
Verifying Concurrent Programs

by Memory Unwinding

?

Ermenegildo Tomasco1, Omar Inverso1, Bernd Fischer2, Salvatore La Torre3,
and Gennaro Parlato1

1 Electronics and Computer Science, University of Southampton, UK
2 Division of Computer Science, Stellenbosch University, South Africa

3 Università degli Studi di Salerno, Italy

Abstract. We describe a new sequentialization-based approach to the
symbolic verification of multithreaded programs with shared memory and
dynamic thread creation. Its main novelty is the idea of memory unwind-
ing (MU), i.e., a sequence of write operations into the shared memory. For
the verification, we nondeterministically guess an MU and then simulate
the behavior of the program according to any scheduling that respects
it. This approach is complementary to other sequentializations and ex-
plores an orthogonal dimension, i.e., the number of write operations. It
also simplifies the implementation of several important optimizations, in
particular the targeted exposure of individual writes. We implemented
this approach as a code-to-code transformation from multithreaded into
nondeterministic sequential programs, which allows the reuse of sequen-
tial verification tools. Experiments show that our approach is e↵ective:
it found all errors in the concurrency category of SV-COMP15.

1 Introduction

Concurrent programming is becoming more important as concurrent computer
architectures such as multi-core processors are becoming more common. How-
ever, the automated verification of concurrent programs remains a di�cult prob-
lem. The main cause of the di�culties is the large number of possible ways in
which the di↵erent elements of a concurrent program can interact with each
other, e.g., the number of di↵erent interleavings of a program’s threads. In prac-
tice, however, we fortunately do not need to consider all possible interactions.
For example, it is well known that many concurrency errors manifest themselves
already after only a few context switches [20]; this observation gives rise to a
variety of context-bounded analysis methods [16, 19, 13, 5, 8, 6, 9, 11].

Recent empirical studies have pointed out other common features for con-
currency errors, but these have not yet been exploited for practical verification
algorithms. In particular, Lu et al. [17] observed that “almost all [. . .] concur-
rency bugs are guaranteed to manifest if certain partial order among no more
than 4 memory accesses is enforced.”

? Partially supported by EPSRC grant no. EP/M008991/1, INDAM-GNCS 2014 grant
and MIUR-FARB 2012-2014 grants.

In this paper we follow up on their observation that only a few memory ac-
cesses are relevant, and propose a corresponding new approach to the automated
verification of concurrent programs, more specifically multithreaded programs
with shared memory. Our approach simulates the executions of a multithreaded
program but bounds the total number of write operations into the shared mem-
ory that can be read by threads other than the one performing the writing. It is
related to context-bounded analyses [19, 16, 13] but the bounding parameter is
di↵erent, which allows an orthogonal exploration of the search space.

The central concept in our approach is called memory unwinding (MU). This
is a an explicit representation of the write operations as a sequence that contains
for each write the writing thread, the variable or lock, and the written value. Our
approach can then be seen as an eager sequentialization of the original concurrent
program over the unwound memory. We first guess an MU and then simulate
all program runs that are compatible with this guess. For the simulation, each
thread is translated into a simulation function where write and read accesses over
the shared memory are replaced by operations over the unwound memory. The
simulation functions are executed sequentially; each thread creation is translated
into a call to the corresponding simulation function. All context switches are
implicitly simulated through the MU.

The approach allows us to vary which write operations are represented and
thus exposed to the other threads. This leads to di↵erent strategies with di↵er-
ent performance characteristics. In a fine-grained MU every write operation is
represented explicitly and individually while coarse-grained MUs only represent
a subset of the writes, but group together multiple writes. In an intra-thread MU
the writes in one group are all executed by one thread; the writes not represented
can thus be seen as having been superseded by subsequent writes in the same
context. In an inter-thread MU the writes in one group can come from di↵erent
threads, thus summarizing the e↵ect of multiple context switches.

We have implemented in our MU-CSeq tool these strategies as code-to-code
transformations for ANSI-C programs that use the POSIX threads API. We have
evaluated MU-CSeq over the SV-COMP15 [3] concurrency benchmarks. It has
found all errors and shown itself to be competitive with state-of-the-art tools for
concurrent programs, in particular CBMC [7] and Lazy-CSeq [12].

In summary, in this paper we make the following main contributions:

– We describe in Section 3 a new sequentialization-based symbolic verification
approach for multithreaded programs with shared memory based on the
novel idea of memory unwinding.

– We describe in Section 4 di↵erent strategies to implement our approach as
code-to-code translations that can be used with arbitrary sequential verifi-
cation backends.

– We evaluate in Section 5 these implementations over the SV-COMP15 bench-
mark suite; the results are in line with those of the current best tools for
concurrency handling.

In addition, we formalize in Section 2 the language we use to illustrate our
approach, while we discuss related work in Section 6 and conclude in Section 7.

2 Concurrent programs

We use a simple imperative language for multithreaded programs to illustrate our
approach. It features shared variables, dynamic thread creation, and thread join
and mutex locking and unlocking for thread synchronization. We adopt a C-like
syntax, which is given in Fig. 1; here, terminal symbols are set in typewriter font,
and hn ti⇤ denotes a possibly empty list of non-terminals n that are separated
by terminals t. We further denote with x a local variable, y a shared variable,
m a mutex, t a thread variable and p a procedure name.

