The University of Southampton
University of Southampton Institutional Repository

Laser-assisted transfer for rapid additive micro-fabrication of electronic devices

Laser-assisted transfer for rapid additive micro-fabrication of electronic devices
Laser-assisted transfer for rapid additive micro-fabrication of electronic devices
Laser-based micro-fabrication techniques can be divided into the two broad categories of subtractive and additive processing. Subtractive embraces the well-established areas of ablation, drilling, cutting and trimming, where the substrate material is post-processed into the desired final form or function. Additive describes a manufacturing process that most recently has captured the news in terms of 3-d printing, where materials and structures are assembled from scratch to form complex 3-d objects. While most additive 3-d printing methods are purely aimed at fabrication of structures, the ability to deposit material on the micron-scale enables the creation of functional, e.g. electronic or photonic, devices [1].
Laser-induced forward transfer (LIFT) is a method for the transfer of functional thin film materials with sub-micron to few millimetre feature sizes [2,3]. It has a unique advantage as the materials can be optimised beforehand in terms of their electrical, mechanical or optical properties. LIFT allows the intact transfer of solid, viscous or matrix-embedded films in an additive fashion. As a direct-write method, no lithography or post-processing is required and does not add complexity to existing laser machining systems, thus LIFT can be applied for the rapid and inexpensive fabrication or repair of electronic devices. While the technique is not limited to a specific range of materials, only a few examples show transfer of inorganic semiconductors. So far, LIFT demonstration of materials such as silicon [4,5] have undergone melting, and hence a phase transition process during the transfer which may not be desirable, compromising or reducing the efficiency of a resulting device. Here, we present our first results on the intact transfer of solid thermoelectric semiconductor materials on a millimetre scale via nanosecond excimer laser-based LIFT. We have studied the transfer and its effect on the phase and physical properties of the printed materials and present a working thermoelectric generator as an example of such a device. Furthermore, results from initial experiments to transfer silicon onto polymeric substrates in an intact state via a Ti:sapphire femtosecond laser are also shown, which illustrate the utility of LIFT for printing micron-scale semiconductor features in the context of flexible electronic applications.
Feinäugle, M.
3b15dc5b-ff52-4232-9632-b1be238a750c
Mills, B.
05f1886e-96ef-420f-b856-4115f4ab36d0
Heath, D.J.
d53c269d-90d2-41e6-aa63-a03f8f014d21
Sones, C.L.
9de9d8ee-d394-46a5-80b7-e341c0eed0a8
Eason, R.W.
e38684c3-d18c-41b9-a4aa-def67283b020
Feinäugle, M.
3b15dc5b-ff52-4232-9632-b1be238a750c
Mills, B.
05f1886e-96ef-420f-b856-4115f4ab36d0
Heath, D.J.
d53c269d-90d2-41e6-aa63-a03f8f014d21
Sones, C.L.
9de9d8ee-d394-46a5-80b7-e341c0eed0a8
Eason, R.W.
e38684c3-d18c-41b9-a4aa-def67283b020

Feinäugle, M., Mills, B., Heath, D.J., Sones, C.L. and Eason, R.W. (2014) Laser-assisted transfer for rapid additive micro-fabrication of electronic devices. EPSRC: Manufacturing the Future, Glasgow, United Kingdom. 23 - 24 Sep 2014.

Record type: Conference or Workshop Item (Paper)

Abstract

Laser-based micro-fabrication techniques can be divided into the two broad categories of subtractive and additive processing. Subtractive embraces the well-established areas of ablation, drilling, cutting and trimming, where the substrate material is post-processed into the desired final form or function. Additive describes a manufacturing process that most recently has captured the news in terms of 3-d printing, where materials and structures are assembled from scratch to form complex 3-d objects. While most additive 3-d printing methods are purely aimed at fabrication of structures, the ability to deposit material on the micron-scale enables the creation of functional, e.g. electronic or photonic, devices [1].
Laser-induced forward transfer (LIFT) is a method for the transfer of functional thin film materials with sub-micron to few millimetre feature sizes [2,3]. It has a unique advantage as the materials can be optimised beforehand in terms of their electrical, mechanical or optical properties. LIFT allows the intact transfer of solid, viscous or matrix-embedded films in an additive fashion. As a direct-write method, no lithography or post-processing is required and does not add complexity to existing laser machining systems, thus LIFT can be applied for the rapid and inexpensive fabrication or repair of electronic devices. While the technique is not limited to a specific range of materials, only a few examples show transfer of inorganic semiconductors. So far, LIFT demonstration of materials such as silicon [4,5] have undergone melting, and hence a phase transition process during the transfer which may not be desirable, compromising or reducing the efficiency of a resulting device. Here, we present our first results on the intact transfer of solid thermoelectric semiconductor materials on a millimetre scale via nanosecond excimer laser-based LIFT. We have studied the transfer and its effect on the phase and physical properties of the printed materials and present a working thermoelectric generator as an example of such a device. Furthermore, results from initial experiments to transfer silicon onto polymeric substrates in an intact state via a Ti:sapphire femtosecond laser are also shown, which illustrate the utility of LIFT for printing micron-scale semiconductor features in the context of flexible electronic applications.

Text
6480.pdf - Other
Download (21kB)

More information

Published date: September 2014
Venue - Dates: EPSRC: Manufacturing the Future, Glasgow, United Kingdom, 2014-09-23 - 2014-09-24
Organisations: Optoelectronics Research Centre

Identifiers

Local EPrints ID: 370146
URI: http://eprints.soton.ac.uk/id/eprint/370146
PURE UUID: a50b2733-14a7-4a9f-a5d6-62df428d7731
ORCID for B. Mills: ORCID iD orcid.org/0000-0002-1784-1012
ORCID for R.W. Eason: ORCID iD orcid.org/0000-0001-9704-2204

Catalogue record

Date deposited: 27 Oct 2014 10:33
Last modified: 15 Mar 2024 03:27

Export record

Contributors

Author: M. Feinäugle
Author: B. Mills ORCID iD
Author: D.J. Heath
Author: C.L. Sones
Author: R.W. Eason ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×