

Effect of sample dimensions on observed photoluminescence from Er^{3+} ions in GeGaS and LaGaS glass hosts

Cyril Koughia^a, Chris Craig^b, Daniel W. Hewak^b and Safa Kasap^a

^a Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Canada

^b Optoelectronics Centre, University of Southampton, Southampton, UK

Email cyril.koughia@usask.ca

The $^4\text{I}_{9/2} - ^4\text{I}_{13/2}$ emission band of trivalent Er^{3+} is potentially interesting light source for methane (CH_4) detection because of its closeness to CH_4 absorption band at $1.67 \mu\text{m}$. In the present paper we report the influence of glass sample geometry on the shape of spectra and relative emission intensity of $^4\text{I}_{9/2} - ^4\text{I}_{13/2}$ band as well as three main $^4\text{I}_{13/2} - ^4\text{I}_{15/2}$, $^4\text{I}_{11/2} - ^4\text{I}_{15/2}$ and $^4\text{I}_{9/2} - ^4\text{I}_{15/2}$ emission bands in sulfide glasses (GeGaS and LaGaS) doped with 0.5 at.% of Er. We show that the increase of sample size leads to a significant broadening of emission spectra as well as to the substantial suppression of $^4\text{I}_{13/2} - ^4\text{I}_{15/2}$ and $^4\text{I}_{11/2} - ^4\text{I}_{15/2}$ bands. The observed effects are explained by excitation diffusion or photon trapping (consecutive absorption and emission of light by Er^{3+} ions [1,2]) which turns out to be more effective in large samples. We present the results of Monte-Carlo simulations supporting our considerations and we discuss the possibility of increasing the $^4\text{I}_{9/2} - ^4\text{I}_{13/2}$ emission by controlling photon trapping.

- [1] M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos and R. M. Almeida, *Europhys. Lett.* **71** (2005), 394.
- [2] C. Koughia and S. O. Kasap, *Optics Express* **16** (2008) 7709.