P ::= (dec;)⇤ (type p (hdec,i⇤){(dec;)⇤stm})⇤

dec ::= type z

type ::= bool | int | void
stm ::= seq | conc | {(stm;)⇤}
seq ::= assume(b) | assert(b) | x := e | p(he,i⇤) | return e

| if(b) then stm else stm | while(b) do stm

conc ::= x := y | y := x | t := create p(he,i⇤) | join t

| lock m | unlock m | atomic stm

Fig. 1. Syntax of concurrent programs.

A concurrent program
consists of a list of shared
variable declarations, fol-
lowed by a list of pro-
cedures. Each procedure
has a list of typed param-
eters, and its body has a
declaration of local vari-
ables followed by a statement. A statement is either a sequential or concurrent
statement, or a sequence of statements enclosed in braces. A sequential statement
can be an assume- or assert-statement, an assignment, a procedure call with
a call-by-value parameter passing semantics a return-statement, a conditional
statement, or a while-loop. All variables involved in a sequential statement must
be local. Note that we leave expressions e and Boolean expressions b undefined;
we assume the usual constants and operations. We also use ⇤ to denote the nonde-
terministic choice of any possible value of the corresponding type. A concurrent
statement can be a concurrent assignment, a thread creation, a thread join, a
mutex lock or unlock operation, or an atomic block. A concurrent assignment
assigns a shared (resp. local) variable to a local (resp. shared) one. A thread
creation statement t := create p(e

1

, . . . , e

n

) creates a new thread by calling the
starting procedure p with the expressions e

1

, . . . , e

n

as arguments and assigning
the thread identifier to t. A thread join statement join t pauses the current
thread until the thread identified by t terminates. Lock and unlock statements
respectively acquire and release a mutex. If the mutex is already acquired, the
lock operation is blocking for the thread, i.e., the thread waits until the mutex
is released. Context switches to other threads are disallowed when a thread’s
control flow is within an atomic statement or block.

We assume that a valid program P satisfies the usual well-formedness and
type-correctness conditions. We also assume that P contains a procedure main,
which is the starting procedure of the only thread that exists in the beginning.
We call this the main thread. To simplify the translation, we assume that there
are no calls to main in P and that no other thread can be created that uses main
as starting procedure.

The semantics is the obvious one: a configuration is a tuple of configurations
of each thread that has been created and has not yet terminated, along with a
valuation of the shared variables. A thread configuration consists of a stack which
stores the history of positions at which calls were made, along with valuations for

local variables, and the top of the stack contains the local and global valuations,
and a pointer to the current statement being executed.

The behavioral semantics of a program P is obtained by interleaving the
behaviors of its threads. At the beginning of any computation only the main
thread is available. At any point of a computation, only one of the available
threads is active. A step is either the execution of a step of the active thread
or a context-switch that replaces the active thread with one of the available
threads that thus becomes the active thread at the next step. A thread may
become temporarily unavailable if it is waiting to acquire a mutex or waiting to
join another thread. A thread will no longer be available when its execution is
terminated, i.e., there are no more steps that it can take.

Fibonacci-example. Fig. 2(a) shows a multithreaded implementation of a nonde-
terministic Fibonacci-function. This example from the SV-COMP15 benchmark
suite uses two threads f1 and f2 to repeatedly increment the shared variables i
and j by j and i, respectively. With a round-robin schedule with context switches
after each assignment the variables i and j take on the consecutive values from
the Fibonacci-series, and the program terminates with i = fib(11) = 89 and
j = fib(12) = 144 if this interleaving starts with f1. Any other schedule will lead
to smaller values for i or j.

The main function first creates the two threads f1 and f2, then uses two join
statements to ensure that both threads run to completion, and finally checks the
outcome of the choosen interleaving. Note that each of the assignments contains
three sequence points; our core language makes these explicit and thus “i = i+j;”
becomes “x = i; y = j; z = i+ j; i = z;” for local variables x, y, and z.

3 Sequentialization by Memory Unwinding

In this section we first give a general overview of the main concepts of our
approach, namely the memory unwinding and the simulation of the read and
write operations, before we describe the sequentialization translation. We use
the Fibonacci-example above to illustrate the concepts. We describe di↵erent
implementation alternatives for the concepts in Section 4.

High-level description. Our approach is based on a code-to-code translation of
any concurrent program P into a corresponding sequential program P

n,⌧

that
captures all the executions of P involving at most n write operations in the
shared memory and ⌧ threads. We show that an assertion fails for such an
execution of P if and only if a corresponding assertion fails in P

n,⌧

.
A core concept in this translation is the memory unwinding. An n-memory

unwinding M of P is a sequence of writes w

1

. . . w

n

of P ’s shared variables;
each w

i

is a triple (t
i

, var
i

, val
i

) where t
i

is the identifier of the thread that has
performed the write operation, var

i

is the name of the written variable and val
i

is the new value of var
i

. A position in an n-memory unwinding M is an index
in the interval [1, n]. An execution of P conforms to a memory unwinding M if
the sequence of its writes in the shared memory exactly matches M . Fig. 2(c)
gives a 10-memory unwinding. The following is an execution of the multithreaded

int i = 1, j = 1;

void f1() {
i = i + j;

i = i + j;

i = i + j;

i = i + j;

i = i + j;

