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Construction of simultaneous confidence bands for a percentile line in linear regression

has been considered by several authors. But only conservative symmetric bands, which

use critical constants over the whole covariate range (−∞,∞), are available in the lit-

erature. New methods allow the construction of exact symmetric bands for a percentile

line over a finite interval of the covariate x. The exact symmetric bands can be sub-

stantially narrower than the corresponding conservative symmetric bands available in

the literature so far. Several exact symmetric confidence bands are compared under

the average band width criterion. Furthermore, new asymmetric confidence bands for

a percentile line are proposed. They are uniformly and can be very substantially nar-

rower than the corresponding exact symmetric bands. Therefore, asymmetric bands

should always be used under the average band width criterion. The proposed methods

are illustrated with a real example. One-side simultaneous confidence bands have also

been studied.

Construction of simultaneous tolerance bands for calibration in linear regression

models has been studied by many researchers. The (p, 1 − α)-simultaneous tolerance

bands are first addressed by Lieberman and Miller (1963), and there are three construc-

tion methods in the literature so far. In this thesis, the construction of exact two-sided

(p, 1− α)-simultaneous tolerance bands is considered. The methods are demonstrated

with an example.
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Chapter 1

Introduction

The method of least squares which is the earliest form of regression was published

by Legendre (1805) and Gauss (1809). The term ’regression’ was first proposed by

Galton (1885) and used to describe a biological phenomenon. From then on, regression

analysis has been widely used for prediction and forecasting in many fields such as

biology, chemistry, astronomy, agriculture and other practical aspects of both social

and natural science. Many statistical methodologies and tools are from or related to the

study of linear regression. We are looking at two of them, the simultaneous confidence

bands and simultaneous tolerance bands.

One of the main purposes of this research is to construct simultaneous confidence

bands for a percentile line over a given covariate interval which can be finite or the whole

range (−∞,∞) as a special case, and to compare the bands under the average width cri-

terion. The construction of simultaneous confidence bands for a percentile line has been

studied by Steinhorst and Bowden (1971), Kabe (1976), Turner and Bowden (1977),

Turner and Bowden (1979), Thomas and Thomas (1986), Odeh and Mee (1990). A

simultaneous confidence band can quantify the plausible range of the percentile line.

Any straight line that lies inside the simultaneous confidence band is deemed, by this

band, as a plausible candidate for the true percentile line. It is intuitive that the nar-

rower the band is, the better it is. Hence the average width is used as an optimality

criterion.

The other main purpose of this thesis is to construct exact two-sided (p, 1 − α)-

simultaneous tolerance bands. Construction of simultaneous tolerance bands for cali-

bration has been considered by many researchers. It is first addressed by

Lieberman and Miller (1963), and there are three construction methods in the litera-

ture so far. The first is the probability set method by Wilson (1967) and

Limam and Thomas (1988). These bands are conservative and two-sided. The second

is the construction of central p-proportion simultaneous confidence bands by

Lieberman and Miller (1963), Lieberman et al. (1967) and Scheffé (1973). These bands

are also conservative and two-sided. The third is an exact method by Mee et al. (1991)
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for two-sided bands and Odeh and Mee (1990) for one-sided bands. Since the first two

methods are conservative while Mee et al. (1991) method is exact, the two-sided bands

of Mee et al. (1991) are usually narrower and so better than the conservative bands,

as demonstrated numerically in Mee et al. (1991). Different bands can be compared

under the average width criterion.

In this chapter we give a review of linear regression models, simultaneous confidence

bands and simultaneous tolerance bands, and present preliminary results necessary

throughout the thesis.

1.1 Linear regression model

Linear regression analysis is a simple but very useful statistical technique for evaluating

the relationship between a dependent variable Y and one or more independent variables

x1, · · · , xp. The model takes the form

Y = β0 + β1x1 + · · ·+ βpxp + e, (1.1)

where β0, · · · , βp are unknown regression coefficients and e is an unobservable random

error which has the distribution N(0, σ2). Let xi denote the ith variable in the model

(1.1) and xji be the jth observation of the variable xi. Similarly, Yj indicates the jth ob-

servation of independent variable Y . Denote Y = (Y1, · · · , Yn)
′ and xi = (x1i, · · · , xni)

as n observations on Y and xi, i = 1, · · · , p, respectively. Then the jth observation

satisfies

Yj = β0 + β1xj1 + · · ·+ βpxjp + ej, j = 1, · · · , n.

Here the unknown regression coefficients β0, · · · , βp are the same for all the observations

and the errors e1, · · · , en are assumed to be independent. This model can also be

expressed as the matrix form

Y = Xβ + e, (1.2)

where X = (1,x1, · · · ,xp), 1 is a column vector of size n with all elements equal to 1,

β = (β0, β1 · · · , βp)
′ and e = (e1, · · · , en)′.

1.2 A simple linear regression model, parameter es-

timation and basic results

Considering the simple case of linear regression model (1.2) with p = 1, we have

Y = Xβ + e = [1,x1]β + e, (1.3)

2



whereX is the n×2 design matrix of rank 2, x1 = (x11, x21, · · · , xn1)
′ are n observations

on x1, β = (β0, β1)
′ is the vector of unknown regression coefficients and e is the

error vector which has the distribution Nn(0, σ
2I) with σ2 unknown. Without loss of

generality, it is assumed that the design matrix X is of full column rank 2 and so X ′X

is non-singular. The unique least squares estimator of β is

β̂ = (β̂0, β̂1)
′ = (X ′X)−1X ′Y .

The vector of residuals is defined by

ê = (ê1, · · · , ên)′ = Y −Xβ̂ = Y − Ŷ .

Denote the unbiased estimator of σ2 is based on the residual sum of squares

SSE =
n∑

j=1

ê2j = ∥ê∥2 = ∥Y −Xβ̂∥2.

Define

σ̂2 = SSE/(n− 2) = ∥ê∥2/(n− 2).

For notation simplicity, we denote ν = n−2. It is well known that the random variables

β̂ and σ̂2 are independent, and

β̂ ∼ N2(β, σ
2(X ′X)−1), σ̂2 ∼ σ2

ν
χ2
ν ,

and so σ̂/σ ∼
√

χ2
ν/ν. Denote U = σ̂/σ. Then the probability density function of U is

given by

f σ̂
σ
(u) = 21−ν/2νν/2uν−1 exp(−ν

2
u2)/Γ(ν/2), u > 0. (1.4)

It follows directly that E(σ̂2) = σ2 and E( σ̂
σ
) =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)
.

Throughout this thesis, without loss of generality, let x′
11 = 0, i.e., the column x1

is mean adjusted. Then we have

(X′X)−1 =

(
1/n 0

0 (x′
1x1)

−1

)
.

Let P be the unique square root matrix of (X′X)−1. The matrix P is used only in the

derivations but not the final formula of the simultaneous confidence level. The 2 × 2
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matrix P is given by

P =

(
1/
√
n 0

0 P−1
1

)
, (1.5)

where P1 =
√

x′
1x1. Denote N = (N1, N2)

′ = P−1(β̂ − β)/σ. It is clear that N ∼
N2(0, I). It is straight forward to show that the two components of N are given by

N1 =
√
n(β̂0−β0)

σ
, N2 =

P1(β̂1−β1)
σ

.

As in several published papers on this topic, we focus on the simple linear regression

model throughout this thesis. Our approach, however, can readily be generalized to

polynomial regression and multiple linear regression where the covariates are assumed

to have no functional relationships among them. Since we just look at a simple case of

the linear regression model (1.1) with only one predictor variable x1, then we suppressed

the subscript ”1” of x1 and use x instead below.

1.3 Percentile lines

A regression percentile line is given by

x′β + zγσ = β0 + β1x+ zγσ, (1.6)

where x = (1, x)′ and zγ denotes the 100γth percentile of the standard normal distri-

bution, i.e., ∫ zγ

−∞
(2π)−

1
2 exp{−1

2
x2}dx = γ.

For any specific point x0, denote Z0 = x′
0β + e. Then we have

P (Z0 ≤ x′
0β + zγσ) = γ. (1.7)

Note that the regression line x′β is a special case of the percentile line x′β+ zγσ with

zγ = 0 and so γ = 0.5.

1.4 Simultaneous confidence bands

One focus of this thesis is the construction of simultaneous confidence bands for the

percentile line in (1.6) and the comparison of different bands.

Construction of simultaneous confidence bands for regression line x′β has a history

dating back to Working and Hotelling (1929) and Scheffé (1953). For γ = 0.5, a two-
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sided hyperbolic confidence band over an interval (a, b) is given by

x′β ∈ x′β̂ ± cσ̂
√
x′(X ′X)−1x for all x ∈ (a, b). (1.8)

The band width is proportional to the standard error of the estimated regression func-

tion x′β̂.Working and Hotelling (1929) first considered the band in (1.8) for the special

case (a, b) = (−∞,∞). Wynn and Bloomfield (1971) and Uusipaikka (1983) presented

two methods of finding critical constant c of the hyperbolic band. Bohrer and Francis

(1972) provided exact one-sided hyperbolic bands. Pan et al. (2003) studied one-

sided bands via the method given by Uusipaikka (1983). Besides hyperbolic bands,

Gafarian (1964) presented a two-sided constant-width band over an given interval.

Bowden and Graybill (1966) proposed a two-sided three-segment band.

Graybill and Bowden (1967) considered a two-sided three-segment band.

The problem of constructing simultaneous confidence bands for a percentile line

x′β + zγσ

where zγ is the 100γth percentile of the standard normal distribution, has been consid-

ered by many researchers including Steinhorst and Bowden (1971), Turner and Bowden

(1977), Turner and Bowden (1979) and Thomas and Thomas (1986). Recently, sev-

eral articles have considered various applications of confidence bands for inferential

purposes; see for instance, Spurrier (1999), Al-Saidy et al. (2003), Liu et al. (2004),

Bhargava and Spurrier (2004), Piegorsch et al. (2005), Liu et al. (2007) and Liu et al.

(2009). It can also be used for statistical discrimination as considered by Eastling

(1969). In this thesis, the focus is on the percentile line x′β+ zγσ for γ ̸= 0.5. In some

practical problems, for example, drug stability studies, the percentile function may be

of more interest than the regression function x′β. Drug stability studies are routinely

carried out in the pharmaceutical industry in order to measure the degradation over

time of an active pharmaceutical ingredient of a drug product. From the patients’

point of view, it is expected that a large proportion (e.g., 100(1− γ)% with γ = 0.05)

of dosage units (e.g., tablets, capsules, vials) should have drug content level above a

certain threshold, say, 98 (in percentage) before a specified expiry date, say, 2 years.

It is thus of interest to estimate where the 100γth percentile line lies with a two-sided

simultaneous confidence band. Comparing the lower part of the confidence band with

the threshold 98, we can assess whether no more than 5% of all the dosage units have

drug content level below 98, for any given point in the time interval (0, 2). Similarly,

comparing the upper part of the confidence band with the threshold 98, we can evaluate

whether more than 5% of all the dosage units have drug content level below 98, for any

time point in (0, 2). More details of this example are given in Chapter 3. Extensive

discussions on the usefulness of percentile points or percentile lines can be found in
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Harris and Boyd (1995), Gilchrist (2000), Koenker (2005) and Liu et al. (2013).

We first consider the two-sided symmetric confidence bands of the form

x′β + zγσ ∈ x′β̂ + zγσ̂/θ ± cσ̂
√

x′(X ′X)−1x+ (zγ)2ξ for all x ∈ (a, b) (1.9)

where x = (1, x)′, (a, b) is a given covariate interval over which a confidence band is

required, and the given constants θ ̸= 0 and ξ are chosen to give different specific

confidence bands. At a given x, the center of the band is x′β̂ + zγσ̂/θ while the width

of the band is 2cσ̂
√
x′(X ′X)−1x+ (zγ)2ξ. Hence the centre of the band depends on

θ, while the width of the band depends on ξ. The central question is how to compute

the critical constant c to give the specified confidence level 1− α (for example, chosen

as 0.75, 0.95 or 0.99).

All the published bands (e.g. , Turner and Bowden (1977, 1979) and Thomas and

Thomas (1986)) are of form (1.9) with a particular pair of θ and ξ values. However,

methods available in the literature so far are only for computing the conservative critical

constants c over the whole covariate range (a, b) = (−∞,∞). As linear regression

models often hold for only a finite covariate range, it is important to consider a finite

interval (a, b). A confidence band over a finite interval can be substantially narrower

and so more efficient than a band over the whole range (−∞,∞). Our methods allow

the computation of the exact critical constant c of the general form (1.9) for any given

interval (a, b), finite or infinite.

Various choices of (θ, ξ) in (1.9) have been studied in the literature in the hope

of reducing the average width of a band. In this thesis, we propose new asymmet-

ric confidence bands which are uniformly narrower than the corresponding symmetric

bands. Corresponding to each symmetric band of form (1.9), an asymmetric band will

be constructed whose width is smaller than the width of the symmetric band at any

x ∈ (a, b) and can be substantially smaller especially when γ is either close to zero or

one.

It has to be emphasized that the construction of exact 1 − α simultaneous confi-

dence bands (either symmetric or asymmetric) for the percentile line of the standard

linear regression models is the focus of this thesis. The standard linear regression

model assumption (including normality) is crucial to the particular form (1.6) of the

percentile line. As soon as one goes beyond the standard linear regression models, only

approximate simultaneous confidence bands for a percentile line can be constructed.

For example, one can use the large sample asymptotic normality of quantile regres-

sion (cf. Koenker (2005)) to construct only an approximate simultaneous band for a

percentile curve.

A 1−α one-sided confidence band for a percentile line x′β+zγσ is just the one-sided

(1 − α, γ) tolerance band for the simple linear model. One-sided confidence band for
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a percentile line has been studied by Turner and Bowden (1979) and Odeh and Mee

(1990). Another related problem that is of interest is calibration. Mee et al. (1991) and

Mee and Eberhardt (1996) constructed of simultaneous tolerance intervals and applied

them to calibration.

To compare different confidence bands, two criteria are used in the statistical liter-

ature: average width criterion and minimum area confidence set criterion. The average

width of a simultaneous confidence band has been widely used as an optimality cri-

terion for the comparison of different confidence bands. Gafarian (1964) used the

average width as an optimality criterion for the first time. Liu and Hayter (2007) first

proposed minimum area confidence set optimality criterion. We compare the average

band widths over an interval (a, b) of both asymmetric and symmetric bands.

1.5 Calibration and simultaneous tolerance bands

Calibration, also known as discrimination or the reverse prediction, has been widely

used in measurement science and other applications. Statistical calibration with re-

gression has a history dating back to Eisenhart (1939). Suppose one has the training

data set E := {(xj, yj), j = 1, · · · , n} which is used to fit a regression line of Y on

x. Assume x is a desirable but expensive or difficult measurement and Y represents a

cheaper and more conveniently obtainable instrument response. After fitting the linear

regression model based on the training data set, for each given future Y -value, one can

get the confidence set for the corresponding x, from a simultaneous tolerance band.

For example, x is the true alcohol level in blood stream while Y is the reading on a

breathalyzer, of a driver; more details on this example are provided in Chapter 5.

Let Y (x) = x′β + ex denote a future observation at x with ex ∼ N(0, σ2). Assume

Y (x) is independent of Y in (1.3). For a given x value, a (p, 1−α)-tolerance interval for

Y (x) contains at least 100p% proportion of the Y (x) distribution with 1−α confidence

level. In some practical problems, one may be interested in infinite future observations

corresponding to x values in a prespecified covariate interval (a, b) based on the same

training data set E := {(xj, yj), j = 1, · · · , n}, or equivalently (β̂, σ̂). This is the

motivation of constructing simultaneous tolerance bands over a constrained covariate

interval. Based on the same training data set, a (p, 1−α)-simultaneous tolerance band

for infinite future observations Y (x) over x ∈ (a, b) contains at least 100p% proportion

of the Y (x) distribution for any x ∈ (a, b) simultaneously with confidence level 1− α.

