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In the last Session ...

- We showed how errors can be introduced by        
  the programming activity.

- We showed some examples of attempts to           
   improve programming languages.

- We suggested that Event-B could help.



What can 'we' do?

- With Event-B tools (+ Tasking Event-B) 
  - we can generate code automatically.
  - formal modelling helps to   
    highlight/remove systematic errors.

- Using automatic code generation we
  - do less coding.
  - encourage re-use (using code templates).



How to do this ...

- As you know, Event-B is modelling, not              
  programming.
  - Developers focus on the design, not code.

- To produce source code, we add 'extra'             
   information to Event-B.
   … and still we need a trusted compiler.
   … and, ideally, 'certify' the translator.

- We could still verify the code with JML,              
  SPARKAda etc



Targets: Ada, OpenMP C, FMI C, Java ….
- The approach is suitable for

- single threaded implementations.
- multi-threaded implementations (using      

       decomposition).
- not currently OO, but could be done.

Current Focus is on embedded systems.
- 'Implementable' controller code
- Environment simulation.

Targets for Translation ...



Event-B at the implementation level 
- Tasking Event-B
  - Event-B models:
    - Controller Tasks (AutoTask Machine).
    - Shared Protected Objects (Shared Machine).
    - Environment Tasks (Environ Machine).

- Use Decomposition to partition the system.
 - Shared Event Style.
 - Shared Events model communication, between  

- Controller tasks and Environment tasks.
- Controller tasks and Protected Objects.
- Environment tasks and Protected Objects.



Where Tasking Event-B Fits in.



Shared Event Decomposition
Tool-driven decomposition



Event 'Synchronization'



Preparing for Decomposition

Vars A: x, B: x
Evt = 
  A := B

Machine
M1

Machine 
M2

Machine
M0

Vars A: x
Evt = 
  A := ?

Vars B: x
Evt = 
  ? := B

Cannot
Decompose !!

Composed Machine

Refines

A Problematic Decomposition



Preparing for Decomposition

Vars A: x, B: x
Evt = ANY p 
WHEN p = B
THEN    A := p

Machine M1Introduce Parameters
Refines M0

Was A := B



A Model of Communication

Vars A: x, B: x
Evt = ANY p 
WHEN p = B
THEN    A := p

Machine M2 Machine M3

Machine M1

Vars A: x
Evt = ANY p 
WHEN p = B & p: x
THEN    A := p

Vars B: x
Evt = ANY p 
WHEN p = B & p: x
THEN    SKIP

Decompose

Composed Machine

Refines



A Model of Communication

Machine M2 Machine M3

Vars A: x
Evt = ANY p? 
WHEN p = B & p: x
THEN    A := p

Vars B: x
Evt = ANY p! 
WHEN p = B & p: x
THEN    SKIP

Composed Machine

Incoming parameter Outgoing parameter



An Implementation of the Communication

Machine M2 Machine M3

Vars A: x
Evt = ANY p? 
WHEN p = B & p: x
THEN    A := p

Vars B: x
Evt = ANY p! 
WHEN p = B & p: x
THEN    SKIP

Incoming parameter Outgoing parameter

Evt(p: x){
  A := p
}

Evt(B);

subroutine call



Task Body Syntax:
- Allows use of Branches, Sequence and Loops.
- Has an 'Output' to console. 

Tasking Event-B
Adds 'Tasking' Implementation Information to Event-B



Heater Controller Example
Controller vs Environment

This example is from the Tasking Event-B wiki tutorial.



Heater Controller Example
Another View



A Tasking Machine

Events:
Used in a
Sequence,
Branch,
Loop,
Output

Implementation level Specification

AutoTasks Machines and Environ Machines



'in'/ 'out' annotations

synchronization

Parameter
direction



Code Generation



Generated Code
In the Display Task:
  Shared_Object: Shared_Object_IMPL; ...
  task body Display_Update_Task_IMPL is 
    cttm1 : Integer := 0;
    period: constant Time_Span := To_Time_Span(0.5);
    nextTime: Time := clock + period;
    begin 
      loop 
        delay until nextTime;
             Shared_Object.Get_Temperature1(cttm1);
    ...
In the Protected Object:
  procedure Get_Temperature1(tm:  out Integer) is 
    begin 
      tm := cttm;
    end Get_Temperature1;



So far,

- translations for built-in Event-B types are     
   restricted to INTs and BOOLs.

- and Event-B INTs are not bounded 
  (wrap-around in implementations?).

- we don't even have arrays as standard in Event-B.  

Types and Translations.



- Use the Theory Plug-in

- Theories are used to define new 
   - datatypes
   - operators
   - rewrite rules
   - inference rules

We also use it for code generation,
- to translate predicates and expressions.

Extending Event-B:
 with New Types, and Translations.



Defining a Translator: 
 From Event-B to a 'new' Target Language 



Adding new Types



Adding a Translation for the new Type
(In a theory)



Using a new Type



- AutoTasks do not communicate with each other.

- Communicate through Shared Machines.

- No nesting, in the Tasking Event-B syntax.

- One machine per 'Object'.

...

Tasking Event-B - restrictions



And finally … (almost)

- Writing code for Safety Critical Systems is hard.
  - The existing code can be augmented by additional 
    notations for extended static-checking (JML), 
    static checking + proof (SPARKAda)  
  - Use safe language subsets.
  - Place restrictions on the implementation.
    - esp. for timing, and concurrency.

- Use Formal Modelling with automatic code gen. 
  - also, use Model-checking, SAT/SMT etc. 
    to help discover errors.

 



… and finally (actually)

If you write code manually
- much of the development effort is invested in 
  eliminating coding errors.

With automatic code generation
- The modelling process helps to eliminate 
  systemic errors. 
- If the translator is 'trusted', coding errors should
  be absent.

- Certifying a translator is possible, but expensive.
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