ̃
, Scaling constant for elastic contribution to flow equation

ζk =
Σk
Σ1

, Non-dimensional viscosities for alignment equation, k = {2, 3}

(16)

Here the coefficients ζ̃k, k = 1, . . . , 8 are dimensional viscosity coefficients defined in Sonnet et al12 and the exponent
αk is 0 for k = 8, 1 for k = {2, 4} and 2 otherwise. The non-dimensionalised dissipation function R that satisfies the
symmetries of a uniaxially aligned liquid crystal is12

R =
1

3
Σ1 Tr

(
Q̊2
)

+

√
2

3
Σ2 Tr

(
DQ̊

)
+

2

3
Σ3 Tr

(
DQ̊Q

)
+

1√
6

Σ4 Tr
(
D2Q

)
+

1

3
Σ5 Tr

(
D2Q2

)
+

1

3
Σ6 [Tr (DQ)]

2
+

1

3
Σ7 Tr

(
Q2
)

Tr
(
Q2
)

+
1

2
Σ8 Tr

(
D2
)
.

(17)

Here Q̊ is the co-rotational derivative of Q, defined as

Q̊ = ∂tQ+ v ·∇Q− [W,Q], (18)

where [W,D] is the commutator of W and D who are the anti-symmetric and symmetric parts of the velocity gradient
tensor, given by

W =
1

2

[
(∇v)− (∇v)

T
]

and D =
1

2

[
(∇v) + (∇v)

T
]
. (19)

In liquid crystal systems with dynamic coupling between flow and alignment, the non-dimensional governing equation for
the flow is

v̇ =
∂v

∂t
+ (v · ∇)v = ∇ · T , (20)



where T is the dimensionless stress tensor, given by

T =− pI −Kξ2
0 (∇Q�∇Q)

+

√
2

3
Σ2Q̊+

2

3
Σ3

(
Q̊Q

)[S]

+

√
2

3
Σ4 (DQ)

[S]
+

2

3
Σ5

(
DQ2

)[S]

+
2

3
Σ6 Tr (DQ)Q+

2

3
Σ7 Tr

(
Q2
)
D + Σ8D

+
2

3
Σ1

(
QQ̊ − Q̊Q

)
+

√
2

3
Σ2 (QD −DQ) +

2

3
Σ3

[
Q (DQ)

[S] − (DQ)
[S]Q

]
.

(21)

The symbol (∇Q�∇Q) is defined in Cartesian components as12 (∇Q�∇Q)pq = Qij,pQij,q . These equations are
coupled to the dimensionless alignment equation:

2

3
Q̊+

√
2

3
ζ2D +

2

3
ζ3(DQ)[S] − ξ2

0∇2Q− χaE + T0Q−
3
√

6

2
(Q2)[S] + Tr

(
Q2
)
Q = 0 . (22)

These governing equations along with the incompressibility condition ∇ · v = 0 gives the sets of equations to be solved to
obtain the dynamics of flow and alignment of liquid crystal. Eq. (22) is the equivalent of eq. (10) for the case without flow
expressed in Q-tensor notation, rather than in component form.

3.2 DFQTAF approximation
Under the assumption that the flow reaches equilibrium instantaneously, we can set the right hand side of eq. (20) to zero.
In this case, the magnitude of the flow terms in eq. (22) is ∼ O

(
10−7

)
. Following the invariant manifold technique

demonstrated for pure nematic liquid crystal in the absence of flow which display similar separation of scales between
different contribution to the free energy, flow effects can also be treated as small perturbation along with elastic and
electrostatic contributions as demonstrated in section 2. We have already obtained a preliminary version of the defect free
Q tensor approximation with flow (DFQTAF) equations, that can compute the coupled dynamics of flow and alignment
of liquid crystals. They have been validated by verifying that in the limit of a planar cell, dynamic equations derived
from phenomenological model by Clark and Leslie.10 Further validation of the dynamic equations and their numerical
integration are under way and will be presented in a separate future publication.11

4. LIQUID CRYSTALS DOPED WITH METALLIC NANOPARTICLES
There is considerable research interest in colloidal, or doped, nematic liquid crystals. These consist of micron to nanometer
sized particles suspended in a nematic host. Dopants may posses permanent electric13, 14 or magnetic dipoles15–19 leading
to ferronematic systems, or their influence may be due to mechanical anchoring on the dopant surface that can lead to
remarkable defect structures.20, 21 Here we focus on metallic, e.g. gold, nanoparticles.22 In these cases the liquid crystal
alignment is dominated by elastic and electrostatic forces with the dopants acting to alter rather than dominate the properties
of the liquid crystal. Their effect, however, can be significant23–25 and may lead to applications related to plasmon tuning
in self-assembled structures26, 27 or tunable metamaterials.28