The (p, 1−α)-simultaneous tolerance bands [L(x; E), U(x; E)] over the interval x ∈
(a, b) satisfy

PE{PY (x){L(x; E) < Y (x) < U(x; E)|E , x} ≥ p for all x ∈ (a, b)} ≥ 1− α,
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where Y (x) denotes a future Y -value corresponding to x and Y (x) is independent of

the training data E . The probability PY (x) is with respect to Y (x) and conditional on

E , and the probability PE is with respect to E . Then for each future Y the confidence

set C(Y ) for the corresponding x is defined as

C(Y ) = {x ∈ (a, b) : L(x; E) < Y < U(x; E)}.

It is shown in Scheffé(1973, Appendix B) that for an infinite sequence of future Y -

values, at least p proportion of confidence sets C(Y ) contain the true x-values with

confidence level 1− α.

There are three construction methods in the literature so far. More details are given

in Chapter 5. The construction of exact two-sided (p, 1 − α)-simultaneous tolerance

bands is studied in this thesis.

1.6 Outline of the thesis

In Chapter 2, we study the two-sided exact symmetric simultaneous confidence bands

SB, TBU , TBE V , UV and TT . The details of the definitions of the six bands

are given in Chapter 2. Band SB is a new exact band which has the same form

as the conservative band constructed in Steinhorst and Bowden (1971). Bands TBU

and TBE are new exact bands with the same forms as the conservative bands in

Turner and Bowden (1977). Band TT is a new exact band with the same form as the

conservative band in Thomas and Thomas (1986). The forms of bands V and UV have

not been considered before. We provide thorough comparison of these six exact bands

under the average width criterion. In Chapter 3, we propose a method of constructing

an asymmetric confidence band corresponding to each symmetric confidence band given

in Chapter 2. The asymmetric confidence bands are uniformly better the corresponding

exact symmetric bands for any non-trivial situation. In particular, we investigate

the extent to which the asymmetric confidence bands improve over the corresponding

symmetric confidence bands in terms of average width. In Chapter 4, we consider

the one-sided simultaneous confidence bands for a percentile line which is just the

one-sided simultaneous tolerance bands for the simple linear model. In Chapter 5, we

study the two-sided simultaneous tolerance bands. The construction of exact two-sided

simultaneous tolerance bands over any finite interval is proposed.
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Chapter 2

Two-sided Symmetric Simultaneous

Confidence Bands for a Percentile

Line

A two-sided simultaneous confidence band for the percentile function x′β + zγσ over

the interval x ∈ (a, b) has the general form

x′β + zγσ ∈ x′β̂ +
zγ
θ
σ̂ ± cσ̂

√
x′(X ′X)−1x+ (zγ)2ξ for all x ∈ (a, b). (2.1)

Here the constants θ ̸= 0 and ξ can be chosen to give different specific confidence

bands. For given constants θ and ξ, the critical constant c is determined to satisfy the

specified confidence level 1− α. Particularly, when γ = 0.5 and so zγ = 0, the band in

(2.1) becomes

x′β ∈ x′β̂ ± cσ̂
√
x′(X ′X)−1x for all x ∈ (a, b).

Working and Hotelling (1929) considered this band for the special case (a, b) = (−∞,∞).

In this section, we focus on the bands of the form (2.1) with ξ = 0, denoted as Form I:

x′β + zγσ ∈ x′β̂ +
zγ
θ
σ̂ ± cσ̂

√
x′(X ′X)−1x for all x ∈ (a, b). (2.2)

In Section 2.2, we will look at the bands of the form (2.1) with ξ ̸= 0, since mathematical

treatments of these two forms are slightly different.

2.1 Symmetric bands of Form I

Several candidates for θ have been considered in the literature. Steinhorst and Bowden

(1971) used θ = 1 for the band over x ∈ (−∞,∞). Turner and Bowden (1977) gener-

alized the procedure of Steinhorst and Bowden (1971) by using several different values

for θ (see details below).
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Figure 2.1 illustrates the shape of the confidence bands in (2.2). The center of the

band at x is given by x′β̂+
zγ
θ
σ̂. The lower and upper parts of the band are symmetric

about the estimated percentile line. The width at x is 2cσ̂
√
x′(X ′X)−1x, which is

proportional to

√
Var(x′β̂) since x′β̂ ∼ N (x′β, σ2x′(X′X)−1x). Furthermore, the

width of the band is the smallest at x = x̄, the mean of the observed covariate values,

and increases as x moves away from x̄ on either sides. The upper part of the band,

x′β̂+
zγ
θ
σ̂+cσ̂

√
x′(X ′X)−1x for x ∈ (a, b), is convex, while the lower part of the band

is concave.

Figure 2.1: The shape of the bands in (2.2)

x

Y

We consider three different bands in this chapter. All of them are special cases of

the form (2.2). A two-sided simultaneous confidence band can be used to quantify

the plausible range of the true percentile line. The intuitive idea is that the narrower

the band is, the better the band is. Since for any given x, the width of each band in

(2.2) is 2cσ̂
√
x′(X ′X)−1x, then the band with the smallest critical constant c is the

narrowest.

The first simultaneous confidence band, denoted as SB, uses θ = 1 in (2.2) as

considered by Steinhorst and Bowden (1971) but over an interval (a, b) which can be

finite or the whole range x ∈ (−∞,∞) and is more useful in practise. Specifically, it

has the form

x′β + zγσ ∈ x′β̂ + zγσ̂ ± cσ̂
√

x′(X′X)−1x for all x ∈ (a, b). (2.3)

The second band, denoted as TBU, uses θ =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)
, where ν = n− 2 in (2.2)
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and is given by

x′β + zγσ ∈ x′β̂ +
zγ√

2
ν

Γ( ν+1
2

)

Γ( ν
2
)

σ̂ ± cσ̂
√

x′(X ′X)−1x for all x ∈ (a, b). (2.4)

Note that θ is chosen so that E(
σ̂

θ
) = σ and therefore x′β̂ +

zγ
θ
σ̂ is the uniformly

minimum variance unbiased estimator(UMVUE) of x′β + zγσ. This form was studied

by Turner and Bowden (1977), but only over the whole range x ∈ (−∞,∞).

The third band, denoted as TBE, uses θ =

√
2

ν

Γ(ν
2
)

Γ(ν−1
2
)
and is given by

x′β + zγσ ∈ x′β̂ +
zγ√

2
ν

Γ( ν
2
)

Γ( ν−1
2

)

σ̂ ± cσ̂
√

x′(X ′X)−1x, for all x ∈ (a, b). (2.5)

This choice of θ was also proposed by Turner and Bowden (1977). Again, they only

considered this band over the whole range x ∈ (−∞,∞). From their investigation,

they recommended this band among the several bands they studied.

It is noteworthy that all the bands considered in the past by Steinhorst and Bowden

(1971), Turner and Bowden (1977) and Thomas and Thomas (1986) are all over the

whole range x ∈ (−∞,∞). As an extension, we consider the bands over a given interval

(a, b) which is more general and includes the whole range as a special case.

Next we consider the computation of the critical constant c in the band (2.2). For

this, it is necessary to find an expression of the simultaneous confidence level of the

band that is amenable to computation.

The simultaneous confidence level of this band is given by

P
{
x′β + zγσ ∈ x′β̂ +

zγ
θ
σ̂ ± cσ̂

√
x′(X ′X)−1x for all x ∈ (a, b)

}
= P

{
max
x∈(a,b)

|x′(β̂ − β) + zγ(σ̂/θ − σ)|
σ̂
√
x′(X′X)−1x

≤ c

}

= P

{
max
x∈(a,b)

|(Px)′P−1(β̂ − β) + zγ(σ̂/θ − σ)|
σ̂
√

(Px)′(Px)
≤ c

}

= P

{
max
x∈(a,b)

|(Px)′σN+ zγ(σ̂/θ − σ)|
σ̂
√
(Px)′(Px)

≤ c

}

= P

{
max
x∈(a,b)

|(Px)′N/U + zγ(1/θ − 1/U)|√
(Px)′(Px)

≤ c

}
, (2.6)

where the matrix

P =

(
1/
√
n 0

0 P−1
1

)
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is the unique square root of (X ′X)−1 and defined in (1.5),

N =

(
N1

N2

)
= P−1(β̂ − β)/σ ∼ N2(0, I)

and U = σ̂/σ ∼
√

χ2
ν . Note that Px =

(
1/
√
n

P−1
1 x

)
and so (2.6) is further equal to

P


max
x∈(a,b)

∣∣∣∣∣
(

1/
√
n

P−1
1 x

)′(
N1/U + (1/θ − 1/U)

√
nzγ

N2/U

)∣∣∣∣∣∥∥∥∥∥
(

1/
√
n

P−1
1 x

)∥∥∥∥∥
≤ c



=

∫ ∞

0

f σ̂
σ
(u)P


max
x∈(a,b)

∣∣∣∣∣
(

1/
√
n

P−1
1 x

)′(
N1/u+ (1/θ − 1/u)

√
nzγ

N2/u

)∣∣∣∣∣∥∥∥∥∥
(

1/
√
n

P−1
1 x

)∥∥∥∥∥
≤ c


du, (2.7)

where f σ̂
σ
(u) is the probability density function of U and given in (1.4).

Next we give two different methods for computing the critical constant c.

2.1.1 Numerical quadrature method

Denote

k(v) = max
x∈(a,b)

∣∣∣∣∣
(

1/
√
n

P−1
1 x

)′(
n1/u+ (1/θ − 1/u)

√
nzγ

n2/u

)∣∣∣∣∣∥∥∥∥∥
(

1/
√
n

P−1
1 x

)∥∥∥∥∥
,

where v = (n1, n2, u)
′. The simultaneous confidence level (2.7) becomes∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
f(v)I{k(v)≤c for all x∈(a,b)}dv, (2.8)

where f(v) is the joint probability density function of the random vector of v =

(n1, n2, u)
′ and I{A} is the index function of the set A. SinceN1 ∼ N(0, 1), N2 ∼ N(0, 1)

and U ∼
√

χ2
ν/ν are independent and from (1.4), we have

f(v) = π−1e−(n2
1+n2

2+νu2)/22−ν/2νν/2uν−1/Γ(ν/2). (2.9)
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Expression (2.8) involves a three-dimensional integration and can be used to compute

the simultaneous confidence level for a given c via numerical quadrature. Also, for

a given confidence level, the value of critical constant c can be found numerically by

using this method. Based on adaptive Simpson rule, the MATLAB built-in function

triplequad can be used for three-dimensional integration .

Our experience shows this method of computing the exact value of critical constant

c takes substantially longer computation time than the simulation method introduced

in the following section. The numerical quadrature method can be used to cross check

with the simulation method. However, we don’t have to do this every time. The

numerical integration method and the simulation method agree on all the results we

have tried. So we can just use the simulation method.

2.1.2 Simulation method

From (2.6), let

S = max
x∈(a,b)

|x′(β̂ − β) + zγ(σ̂/θ − σ)|
σ̂
√

x′(X′X)−1x

= max
x∈(a,b)

|(Px)′N/U + zγ(1/θ − 1/U)|√
(Px)′(Px)

. (2.10)

The simultaneous confidence level is therefore given by

P{S ≤ c}.

Hence, the critical constant c of the 1 − α simultaneous confidence band is just the

100(1 − α) percentile of the random variable S. This population percentile can be

approximated by the sample percentile using simulation in the following way. We

first generate independent standard bivariate normal random vectors Ni and variables

Ui ∼
√
χ2
ν/ν, i = 1, 2, · · · , R. Then we calculate

Si = max
x∈(a,b)

|(Px)′Ni/Ui + zγ(1/θ − 1/Ui)|√
(Px)′(Px)

, i = 1, · · · , R.

Finally c is approximated by the ⟨(1 − α)R⟩th largest of the R replicates of S :

S1, · · · , SR, where ⟨(1 − α)R⟩ denotes the integer part of (1 − α)R. The computa-

tion methods available in the literature are: projection method, turning point method

and quadratic programming method, see Liu (2010). Next we introduce the three

computation methods for calculating S from N and U .
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2.1.2.1 Projection method

From (2.10), we have

S = max
x∈(a,b)

|(Px)′Z|
∥(Px)∥

,

where

Z =

(
Z1

Z2

)
=

(
N1/U + (1/θ − 1/U)

√
nzγ

N2/U

)

and ∥·∥ means the Euclidean norm of a vector. Denote x1 =

(
1

a

)
and x2 =

(
1

b

)
.

Then Px1 =

(
1/
√
n

P−1
1 a

)
and Px2 =

(
1/
√
n

P−1
1 b

)
. When x changes over the interval

(a, b), Px forms a cone bounded by Px1 and Px2. If the projection of ±Z belongs

to the cone, then

S = max
x∈(a,b)

|(Px)′Z|
∥Px∥

= ∥Z∥.

Otherwise,

S = max
x∈(a,b)

|(Px)′Z|
∥Px∥

= max

{
|(Px1)

′Z|
∥Px1∥

,
|(Px2)

′Z|
∥Px2∥

}
.

We have the following way to judge whether the projection of a given vector belongs to

the cone bounded by Px1 and Px2 or not. Note that there exist non-zero coefficients

λ and κ such that

λZ =

(
1/
√
n

P−1
1 κ

)
.

It is easy to get that

λ = n−1/2Z1
−1 (2.11)

and

κ = n−1/2Z−1
1 Z2P1. (2.12)
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If a < κ < b, then the projection of vector ±Z lies inside the cone spanned by Px1

and Px2. Otherwise, the projection lies outside the cone.

For the special case (a, b) = (−∞,∞), S is clearly equal to ∥Z∥.

2.1.2.2 Turning point method

This method has been considered by Liu (2010). Denote

h(x) =
|(Px)′N/U + zγ(1/θ − 1/U)|√

(Px)′(Px)
. Then S in (2.10) can be written as

S = max
x∈(a,b)

h(x) = max
x∈(a,b)

|f(x)|√
g(x)

,

where

f(x) = (Px)′N/U + zγ(1/θ − 1/U),

g(x) = (Px)′(Px).

Note that P =

(
1/
√
n 0

0 P−1
1

)
, N =

(
N1

N2

)
and x =

(
1

x

)
, then

f(x) = P−1
1 U−1N2x+ U−1n−1/2N1 + zγ(θ

−1 − U−1),

df

dx
= P−1

1 U−1N2,

g(x) = P−2
1 x2 + n−1,

dg

dx
= 2P−2

1 x.

Solving from d
dx

(
f√
g

)
|xt = 0, we can find the turning point of the function f(x)√

g(x)
is

xt =
P1N2n

−1

n−1/2N1 + zγ(Uθ−1 − 1)
. Therefore, if a < xt < b, the maximum value of h(x) is

attained at either x = a or b or xt, otherwise, the maximum value of h(x) is attained

at either x = a or b, i.e.,

S = max
x∈(a,b)

h(x) =

{
max{h(a), h(xt), h(b)}, if a < xt < b;

max{h(a), h(b)}, if xt ≤ a or xt ≥ b.

For the special case (a, b) = (−∞,∞),

h(−∞) = h(∞) = lim
x→∞

s(x) = |U−1N2|,
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hence

S = max
x∈(−∞,∞)

s(x) = max
{
|U−1N2|, h(xt)

}
.