}

void f2() {
j = j + i;

j = j + i;

j = j + i;

j = j + i;

j = j + i;

}

void main() {
thread t1, t2;

create(t1, f1);
create(t2, f2);
join t1;

join t2;

assert(j < 21);

}

(a)

int i = 1, j = 1;

int ct; bool error= F ; uint[3] th pos;

void f1n,⌧ () {
write(ct, hii, read(ct, hii)+read(ct, hji));
write(ct, hii, read(ct, hii)+read(ct, hji));
write(ct, hii, read(ct, hii)+read(ct, hji));
write(ct, hii, read(ct, hii)+read(ct, hji));
write(ct, hii, read(ct, hii)+read(ct, hji));

}

void f2n,⌧ () {
write(ct, hji, read(ct, hji)+read(ct, hii));
write(ct, hji, read(ct, hji)+read(ct, hii));
write(ct, hji, read(ct, hji)+read(ct, hii));
write(ct, hji, read(ct, hji)+read(ct, hii));
write(ct, hji, read(ct, hji)+read(ct, hii));

}

void mainn,⌧ () {
thread t1, t2; uint tmp;

CREATE(t1, f1n,⌧);

CREATE(t2, f2n,⌧);

mem join(ct, t1); CHECK RETURN
mem join(ct, t2); CHECK RETURN
CHECK RETURN;
if(j >= 21) then

{ error := TRUE; return 0}
}

void main(void) {. . .}

(b)

pos thr var val

1 2 i 2

2 2 i 3

3 2 i 4

4 2 i 5

5 3 j 5

6 3 j 10

7 3 j 15

8 2 i 15

9 3 j 30

10 3 j 45

(c)

pos thr map

1 2 {(i, 4)}
2 2 {(i, 5)}
3 3 {(j, 10)}
4 3 {(j, 15)}
5 2 {(i, 15)}
6 3 {(j, 45)}

(d)

pos thr map

1 {2} {(i, 4)}
2 {2, 3} {(i, 5), (j, 10)}
3 {3} {(j, 15)}
4 {2, 3} {(i, 15), (j, 45)}

(e)

Fig. 2. Multithreaded Fibonacci: (a) code for 5 iterations, (b) translated code, and
sample memory unwindings: (c) fine grained, (d) intra-thread and (e) inter-thread.

program given in Fig. 2(a) that conforms to it (we omit the main thread): the first
three assignments of f1, followed by a read of i by f2, then the fourth assignment
of f1, the completion of the first two assignments of f2, the read of j by f1, the
third assignment of f2, the last assignment of f1 and the remaining assignments
of f2. Note that a memory unwinding can be unfeasible for a program, in the
sense that no execution of the program conforms to it. Conversely, multiple
executions can also conform to one memory unwinding, although this is not the
case for the Fibonacci-example.

We use a memory unwinding M to explore the runs of P that conform to it
by running each thread t separately. The idea is to use the MU for the concurrent
statements (which involve the shared memory) and execute the sequential state-
ments directly. In particular, when we execute a write of t in the shared memory,
we check that it matches the next write of t in M . However, a read of t in the
shared memory is more involved, since the sequence of reads is not explicitly
stored in the MU. We therefore need to nondeterministically guess the position
in the MU from which we read. Admissible values are all the positions that are
in the range from the current position (determined by previous operations on
the shared memory) to the position of t’s next write in M . The nondeterminis-

tic guess ensures that we are accounting for all possible interleavings of thread
executions that conform to the MU.

For example, consider again the 10-memory unwinding of Fig. 2(c). The
execution of f1 is simulated over this as follows. The first four writes are matched
with the first four positions of the MU; moreover, the related reads are positioned
at the current index since they are each followed by the write which is at the next
position in the MU. The fifth write is matched with position 8. The corresponding
read operations can be assigned nondeterministically to any position from 4 to
7. However, in order to match the value 15 with the write, the read of j must
be positioned at 6. Note that the read of i can be positioned anywhere in this
range since it was written last time at position 4.

We stress that when simulating one thread we assume that the writes ex-
ecuted by the other threads, and stored in the memory unwinding, indeed all
occur and, moreover, in the ordering shown in M . Thus, for the correctness of
the simulation, for each thread t we must ensure not only that each of its writes
involving the shared variables conforms to the write sequence in M , but also
that all the writes claimed in the MU are actually executed. Further, t should
not contribute to the computation before the statement that creates it has been
simulated. This can be easily enforced by making the starting position of the
child thread to coincide with the current position in M of the parent thread
when its creation is simulated.

Construction of P
n,⌧

. The program P

n,⌧

first guesses an n-memory unwinding
M and then simulates a run of P that conforms to M . The simulation starts
from the main thread (which is the only active thread when P starts) and then
calls the other threads one by one, as soon as their thread creation statements
are reached. Thus, the execution of the parent thread is suspended and then
resumed after that the simulation of the child thread has completed. Essentially,
dynamic thread creation in P is modeled by function calls in P

n,⌧

.