The existence of an invariant manifold for the Q-tensor equations in the absence of defects can also be used to model
in a computationally efficient way nematic liquid crystals doped with nanoparticles. Our group has derived29 equations
describing the long range alignment of a nematic liquid crystal hosting periodically arranged rigid metallic inclusions of
arbitrary shape and fixed orientation. The liquid crystal is assumed to obey weak anchoring on the surface of the inclusions.
These may be identified with rigid non-rotating dopant particles or with a periodic micro-structure. We are interested in
the case where the anchoring of the nematic to the inclusions is sufficiently weak as to not induce defects. Instead, the
inclusions alter the elastic and electrostatic response of the nematic. A schematic of the system studied is shown in figure 3:
the domain of the system is composed of unit cells of size Ly and the macroscopic size of the system is Lx, with Ly � Lx.
Treating the full system numerically is computationally expensive due to the fine mesh needed to resolve the micro-
structure and the stiffness of the governing equations.7 Rather than solving the Euler-Lagrange equations for the alignment
of the nematic in the complete domain pictured in figure 3 we have derived a set of computationally efficient equations
for the macroscopic description of this system.29 In this case approximate equations are obtained using homogenization
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Figure 3. Domains used in defining scale separation taken from Bennett et al.29 The macroscopic domain consists of an open region
D containing nematic liquid crystal, with external boundary ∂D, constructed from unit cells Ω with outer boundaries B and metallic
inclusions of volume Ωnp and boundary Γi, with i an index that runs over the total number of inclusions. We seek a description of the
nematic in the limit as Ly tends to zero with Lx fixed.

theory30 rather than a multiple scale expansion as in the DFQTA approximation, but both asymptotic methods rely on the
existence of the manifold to yield non–stiff dynamical equations for the reorientation of the liquid crystals. The detailed
calculations for the derivation of the approximate director equations are available in Bennett et al.29 Here, as in the previous
sections, we summarize the methods and list the main results. In section 4.1 we outline the system studied, in section 4.2
we present and interpret the model, referring for the full details to Bennett et al.29 In section 4.3 we present an example
applications of the approximate macroscopic equations.

4.1 Modeling the doped system
The liquid crystal orientation is described by means of a free energy minimization over the volume of the nematic D,
and boundary with the inclusions (∪iΓi), with Γi the boundary of the i-th particle, subject to Dirichlet conditions on the
macroscopic boundary ∂D (see figure 3). The electric fields is governed by Maxwell’s equation ∇ ·D = 0 subject to
floating potential boundary conditions on the metallic inclusions. Using the notation developed in section 2 we can write
the (non-dimensional) governing equations for the alignment field as

ξ2
0∇2a + χae +M(a)a =

∂a

∂t
x ∈ D, (23a)

n̂S ·∇a = W (aS − a) x ∈ Γ, (23b)
a = b(x) x ∈ ∂D, (23c)

while those for the electric field are

∇ · [(I + αQ)∇φ] = 0 x ∈ D, (24a)
φ = V0(x) x ∈ ∂D, (24b)
φ = Ci x ∈ Γi, (24c)∫

Γi

n̂S · (I + αQ)∇φdS = 0 x ∈ Γi, (24d)

with a, e, ξ2
0 and χa defined in eq. (8) and M(a) defined in (10). The prescribed value of a on the macroscopic boundary

∂D is given by b(x). aS is the preferred alignment direction on the inclusions, n̂S is the unit vector normal to the surface
of the particle andW = µ̃L̃x

2L̃1
is the dimensionless anchoring strength, with µ̃ the dimensional anchoring energy density and

L̃x the dimensional macroscopic length scale, related to the non-dimensional macroscopic scale Lx by Lx = L̃x/L̃, with



L̃ the typical cell-length defined in eq. (8). α =
√

2
3

∆ε
εu

2B
3C is the dimensionless dielectric coefficient, with εu and ∆ε the

isotropic and anisotropic dielectric coefficients respectively. Ci is the constant potential attained on the surface Γi of the
i-the inclusion. It is determined by the macroscopic boundary conditions (24b). V0(x) is the potential on the macroscopic
boundary ∂D.