2.1.2.3 Quadratic programming method

Note that S in (2.10) can be written as

S = max
x∈(a,b)

|(Px)′Z|
||Px||

(2.13)

= max
v∈C(P ,a,b)

|v′Z|
∥v∥

,

where

C(P , a, b) := {λPx : λ > 0, x ∈ (a, b)}.

Let π(z,P , a, b) denote the projection of z to the cone C(P , a, b), i.e., π(z,P , a, b) is

the z that solves the problem

min
v∈C(P ,a,b)

∥v − z∥2. (2.14)

The objective function to minimize, ∥v − z∥2 = v′v − 2z′v + z′z, is equivalent to

1

2
v′v − z′z. (2.15)

From Naiman (1987), we know S in (2.13) is further equal to

S = max{∥π(Z,P , a, b)∥, ∥π(−Z,P , a, b)∥}.

The solution of the problem (2.14), π(z,P , a, b), can be found by using quadratic

programming under linear constraints v = λPx = λ

(
1/
√
n

P−1
1 x

)
, λ ≥ 0 and x ∈ (a, b).

Let ej ∈ R3 have the jth element equal to one and the remaining elements all equal

to zero. We have

(e′2 − e′1
√
nP−1

1 b)v ≤ 0

(e′1
√
nP−1

1 a− e′2)v ≤ 0

−
√
ne′1v ≤ 0.
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These constraints can be expressed as

Av ≤ b, (2.16)

where the 3× 3 matrix

A =

 e′2 − e′1
√
nP−1

1 b

e′1
√
nP−1

1 a− e′2
−
√
ne′1

 ,

and b = 0.

The problem of minimizing the objective function in (2.15) under the constraints

in (2.16) is a standard quadratic programming problem and can be solved by the

MATLAB built-in function quadprog.

2.1.3 Comparison of the numerical quadrature method and

the simulation method

As expected, the numerical integration method and the simulation method give almost

the same results from our investigation. The numerical integration method takes longer

computation time however, and so is not recommended. The simulation method is fast

and produces the critical values almost as accurate as the numerical integration method

if the number of simulation runs is 100,000 or more. Among the three computation

methods provided for simulating S in (2.10), the projection method is faster than the

turning point method which, in turn, is faster than the quadratic programming method.

Therefore, we recommend the projection method.

2.1.4 Special cases

2.1.4.1 Special case 1

For the special case of a = b, the interval (a, b) shrinks to a point a. The width of 1−α

confidence interval is straightforwardly equal to 2cσ̂
√
a′(X ′X)−1a, where a = (1, a)′.

The confidence level becomes

P


∣∣∣a′(β̂ − β) + zγ(σ̂/θ − σ)

∣∣∣
σ̂
√

a′(X ′X)−1a
≤ c


= P

{
−c− zγ

θ
√
a′(X ′X)−1a

≤ a′(β̂ − β)/σ − zγ

σ̂/σ
√

a′(X ′X)−1a
(2.17)

≤ c− zγ

θ
√
a′(X ′X)−1a

}
. (2.18)

17



We provide two methods for computing the confidence level. Due to β̂ ∼ N2(β, σ
2(X ′X)−1),

it is clear that
a′(β̂ − β)/σ√
a′(X ′X)−1a

∼ N(0, 1). Let W denote
a′(β̂ − β)/σ − zγ

σ̂/σ
√
a′(X ′X)−1a

. Since

σ̂/σ ∼
√
χ2
ν/ν, then W ∼ nct(ν,−zγ/

√
a′(X ′X)−1a). Here nct(ϑ, ζ) denotes the

noncentral t-distribution with degrees of freedom ϑ and noncentrally parameter ζ.

Therefore, the confidence level (2.17) is equal to

P

{
−c− zγ

θ
√
a′(X ′X)−1a

≤ W ≤ c− zγ

θ
√
a′(X ′X)−1a

}
. (2.19)

We can compute the confidence level by using MATLAB built-in function nctcdf.

Then we can work out the critical constant c.

Alternatively, the confidence level can be written as

P



∣∣∣∣∣
[
P

(
1

a

)]′
N/U + zγ(1/θ − 1/U)

∣∣∣∣∣√√√√[P( 1

a

)]′ [
P

(
1

a

)] ≤ c


=

∫ ∞

0

f σ̂
σ
(u)k1(u)du. (2.20)

Here f σ̂
σ
(u) is the probability density function of U = σ̂/σ and given in (1.4) and

k1(u) = P



∣∣∣∣∣
[
P

(
1

a

)]′
N/u+ zγ(1/θ − 1/u)

∣∣∣∣∣√√√√[P( 1

a

)]′ [
P

(
1

a

)] ≤ c



= P



[
P

(
1

a

)]′
N[

P

(
1

a

)]′ [
P

(
1

a

)] ∈ zγ(1− u/θ)[
P

(
1

a

)]′ [
P

(
1

a

)] ± cu


.(2.21)

Note that

Var

([
P

(
1

a

)]′
N

)
=

[
P

(
1

a

)]′ [
P

(
1

a

)]
,
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and so [
P

(
1

a

)]′
N[

P

(
1

a

)]′ [
P

(
1

a

)] ∼ N(0, 1).

Denote

L(u, c, a, zγ) =
zγ(1− u/θ)[

P

(
1

a

)]′ [
P

(
1

a

)] − cu,

and

U(u, c, a, zγ) =
zγ(1− u/θ)[

P

(
1

a

)]′ [
P

(
1

a

)] + cu.

Then from (2.21) we have

k1(u) = P {L(u, c, a, zγ) ≤ N(0, 1) ≤ U(u, c, a, zγ)}

= Φ(U(u, c, a, zγ))− Φ (L(u, c, a, zγ)) ,

where Φ(·) denotes the standard normal distribution function. Therefore, from (2.20),

the confidence level becomes∫ ∞

0

f σ̂
σ
(u) (Φ(U(u, c, a, zγ))− Φ(L(u, c, a, zγ))) du.

This expression involves only one-dimensional integration. We can get the confidence

level and so the critical constant c of special case 1 by using MATLAB built-in function

quad. Addition to the numerical quadrature, similar to the last section, we can use

simulation method to find the critical constant c.

2.1.4.2 Special case 2

For the special case of (a, b) = (−∞,∞), from Section 2.1.2.1, the simultaneous confi-

dence level is given by

P{∥Z∥ ≤ c}. (2.22)
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Then the simultaneous confidence level can be written as∫ ∞

0

f σ̂
σ
(u)P

{∥∥∥∥∥
(

N1/u+ (1/θ − 1/u)
√
nzγ

N2/u

)∥∥∥∥∥ ≤ c

}
du. (2.23)

The probability density function of N1 is φN1(n1) = 1√
2π
e−n2

1/2, n1 ∈ (−∞,∞). So

(2.23) is equal to

∫ ∞

0

f σ̂
σ
(u)

∫ ∞

−∞
φN1(n1)P

{∥∥∥∥∥
(

n1/u+ (1/θ − 1/u)
√
nzγ

N2/u

)∥∥∥∥∥ ≤ c

}
dn1du

=

∫ ∞

0

f σ̂
σ
(u)

∫ ∞

−∞
φN1(n1)P

{
N2

2 ≤ u2c2 − (n1 + (u/θ − 1)
√
nzγ)

2
}
dn1du

=

∫ ∞

0

f σ̂
σ
(u)

∫ ∞

−∞
φN1(n1)χ

2
1(l)dn1du, (2.24)

where l = u2c2−(n1+(u/θ−1)
√
nzγ)

2. The expression (2.24) involves two-dimensional

integration. The value of critical constant c can be calculated by using MATLAB built-

in function dbquad. Also, we can use simulation method to get the critical constant

c.

2.1.5 Numerical examples

Example 2.1. Blood pressure and age

Kleinbaum et al. (1998) provided a data set on how systolic blood pressure (Y )

changes with age (x) for a group of forty males. The data set is given in Table 2.1.

The data points are plotted in Figure 2.2. We have x̄ = 46.92, Sxx = Σn
i=1(xi − x̄)2 =

8623.5591 and σ̂ = 8.479 with 38 degrees of freedom. Since the minimum age min(xi) =

18 and the maximum age max(xi) = 70, it is sensible to construct a simultaneous

confidence band over x ∈ (18, 70). Also, we study the bands over x ∈ (1, 100) and the

whole region (−∞,∞). Even though the age value x cannot be a negative number

or infinity and so x ∈ (−∞,∞) has no practical meaning in this example, we are

interested in the mathematical results for the interval x ∈ (−∞,∞). Many previous

literatures just considered bands over (−∞,∞) but we consider a general interval (a, b)

including (−∞,∞) as a special case in our study.

Consider two cases: 1 − α = 0.90, γ = 0.75 and 1 − α = 0.95, γ = 0.99 in this

example. By using methods introduced above in this section, we can calculate the

critical constants of the bands SB, TBU and TBE over the interval (18, 70), (1, 100)

and (−∞,∞). The width of each band is given by 2cσ̂
√
x′(X ′X)−1x. Since the

data set is given, for any given x, then the width of each band depends only on the

corresponding critical constant c. The smaller the critical constant c is, the narrower

the band is.
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From Table 2.2, we conclude TBE is the best among the three bands for this

example. The 90%-simultaneous confidence bands SB, TBU and TBE for the 75th

percentile line over (18, 70) are plotted in Figure 2.3. For this particular case, the simul-

taneous band SB is only (2.3179−2.3121)/2.3121 = 0.25% wider than the band TBE,

and the simultaneous band SB is only (2.3148 − 2.3121)/2.3121 = 0.12% wider than

the band TBE. Therefore these three bands almost overlap each other in Figure 2.3.

The 99%-simultaneous confidence bands SB, TBU and TBE for the 95th percentile

line over (18, 70) are plotted in Figure 2.4. For this particular case, the simultaneous

band SB is only (4.8295−4.6472)/4.6472 = 3.92% wider than the band TBE, and the

simultaneous confidence band SB is only (4.7677−4.6472)/4.6472 = 2.59% wider than

the band TBE. There is no significant difference among three bands in this example.

The band TBE is slightly narrower than the other two bands. Therefore these three

bands almost overlap each other in Figure 2.4. Intuitively, the bands over (−∞,∞)

should be wider than the bands over a finite interval. In this example, we can confirm

this since the critical constant of one band over (−∞,∞) is larger than the critical

constants of the band over (1, 100) and (18, 70).
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Table 2.1: Data from Kleinbaum et al. (1998, page 192)

Person Age in Blood Pressure Person Age in Blood Pressure

i years (x) (mm Hg) (Y ) i years (x) (mm Hg) (Y )

1 41 158 21 38 150

2 60 185 22 52 156

3 41 152 23 41 134

4 47 159 24 18 134

5 66 176 25 51 174

6 47 156 26 55 174

7 68 184 27 65 158

8 43 138 28 33 144

9 68 172 29 23 139

10 57 168 30 70 180

11 65 176 31 56 165

12 57 164 32 62 172

13 61 154 33 51 160

14 36 124 34 48 157

15 44 142 35 59 170

16 50 144 36 40 153

17 47 149 37 35 148

18 19 128 38 33 140

19 22 130 39 26 132

20 21 138 40 61 169

Table 2.2: Critical constants of simultaneous confidence bands SB,TBU and TBE

1− α = 0.90, γ = 0.75 1− α = 0.99, γ = 0.95

Interval SB TBU TBE SB TBU TBE

(18,70) 2.3179 2.3148 2.3121 4.8295 4.7677 4.6472

(1,100) 2.3381 2.3356 2.3326 4.8299 4.7682 4.6475

(−∞,∞) 2.3431 2.3403 2.3371 4.8300 4.7683 4.6475
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Figure 2.2: The data points, the estimated regression line and the estimated 75th per-
centile line
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Figure 2.3: The 90%-simultaneous confidence bands SB, TBU and TBE for the 75th
percentile line over (18, 70)
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Figure 2.4: The 99%-simultaneous confidence bands SB, TBU and TBE for the 95th
percentile line over (18, 70)
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Example 2.2. Speed and size of rocket engine’s orifice

Consider the example presented originally by Lieberman and Miller (1963) on how

speed(Y ) in miles per hour changes with the size(x) in inches of a rocket engine’s orifice.

This example was also discussed by Steinhorst and Bowden (1971) and Turner and Bowden

(1977). The data set consists of fifteen pairs of observations (xi, yi), i = 1, · · · , 15 and

is given in Table 2.3. We have x̄ = 1.3531, ȳ = 5219.3, the minimum size of orifice

min(xi) = 1.310, the maximum size of orifice max(xi) = 1.400, Sxx = Σn
i=1(xi − x̄)2 =

0.011966, β̂ = (−19041.8, 17930)′ and σ̂ = 130.5 with 13 degrees of freedom.

A two-sided simultaneous confidence band can be used to quantify the plausible

range of the true percentile function. Since min(xi) = 1.310 and max(xi) = 1.400, it is

sensible to construct a simultaneous confidence band over a interval x ∈ (a, b) which

covers the interval (1.310, 1.400). Here we construct two-sided simultaneous confidence

bands over the interval (x̄ − 0.060, x̄ + 0.060) = (1.2931, 1.4131). This interval just

covers the observed range and has been considered by Steinhorst and Bowden (1971)

and Turner and Bowden (1977). We look at two cases: 1 − α = 0.90, γ = 0.75 and

1−α = 0.95, γ = 0.99 in this example. By using the methods introduced above in this

section, we can calculate the critical constants of the bands SB, TBU and TBE over

the interval (1.2931, 1.4131). (See Table 2.4.) Since a small critical constant means a

narrow band, from Table 2.4, we recommend band TBE as its c value is the smallest

among the three bands for each case.
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Table 2.3: Orifice Speed Data for Lieberman and Miller (1963) Example

Orifice Speed Orifice Speed Orifice Speed

1.310 4360 1.340 5070 1.373 5670

1.313 4590 1.347 5230 1.376 5490

1.320 4520 1.355 5080 1.384 5810

1.322 4770 1.360 5550 1.395 6060

1.338 4760 1.364 5390 1.400 5940

Table 2.4: Critical constants of simultaneous confidence bands SB,TBU and TBE

1− α = 0.90, γ = 0.75 1− α = 0.99, γ = 0.95

Interval SB TBU TBE SB TBU TBE

(1.2931, 1.4131) 2.4907 2.4793 2.4656 6.1653 6.0465 5.7894
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2.2 Symmetric bands of Form II

In this section, we consider simultaneous confidence bands for the percentile line x′β+

zγσ over the interval x ∈ (a, b) of the form (2.1) with θ ̸= 0 and ξ ̸= 0 denoted as Form

II:

x′β + zγσ ∈ x′β̂ +
zγ
θ
σ̂ ± cσ̂

√
x′(X ′X)−1x+ (zγ)2ξ for all x ∈ (a, b). (2.25)

Different from Section 2.1, we focus on the bands with ξ ̸= 0.

Figure 2.5 illustrates the shape of this confidence band. The lower and upper parts

of the band are symmetric about the estimated percentile line x′β̂+zγσ̂, and the width

of the band is 2cσ̂
√

x′(X ′X)−1x+ (zγ)2ξ.

The constants θ ̸= 0 and ξ ̸= 0 can be chosen to give different specific confidence

bands. For a given pair of (θ, ξ), the critical constant c is chose such that the confidence

level is equal to 1−α. We consider three bands in this section. All of them are special

cases of form (2.25).