P

n,⌧

is formed by a main, and a new procedure p

n,⌧

for each procedure p

of P . It uses some additional global variables: error is initialized to false and
stores whether an assertion failure in P has occurred; ct stores the identifier of
the current thread; the array th pos stores the current position in the memory
unwinding for each thread.

void main(void) {
mem init(V, n, ⌧);
ct := mem thread create(0);
mainn,⌧ (x1, . . . , xk);
mem thread terminate(ct);
mem allthreads executed();
assert(error 6= 1) }

Fig. 3. Pn,⌧ : main().

The main procedure of P
n,⌧

is given in Fig. 3.
First, we call mem init(V, n, ⌧) that guesses an n-
memory unwinding with V variables and ⌧ threads,
and then mem thread create(0) that registers the
main thread and returns its id. Note that we en-
code each of P ’s shared variables y with a di↵erent
integer hhyii in the interval [1, V] and each thread
with a di↵erent integer in [1, ⌧]; once ⌧ threads are created mem thread create

returns �1 (an invalid id) that causes the thread not to be simulated. The pa-
rameter passed to mem thread create is the id of the thread that is invoking the
thread creation. For the creation of the main thread we thus pass 0 to denote
that this is the first created thread.

1. [type p (par

⇤
){dec⇤

stm}] ::= type pn,⌧ (par

⇤
){dec⇤; uint tmp; [stm]}

2. [{(stm;)⇤}] ::= {([stm];)⇤}

Sequential statements:

3. [assume(b)] ::= CHECK RETURN; assume(b)
4. [assert(b)] ::= CHECK RETURN; if(¬b) then { error:= TRUE; return 0}
5. [p(e1, . . . , en)] ::= pn,⌧ (e1, . . . , en); CHECK RETURN
6. [return e] ::= return e

7. [x := e] ::= x := e

8. [x := p(e1, . . . , en)] ::= x := pn,⌧ (e1, . . . , en); CHECK RETURN
9. [while(b) do stm] ::= while(b) do {CHECK RETURN; [stm]}
10. [if (b) then stm else stm] ::= if (b) then [stm] else [stm]

Concurrent statements: (x is local, y is shared, ct contains the current tread id)

11. [y := x] ::= write(ct, hhyii, x); CHECK RETURN
12. [x := y] ::= x :=read(ct, hhyii); CHECK RETURN
13. [t := create p(e1, . . . , en)] ::= tmp := ct; t := mem thread create(ct);

if(t 6= �1) then {
ct := t; pn,⌧ (e1, . . . , en);

mem thread terminate(t); };
ct := tmp;

14. [join t] ::= mem join(ct, t); CHECK RETURN
15. [lock v] ::= var lock(ct, hhvii); CHECK RETURN

[unlock v] ::= var unlock(ct, hhvii); CHECK RETURN
16. [atomic stm] ::= call mem lock(ct); CHECK RETURN;

[stm]; mem unlock(ct); CHECK RETURN

Fig. 4. Rewriting rules.

The call to main
n,⌧

starts the simulation of the main thread. Then, we check
that all the write operations guessed for the main thread have been executed (by
mem thread terminate), and all the threads involved in the guessed writes have
indeed been simulated (by mem allthreads executed). If either one of the above
checks fails, the simulation is infeasible and thus aborted. The global variable
error is used to check whether an assertion has been violated. It is set to TRUE

in the simulation of the threads of P whenever an assertion gets violated and is
never reset.

Each p

n,⌧

is obtained from p according to the transformation function [·]
defined inductively over the program syntax by the rules given in Fig. 4. For
example, Fig. 2(b) gives the transformations for the functions of the Fibonacci
program from Fig. 2(a). There we use the macro CREATE as a shorthand for
the code given in the translation rules for the create statement. Also, we have
omitted the declaration of tmp in the functions f1

n,⌧

and f2
n,⌧

since it is not
used there, and reported the translation of the assignments in a compact form.

The transformation adds a local variable tmp that is used to store the current
thread id when a newly created thread is simulated. The sequential statements
are left unchanged except for the injection of the macro CHECK RETURN that is
defined as “if(is th terminated()) then return 0;”, where is th terminated

is a function that checks if the simulation of the current thread is terminated.
The macro is injected after each function call, as a first statement of a loop, and
before any assume- and assert-statement; in this way, when the simulation of
the current thread has finished or is aborted, we resume the simulation of the
parent thread.

The concurrent statements are transformed as follows. A write of v into a
shared variable x in thread t is simulated by a call to write that checks that the
next write operation of t in the guessed MU (starting from the current position)
writes x and that the guessed value coincides with v. Otherwise, the simulation
of all threads must be aborted as the current execution does not conform to the
MU. If t has already terminated its writes in the MU, we return immediately;
otherwise we update t’s current position to the index of its next write operation.
A read of a shared variable x in thread t is simulated by a call to read. The
read value is determined by nondeterministically guessing a position i between
the current position for ct and the position prior to the next write operation of
t in the memory unwinding. Thus, we return the value of the write operation
involving x that is at the largest position j  i and then update the stored
position of t to i.

As above, we use mem thread create and mem thread terminate for the
translation of thread creations but we check whether the thread creation was
successful before calling the simulation function. Also, we save the current thread
id in a temporary variable during the execution of the newly created thread.