The system pictured in figure 3 contains two distinct and disparate length-scales, the macroscopic scale Lx and micro-
scopic Ly . These define a smallness parameter ηh =

Ly

Lx
. We are interested in the behavior of the system as ηh tends to zero

in the case where the ratio of surface to volume free energy remains constant. As we take this limit, the two phase system,
particles and liquid crystals, is replaced by a single homogeneous phase, an “effective” liquid crystal. The end result is
a set of “homogenized” equations that describe the macroscopic behavior of the homogeneous phase. The homogenized
equations define the long–range alignment behavior of the nematic and contain effective material parameters that are re-
lated to the inclusions geometry by the “cell problems”: these are sets of coupled differential equations that are defined in
a single unit cell, of size Ly . We may interpret the cell problems as quantifying the changes in the nematic response to
driving forces as a result of the metallic inclusions. For our system the driving forces are the elasticity of the nematic and
the externally applied electrostatic field. We therefore obtain two sets of cell problems: one relates the change in elastic
response of the system to the microscopic geometry; the second determines the altered dielectric response of the effective
liquid crystal due to the presence of the metallic inclusions.

4.2 Homogenization
The alignment of the nematic can be computed by simultaneously solving equations (23) and (24) inside the full micro-
scopically detailed geometry. To determine the cell problems and homogenized equations we define a microscopic scale
y by the relation y = x/ηh and assume that all fields are, a priori functions of x and y. We use the chain rule to expand
gradient operators and all variables as series in ηh of the form:

∇ =
1

ηh
∇y + ∇x, (25a)

a = a0 + ηha1 + η2
ha2 +O(η3

h), (25b)

φ = φ0 + ηhφ1 + η3
hφ3 +O(η3

h) (25c)

We make the following observations: as observed in section 2, ξ2
0 and χa are small quantities. Here we assume that they

are both O(η2
h) indicating that the liquid crystal dynamics, eq. (23a), has two different time scales.7 We note that this

scaling is the same as the one used in section 2 once we identify η2
h = η. To maintain a constant ratio of surface to volume

free energy as ηh tends to zero, the anchoring energy W must scale as ηh: we therefore write it as W = ηhW1, with W1

a quantity O(1). Lastly, we are only interested in the reorientation of the liquid crystal due to the elastic and electrostatic
energies: as in section 2 we introduce a a slow time, t2 = η2

ht, and expand the time derivative as

∂

∂t
= η2

h

∂

∂t2
. (26)

In writing this expansion we have implicitly assumed that all faster processes have reached equilibrium. In fact, due to the
identity η2

h = η, the slow variable t2 defined here is the same as the slow variable t1 defined in section 2. In section 2 we
showed how these scalings, in the absence of inclusions, imply that the liquid crystal dynamics is confined to the invariant
manifold M0. Here we find that the homogenized equations include the additional effect of the inclusions into the drift
along the invariant manifold. By substituting the expanded fields (25) into the governing equations (23) and (24) and
solving at each order in ηh we obtain the following results. The homogenized equations are

V (k) ·
{
ξ2
0∇x · (D∇xa0) + χa

[
eM

(
1 + 2

|Ωnp|
|Ω|

)
+ p

]
+W1ξ

2
0q

}
= V (k) · ∂a0

∂t2
, (27a)

∇x · [(|Ω|+ |Ωnp|) (I + αQ0)∇xφ0] = 0. (27b)

for k = 1, 2, 3 where V (k) are given by (15). These equations are completed by equations (13), i.e. the conditions that
define the invariant manifold M0: the scalar order parameter is a constant determined by the temperature and the biaxiality
is zero.



The effective fields and material parameters that appear in equations (27) are given by

Dij =
1

|Ω|

∫
Ω

(
δij +

∂χj
∂yi

)
d3y, (28)

q =
1

|Ω|

∫
Γ

aSdS, (29)

eMi = Tr
[
∇xφ0 ⊗∇xφ0T

(i)
]
, (30)

pi =
1

|Ω|

∫
Ω

Tr

[(
3∑
k=1

∇yRk
∂φ0

∂xk

)
⊗

(
3∑
k=1

∇yRk
∂φ0

∂xk

)
T (i)

]
dV . (31)