The first band, denoted as V, uses θ = 1 and ξ = 1− 2

ν

(
Γ(ν+1

2
)

Γ(ν
2
)

)2

and is given by

x′β+zγσ ∈ x′β̂+zγσ̂±cσ̂

√√√√x′(X ′X)−1x+ (zγ)2

(
1− 2

ν

(
Γ(ν+1

2
)

Γ(ν
2
)

)2
)

for all x ∈ (a, b).

(2.26)

This band has not been considered in the literature before. Here the quantity ξ is

chosen so that

x′(X ′X)−1x+ (zγ)
2ξ = Var(x′β̂ + zγσ̂)/σ

2.

Note that

Var(x′β̂ + zγσ̂)

= Var(x′β̂) + Var(zγσ̂) (2.27)

= σ2x′(X′X)−1x+ (zγ)
2[E(σ̂2)− (Eσ̂)2] (2.28)

= σ2x′(X′X)−1x+ (zγ)
2[σ2 − σ2(E(

σ̂

σ
))2] (2.29)

= σ2

(
x′(X′X)−1x+ (zγ)

2

(
1− 2

ν

(
Γ(ν+1

2
)

Γ(ν
2
)

)2
))

, (2.30)

where (2.27) is due to that β̂ and σ̂2 are independent, (2.28) follows directly from the

fact that x′β̂ ∼ N (x′β, σ2x′(X′X)−1x) . We obtain (2.29) since σ̂2 ∼ σ2

ν
χ2
ν , E(σ̂2) = σ2

and E( σ̂
σ
) =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)
. Hence ξ is equal to 1− 2

ν

(
Γ(ν+1

2
)

Γ(ν
2
)

)2

from (2.30).
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Figure 2.5: The shape of SCB General Form II

The second band denoted as UV, uses θ =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)

and ξ =
ν

2

(
Γ(ν

2
)

Γ(ν+1
2
)

)2

− 1,

and is given by

x′β + zγσ ∈ x′β̂ +
zγ√

2
ν

Γ( ν+1
2

)

Γ( ν
2
)

σ̂± cσ̂
√

x′(X ′X)−1x+ (zγ)2(1/θ2 − 1) for all x ∈ (a, b),

(2.31)

where θ and ξ satisfy E(
σ̂

θ
) = σ and Var(xβ̂ +

zγ
θ
σ̂) = x′(X ′X)−1x + (zγ)

2ξ. This

band has not been proposed in the literature before either. Note that θ is chosen so

that E(
σ̂

θ
) = σ and therefore x′β̂ +

zγ
θ
σ̂ is the uniformly minimum variance unbiased

estimator(UMVUE) of x′β + zγσ. The quantity ξ is chosen so that

x′(X ′X)−1x+ (zγ)
2ξ = Var(x′β̂ +

zγ
θ
σ̂)/σ2.

Similar to (2.27) - (2.29), we have

Var(x′β̂ +
zγ
θ
σ̂)

= Var(x′β̂) + Var(
zγ
θ
σ̂)

= σ2x′(X′X)−1x+ (
zγ
θ
)2[E(σ̂2)− (Eσ̂)2]
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= σ2x′(X′X)−1x+ (
zγ
θ
)2[σ2 − θ2σ2]

= σ2
(
x′(X′X)−1x+ (zγ)

2
(
1/θ2 − 1

))
.

Hence ξ is equal to 1/θ2 − 1 =
ν

2

(
Γ(ν

2
)

Γ(ν+1
2
)

)2

− 1.

The third band, denoted as TT, uses θ =
4ν − 1

4ν
and ξ =

1

2ν
and is given by

x′β+ zγσ ∈ x′β̂+
zγ

(4ν − 1)/(4ν)
σ̂± cσ̂

√
x′(X ′X)−1x+ (zγ)2/(2ν), for all x ∈ (a, b).

(2.32)

This choice of (θ, ξ) has been considered by Thomas and Thomas (1986). But they

only studied the band over the whole region (−∞,∞). They claimed this band was

more efficient than all the bands studied in Turner and Bowden (1977) over the whole

region.

All the bands considered in the past by Steinhorst and Bowden (1971),

Turner and Bowden (1977) and Thomas and Thomas (1986) are all over the whole

range x ∈ (−∞,∞). Analogous to Section 2.1, we construct the bands over a given

interval which is more general and includes the whole range as a special case.

As all these individual bands are special cases of the band (2.25), now we considered

the computation of the critical constant c in the band (2.25). For this, it is necessary

to find an expression of the simultaneous confidence level of the band that is amenable

to computation.

The simultaneous confidence level of this band is given by

P

{
x′β + zγσ ∈ x′β̂ +

zγ
θ
σ̂ ± cσ̂

√
x′(X ′X)−1x+ (zγ)2ξ for all x ∈ (a, b)

}
= P

{
max
x∈(a,b)

|x′(β̂ − β) + zγ(σ̂/θ − σ)|
σ̂
√

x′(X′X)−1x+ (zγ)2ξ
≤ c

}

= P

{
max
x∈(a,b)

|(Px)′P−1(β̂ − β) + zγ(σ̂/θ − σ)|
σ̂
√
(Px)′(Px) + (zγ)2ξ

≤ c

}

= P

{
max
x∈(a,b)

|(Px)′σN+ zγ(σ̂/θ − σ)|
σ̂
√
(Px)′(Px) + (zγ)2ξ

≤ c

}

= P

{
max
x∈(a,b)

|(Px)′N/U + zγ(1/θ − 1/U)|√
(Px)′(Px) + (zγ)2ξ

≤ c

}
, (2.33)

where the matrix P is defined in (1.5), N =

(
N1

N2

)
= P−1(β̂ − β)/σ ∼ N2(0, I)
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and U = σ̂/σ ∼
√

χ2
ν . Note that (2.33) is further equal to

P


max
x∈(a,b)

∣∣∣∣∣
(

Px

zγ
√
ξ

)′(
N/U

(1/θ − 1/U)/
√
ξ

)∣∣∣∣∣∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
≤ c



=

∫ ∞

0

f σ̂
σ
(u)P


max
x∈(a,b)

∣∣∣∣∣
(

Px

zγ
√
ξ

)′(
N/u

(1/θ − 1/u)/
√
ξ

)∣∣∣∣∣∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
≤ c


du, (2.34)

where f σ̂
σ
(u) is the probability density function of U and given in (1.4).

Next we give two methods for computing critical constant c.

2.2.1 Numerical quadrature method

Denote

k(v) = max
x∈(a,b)

∣∣∣∣∣
(

Px

zγ
√
ξ

)′(
n/u

(1/θ − 1/u)/
√
ξ

)∣∣∣∣∣∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
,

where v = (n1, n2, u)
′. The simultaneous confidence level (2.34) becomes∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
f(v)I{k(v)≤c for all x∈(a,b)}dv, (2.35)

where f(v) is the joint probability density function of the random vector of v =

(n1, n2, u)
′ and is given in (2.9) and I{A} is the index function of the set A. Expres-

sion (2.35) involves a three-dimensional integration and can be used to compute the

simultaneous confidence level via numerical integration. We have used the MATLAB

built-in function triplequad for this purpose. Then the value of critical constant can

be found numerically by searching for c so that the simultaneous confidence level is

equal to 1− α.

2.2.2 Simulation method

Let

S = max
x∈(a,b)

|(Px)′N/U + zγ(1/θ − 1/U)|√
(Px)′(Px) + (zγ)2ξ

. (2.36)
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From (2.33), the simultaneous confidence level is given by

P{S ≤ c}. (2.37)

The critical constant c can be determined in a similar way as introduced in the last

section. We generate standard bivariate normal random vectors Ni and variables

Ui ∼
√

χ2
ν

ν
, i = 1, 2, · · · , R, and then calculate

Si = max
x∈(a,b)

|(Px)′Ni/Ui + zγ(1/θ − 1/Ui)|√
(Px)′(Px) + (zγ)2ξ

, i = 1, · · · , R.

We choose the ⟨(1−α)R⟩th largest of the R replicates of S : S1, · · · , SR as the approx-

imation of critical constant c. Next we give three computation methods for calculating

S from N and U .

2.2.2.1 Projection method

S in (2.36) is further equal to

S = max
x∈(a,b)

∣∣∣∣∣
(

Px

zγ
√
ξ

)′(
N/U

(1/θ − 1/U)/
√
ξ

)∣∣∣∣∣∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
.

Note that x =

(
1

x

)
and all the points

(
Px

zγ
√
ξ

)
for x ∈ (−∞,∞) in the three-

dimensional space form a straight line. Denote x1 =

(
1

a

)
, x2 =

(
1

b

)
, d1 =(

Px1

zγ
√
ξ

)
and d2 =

(
Px2

zγ
√
ξ

)
. Note that, for any x ∈ (−∞,∞),

(
Px

zγ
√
ξ

)
= P

(
1

x

)
zγ
√
ξ

 can be expressed as

 P

(
1

ωa+ (1− ω)b

)
zγ
√
ξ

 for some ω ∈ (−∞,∞).
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For a given ω, we have  P

(
1

ωa+ (1− ω)b

)
zγ
√
ξ



= ω

 P

(
1

a

)
zγ
√
ξ

+ (1− ω)

 P

(
1

b

)
zγ
√
ξ


= ωd1 + (1− ω)d2.

It means

 P

(
1

ωa+ (1− ω)b

)
zγ
√
ξ

 can be written as a linear combination of d1 and

d2. So

(
Px

zγ
√
ξ

)
can be expressed as a linear combination of d1 and d2. Denote

the matrix M = (d1,d2). Let L(M) be the linear plane spanned by d1 and d2 and

H = M (M ′M )−1M ′ be the projection matrix to L(M ). If the projection of the

vector

(
N/U

(1/θ − 1/U)/
√
ξ

)
or −

(
N/U

(1/θ − 1/U)/
√
ξ

)
to the plane L(M ) belongs

to the cone spanned by d1 and d2, then

S =

∥∥∥∥∥H
(

N/U

(1/θ − 1/U)/
√
ξ

)∥∥∥∥∥ .
Otherwise,

S = max


∣∣∣∣∣d′

1

(
N/U

(1/θ − 1/U)/
√
ξ

)∣∣∣∣∣
∥d1∥

,

∣∣∣∣∣d′
2

(
N/U

(1/θ − 1/U)/
√
ξ

)∣∣∣∣∣
∥d2∥


= max

(
|(Px1)

′N/U + zγ(1/θ − 1/U)|√
(Px1)′(Px1) + (zγ)2ξ

,
|(Px2)

′N/U + zγ(1/θ − 1/U)|√
(Px2)′(Px2) + (zγ)2ξ

)
.

We have the following way to judge whether the projection of a given vector,(
N/U

(1/θ − 1/U)/
√
ξ

)
for example, belongs to the cone spanned by d1 and d2 or not.
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Note that P =

(
1/
√
n 0

0 P−1
1

)
. Then for any x0,

 P

(
1

x0

)
zγ
√
ξ

 =

 1/
√
n

x0P
−1
1

zγ
√
ξ

 .

The projection of the vector

(
N/U

(1/θ − 1/U)/
√
ξ

)
to the plane L(M) is

vp = H

(
N/U

(1/θ − 1/U)/
√
ξ

)
.

Then there exist non-zero coefficients λ and κ such that

λvp =

 1/
√
n

κP−1
1

zγ
√
ξ

 .

Note that H can be written as

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 , then we have

λvp = λ

 h11 h12 h13

h21 h22 h23

h31 h32 h33


 N1/U

N2/U

(1/θ − 1/U)/
√
ξ

 =

 1/
√
n

κP−1
1

zγ
√
ξ

 . (2.38)

Two coefficients are therefore solved as

λ = zγ
√
ξ/
(
h31N1/U + h32N2/U + h33(1/θ − 1/U)/

√
ξ
)
, (2.39)

and

κ = λP1

(
h21N1/U + h22N2/U + h23(1/θ − 1/U)/

√
ξ
)
. (2.40)

If a < κ < b, the projection of the vector ±

(
N/U

(1/θ − 1/U)/
√
ξ

)
to the plane L(M )

belongs to the cone spanned by d1 and d2, otherwise, the projection lies outside the

cone.

32



For the special case of (a, b) = (−∞,∞),

S =

∥∥∥∥∥H
(

N/U

(1/θ − 1/U)/
√
ξ

)∥∥∥∥∥ . (2.41)

2.2.2.2 Turning point method

Denote

h(x) =
|(Px)′N/U + zγ(1/θ − 1/U)|√

(Px)′(Px) + (zγ)2ξ
.

Then S in (2.36) can be written as

S = max
x∈(a,b)

h(x) = max
x∈(a,b)

|f(x)|√
g(x)

,

where

f(x) = (Px)′N/U + zγ(1/θ − 1/U),

g(x) = (Px)′(Px) + (zγ)
2ξ.

Note that P =

(
1/
√
n 0

0 P−1
1

)
, N =

(
N1

N2

)
and x =

(
1

x

)
, and so

f(x) = P−1
1 U−1N2x+ U−1n−1/2N1 + zγ(θ

−1 − U−1),

df

dx
= P−1

1 U−1N2,

g(x) = P−2
1 x2 + n−1 + (zγ)

2ξ,

dg

dx
= 2P−2

1 x.

Solving from d
dx

(
f√
g

)
|xt = 0, we have the turning point xt =

P1N2(n
−1 + (zγ)

2ξ)

n−1/2N1 + zγ(U/θ − 1)
.

Therefore, if a < xt < b, the minimum value of h(x) is attained at either x = a or b or

xt, otherwise, the minimum value of h(x) is attained at either x = a or b, i.e.,

S = max
x∈(a,b)

h(x) =

{
max{h(a), h(xt), h(b)}, if a < xt < b;

max{h(a), h(b)}, if xt ≤ a or xt ≥ b.

For the special case of (a, b) = (−∞,∞),

h(−∞) = h(∞) = lim
x→∞

h(x) = |U−1N2|,
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hence

S = max
x∈(a,b)

h(x) = max
{
|U−1N2|, h(xt)

}
.

2.2.2.3 Quadratic programming method

Note that S in (2.36) can be written as

S = max
x∈(a,b)

∣∣∣∣∣
(

Px

zγ
√
ξ

)′(
N/U

(1/θ − 1/U)/
√
ξ

)∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣
(

Px

zγ
√
ξ

)∣∣∣∣∣
∣∣∣∣∣

(2.42)

= max
v∈C(P,zγ ,ξ,a,b)

|v′T|
∥v∥

,

where

v =

(
Px

zγ
√
ξ

)
,T =

(
N/U

(1/θ − 1/U)/
√
ξ

)

and

C(P, zγ, ξ, a, b) :=

{
λ

(
Px

zγ
√
ξ

)
: λ ≥ 0, x ∈ (a, b)

}
.

Let π(t) denote the projection of t ∈ R3 to the cone C(P, zγ, ξ, a, b), i.e.,π(t) is the

v ∈ R3 that solves the problem

min
v∈C(P,zγ ,ξ,a,b)

∥v− t∥2.

The objective function to minimize, ∥v−t∥2, can be expressed as v′v−2t′v+t′t, which

is equivalent to

1

2
v′v− t′v. (2.43)

It follows from Naiman (1987) that S in (2.42) is further equal to

S = max{∥π(T)∥, ∥π(−T)∥}.

The solution π(t) can be found by using quadratic programming under linear con-

straints.