The remaining concurrent statements are simulated by corresponding func-
tions. A call mem join(ct, t) returns if and only if the simulation of t is termi-
nated at the current position of thread ct in the memory unwinding. Otherwise,
the simulation of ct is aborted. A call mem lock(ct) gives exclusive usage of
the shared memory to thread ct. If the memory is already locked, the whole
simulation is aborted. The unlocking is done by calling mem unlock. Similarly,
var lock and var unlock respectively lock and unlock an individual variable.
Note that for join, lock, and unlock operations we choose to abort also compu-
tations that are still feasible, i.e., the lock could still be acquired later or we can
wait for another thread to terminate. This is indeed correct for our purposes, in
the sense that we are not missing bugs for this. In fact, we can capture those
computations by scheduling the request to acquire the lock or to join exactly at
the time when this will be possible, and by maintaining the rest of the compu-
tation unchanged. Due to space limitations we do not discuss the simulation of
the locking mechanism in any detail, and omit it from the code fragments shown
in the following section.

The correctness of our construction is quite straightforward to demonstrate.
For soundness, assume any execution of P that does at most n writes in the
shared memory, creates at most ⌧ threads, and violates an assertion statement.
We guess the exact sequence of writes in the MU, and simulate for each thread
exactly the same steps as in P . This will allow us to execute all the writes for
each thread and eventually reach the if-statement corresponding to the violated
assertion of P . This will be properly propagated back to the main procedure
of P

n,⌧

; and since all threads have done all their writes, all the invocations of
mem thread terminate will successfully return and thus the only assertion of
P

n,⌧

will fail. For completeness, assume that there is an execution ⇢ of P

n,⌧

that violates the assertion in its main. This means that, along ⇢ we guess an
n-memory unwinding M and simulate step by step a run ⇢

0 of P that conforms

to M and reaches an assertion failure. In fact, when on ⇢ we set error to TRUE,
⇢

0 reaches the corresponding if-statement that violates an assertion of P . Before
reaching the assertion in the main of P

n,⌧

, we have already checked that all the
invocations of mem thread terminate in each thread and the only invocation
of mem allthreads executed in the main thread have successfully returned;
therefore all the writes of M have been simulated. Therefore, we get:

Theorem 1. A concurrent program P violates an assertion in at least one of
its executions with at most n writes in the shared memory and ⌧ thread creations
if and only if P

n,⌧

violates its only assertion.

4 Memory Unwinding Implementations

In this section, we discuss di↵erent implementation strategies of the memory un-
winding approach that are characterized by orthogonal choices. The first choice
we make is either to store in the MU all the writes of the shared variables in
a run (fine-grained MU) or to expose only some of them (coarse-grained MU).
In either case, depending on how we store the values of the variables that are
not written at a position of the MU, we have two implementation alternatives
that we call read-explicit (where all the shared variables are duplicated to each
position, not only those that are changed in the writes) and read-implicit (where
only the modified variables are duplicated at each position).

In a coarse-grained MU we store at each position a partial mapping from the
shared variables to values, with the meaning that the variables in the domain
of the mapping are modified from the previous position and the value given
by the mapping is their value at this position. A variable that is modified at
position i+1 could also be modified between positions i and i+1 by other writes
that are not exposed in the MU. We distinguish the implementations according
to whether only one (intra-thread coarse-grained MU) or multiple (inter-thread
coarse-grained MU) threads are entitled to modify the variables.

4.1 Fine-grained Memory Unwinding

In this approach all writes are stored individually in the MU as described in
Section 3. We use three arrays such that for each position i: thread[i] stores the
thread id, var[i] stores the variable name, and value[i] stores the value of the i-
th write. For an e�cient implementation of the functions used in the translation
described in Section 3, we use additional data such as variable last wr pos

that stores the index of the last write performed in the simulation and table
th nxt wr[t, i] that for each thread t and position i stores the position of the
next write of t after i in the MU.

We describe the read-explicit and the read-implicit schemes only for this
approach. It is not hard to extend them to the coarse-grained MU approach
(discussed later) and thus we will omit this here.

Read-explicit scheme. We use a matrix mem to store for each variable v and
each position i of the MU the value of v at i. mem is logically characterized

as follows: for every memory position i 2 [1, n] and variable index v 2 [1, V],
mem[i][v] is the valuation of variable v after the i-th write operation (assuming the
values of arrays thread, var, and value). At memory position 1, all variables in
[1, V]\{v} with v = var[1] have their initial value, i.e., 0, and mem[1][v] coincides
with value[1]. For all the other memory positions, mem has the same valuation
for all variables as in the previous position except for the one written at that
position.

int read(uint t, uint v) {
if (is th terminated()) then return 0;
th pos[t]=Jump(t);
return (mem[th pos[t]][var name]); }

Fig. 5. Function read (explicit-read
schema).

In Fig. 5, we give an implementation
of read for the read-explicit scheme. For
the current thread t, Jump guesses a po-
sition jump in the MU from the current
position to the next write of t in the MU.
If the simulation of t is deemed termi-
nated, then consistently the read is not performed and the control returns (we
recall that since we have injected the macro CHECK RETURN at the end of each
function call, all the calls to functions of t in the stack will immediately return
and the simulation of t will actually end). Otherwise, the current position of
t is updated to this value, and the valuation of the variable at position jump
obtained from mem is retuned.

int read(uint t, uint v) {
uint pos = th pos[t];
uint jump = *;
if (is th terminated()) then return 0;
if (var fst wr[v]==0) then return 0;
assume((jump <= last wr pos)
&& (jump < th nxt wr[t][pos]));

assume(var[jump] == var name);
if (jump < pos) then

assume(var nxt wr[jump] > pos);
else { if (jump < var fst wr[v]) then

return 0;
th pos[t]=jump; }

return (value[jump]); }

Fig. 6. Function read (implicit-read
schema).

