
'Avoiding Programming'
for Safety Critical Systems

Andy Edmunds
ae2@ecs.soton.ac.uk

In the last Session ...

- We showed how errors can be introduced by
 the programming activity.

- We showed some examples of attempts to
 improve programming languages.

- We suggested that Event-B could help.

What can 'we' do?

- With Event-B tools (+ Tasking Event-B)
 - we can generate code automatically.
 - formal modelling helps to
 highlight/remove systematic errors.

- Using automatic code generation we
 - do less coding.
 - encourage re-use (using code templates).

How to do this ...

- As you know, Event-B is modelling, not
 programming.
 - Developers focus on the design, not code.

- To produce source code, we add 'extra'
 information to Event-B.
 … and still we need a trusted compiler.
 … and, ideally, 'certify' the translator.

- We could still verify the code with JML,
 SPARKAda etc

Targets: Ada, OpenMP C, FMI C, Java ….
- The approach is suitable for

- single threaded implementations.
- multi-threaded implementations (using

 decomposition).
- not currently OO, but could be done.

Current Focus is on embedded systems.
- 'Implementable' controller code
- Environment simulation.

Targets for Translation ...

Event-B at the implementation level
- Tasking Event-B
 - Event-B models:
 - Controller Tasks (AutoTask Machine).
 - Shared Protected Objects (Shared Machine).
 - Environment Tasks (Environ Machine).

- Use Decomposition to partition the system.
 - Shared Event Style.
 - Shared Events model communication, between

- Controller tasks and Environment tasks.
- Controller tasks and Protected Objects.
- Environment tasks and Protected Objects.

Where Tasking Event-B Fits in.

Shared Event Decomposition
Tool-driven decomposition

Event 'Synchronization'

Preparing for Decomposition

Vars A: x, B: x
Evt =
 A := B

Machine
M1

Machine
M2

Machine
M0

Vars A: x
Evt =
 A := ?

Vars B: x
Evt =
 ? := B

Cannot
Decompose !!

Composed Machine

Refines

A Problematic Decomposition

Preparing for Decomposition

Vars A: x, B: x
Evt = ANY p
WHEN p = B
THEN A := p

Machine M1Introduce Parameters
Refines M0

Was A := B

A Model of Communication

Vars A: x, B: x
Evt = ANY p
WHEN p = B
THEN A := p

Machine M2 Machine M3

Machine M1

Vars A: x
Evt = ANY p
WHEN p = B & p: x
THEN A := p

Vars B: x
Evt = ANY p
WHEN p = B & p: x
THEN SKIP

Decompose

Composed Machine

Refines

A Model of Communication

Machine M2 Machine M3

Vars A: x
Evt = ANY p?
WHEN p = B & p: x
THEN A := p

Vars B: x
Evt = ANY p!
WHEN p = B & p: x
THEN SKIP

Composed Machine

Incoming parameter Outgoing parameter

An Implementation of the Communication

Machine M2 Machine M3

Vars A: x
Evt = ANY p?
WHEN p = B & p: x
THEN A := p

Vars B: x
Evt = ANY p!
WHEN p = B & p: x
THEN SKIP

Incoming parameter Outgoing parameter

Evt(p: x){
 A := p
}

Evt(B);

subroutine call

Task Body Syntax:
- Allows use of Branches, Sequence and Loops.
- Has an 'Output' to console.

Tasking Event-B
Adds 'Tasking' Implementation Information to Event-B

Heater Controller Example
Controller vs Environment

This example is from the Tasking Event-B wiki tutorial.

Heater Controller Example
Another View

A Tasking Machine

Events:
Used in a
Sequence,
Branch,
Loop,
Output

Implementation level Specification

AutoTasks Machines and Environ Machines

'in'/ 'out' annotations

synchronization

Parameter
direction

Code Generation

Generated Code
In the Display Task:
 Shared_Object: Shared_Object_IMPL; ...
 task body Display_Update_Task_IMPL is
 cttm1 : Integer := 0;
 period: constant Time_Span := To_Time_Span(0.5);
 nextTime: Time := clock + period;
 begin
 loop
 delay until nextTime;
 Shared_Object.Get_Temperature1(cttm1);
 ...
In the Protected Object:
 procedure Get_Temperature1(tm: out Integer) is
 begin
 tm := cttm;
 end Get_Temperature1;

So far,

- translations for built-in Event-B types are
 restricted to INTs and BOOLs.

- and Event-B INTs are not bounded
 (wrap-around in implementations?).

- we don't even have arrays as standard in Event-B.

Types and Translations.

- Use the Theory Plug-in

- Theories are used to define new
 - datatypes
 - operators
 - rewrite rules
 - inference rules

We also use it for code generation,
- to translate predicates and expressions.

Extending Event-B:
 with New Types, and Translations.

Defining a Translator:
 From Event-B to a 'new' Target Language

Adding new Types

Adding a Translation for the new Type
(In a theory)

Using a new Type

- AutoTasks do not communicate with each other.

- Communicate through Shared Machines.

- No nesting, in the Tasking Event-B syntax.

- One machine per 'Object'.

...

Tasking Event-B - restrictions

And finally … (almost)

- Writing code for Safety Critical Systems is hard.
 - The existing code can be augmented by additional
 notations for extended static-checking (JML),
 static checking + proof (SPARKAda)
 - Use safe language subsets.
 - Place restrictions on the implementation.
 - esp. for timing, and concurrency.

- Use Formal Modelling with automatic code gen.
 - also, use Model-checking, SAT/SMT etc.
 to help discover errors.

… and finally (actually)

If you write code manually
- much of the development effort is invested in
 eliminating coding errors.

With automatic code generation
- The modelling process helps to eliminate
 systemic errors.
- If the translator is 'trusted', coding errors should
 be absent.

- Certifying a translator is possible, but expensive.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