Let ej ∈ R3 have the jth element equal to one and the remaining elements all equal
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to zero. Note that P =

(
1/
√
n 0

0 P−1
1

)
and x =

(
1

x

)
, from the definition of the

cone C(P, zγ, ξ, a, b), v ∈ C(P, zγ, ξ, a, b) implies that

v = λ

 1/
√
n

P−1
1 x

zγ
√
ξ


for some λ > 0. Since

√
ne′

1v = (zγ
√
ξ)−1e′

3v = λ ≥ 0 and a ≤ x ≤ b, we have

−(zγ
√

ξ)−1e′
3v ≤ 0

−
√
ne′

1v ≤ 0

(aP−1
1 (zγ

√
ξ)−1e′

3 − e′
2)v ≤ 0

(e′
2 − bP−1

1 (zγ
√
ξ)−1e′

3)v ≤ 0

(
√
ne′

1 − (zγ
√

ξ)−1e′
3)v = 0.

These constraints can be expressed as

Av ≤ b, Aeqv = beq, (2.44)

where the 4× 3 matrix

A =


−(zγ

√
ξ)−1e′

3

−
√
ne′

1

aP−1
1 (zγ

√
ξ)−1e′

3 − e′
2

e′
2 − bP−1

1 (zγ
√
ξ)−1e′

3

 ,

b = 0, Aeq =
√
ne′

1 − (zγ
√
ξ)−1e′

3 and beq = 0.

The problem of minimizing the objective function in (2.43) under the constraints

in (2.44) is a standard quadratic programming problem and can be solved by the

MATLAB built-in function quadprog.

2.2.3 Special cases

2.2.3.1 Special case 1

For the special case of a = b, the interval (a, b) shrinks to a point a. The width

of 1 − α confidence interval is straightforwardly equal to 2cσ̂
√

a′(X ′X)−1a+ (zγ)2ξ,
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where a = (1, a)′. The simultaneous confidence level becomes

1− α = P



∣∣∣∣∣
[
P

(
1

a

)]′
N/U + zγ(1/θ − 1/U)

∣∣∣∣∣√√√√[P ( 1

a

)]′ [
P

(
1

a

)]
+ (zγ)2ξ

≤ c


=

∫ ∞

0

f σ̂
σ
(u)k2(u)du, (2.45)

where f σ̂
σ
(u) is the probability density function of U = σ̂/σ and given in (1.4) and

k2(u) = P



∣∣∣∣∣
[
P

(
1

a

)]′
N/u+ zγ(1/θ − 1/u)

∣∣∣∣∣√√√√[P ( 1

a

)]′ [
P

(
1

a

)]
+ (zγ)2ξ

≤ c



= P



[
P

(
1

a

)]′
N[

P

(
1

a

)]′ [
P

(
1

a

)] ∈

zγ(1− u/θ)± cu

√√√√[P( 1

a

)]′ [
P

(
1

a

)]
+ (zγ)2ξ[

P

(
1

a

)]′ [
P

(
1

a

)]


.

Note that

Var

([
P

(
1

a

)]′
N

)
=

[
P

(
1

a

)]′ [
P

(
1

a

)]
,

and so [
P

(
1

a

)]′
N[

P

(
1

a

)]′ [
P

(
1

a

)] ∼ N(0, 1).
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Denote

L(u, c, a, zγ) =

zγ(1− u/θ)− cu

√√√√[P( 1

a

)]′ [
P

(
1

a

)]
+ (zγ)2ξ[

P

(
1

a

)]′ [
P

(
1

a

)] ,

and

U(u, c, a, zγ) =

zγ(1− u/θ) + cu

√√√√[P( 1

a

)]′ [
P

(
1

a

)]
+ (zγ)2ξ[

P

(
1

a

)]′ [
P

(
1

a

)] .

Then we have

k2(u) = P {L(u, c, a, zγ) ≤ N(0, 1) ≤ U(u, c, a, zγ)}

= Φ(U(u, c, a, zγ))− Φ (L(u, c, a, zγ)) .

Therefore, from (2.45), the confidence level becomes∫ ∞

0

f σ̂
σ
(u) (Φ(U(u, c, a, zγ))− Φ(L(u, c, a, zγ))) du.

This expression involves only one-dimensional integration. We can get the value of

critical constant c by using MATLAB built-in function quad. Addition to the numerical

quadrature, simulation method introduced above also can be utilized to find the critical

constant c.

2.2.3.2 Special case 2

For the special case of (a, b) = (−∞,∞), the simultaneous confidence level is

P

{
max

x∈(−∞,∞)

|(Px)′N/U + zγ(1/θ − 1/U)|√
(Px)′(Px) + (zγ)2ξ

≤ c

}

= P


max

x∈(−∞,∞)

∣∣∣∣∣
(

Px

zγ
√
ξ

)′(
N/U

(1/θ − 1/U)/
√
ξ

)∣∣∣∣∣∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
≤ c


. (2.46)
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Denote x1 =

(
1

−1

)
, x2 =

(
1

1

)
, d1 =

(
Px1

zγ
√
ξ

)
and d2 =

(
Px2

zγ
√
ξ

)
. Let

L(M ) be the linear space spanned by the two columns of matrix M = (d1,d2), and

H = M (M ′M )−1M ′ be the projection matrix to L(M ). It can be shown that (2.46)

means the probability of the event that the norm of the projection of the vector

±

(
N/U

(1/θ − 1/U)/
√
ξ

)
to the plane L(M ) cannot be larger than c. From Section

2.2.2.1, (2.46) is further equal to

P

{∥∥∥∥∥H
(

N/U

(1/θ − 1/U)/
√
ξ

)∥∥∥∥∥ ≤ c

}

=

∫ ∞

0

f σ̂
σ
(u)P

{∥∥∥∥∥H
(

N/u

(1/θ − 1/U)/
√
ξ

)∥∥∥∥∥ ≤ c

}
du. (2.47)

Since N1, N2 are i.i.d. ∼ N(0, 1) and the probability density function of N1 is φN1(n1) =
1√
2π
e−n2

1/2, it is clear that for a fixed u

P

{∥∥∥∥∥H
(

N/u

(1/θ − 1/U)/
√
ξ

)∥∥∥∥∥ ≤ c

}

=

∫ ∞

−∞
φN1(n1)P


∥∥∥∥∥∥∥H

 n1/u

N2/u

(1/θ − 1/U)/
√
ξ


∥∥∥∥∥∥∥ ≤ c

 dn1. (2.48)

The 3 × 3 matrix H can be denoted by H = (H1,H2,H3), where H1,H2,H3 are

column vectors. Denote s = zγ(u/θ − 1)/(zγ
√
ξ). Then

P


∥∥∥∥∥∥∥H

 n1/u

N2/u

(1/θ − 1/U)/
√
ξ


∥∥∥∥∥∥∥ ≤ c

 (2.49)

= P


∥∥∥∥∥∥∥H

 n1/u

N2/u

(1/θ − 1/U)/
√
ξ


∥∥∥∥∥∥∥
2

≤ c2


= P


∥∥∥∥∥∥∥(H1,H2,H3)

 n1

N2

s


∥∥∥∥∥∥∥
2

≤ u2c2


= P

{
AN2

2 +BN2 + C < 0
}
, (2.50)
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where A = H2
′H2, B = 2(H1

′H2n1 + H2
′H3s) and C = H1

′H1n
2
1 + 2H1

′H3sn1 +

H3
′H3s

2 − u2c2. Let k(u, n1, c) = P {AN2
2 +BN2 + C < 0}. Therefore,

k(u, n1, c) =

{
Φ(−B+

√
B2−4AC
2A

)− Φ(−B−
√
B2−4AC
2A

), if B2 − 4AC > 0,

0, if B2 − 4AC ≤ 0.
(2.51)

Combining (2.47) - (2.51) gives the confidence level 1− α is equal to∫ ∞

0

∫ ∞

−∞
f σ̂

σ
(u)φN1(n1)k(u, n1, c)dn1du.

This expression involves two-dimensional integration and can be used to calculate the

critical constant c . We can use the MATLAB built-in function dlquad for this purpose.

Also, we can use simulation method to get the critical constant c.

2.2.4 Numerical examples

Example 2.3.

For the data set given in Table 2.1, we also consider two cases: 1 − α = 0.90,

γ = 0.75 and 1 − α = 0.95, γ = 0.99. By using the methods introduced above in this

section, we have computed the critical constants of simultaneous confidence bands V ,

UV and TT for the percentiles line over x ∈ (18, 70) and x ∈ (1, 100) and provide

them in Table 2.5. The 90%-simultaneous confidence bands SB, TBU and TBE for

the 75th percentile line over (18, 70) are plotted in Figure 2.6. The 99%-simultaneous

confidence bands SB, TBU and TBE for the 95th percentile line over (18, 70) are

plotted in Figure 2.7. The three bands almost overlap each other in Figures 2.6 and

2.7. There is no significant difference among them. To compare them, We use the

average width criterion which is studied in Section 2.3.

Table 2.5: Critical constants of simultaneous confidence bands SB,TBU and TBE

1− α = 0.90, γ = 0.75 1− α = 0.99, γ = 0.95

Interval V UV TT V UV TT

(18,70) 2.1748 2.1700 2.1708 3.3956 3.3516 3.3558

(1,100) 2.2067 2.2026 2.2034 3.4394 3.4000 3.4033

Figure 2.6: The 90%-simultaneous confidence bands V , UV and TT for the 75th per-
centile line over (18, 70)
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Figure 2.7: The 99%-simultaneous confidence bands V , UV and TT for the 95th per-
centile line over (18, 70)
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Example 2.4.

For the data set given in Table 2.3, we also consider two cases: 1 − α = 0.90,

γ = 0.75 and 1 − α = 0.95, γ = 0.99. By using the methods introduced above in this

section, we compute the critical constants of simultaneous confidence bands V , UV

and TT for the percentiles line over x ∈ (1.2931, 1.4131) and provide them in Table

2.6.
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Table 2.6: Critical constants of simultaneous confidence bands SB,TBU and TBE

1− α = 0.90, γ = 0.75 1− α = 0.99, γ = 0.95

Interval V UV TT V UV TT

(1.2931, 1.4131) 2.0449 2.0281 2.0315 3.9693 3.8508 3.8703
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2.3 Comparison of symmetric confidence bands un-

der the average width criterion

The average width of a simultaneous confidence band has been widely used as an opti-

mality criterion for the comparison of different confidence bands. Gafarian (1964) used

the average width as an optimality criterion for the first time. Intuitively, a narrow-

er confidence band provides more accurate information about the unknown percentile

line. The smaller the average width is, the better the band is. The average width of a

confidence band is defined as ∫ b

a

w(x)dx/(b− a), (2.52)

where w(x) denotes the width of the confidence band at x. It is clear that, for a given

x the width of the band in (1.9) is

2cσ̂
√
x′(X ′X)−1x+ (zγ)2ξ,

where c is the critical constant to give confidence level 1 − α. Let x̄ = Σn
i=1xi/n and

Sxx = Σn
i=1(xi − x̄)2. It can be shown that the average width of the band in (1.9) is

given by ∫ b

a

2cσ̂
√
x′(X ′X)−1x+ (zγ)2ξ dx/(b− a)

= cσ̂

[
ζ ln

(
b̃+

√
b̃2 + ζ

)
+ b̃

√
b̃2 + ζ − ζ ln

(
ã+

√
ã2 + ζ

)
−ã
√
ã2 + ζ

]
/(b̃− ã) (2.53)

where ã = (a− x̄)/
√
Sxx, b̃ = (b− x̄)/

√
Sxx and ζ = 1/n+(zγ)

2ξ. The comparisons of

bands under the average band width criterion given in Turner and Bowden (1977) and

Thomas and Thomas (1986) were not complete due to the fact that critical constants

over a finite (a, b) were not available and averages only over a few points were used.

Next we present numerical comparisons of the bands under the average width cri-

terion. Specifically, we consider the case that a = x̄ − δ and b = x̄ + δ, i.e., the

interval (a, b) is symmetric about x̄. Denote Sxx = Σn
i=1(xi − x̄)2 and ss = δ/

√
Sxx.

Note that for a simultaneous confidence band, the critical constant depends only on

ss, γ, n and the confidence level 1 − α. Therefore, the average width of this band

also depends only on ss, γ, n and 1− α. When the design points x1, · · · , xn are given,

Sxx = Σn
i=1(xi−x̄)2 is fixed. So a large value of δ means a wide interval (a, b). In our nu-

merical comparison, we have used α = 0.10, 0.01, γ = 0.75, 0.95, n = 10, 20, 30, 50, 100

and ss = 0.1, 0.5, 1.0, 10, 50 and investigated all the combinations of these four factors
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for each band given in this chapter.

When x̄ = 0, i.e., the x-values (x1, · · · , xn) are mean adjusted, (2.53) is further

equal to ∫ δ

−δ

2cσ̂
√
x′(X ′X)−1x+ (zγ)2ξ dx/(2δ)

=

∫ δ

−δ

cσ̂/δ

√
1

n
+

x2

Sxx

+ (zγ)2ξ dx

= cσ̂
√
Sxx/δ

[(
1

n
+ (zγ)

2ξ

)
ln

(
δ√
Sxx

+

√
δ2

Sxx

+
1

n
+ (zγ)2ξ

)

−1

2

(
1

n
+ (zγ)

2ξ

)
ln

(
1

n
+ (zγ)

2ξ

)
+

δ√
Sxx

√
δ2

Sxx

+
1

n
+ (zγ)2ξ

]
(2.54)

= cσ̂
[
ζ ln

(
ss+

√
ss2 + ζ

)
− (ζ/2) ln ζ + ss

√
ss2 + ζ

]
/δ.

Recall that for notational convenience, we use the following labels for the bands to

be compared:

• SB – the band in (2.3) with θ = 1 and ξ = 0;

• TBU – the band in (2.4) with θ =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)

derived from the uniformly mini-

mum variance unbiased estimator (UMVUE) of x′β + zγσ and ξ = 0;

• TBE – the band in (2.5) with θ =

√
2

ν

Γ(ν
2
)

Γ(ν−1
2
)
from Turner and Bowden E band

and ξ = 0;

• V – the band in (2.26) with θ = 1 and ξ = 1− 2

ν

(
Γ(ν+1

2
)

Γ(ν
2
)

)2

;

• UV – the band in (2.31) with θ =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)

and ξ = 1/θ2 − 1;

• TT – the band in (2.32) with θ =
4ν − 1

4ν
and ξ =

1

2ν
.

We can compute the critical constant c of each band over any given interval by

using numerical calculation methods provided earlier in this chapter. From (2.54), we

can calculate the average width of each band and so the ratio of the average widths

of two bands. The ratios of the average bandwidths of SB, TBU , TBE, V , TT

relative to UV are given in Tables 2.7-2.10, for some selected combinations of the four

factors for the purpose of illustrating what has been observed in our study. It should

be emphasized that the bands SB, TBU , TBE and TT compared in Tables 2.7-2.10

are not the original conservative bands of Steinhorst and Bowden (1971), Turner and
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Bowden (1977, 1979) and Thomas and Thomas (1986) that were on x ∈ (−∞,∞), but

the exact bands on given interval (a, b) constructed by using the methods of this thesis.

Note that a smaller entry in Tables 2.7-2.10 means a narrower and so better band.

It is clear from the table that SB and TBU are dominated by the other four bands

most of the time so they are not recommended. TBE can be better than V , TT and

UV but only when ss is small (and so (a, b) is narrow), but the gain of TBE over

V , TT and UV is not substantial and is never more than 5%. On the other hand,

TBE can be substantially wider than V , TT and UV , by as much as about 40% when

1 − α, γ and s are large. For this reason, TBE should be used only when (a, b) is

narrow. Among the three Form II bands V , TT and UV , V seems always worse than

UV (although by a very small margin) and so is not recommended. UV and TT have

hardly any difference between them and so either can be used. From hindsight, it is

not surprising that UV and TT are very similar because their ξ and θ values are very

close when n ≥ 10.