Read-implicit scheme. Here, instead of
replicating the valuations of the shared
variables at each memory position, on
reading a variable we get its value from
the last relevant write. For this, we use
two arrays var nxt wr and var fst wr

s.t.: for each i 2 [1, n], var nxt wr[i] is
the smallest memory position j > i s.t.
var[j] = var[i] and for each variable v,
var fst wr[v] is the position of its first
write in the MU.

In Fig. 6, we give an implementa-
tion of function read in the read-implicit
scheme. The first if-statement (corresponding to the CHECK RETURN macro) takes
care of thread termination as usual. The following if-statement handles the case
when variable v is never written in the MU, and thus its value is always the ini-
tial one, i.e., 0. The first assume-statement constraints jump to a range of valid
values similarly to as function Jump does in the previous scheme. Additionally,
the second assume-statement requires that the guessed index indeed coincides
with a write of variable v. Now, if jump is less than the thread’s current position
pos, we finally ensure that jump coincides with the last write operation involving
v up to pos; otherwise we update the thread’s current position to jump. In either
case, the returned value is that at position jump unless jump precedes the index
of the first write of v in the MU, and in this case the initial value is returned.

Mixing implicit and explicit read operations. We have also implemented a third
schema that mixes the ideas of the above two. It uses an explicit representation

for scalar variables and an implicit representation for arrays, in order to balance
the translation’s memory overhead against the complexity of the sequentialized
program.

4.2 Coarse-grained Memory Unwinding

The main idea of this approach is to expose only some of the writes of an
MU. This has two main consequences in terms of explored runs of the original
multithreaded program. On the one side, we restrict the number of possible runs
that can match an MU. In fact, the unexposed writes cannot be read externally,
and thus some possible interleavings of the threads are ruled out. On the other
side, we can handle larger number of writes by nondeterministically deeming few
of them as interesting for the other threads.

Intra-thread coarse-grained MU. We store a sequence of clusters of writes where
each cluster is formed by a thread that is entitled to write and a partial mapping
from the shared variables to values. The intended meaning is as follows. Consider
the simulation of a thread t at a position i. If i is a position where t does not write
into the shared memory, we are only allowed to read from the shared memory,
and we reason similarly as to the approach given in the previous section. If i is
a position of t (i.e., t is entitled to write into the shared memory), we ensure
that all the writes in the shared memory only involve the variables that are
annotated in the cluster at i and that all the writes in the cluster are matched
before advancing to the next position in the simulation (some writes on the same
variables can be processed before matching the value assigned in the cluster).

As an example, consider the intra-thread MU from Fig. 2(d). It is matched
by the same execution as the MU from Fig. 2(c). Note that in this execution,
the writes at the positions 1, 2, 5 and 9 are not used by the other thread and
thus this is consistent with hiding them.

Inter-thread coarse-grained MU. The notion of cluster is extended with multiple
threads assigned to each position. The idea is that all such writing threads at i can
cooperate to match the writes exposed in the cluster. Thus, the unexposed writes
are not local to a thread as in the alternative scheme but they can be exposed
to the other writing threads. For this, in our implementation, we use for each
position i in the sequence of clusters an additional copy of the shared variables
that are modified at i (i.e., that are in the domain of the partial mapping at
i). In the simulation of each writing thread at position i we treat them as local
variables (thus we do not use the read and write functions, but we just use the
name of the variable and the assignment). The intra-thread MU version of the
MUs from Fig. 2(c) and (d) is given in Fig. 2(e).

5 Implementation and Evaluation

Implementation and Architecture. We have implemented in MU-CSeq (v0.3,
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html) the di↵erent variants

Table 1. Performance comparison among di↵erent tools on the unsafe instances of the
SV-COMP15 Concurrency category.

CBMC 4.9 LR-CSeq 0.5a Lazy-CSeq 0.5 MU-CSeq 0.3

sub-category files l.o.c. pass fail time pass fail time pass fail time pass fail time

pthread 14 4381 12 2 33.4 6 8 76.5 11 3 134.2 14 0 19.9

pthread-atomic 2 202 2 0 0.3 2 0 3.0 2 0 6.1 2 0 2.0

pthread-ext 8 763 6 2 153.3 1 7 119.6 8 0 16.6 8 0 2.4

pthread-lit 3 117 2 1 166.8 2 1 166.9 3 0 7.0 3 0 2.7

pthread-wmm-mix 466 146448 466 0 57.2 466 0 8.9 466 0 6.3 466 0 21.8

pthread-wmm-podwr 16 4240 16 0 10.6 16 0 4.2 16 0 6.0 16 0 12.3

pthread-wmm-rfi 76 20981 76 0 9.3 76 0 4.1 76 0 6.2 76 0 12.7

pthread-wmm-safe 184 57391 184 0 27.3 184 0 6.6 184 0 6.2 184 0 18.6

pthread-wmm-thin 12 4008 12 0 9.6 12 0 6.2 12 0 6.1 12 0 29.3

of the MU schema discussed in Section 4 as a code-to-code transformation for
sequentially-consistent concurrent C programs with POSIX threads (pthreads).
The output of MU-CSeq can, in principle, be processed by any analysis tool for
sequential programs, but we primarily target BMC tools, in particular CBMC [7].
However, since the schema is very generic and the instrumentation for the dif-
ferent backends only di↵ers in a few lines, backend integration is straightforward
and not fundamentally limited to any underlying technology. A wrapper script
bundles up the translation and the call to the backend for the actual analysis.