Here T (i) for i = 1, .., 5 are the basis of 3× 3 traceless symmetric tensors, see eq. (7), |Ω| is the volume of a unit cell filled
with liquid crystal and |Ωnp| is the volume occupied by an inclusion. The fields χk(y) and Rk(y), k = 1, 2, 3, that appear
in equations (28) and (31), respectively are the solutions of two sets of cell problems. The first set relates the change in
elastic response of the system to the microscopic geometry:

ξ2
0∇2

yχk = 0, y ∈ Ω, (32a)

n̂S ·∇yχk = −n̂S · ek, y ∈ Γi, (32b)

where êk for k = 1, 2, 3 are the Cartesian basis vectors. The second determines the altered dielectric response of the
effective liquid crystal due to the presence of the metallic inclusions:

[δij + αQ0ij ]
∂2Rk
∂yi∂yj

= 0 y ∈ Ω, (33a)

Rk = −yk y ∈ Γi, (33b)∫
Γi

(I + αQ0)∇yRk(y) · dS = 0 y ∈ Γi. (33c)

The material parameters and effective fields defined by equations (28)-(31) have a physical interpretation. Dij is the
effective elasticity tensor and encodes the anisotropic excluded volume effect, q is a forcing term that favors a nematic
aligned with the average preferred orientation on the inclusions. The macroscopic electric field eM is amplified by the
factor

(
1 + 2

|Ωnp|
|Ω|

)
. This factor quantifies how much larger the drop in potential across the nematic is due to the constraint

that the potential remains constant on the metallic inclusions. Finally the polarization field p results from the fringe electric
fields around an inclusion: the electric field must be orthogonal to the surface of the inclusions. Hence, even a uniform
external electric field will have components along all the coordinate axes close to the inclusions.

When supplemented with macroscopic boundary conditions on ∂D equations (27-33) form a complete macroscopic
description of the liquid crystal alignment. As the DFQTA equations derived in section 2, they are accurate and extremely
fast to integrate numerically in comparison to the unapproximated equations (23-24). In Bennett et al29 they have been
validated by comparing their predictions with numerical simulations of the full system (23-24), for two cases of inclusions
in a twisted cell. The director obeys planar anchoring on the boundaries of the cell with easy axis on the two glass plates
at an angle of π/2 radians to each other. The two cases treated are spherical dopant particles at non-zero voltage and
ellipsoidal particles with no applied field. In each case homeotropic anchoring on the nanoparticles is assumed. figure 4
shows the good agreement found in both cases. The ellipsoidal particles break the symmetry of the ground state and induce
a static deformation of the director even in the absence of an applied electric field. Spherical particles act to enhance the
response of the nematic to the applied field as shown in top left panel of figure 4. In all the cases illustrated in this figure
the numerical integration of the homogenized equations was more than 1,000 times faster than that of the full Q-tensor
equations.
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Figure 4. [Adapted from Bennett et al29] A comparison of full numerical simulations of the system to the solution given by the homog-
enized equations for spherical and ellipsoidal particles inside a 32µm twisted cell, zero pretilt and twist at boundaries and homeotropic
anchoring on dopants. (a) Spherical particles of radius r = 0.3µm at applied voltages of 1.5 V and 3 V (lower and upper curves
respectively). (b) Ellipsoidal dopants V = 0 with anchoring energy W1 = 50 (bottom) and W1 = 100 (top) orientation given by
(θ̃, φ̃) = (45o, 30o) with θ̃ azimuthal and φ̃ polar angles. The semi major axis of the ellipsoids is 0.3µm the semi minor axes are
0.1µm. (a) & (b) Red points are from homogenization, broken black line is undoped and blue line from Comsol numerical simulations.
(c) Absolute error Error = |θH − θN | where θH is the tilt angle from the homogenized equations and θN is extracted from numerical
simulations of the full system. (d) Schematic diagram of the system studied: planar cell of size Lx with spherical/ellipsoidal dopants
with spacing Ly .

4.3 Doped liquid crystals in a splay geometry
The homogenized equations (27-33) are a very powerful tool not just to find quickly the alignment of a doped liquid
crystal, but also to study the physics of devices based on these materials. In Bennett et al29 the case of a splay geometry
with homeotropic anchoring on the particles is discussed in some detail. The main results is that the effective elasticity
tensor always reduces the elastic constant of the nematic while the metallic inclusions increase the effective field felt by
the nematic. For spherical particles these effects always lower the Frederiks threshold and switch on time while increasing
the switch off time. In this case the forcing term q is zero and the elasticity tensor Dij is a multiple of the identity.
The polarisation p is non-zero: p1 increases rapidly with particle radius while p2 is always small, and zero if appropriate
symmetry conditions are satisfied. The situation is more interesting if we consider anisotropic particles: for these q is non–
zero and both q and the polarization p depend on the orientation of the particles. Careful choice of particle geometry29

can decrease both the switch on and off times and either increase or decrease the Frederiks threshold with respect to a pure
liquid crystal.