As all the bands proposed (and compared in Tables 2.7- 2.10) in the paper have

coverage probabilities equal 1 − α, no simulation is required to assess or compare the

confidence levels of the bands.
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Table 2.7: Ratios of the average widths of the bands relative to UV (1 − α = 0.90,
γ = 0.95)

n ss SB TBU TBE V TT UV

0.1 1.0239 0.9878 0.9506 1.0364 0.9992 1

0.5 1.0411 1.0076 0.9675 1.0246 0.9984 1

10 1.0 1.1579 1.1212 1.0769 1.0231 0.9996 1

10.0 1.3904 1.3465 1.2933 1.0301 1.0035 1

50.0 1.3991 1.3550 1.3014 1.0305 1.0037 1

0.1 0.9948 0.9828 0.9730 1.0126 0.9998 1

0.5 1.0697 1.0573 1.0461 1.0096 0.9997 1

20 1.0 1.1916 1.1776 1.1655 1.0110 1.0005 1

10.0 1.3372 1.3216 1.3080 1.0135 1.0017 1

50.0 1.3413 1.3256 1.3120 1.0136 1.0018 1

0.1 0.9864 0.9798 0.9735 1.0066 0.9999 1

0.5 1.0989 1.0915 1.0854 1.0061 0.9999 1

30 1.0 1.2148 1.2066 1.1999 1.0070 1.0005 1

10.0 1.3244 1.3154 1.3082 1.0080 1.0012 1

50.0 1.3271 1.3181 1.3108 1.0080 1.0012 1

0.1 0.9816 0.9779 0.9744 1.0034 0.9999 1

0.5 1.1398 1.1354 1.1319 1.0032 1.0002 1

50 1.0 1.2398 1.2350 1.2312 1.0040 1.0004 1

10.0 1.3161 1.3109 1.3070 1.0043 1.0007 1

50.0 1.3177 1.3126 1.3086 1.0043 1.0007 1

0.1 0.9853 0.9837 0.9819 1.0011 0.9999 1

0.5 1.1915 1.1891 1.1871 1.0015 1.0001 1

100 1.0 1.2648 1.2622 1.2601 1.0019 1.0003 1

10.0 1.3099 1.3072 1.3050 1.0021 1.0003 1

50.0 1.3108 1.3080 1.3059 1.0021 1.0003 1
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Table 2.8: Ratios of the average widths of bands relative to Band UV (1 − α = 0.99,
γ = 0.95)

n ss SB TBU TBE V TT UV

0.1 1.0127 0.9909 0.9391 1.0212 0.9994 1

0.5 1.0963 1.0735 1.0197 1.0178 1.0000 1

10 1.0 1.2567 1.2307 1.1690 1.0205 1.0015 1

10.0 1.5260 1.4945 1.4196 1.0295 1.0059 1

50.0 1.5357 1.5039 1.4285 1.0299 1.0060 1

0.1 1.0065 0.9886 0.9497 1.0175 0.9997 1

0.5 1.1474 1.1277 1.0847 1.0137 1.0001 1

20 1.0 1.2949 1.2727 1.2243 1.0153 1.0010 1

10.0 1.4576 1.4326 1.3782 1.0181 1.0026 1

50.0 1.4620 1.4369 1.3823 1.0181 1.0026 1

0.1 1.0027 0.9877 0.9562 1.0147 0.9998 1

0.5 1.1758 1.1583 1.1228 1.0115 1.0000 1

30 1.0 1.3076 1.2880 1.2485 1.0123 1.0007 1

10.0 1.4279 1.4066 1.3635 1.0137 1.0016 1

50.0 1.4309 1.4094 1.3663 1.0138 1.0017 1

0.1 1.0023 0.9910 0.9693 1.0102 0.9999 1

0.5 1.2111 1.1980 1.1725 1.0084 1.0001 1

50 1.0 1.3188 1.3044 1.2768 1.0080 1.0003 1

10.0 1.4008 1.3855 1.3562 1.0092 1.0008 1

50.0 1.4025 1.3873 1.3579 1.0092 1.0009 1

0.1 1.0128 1.0066 0.9953 1.0055 1.0000 1

0.5 1.2530 1.2458 1.2319 1.0042 1.0002 1

100 1.0 1.3301 1.3224 1.3077 1.0045 1.0004 1

10.0 1.3777 1.3697 1.3545 1.0046 1.0004 1

50.0 1.3786 1.3706 1.3554 1.0046 1.0004 1
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Table 2.9: Ratios of the average widths of the bands relative to UV (1 − α = 0.90,
γ = 0.75)

n ss SB TBU TBE V TT UV

0.1 1.0039 0.9952 0.9858 1.0084 0.9997 1

0.5 1.0054 0.9982 0.9870 1.0066 0.9997 1

10 1.0 1.0352 1.0276 1.0169 1.0081 1.0005 1

10.0 1.0759 1.0677 1.0567 1.0102 1.0013 1

50.0 1.0771 1.0689 1.0579 1.0103 1.0014 1

0.1 0.9971 0.9935 0.9904 1.0035 0.9999 1

0.5 1.0148 1.0116 1.0080 1.0030 1.0001 1

20 1.0 1.0401 1.0372 1.0333 1.0032 1.0003 1

10.0 1.0638 1.0610 1.0568 1.0038 1.0005 1

50.0 1.0644 1.0615 1.0574 1.0038 1.0005 1

0.1 0.9945 0.9924 0.9906 1.0020 1.0000 1

0.5 1.0206 1.0192 1.0166 1.0020 1.0001 1

30 1.0 1.0432 1.0415 1.0388 1.0021 1.0003 1

10.0 1.0605 1.0588 1.0560 1.0025 1.0004 1

50.0 1.0609 1.0592 1.0564 1.0025 1.0004 1

0.1 0.9924 0.9916 0.9905 1.0013 0.9999 1

0.5 1.0288 1.0280 1.0267 1.0010 1.0001 1

50 1.0 1.0471 1.0463 1.0450 1.0013 1.0002 1

10.0 1.0589 1.0581 1.0567 1.0015 1.0003 1

50.0 1.0592 1.0584 1.0570 1.0015 1.0003 1

0.1 0.9923 0.9918 0.9911 1.0003 1.0000 1

0.5 1.0373 1.0368 1.0360 1.0008 1.0001 1

100 1.0 1.0495 1.0491 1.0483 1.0008 1.0001 1

10.0 1.0563 1.0558 1.0551 1.0008 1.0001 1

50.0 1.0564 1.0560 1.0552 1.0008 1.0001 1
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Table 2.10: Ratios of the average widths of the bands relative to UV (1 − α = 0.99,
γ = 0.75)

n ss SB TBU TBE V TT UV

0.1 1.0097 0.9959 0.9641 1.0137 0.9997 1

0.5 1.0192 1.0083 0.9826 1.0101 0.9998 1

10 1.0 1.0488 1.0386 1.0145 1.0097 1.0003 1

10.0 1.0910 1.0803 1.0555 1.0128 1.0016 1

50.0 1.0923 1.0815 1.0567 1.0129 1.0017 1

0.1 1.0049 0.9958 0.9770 1.0088 0.9999 1

0.5 1.0283 1.0202 1.0062 1.0071 1.0003 1

20 1.0 1.0542 1.0465 1.0323 1.0073 1.0003 1

10.0 1.0785 1.0708 1.0570 1.0081 1.0007 1

50.0 1.0791 1.0714 1.0576 1.0081 1.0007 1

0.1 1.0000 0.9935 0.9811 1.0066 0.9999 1

0.5 1.0313 1.0260 1.0156 1.0049 1.0001 1

30 1.0 1.0537 1.0485 1.0375 1.0047 1.0003 1

10.0 1.0715 1.0663 1.0550 1.0051 1.0003 1

50.0 1.0719 1.0667 1.0554 1.0052 1.0004 1

0.1 0.9983 0.9944 0.9865 1.0045 1.0000 1

0.5 1.0345 1.0314 1.0252 1.0032 1.0001 1

50 1.0 1.0524 1.0495 1.0433 1.0033 1.0002 1

10.0 1.0643 1.0610 1.0549 1.0034 1.0003 1

50.0 1.0646 1.0612 1.0551 1.0034 1.0003 1

0.1 0.9980 0.9959 0.9928 1.0020 1.0000 1

0.5 1.0429 1.0413 1.0385 1.0015 1.0001 1

100 1.0 1.0549 1.0534 1.0507 1.0014 1.0001 1

10.0 1.0616 1.0601 1.0573 1.0013 1.0001 1

50.0 1.0617 1.0620 1.0574 1.0013 1.0001 1

2.3.1 Numerical examples

Example 2.5.

Consider the data set in Example 2.1. Since critical constants have been given in

Table 2.2 and 2.5, we can compute the average widths of the bands SB, TBU , TBE,

V , TT and UV over (18, 70). We provide the average width of each band over (18, 70)

and (1, 100) in Table 2.11 and the ratios of the average widths of the bands relative to

the band UV in Table 2.12.
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Table 2.11: The average widths of the bands

1− α = 0.90, γ = 0.75

Interval SB TBU TBE V TT UV

(18,70) 8.7248 8.7131 8.7029 8.6892 8.6765 8.6764

(1,100) 12.8693 12.8556 12.8390 12.5374 12.5211 12.5191

1− α = 0.99, γ = 0.95

Interval SB TBU TBE V TT UV

(18,70) 18.1787 17.9460 17.4925 16.8640 16.6898 16.6917

(1,100) 26.5846 26.2450 25.5806 22.1998 21.9862 21.9838

Table 2.12: Ratios of the average widths of the bands relative to UV

1− α = 0.90, γ = 0.75

Interval SB TBU TBE V TT UV

(18,70) 1.0055 1.0042 1.0003 1.0015 1.0000 1

(1,100) 1.0280 1.0269 1.0256 1.0015 1.0002 1

1− α = 0.99, γ = 0.95

Interval SB TBU TBE V TT UV

(18,70) 1.0891 1.0751 1.0480 1.0103 0.9999 1

(1,100) 1.2093 1.1938 1.1636 1.0098 1.0001 1

From Table 2.12, in this example, the bands UV and TT perform well. We recom-

mend band UV when interval (a, b) is large. The 99%-simultaneous confidence bands

SB, TBU , TBE, V , UV and TT for the 95th percentile line over (18, 70) are plotted

in Figure 2.8. In this example, UV and TT are almost overlap each other. From Figure

2.8, we can see UV and TT are narrower and so better than the other four bands.
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Figure 2.8: The 99%-simultaneous confidence bands for the 95th percentile line over
(18, 70)
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Example 2.6.

Consider the data set in Example 2.2. Since the critical constants of the bands

SB, TBU , TBE, V , UV , TT have been given in Table 2.4 and Table 2.6. Then the

average width of each band and the ratio of the average width of each band relative

to the band UV can be computed. In this example δ = 0.060, ss = δ/
√
Sxx = 0.5485

and n = 15. Consider two cases: 1 − α = 0.90, γ = 0.75 and 1 − α = 0.99, γ = 0.95.

We provide the ratios in Table 2.13. From this table, we recommend Band UV and

TT in these two cases.

50



Table 2.13: Ratios of the average widths of bands relative to Band UV

1− α = 0.90, γ = 0.75

Interval ss SB TBU TBE V TT UV

(1.2931, 1.4131) 0.5485 1.0137 1.0091 1.0035 1.0041 1.0000 1

1− α = 0.99, γ = 0.95

Interval ss SB TBU TBE V TT UV

(1.2931, 1.4131) 0.5485 1.1418 1.1198 1.0722 1.0159 1.0001 1

2.4 Conclusions

Two-sided symmetric simultaneous confidence bands have been studied in this chapter.

Methods have been given to compute the exact symmetric simultaneous confidence

bands for the percentile line over a finite interval of the covariate x. It is observed that

the exact symmetric bands can be much narrower than the corresponding conservative

symmetric bands. Six bands have been compared under the average width criterion.

It is concluded that Bands TT and UV perform better than the other bands most of

the time and so recommended.
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Chapter 3

Two-sided Asymmetric

Simultaneous Confidence Bands for

a Percentile Line

It is well known that, for the 100γth percentile of a normal distribution, a confidence

interval that is not symmetric about the percentile estimate has a shorter length than

the symmetric confidence interval when γ ̸= 0.5, see, for example, Liu et al. (2013).

However, all the simultaneous confidence bands for a percentile line available in the

statistical literature as discussed above are symmetric. In this chapter, asymmetric

simultaneous confidence bands are proposed, and they are uniformly narrower than

the corresponding symmetric bands. Corresponding to the symmetric confidence band

in (1.9), an asymmetric confidence band for the percentile line x′β+zγσ has the general

form

x′β̂ + zγσ̂/θ − c1σ̂
√

x′(X ′X)−1x+ (zγ)2ξ

≤ x′β + zγσ (3.1)

≤ x′β̂ + zγσ̂/θ + c2σ̂
√
x′(X ′X)−1x+ (zγ)2ξ for all x ∈ (a, b)

where the constants θ ̸= 0 and ξ can be chosen to give different specific confidence bands

as discussed in Chapter 2. For given constants θ ̸= 0 and ξ, there are many solutions of

the pair (c1, c2) which satisfy the specified confidence level 1−α requirement. We want

to search for the pair (c1, c2) which minimizes the average width of the band. Since

for any given x, the width of the band is (c1 + c2)σ̂
√

x′(X ′X)−1x, then the smaller is

the value of (c1 + c2), the narrower is the band. Each symmetric band considered in

Chapter 2 is a special case of the corresponding asymmetric band with c1 = c2. This is

why the asymmetric band will in general have a smaller average width and be better

than the corresponding symmetric bands, and the motivation of the construction of
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asymmetric bands.

3.1 Asymmetric bands of Form I

In this section, we focus on the bands of the form (3.1) with ξ = 0, denoted as Form I:

x′β̂ +
zγ
θ
σ̂ − c1σ̂

√
x′(X ′X)−1x

≤ x′β + zγσ (3.2)

≤ x′β̂ +
zγ
θ
σ̂ + c2σ̂

√
x′(X ′X)−1x for all x ∈ (a, b).

In Section 3.2, we will look at the bands of the form (3.1) with ξ ̸= 0, since the

mathematical treatments of these two forms are slightly different.

For each of the three symmetric simultaneous confidence bands in Section 2.1, we

have the corresponding asymmetric band. All of them are special cases of form (3.2).

The first asymmetric simultaneous confidence band, denoted as SBa, is the asym-

metric version of SB in (2.3). Specifically, it has the form

x′β̂ + zγσ̂ − c1σ̂
√
x′(X ′X)−1x

≤ x′β + zγσ (3.3)

≤ x′β̂ + zγσ̂ + c2σ̂
√
x′(X ′X)−1x for all x ∈ (a, b).

The second band, denoted as TBUa, is the asymmetric version of TBU in (2.4)

with θ =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)
, and given by

x′β̂ +
zγ√

2
ν

Γ( ν+1
2

)

Γ( ν
2
)

σ̂ − c1σ̂
√
x′(X ′X)−1x

≤ x′β + zγσ (3.4)

≤ x′β̂ +
zγ√

2
ν

Γ( ν+1
2

)

Γ( ν
2
)

σ̂ + c2σ̂
√

x′(X ′X)−1x for all x ∈ (a, b).