MU-CSeq is implemented as a chain of modules within the CSeq frame-
work [9, 10]. The sequentialized program is obtained from the original program
through transformations, which (i) insert boilerplate code for simulating the
pthreads API; (ii) automatically generate control code for the bounded mem-
ory unwinding layer parameterized on n and ⌧ ; (iii) map the statements that
in the original program correspond to read and write operations on shared vari-
ables to corresponding operations on the memory unwinding; (iv) insert code
for the simulation of the pthreads API, concurrency simulation, and finalize
the translation by adding backend-specific instrumentation.

Experiments. We have evaluated MU-CSeq with CBMC (v4.9) as a backend
on the benchmark set from the Concurrency category of the TACAS Software
Verification Competition (SV-COMP15) [3]. These are widespread benchmarks,
and many state-of-the-art analysis tools have been trained on them; in addition,
they o↵er a good coverage of the core features of the C programming language
as well as of the basic concurrency mechanisms.

Since we use a BMC tool as a backend, and BMC can in general not prove
correctness, but can only certify that an error is not reachable within the given
bounds, we only evaluate our approach on the unsafe files. Our prototype does
not fully support dynamic memory allocation of shared memory, so five of the
test cases are excluded here. We thus use 781 of the 993 files in the whole
benchmark set, with a total of approx. 240,000 lines of code.

We have performed the experiments on an otherwise idle machine with a
Xeon W3520 2.6GHz processor and 12GB of memory, running a Linux operating
system with 64-bit kernel 3.0.6. We set a 10GB memory limit and a 500s timeout
for the analysis of each test case.

The experiments are summarized in Table 1. Each row corresponds to a
sub-category of the SV-COMP15 benchmarks, where we report the number of
files and the total number of lines of code. The table reports the evaluation of
CBMC [7], LR-CSeq [9], Lazy-CSeq [12, 11], and MU-CSeq on these benchmarks.
For each tool and sub-category we consider the best parameters (i.e., minimal
loop unrolling, number of rounds, etc.). Furthermore, we indicate with pass the
number of correctly found bugs, with miss the number of unsuccessful analyses
including tool crashes, backend crashes, memory limit hits, and timeouts, and
with time the average time in seconds to find the bug.

The table shows that MU-CSeq is competitive with other tools based on
BMC, and in particular it is able to find all bugs. However, as in other bounded
methods the choice of the bounds (i.e., size of the unwinding and number of
simulated threads) also influences MU-CSeq’s performance. Here we have sim-
ply increased the unwinding bounds until we found all bugs. In the first four
sub-categories, a 24-memory unwinding is su�cient; with this, the explicit-read
fine-grained implementation has the best performance. For the remaining sub-
categories an MU with at least 90 writes is required; here the performance of
the fine-grained implementation degrades, and the inter-thread coarse-grained
variant performs best. A more refined strategy selection is left for future work.

The MU-Cseq source code, static Linux binaries and benchmarks are avail-
able at http://users.ecs.soton.ac.uk/gp4/cseq/CSeq-MU-TACAS.tar.gz.

6 Related work

The idea of sequentialization was originally proposed by Qadeer and Wu [20]
but became popular with the first scheme for an arbitrary but bounded number
of context switches given by Lal and Reps [16] (LR). This has been implemented
and modified by several authors, e.g., in CSeq [9, 10], and in STORM that also
handles dynamic memory allocation [14]. Poirot [18, 8] and Corral [15] are suc-
cessors of STORM. Rek implements a sequentialization targeted to real-time
systems [6].

The basic idea of the LR schemas is to simulate in the sequential program all
round-robin schedules of the threads in the concurrent program, in such a way
that (i) each thread is run to completion, and (ii) each simulated round works on
its own copy of the shared global memory. The initial values of all memory copies
are nondeterministically guessed in the beginning (eager exploration), while the
context switch points are guessed during the simulation of each thread. At the
end a checker prunes away all infeasible runs where the initial values guessed for
one round do not match the values computed at the end of the previous round.
This requires a second set of memory copies.

Similarly to LR, sequentialization by memory unwinding runs each thread
only once and simulates it to completion; however, there are several di↵erences.
First, the threads are not scheduled in a fixed ordering and in rounds. Instead,
any scheduling that matches the memory unwinding is taken into account, in-
cluding schedules with unboundedly many context switches (although one can

show that a subset of them using a bounded number of context-switches su�ces
to expose the same bugs). Second, the consistency check to prune away unfeasi-
ble computations is interleaved with the simulation, thus many unfeasible runs
can be found earlier and not only at the end of the simulation. This can im-
prove the performance, in particular for BMC backends. Third, it is possible to
show that the assertion violations that can be exposed by our sequentialization
is equivalent to those that can be exposed with LR, with di↵erent parameter
values though. For example, for our intra-thread MU implementation, the exec-
tutions that can be captured up to a size n in the memory unwinding can also be
captured by LR with at most 2n�1 rounds, and vice-versa all the computations
of LR up to k context-switches (note that k = r n� 1 where n is the number of
threads and r is the number of rounds) can be captured with at most k clusters.