To conclude this section and illustrate the genericity of the method, we consider the case of a toroidal nanoparticle
whose axis lies in the (x, z)-plane, with z the direction into the cell and x the direction of the planar alignment of the liquid
crystal on the cell walls. We show in figure 5 the numerical solution (obtained using Comsol) of the cell problem (32) for
χ3. The color shading shows how the corrections to the alignment induced by the particle follow its geometrical symmetry.
In figure 6 we plot, instead, some of the parameters that appear in the macroscopic equations as a function of the angle
that the torus axis forms with the z-axis. The torus modulates the D11 and D33 components (top panel of figure 6) and
produces a weaker modulation of D22 (not shown). When the axis of the torus is not aligned with either the x or z axis the
components D13 and D31 are equal, small in magnitude and negative. As the average alignment on the surface of the torus
is non-zero, the anisotropy field q defined in eq. (29) is non-zero and its component vary with the orientation of the torus
axis.

5. CONCLUSIONS
Q-tensor codes are a powerful tool to determine the alignment of liquid crystals in complex geometries and the response
of liquid crystals under time dependent fields. The drawback of this flexibility is that the alignment equations are stiff and,
hence, computationally expensive. Over the last five years our group has been developing fastQ-tensor codes that provide
accurate alignment estimates in the absence of defects. Two of the algorithms that we have developed,7, 11 summarized in
sections 2 and 3, concern pure liquid crystals and are based on a multiple-scale expansion of the Q-tensor equation. The
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Figure 6. Components of elasticity tensor Dij , eq. (32),
(D11 black, D33 blue) and forcing term qi, eq. (33), (q1
black, q2 red and q4 blue) computed for a toroidal inclu-
sion with axis in the (x, z)-plane forming an angle Ψ with
respect to the z-axis. The components q3 and q5 are zero as
the torus does not induce out of plane twist.

third one,29 summarized in section 4, describes the alignment of a liquid crystal with fixed inclusions (e.g. nanopillars) and
is based around the application of homogenization theory to the Q-tensor equations.

These seemingly disparate codes have, however, a common thread: in the absence of defects, the liquid crystal free
energy is dominated by its thermotropic part. To first approximation, the Q-tensor lies on the equilibrium surface of the
thermotropic free energy. The net effect of elastic and electrostatic forces is to move the Q-tensor along this surface.
Therefore, the re-orientation dynamics of the liquid crystal, which is captured by all the algorithms described in this
paper, is (i) low dimensional and (ii) with a single time scale. The existence of the invariant manifold is self-evident
in the DFQTA and DFQTAF methods described in sections 2 and 3 for pure liquid crystals. It is more hidden in the
homogenization method used for doped liquid crystal summarized in section 4. In this case, the existence of the invariant
manifold manifests itself in the fact that the macroscopic alignment field described by equations (27b) does not depend
explicitly on the spatial coordinates at the microscopic (cell) level. The added benefit of using homogenization to obtain
the macroscopic equations for a doped liquid crystal is that not only the equations are non-stiff, but that we have a clear
and algorithmic connection between the microscopic properties of the liquid crystal and the control parameters in the
macroscopic equations. These observations lead naturally to a series of questions that we are currently trying to address.
The first, is what can be done if defects are present. We are currently working at incorporating the treatment of defects in
these algorithms, starting from the fairly basic approach of using numerical patching between the defect and defect-free
regions. A second one is whether the homogenization approach can be extended to rotating and translating particles. Works
along these lines have been considered, for example, in the context of rigid body rotation of porous structures.31

It is clear, though, that, already at this early stage, the many orders of magnitude increase in computational speed that
the algorithms outlined in this paper offer, opens the way to the realistic simulation and optimization of liquid crystal
devices that operate in the absence of defects.
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[19] A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, “Ferromagnetism in suspensions of magnetic platelets in liquid
crystal,” Nature 504, pp. 237–241, Dec. 2013.

[20] B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,”
Nature 493, pp. 200–205, Jan. 2013.
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