The third band, denoted as TBEa, is the asymmetric version of TBE in (2.5) with

θ =

√
2

ν

Γ(ν
2
)

Γ(ν−1
2
)
and given by

x′β̂ +
zγ√

2
ν

Γ( ν
2
)

Γ( ν−1
2

)

σ̂ − c1σ̂
√

x′(X ′X)−1x

≤ x′β + zγσ (3.5)

≤ x′β̂ +
zγ√

2
ν

Γ( ν
2
)

Γ( ν−1
2

)

σ̂ + c2σ̂
√
x′(X ′X)−1x for all x ∈ (a, b).
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Based on the investigation in Chapter 2 we know TBE is better than the other two

bands, so we just look at TBEa in the rest of this chapter.

Next we consider the computation of c1 and c2 in (3.2). The simultaneous confidence

level of this band is given by

P
{
x′β̂ +

zγ
θ
σ̂ − c1σ̂

√
x′(X ′X)−1x ≤ x′β + zγσ

≤ x′β̂ +
zγ
θ
σ̂ + c2σ̂

√
x′(X ′X)−1x for all x ∈ (a, b)

}
(3.6)

= P

{
−c2 ≤

x′(β̂ − β) + zγ(σ̂/θ − σ)

σ̂
√

x′(X′X)−1x
≤ c1 for all x ∈ (a, b)

}

= P

{
−c2 ≤

(Px)′P−1(β̂ − β) + zγ(σ̂/θ − σ)

σ̂
√
(Px)′(Px)

≤ c1 for all x ∈ (a, b)

}

= P

{
−c2 ≤

(Px)′σN+ zγ(σ̂/θ − σ)

σ̂
√

(Px)′(Px)
≤ c1 for all x ∈ (a, b)

}

= P

{
−c2 ≤

(Px)′N/U + zγ(1/θ − 1/U)√
(Px)′(Px)

≤ c1 for all x ∈ (a, b)

}
, (3.7)

where the matrix

P =

(
1/
√
n 0

0 P−1
1

)

is the unique square root of (X ′X)−1 and defined in (1.5),

N =

(
N1

N2

)
= P−1(β̂ − β)/σ ∼ N2(0, I)

and U = σ̂/σ ∼
√

χ2
ν . Note that Px =

(
1/
√
n

P−1
1 x

)
and so (3.7) is further equal to

P


−c2 ≤

(
1/
√
n

P−1
1 x

)′(
N1/U + (1/θ − 1/U)

√
nzγ

N2/U

)
∥∥∥∥∥
(

1/
√
n

P−1
1 x

)∥∥∥∥∥
≤ c1 for all x ∈ (a, b)


(3.8)

=

∫ ∞

0

f σ̂
σ
(u)P


−c2 ≤

(
1/
√
n

P−1
1 x

)′(
N1/u+ (1/θ − 1/u)

√
nzγ

N2/u

)
∥∥∥∥∥
(

1/
√
n

P−1
1 x

)∥∥∥∥∥
≤ c1 for all x ∈ (a, b)


du,
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where f σ̂
σ
(u) is the probability density function of U and given in (1.4).

We give two methods for computing the critical constant c1 and c2 below.

3.1.1 Numerical quadrature method

Denote

k(v) =

(
1/
√
n

P−1
1 x

)′(
n1/u+ (1/θ − 1/u)

√
nzγ

n2/u

)
∥∥∥∥∥
(

1/
√
n

P−1
1 x

)∥∥∥∥∥
,

where v = (n1, n2, u)
′. The simultaneous confidence level (3.8) becomes∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
f(v)I{−c2≤k(v)≤c1 for all x∈(a,b)}dv, (3.9)

where f(v) is the joint probability density function of the random vector v = (n1, n2, u)
′

and is given in (2.9) and I{A} is the index function of the set A. Expression (3.9) in-

volves a three-dimensional integration and can be used to compute the simultaneous

confidence level for given c1 and c2 via numerical quadrature. We have used the MAT-

LAB built-in function triplequad for this purpose. For a fixed c2, we can numerically

find c1 so that the simultaneous confidence level is equal to 1 − α and then evaluate

c1 + c2. We search numerically for the pair (c1, c2) which minimizes c1 + c2.

Our experience shows this method of computing the exact values of (c1,c2) takes

substantially longer computation time than the simulation method introduced in the

following section. The numerical quadrature method can however be used to cross

check the results of the simulation method.

3.1.2 Simulation method

Let

S(x) =
(Px)′N/U + zγ(1/θ − 1/U)√

(Px)′(Px)
(3.10)

=

(
1/
√
n

P−1
1 x

)′(
N1/U + (1/θ − 1/U)

√
nzγ

N2/U

)
∥∥∥∥∥
(

1/
√
n

P−1
1 x

)∥∥∥∥∥
. (3.11)
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The simultaneous confidence level is therefore given by

P{−c2 ≤ S(x) ≤ c1, for all x ∈ (a, b)}. (3.12)

Denote L = min
x∈(a,b)

S(x) and M = max
x∈(a,b)

S(x). Then (3.12) is equivalent to

P{−c2 ≤ L and M ≤ c1, for all x ∈ (a, b)}.

There are many solutions of (c1, c2) for which the confidence level in (3.12) is equal

to 1 − α. But we are only interested in the one pair that satisfies not only the 1 − α

confidence level requirement but also minimizes c1+ c2 and so the average width of the

band in (3.1).

We first generate independent standard bivariate normal random vectors Ni and

independent variables Ui ∼
√

χ2
ν/ν, i = 1, 2, · · · , R. Then we calculate the R replicates

Si(x) =
(Px)′Ni/Ui + zγ(1/θ − 1/Ui)√

(Px)′(Px)
, i = 1, · · · , R.

Denote Li = min
x∈(a,b)

Si(x) and Mi = max
x∈(a,b)

Si(x), i = 1, 2, · · · , R. We provide two

methods for computing Li and Mi in the following sections. It is clear that −c2 ≤
Si(x) ≤ c1, x ∈ (a, b) is equivalent to{

Li ≥ −c2

Mi ≤ c1.

Let the ordered values of {Li, i = 1, · · · , R} be

L̂1 ≤ L̂2 ≤ · · · ≤ L̂i ≤ L̂i+1 ≤ · · · ≤ L̂R

and the corresponding values of {Mi, i = 1, · · · , R} be

M̂1, M̂2, · · · , M̂i, M̂i+1, · · · , M̂R,

which may not be in ascending or descending order. It is noteworthy that each (L̂i,

M̂i) is equal to (Lj, Mj) for some for some 1 ≤ j ≤ R.

For a given (initial) value −c̊2, we want to find ĉ1 so that 1 − α proportion of

the R replicates (Li,Mi) satisfy {−c̊2 ≤ Li and Mi ≤ ĉ1}. Firstly, it is clear that

any −c̊2 < L̂1 can be replaced by L̂1 and so we only need to consider L̂1 ≤ −c̊2.

Next, if L̂⟨αR+1⟩ < −c̊2 then we cannot find the required ĉ1 and so we only need to

consider −c̊2 ≤ L̂⟨αR+1⟩. Furthermore, any −c̊2 satisfying L̂i < −c̊2 < L̂i+1 for some

1 ≤ i ≤ ⟨αR⟩ can be replaced by L̂i+1. Hence we only need to consider −c̊2 = L̂k for
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k = 1, · · · , ⟨αR⟩+ 1.

For a given −c̊2 = L̂k, where 1 ≤ k ≤ ⟨αR⟩ + 1, a ĉ1 satisfying the confidence

level requirement can be found in the following way. Sort the (R − k + 1)-number

subsequence {M̂k, M̂k+1, · · · , M̂R} in ascending order M̃1 ≤ · · · ≤ M̃R−k+1 and denote

the associated {L̂k, L̂k+1, · · · , L̂R} as {L̃1, L̃2, · · · , L̃R−k+1} which may not be ordered.

Set the ⟨(1 − α)R⟩th value of the ordered sequence M̃1 ≤ · · · ≤ M̃R−k+1 as ĉk1, i.e.,

ĉk1 = M̃⟨(1−α)R⟩.

Note, however, by replacing the initial value −c̊2 = L̂k with the minimum value of

the sequence {L̃1, L̃2, · · · , L̃R−k+1}, denoted as −ĉk2 = min
1≤l≤R−k+1

L̃l, the 1−α confidence

level requirement is still satisfied. Since −ĉk2 may be larger than −c̊2 = L̂k, we have

ĉk1 + ĉk2 ≤ ĉk1 + c̊2. So it is desirable to replace the initial value −c̊2 = L̂k by −ĉk2 in

order to reduce the average width of the band.

The following three steps are the key to computing (ĉk1, ĉ
k
2) for a given value −c̊2 =

L̂k.

Step 1. Sort the sequence {M̂k, M̂k+1, · · · , M̂R} in ascending order M̃1 ≤ M̃2 ≤
· · · ≤ M̃R−k+1. Denote the corresponding {L̂k, L̂k+1, · · · , L̂R} values as

{L̃1, L̃2, · · · , L̃R−k+1}.
Step 2. Set ĉk1 = M̃⟨(1−α)R⟩.

Step 3. Set −ĉk2 = min
1≤l≤R−k+1

L̃l.

Now repeat Step 1 to Step 3 to compute (ĉk1, ĉ
k
2) for k = 1, · · · , ⟨αR⟩+1. Finally we

can find the one pair (ĉm1 , ĉ
m
2 ) such that ĉm1 + ĉm2 ≤ ĉk1 + ĉk2 for all k = 1, · · · , ⟨αR⟩+ 1

and use them as the critical constants c1 and c2. Again, this method can readily be

generalized to multiple regression and polynomial regression.

Next we give two computation methods for calculating L and M from N and U .

3.1.2.1 Projection method

From (3.11), we have

L = min
x∈(a,b)

(Px)′Z

∥(Px)∥
and M = max

x∈(a,b)

(Px)′Z

∥(Px)∥
,

where

Z =

(
Z1

Z2

)
=

(
N1/U + (1/θ − 1/U)

√
nzγ

N2/U

)
.

Denote x1 =

(
1

a

)
and x2 =

(
1

b

)
. Then Px1 =

(
1/
√
n

P−1
1 a

)
and Px2 =

(
1/
√
n

P−1
1 b

)
.

When x changes over the interval (a, b), Px forms a cone bounded by Px1 and Px2.
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If Z belongs to the cone, then

L = min

{
(Px1)

′Z

∥Px1∥
,
(Px2)

′Z

∥Px2∥

}
,

M = ∥Z∥.

If −Z belongs to the cone, then

L = −∥Z∥,

M = max

{
(Px1)

′Z

∥Px1∥
,
(Px2)

′Z

∥Px2∥

}
.

Otherwise,

L = min

{
(Px1)

′Z

∥Px1∥
,
(Px2)

′Z

∥Px2∥

}
,

M = max

{
(Px1)

′Z

∥Px1∥
,
(Px2)

′Z

∥Px2∥

}
.

Similar to Section 2.1.2.1, we have the following way to judge whether the projection of

a given vector belongs to the cone bounded by Px1 and Px2 or not. Two coefficients

λ and κ are given in (2.11) and (5.44). If a < κ < b and λ > 0, then the projection of

vector Z lies inside the cone spanned by Px1 and Px2. If a < κ < b and λ < 0, then

the projection of vector −Z lies inside the cone spanned by Px1 and Px2. Otherwise,

the projections of ±Z lie outside the cone.

For the special case of (a, b) = (−∞,∞), if λ > 0, then

L = −|U−1N2|,

M = ∥Z∥ .

Otherwise,

L = −∥Z∥ ,

M = |U−1N2|.

3.1.2.2 Turning point method

From (3.10), S(x) can be written as

S(x) =
f(x)√
g(x)

,
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where

f(x) = (Px)′N/U + zγ(1− 1/U),

g(x) = (Px)′(Px).

Note that P =

(
1/
√
n 0

0 P−1
1

)
, N =

(
N1

N2

)
and x =

(
1

x

)
. Then

f(x) = P−1
1 U−1N2x+ U−1n−1/2N1 + zγ(θ

−1 − U−1),

df

dx
= P−1

1 U−1N2,

g(x) = P−2
1 x2 + n−1,

dg

dx
= 2P−2

1 x.

Solving from d
dx

(
f√
g

)
|xt = 0, we have the turning point xt =

P1N2n
−1

n−1/2N1 + zγ(Uθ−1 − 1)
.

The maximum value and the minimum value of S(x) are therefore attained at either

x = a or x = b or x = xt. If a < xt < b, then

L = min
x∈(a,b)

S(x) = min{S(a), S(xt), S(b)},

M = max
x∈(a,b)

S(x) = max{S(a), S(xt), S(b)},

otherwise,

L = min
x∈(a,b)

S(x) = min{S(a), S(b)},

M = max
x∈(a,b)

S(x) = max{S(a), S(b)}.

For the special case of (a, b) = (−∞,∞),

h(−∞) = lim
x→−∞

h(x) = −U−1N2,

h(∞) = lim
x→∞

h(x) = U−1N2.

then

L = min
x∈(−∞,∞)

S(x) = min
{
−|U−1N2|, S(xt)

}
,

M = max
x∈(−∞,∞)

S(x) = max
{
|U−1N2|, S(xt)

}
.

3.1.3 Numerical examples

Example 3.1.
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For the data set given in Table 2.1 on how systolic blood pressure (Y ) changes with

age (x) for a group of forty males, we only consider the asymmetric band TBEa since

TBE is the best one among three symmetric bands of Form I. The superiority of TBE

compared to SB and TBU has been discussed in Chapter 2. For two cases 1−α = 0.90,

γ = 0.75 and 1 − α = 0.95, γ = 0.99, by using the methods introduced above in this

section, we calculate the critical constants c1 and c2 of the asymmetric band TBEa

over x ∈ (18, 70) and x ∈ (1, 100) and provide them in the following Table 3.1. In this

table, for each asymmetric band, we also provide c value which is the critical constant

of the corresponding symmetric band TBE. For any given x, the width of TBEa is

(c1 + c2)σ̂
√

x′(X ′X)−1x and the width of TBE is 2cσ̂
√

x′(X ′X)−1x. Therefore the

percentage of improvement of the average widths from TBE to TBEa is

Percentage = 100[1− (c1 + c2)/(2c)]%.

Table 3.1: Critical constants for simultaneous confidence bands TBEa and TBE and
the percentage of improvement

1− α = 0.90, γ = 0.75

Interval −c2 c1 c1 + c2 c 2c Percentage

(18,70) -2.3294 2.2934 4.6228 2.3121 4.6242 0.03%

(1,100) -2.3618 2.3007 4.6624 2.3326 4.6652 0.06%

1− α = 0.99, γ = 0.95

Interval −c2 c1 c1 + c2 c 2c

(18,70) -4.9062 3.8587 8.7649 4.6472 9.2944 6.04%

(1,100) -4.9154 3.8559 8.7713 4.6475 9.2950 5.87%

Example 3.2.

For the data set given in Table 2.3 on how systolic blood pressure (Y ) changes with

age (x) for a group of forty males, we also consider two cases: 1− α = 0.90, γ = 0.75

and 1 − α = 0.95, γ = 0.99 and give the results of comparison between TBEa and

TBE in Table 3.2.