MU can also be seen as a hybrid eager/lazy technique. It guesses the thread
interactions at the beginning of the simulation, like the eager techniques in the
Lal/Reps mould. However, it prunes away unfeasible computations incremen-
tally, like Lazy-CSeq [12, 11], but it calls the thread simulation function only
once and runs it to completion, rather then repeatedly traversing it. Unlike the
original lazy techniques [13], it also does not need to recompute the values of
the local variables.

A parameter related to the memory unwinding bound has been considered
in [4] for message passing programs where the bounded analysis is done on the
number of “process communication cycles”.

7 Conclusions and Future Work

We have presented a new approach to verify concurrent programs based on
bounding the number of the shared-memory writes that are exposed in the inter-
action between threads. At its core it is a new eager sequentialization algorithm
that uses the notion of memory unwinding, i.e., the sequence of the exposed
writes, to synchronize the separate simulation of singular threads.

We have designed di↵erent strategies and implemented them as code-to-code
transformations for ANSI-C programs that use the Pthreads API; our implemen-
tations support the full language, but the handling of dynamic memory allocation
is still limited. We have evaluated them over the SV-COMP15 [3] concurrency
benchmarks, finding all the errors and achieving performance on par with those
of the current best BMC tools with built-in concurrency handling as well as
other sequentializations.

We have found that in general our fine-grained MU implementations work
well for most problem categories, thus confirming the good results we achieved
last year with MU-CSeq [21], which is based on an initial version of the work
presented here. However, for the problems in the weak memory model category
the size of the fine-grained unwindings becomes too big; here, coarse-grained
MUs work better.

The main future direction of this research is to extend our approach to weak
memory models implemented in modern architectures (see for example [2, 1]),

and to other communication primitives such as MPI. For MPI programs, our
memory unwinding approach can be rephrased for the sequence of send opera-
tions in a computation.

References

1. J. Alglave, D. Kroening, and M. Tautschnig. Partial Orders for E�cient Bounded
Model Checking of Concurrent Software. CAV, LNCS 8044, pp. 141–157, 2013.

2. M. F. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-bu↵ers in TSO
analysis. CAV, LNCS 6806, pp. 00–115, 2011.

3. D. Beyer. SV-COMP home page, http://sv-comp.sosy-lab.org/.
4. A. Bouajjani and M. Emmi. Bounded phase analysis of message-passing programs.

TACAS, LNCS 7214, pp. 451–465, 2012.
5. A. Bouajjani, M. Emmi, and G. Parlato. On Sequentializing Concurrent Programs.

SAS, LNCS 6887, pp. 129–145, 2011.
6. S. Chaki, A. Gurfinkel, and O. Strichman. Time-bounded analysis of real-time

systems. FMCAD, pp. 72–80, 2011.
7. E. M. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs.

TACAS, LNCS 2988, pp. 168–176, 2004.
8. M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-bounded scheduling. POPL,

pp. 411–422, 2011.
9. B. Fischer, O. Inverso, and G. Parlato. CSeq: A Concurrency Pre-Processor for

Sequential C Verification Tools. ASE, pp. 710-713, 2013.
10. B. Fischer, O. Inverso, and G. Parlato. CSeq: A Sequentialization Tool for C

(Competition Contribution). TACAS, LNCS 7795, pp. 616–618, 2013.
11. O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Bounded model

checking of multi-threaded C programs via lazy sequentialization. CAV, LNCS
8559, pp. 585–602, 2014.

12. O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Lazy-CSeq: A
Lazy Sequentialization Tool for C - (Competition Contribution). TACAS, LNCS
8413, pp. 398–401, 2014.

13. S. La Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded concur-
rent reachability to sequential reachability. CAV, LNCS 5643, pp. 477–492, 2009.

14. S. K. Lahiri, S. Qadeer, and Z. Rakamaric. Static and precise detection of concur-
rency errors in systems code using SMT solvers. CAV, LNCS 5643, pp. 509–524,
2009.

15. A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo theories.
CAV, LNCS 7358, pp. 427–443, 2012.

16. A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods in System Design, 35(1):73–97, 2009.

17. S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A comprehensive
study on real world concurrency bug characteristics. SIGOPS Oper. Syst. Rev.,
42(2):329–339, Mar. 2008.

18. S. Qadeer. Poirot - a concurrency sleuth. ICFEM, LNCS 6991, pp. 15, 2011.
19. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.

TACAS, LNCS 3440, pp. 93–107, 2005.
20. S. Qadeer and D. Wu. Kiss: keep it simple and sequential. PLDI, pp. 14–24, 2004.
21. E. Tomasco, O. Inverso, B. Fischer, S. La Torre, and G. Parlato. MU-CSeq: Se-

quentialization of C Programs by Shared Memory Unwindings - (Competition Con-
tribution). TACAS, LNCS 8413, pp. 402–404, 2014.