From these two examples, we can see the asymmetric band TBEa performs better

than the symmetric band TBE as expected.
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Table 3.2: Critical constants for simultaneous confidence bands TBEa and TBE and
the percentage of improvement

1− α = 0.90, γ = 0.75

Interval −c2 c1 c1 + c2 c 2c Percentage

(1.2931, 1.4131) -2.5395 2.2854 4.9250 2.4656 4.9312 0.13%

1− α = 0.99, γ = 0.95

Interval −c2 c1 c1 + c2 c 2c

(1.2931, 1.4131) -6.0482 3.8843 9.9325 5.7894 11.5788 16.57%
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3.2 Asymmetric bands of Form II

We consider two-sided asymmetric simultaneous confidence bands for the percentile

line x′β + zγσ over the interval x ∈ (a, b) with θ ̸= 0 and ξ ̸= 0, denoted as Form II

x′β̂ +
zγ
θ
σ̂ − c1σ̂

√
x′(X ′X)−1x+ (zγ)2ξ

≤ x′β + zγσ

≤ x′β̂ +
zγ
θ
σ̂ + c2σ̂

√
x′(X ′X)−1x+ (zγ)2ξ for all x ∈ (a, b). (3.13)

Similar to Section 3.1, for given constants θ ̸= 0 and ξ ̸= 0, there are many solutions

of the pair (c1, c2) which satisfy the specified confidence level 1 − α requirement. We

want to search for the pair (c1, c2) which minimizes the average width of the band.

Each symmetric band considered in Section 2.2 is a special case of the corresponding

asymmetric band with c1 = c2.

For each of the three symmetric simultaneous confidence bands in Section 2.2 we

study the corresponding asymmetric band. All of them are special cases of form (3.13).

For any given x, the width of the band is (c1 + c2)σ̂
√

x′(X ′X)−1x+ (zγ)2ξ.

The first asymmetric simultaneous confidence band, denoted as Va, is the asym-

metric version of V in (2.26) with θ = 1 and ξ = 1− 2

ν

(
Γ(ν+1

2
)

Γ(ν
2
)

)2

and given by

x′β̂ + zγσ̂ − c1σ̂

√√√√x′(X ′X)−1x+ (zγ)2

(
1− 2

ν

(
Γ(ν+1

2
)

Γ(ν
2
)

)2
)

≤ x′β + zγσ (3.14)

≤ x′β̂ + zγσ̂ + c2σ̂

√√√√x′(X ′X)−1x+ (zγ)2

(
1− 2

ν

(
Γ(ν+1

2
)

Γ(ν
2
)

)2
)

for all x ∈ (a, b).

The second band, denoted as UV a, is the asymmetric version of UV in (2.31) with

θ =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)

and ξ =
ν

2

(
Γ(ν

2
)

Γ(ν+1
2
)

)2

− 1 and given by

x′β̂ +
zγ√

2
ν

Γ( ν+1
2

)

Γ( ν
2
)

σ̂ − c1σ̂
√

x′(X ′X)−1x+ (zγ)2(1/θ2 − 1)

≤ x′β + zγσ (3.15)

≤ x′β̂ +
zγ√

2
ν

Γ( ν+1
2

)

Γ( ν
2
)

σ̂ + c2σ̂
√
x′(X ′X)−1x+ (zγ)2(1/θ2 − 1) for all x ∈ (a, b).

The third band, denoted as TTa, is the asymmetric version of TT in (2.32) with
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θ =
4ν − 1

4ν
and ξ =

1

2ν
and given by

x′β̂ +
zγ

(4ν − 1)/(4ν)
− c1σ̂

√
x′(X ′X)−1x+ (zγ)2/(2ν)

≤ x′β + zγσ (3.16)

≤ x′β̂ +
zγ

(4ν − 1)/(4ν)
+ c2σ̂

√
x′(X ′X)−1x+ (zγ)2/(2ν) for all x ∈ (a, b).

Next we consider the computation of c1 and c2 in (3.13). The simultaneous confi-

dence level of this band is given by

P

{
x′β̂ +

zγ
θ
σ̂ − c1σ̂

√
x′(X ′X)−1x+ (zγ)2ξ ≤ x′β + zγσ

≤ x′β̂ +
zγ
θ
σ̂ + c2σ̂

√
x′(X ′X)−1x+ (zγ)2ξ for all x ∈ (a, b)

}
= P

{
−c2 ≤

x′(β̂ − β) + zγ(σ̂/θ − σ)

σ̂
√

x′(X′X)−1x+ (zγ)2ξ
≤ c1 for all x ∈ (a, b)

}

= P

{
−c2 ≤

(Px)′N/U + zγ(1/θ − 1/U)√
(Px)′(Px) + (zγ)2ξ

≤ c1 for all x ∈ (a, b)

}
, (3.17)

where the matrix

P =

(
1/
√
n 0

0 P−1
1

)

is the unique square root of (X ′X)−1 and defined in (1.5),

N =

(
N1

N2

)
= P−1(β̂ − β)/σ ∼ N2(0, I)
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and U = σ̂/σ ∼
√

χ2
ν . Note that Px =

(
1/
√
n

P−1
1 x

)
and so (3.17) is further equal to

P


−c2 ≤

(
Px

zγ
√
ξ

)′(
N/U

(1/θ − 1/U)/
√
ξ

)
∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
≤ c1 for all x ∈ (a, b)


(3.18)

= P


−c2 ≤

 1/
√
n

P−1
1 x

zγ
√
ξ


′ N1/U

N2/U

(1/θ − 1/U)/
√
ξ


∥∥∥∥∥∥∥
 1/

√
n

P−1
1 x

zγ
√
ξ


∥∥∥∥∥∥∥

≤ c1 for all x ∈ (a, b)


(3.19)

=

∫ ∞

0

f σ̂
σ
(u)P


−c2 ≤

 1/
√
n

P−1
1 x

zγ
√
ξ


′ N1/U

N2/U

(1/θ − 1/U)/
√
ξ


∥∥∥∥∥∥∥
 1/

√
n

P−1
1 x

zγ
√
ξ


∥∥∥∥∥∥∥

≤ c1 for all x ∈ (a, b)


du,

where f σ̂
σ
(u) is the probability density function of U and given in (1.4).

Next we give two methods for computing the critical constant c1 and c2.

3.2.1 Numerical quadrature method

Denote

k(v) =

 1/
√
n

P−1
1 x

zγ
√
ξ


′ n1/u

n2/u

(1/θ − 1/u)/
√
ξ


∥∥∥∥∥∥∥
 1/

√
n

P−1
1 x

zγ
√
ξ


∥∥∥∥∥∥∥

,

where v = (n1, n2, u)
′. The simultaneous confidence level (3.19) becomes∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
f(v)I{−c2≤k(v)≤c1 for all x∈(a,b)}dv, (3.20)
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where f(v) is the joint probability density function of the random vector v = (n1, n2, u)
′

and is given in (2.9) and I{A} is the index function of the set A. Expression (3.20)

involves a three-dimensional integration and can be used to compute the simultaneous

confidence level for given c1 and c2 via numerical quadrature. For a fixed c2, we can

numerically find c1 so that the simultaneous confidence level is equal to 1 − α. Then

we evaluate c1+c2. We search numerically for the pair (c1, c2) which minimizes c1+c2.

3.2.2 Simulation method

From (3.17) and (3.18), let

S(x) =
(Px)′N/U + zγ(1/θ − 1/U)√

(Px)′(Px) + (zγ)2ξ
(3.21)

=

(
Px

zγ
√
ξ

)′(
N/U

(1/θ − 1/U)/
√
ξ

)
∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
. (3.22)

The simultaneous confidence level is therefore given by

P{−c2 ≤ S(x) ≤ c1, for all x ∈ (a, b)}. (3.23)

Denote L = min
x∈(a,b)

S(x) and M = max
x∈(a,b)

S(x). Then (3.23) is equivalent to

P{−c2 ≤ L, M ≤ c1, for all x ∈ (a, b)}.

There are many solutions of (c1, c2) for which the confidence level in (3.23) is equal to

1 − α. But we are only interested in the one pair which minimizes c1 + c2 and so the

corresponding confidence band has the smallest average width.

We first generate independent standard bivariate normal random vectors Ni and

independent variables Ui ∼
√
χ2
ν/ν, i = 1, 2, · · · , R. Then we calculate the R replicates

Si(x) =
(Px)′Ni/Ui + zγ(1/θ − 1/Ui)√

(Px)′(Px) + (zγ)2ξ
, i = 1, · · · , R.

Denote Li = min
x∈(a,b)

Si(x) and Mi = max
x∈(a,b)

Si(x), i = 1, 2, · · · , R. Analogues to the

last section, the critical constants c1 and c2 can be obtained by simulation method.

The simulating procedure has been given in Section 3.1.2 in details. Next we give two

computation methods for calculating L and M from N and U .
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3.2.2.1 Projection method

From (3.22), we have

L = min
x∈(a,b)

(
Px

zγ
√
ξ

)′(
N/U

(1/θ − 1/U)/
√
ξ

)
∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
M = max

x∈(a,b)

(
Px

zγ
√
ξ

)′(
N/U

(1/θ − 1/U)/
√
ξ

)
∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
Similar to Section 2.2.2.1, denote x1 =

(
1

a

)
, x2 =

(
1

b

)
, d1 =

(
Px1

zγ
√
ξ

)
,

d2 =

(
Px2

zγ
√
ξ

)
and the matrix M = (d1,d2). Let L(M ) be the linear plane spanned

by d1 and d2 and H = M (M ′M )−1M ′ be the projection matrix to L(M ). If the

projection of the vector

(
N/U

(1/θ − 1/U)/
√
ξ

)
to the plane L(M ) belongs to the cone

spanned by d1 and d2, then

L = min


d′
1

(
N/U

(1/θ − 1/U)/
√
ξ

)
∥d1∥

,

∣∣∣∣∣d′
2

(
N/U

(1/θ − 1/U)/
√
ξ

)∣∣∣∣∣
∥d2∥

 ,

M =

∥∥∥∥∥H
(

N/U

(1/θ − 1/U)/
√
ξ

)∥∥∥∥∥ .
If the projection of the vector −

(
N/U

(1/θ − 1/U)/
√
ξ

)
to the plane L(M ) belongs to

the cone spanned by d1 and d2, then

L = −

∥∥∥∥∥H
(

N/U

(1/θ − 1/U)/
√
ξ

)∥∥∥∥∥ ,

M = max


d′
1

(
N/U

(1/θ − 1/U)/
√
ξ

)
∥d1∥

,

∣∣∣∣∣d′
2

(
N/U

(1/θ − 1/U)/
√
ξ

)∣∣∣∣∣
∥d2∥

 .
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Otherwise,

L = min


d′
1

(
N/U

(1/θ − 1/U)/
√
ξ

)
∥d1∥

,

∣∣∣∣∣d′
2

(
N/U

(1/θ − 1/U)/
√
ξ

)∣∣∣∣∣
∥d2∥

 ,

M = max


d′
1

(
N/U

(1/θ − 1/U)/
√
ξ

)
∥d1∥

,

∣∣∣∣∣d′
2

(
N/U

(1/θ − 1/U)/
√
ξ

)∣∣∣∣∣
∥d2∥

 .

Similar to Section 2.2.2.1, we have a way to judge whether the projection of a given

vector,

(
N/U

(1/θ − 1/U)/
√
ξ

)
for example, belongs to the cone spanned by d1 and d2

or not. Two non-zero coefficients λ and κ are given in (2.39) and (2.40). If a < κ < b

and λ > 0, then the projection of vector

(
N/U

(1/θ − 1/U)/
√
ξ

)
lies inside the cone

spanned by d1 and d2. If a < κ < b and λ < 0, then the projection of vector

−

(
N/U

(1/θ − 1/U)/
√
ξ

)
lies inside the cone spanned by d1 and d2. Otherwise, the

projections of ±

(
N/U

(1/θ − 1/U)/
√
ξ

)
lie outside the cone.

For the special case of (a, b) = (−∞,∞), if λ > 0, then

L = −|U−1N2|,

M =

∥∥∥∥∥H
(

N/U

(1/θ − 1/U)/
√
ξ

)∥∥∥∥∥ .
Otherwise,

L = −

∥∥∥∥∥H
(

N/U

(1/θ − 1/U)/
√
ξ

)∥∥∥∥∥ ,
M = |U−1N2|.

3.2.2.2 Turning point method

From (3.21), S(x) can be written as

S(x) =
f(x)√
g(x)

,
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where

f(x) = (Px)′N/U + zγ(1/θ − 1/U),

g(x) = (Px)′(Px) + (zγ)
2ξ.

Note that P =

(
1/
√
n 0

0 P−1
1

)
, N =

(
N1

N2

)
and x =

(
1

x

)
. Then

f(x) = P−1
1 U−1N2x+ U−1n−1/2N1 + zγ(θ

−1 − U−1),

df

dx
= P−1

1 U−1N2,

g(x) = P−2
1 x2 + n−1 + (zγ)

2ξ,

dg

dx
= 2P−2

1 x.

Solving from d
dx

(
f√
g

)
|xt = 0, we have the turning point xt =

P1N2(n
−1 + (zγ)

2ξ)

n−1/2N1 + zγ(U/θ − 1)
.

The maximum value and the minimum value of S(x) are therefore attained at either

x = a or x = b or x = xt. If a < xt < b, then

L = min
x∈(a,b)

S(x) = min{S(a), S(xt), S(b)},

U = max
x∈(a,b)

S(x) = max{S(a), S(xt), S(b)},

otherwise,

L = min
x∈(a,b)

S(x) = min{S(a), S(b)},

U = max
x∈(a,b)

S(x) = max{S(a), S(b)}.

For the special case of (a, b) = (−∞,∞),

h(−∞) = lim
x→−∞

h(x) = −U−1N2,

h(∞) = lim
x→∞

h(x) = U−1N2.

then

L = min
x∈(−∞,∞)

S(x) = min
{
−|U−1N2|, S(xt)

}
,

M = max
x∈(−∞,∞)

S(x) = max
{
|U−1N2|, S(xt)

}
3.2.3 Numerical examples

Example 3.3.
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For the data set given in Table 2.1 on how systolic blood pressure (Y ) changes

with age (x) for a group of forty males, we only consider the bands UV and TT .

For two cases 1 − α = 0.90, γ = 0.75 and 1 − α = 0.95, γ = 0.99, by using the

methods introduced above in this section, we calculate the critical constants c1 and

c2 of UV and TT over x ∈ (18, 70) and x ∈ (1, 100) and provide them in the fol-

lowing Table 3.3 and Table 3.4. In these tables, for each asymmetric band, we also

provide c value which is the critical constant of corresponding symmetric band. For

any given x, the width of UV a is (c1 + c2)σ̂
√

x′(X ′X)−1x+ (zγ)2(1/θ2 − 1) and the

width of UV is 2cσ̂
√

x′(X ′X)−1x+ (zγ)2(1/θ2 − 1) while the width of TTa is (c1 +

c2)σ̂
√

x′(X ′X)−1x+ (zγ)2/(2ν) and the width of TT is 2cσ̂
√
x′(X ′X)−1x+ (zγ)2/(2ν).

Therefore the percentage of improvement of the average widths from a symmetric band

to the corresponding asymmetric band is

Percentage = 100[1− (c1 + c2)/(2c)]%.

Table 3.3: Critical constants for simultaneous confidence bands UV a and UV and the
percentage of improvement

1− α = 0.90, γ = 0.75

Interval −c2 c1 c1 + c2 c 2c Percentage

(18,70) -2.2116 2.1213 4.3329 2.1700 4.3400 0.16%

(1,100) -2.2415 2.1567 4.3991 2.2026 4.4052 0.14%

1− α = 0.99, γ = 0.95

Interval −c2 c1 c1 + c2 c 2c

(18,70) -3.5438 2.6848 6.2286 3.3516 6.7032 7.62%

(1,100) -3.5514 2.8522 6.4036 3.4000 6.8000 6.19%
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Table 3.4: Critical constants for simultaneous confidence bands TTa and TT and the
percentage of improvement

1− α = 0.90, γ = 0.75

Interval −c2 c1 c1 + c2 c 2c Percentage

(18,70) -2.2424 2.0890 4.3314 2.1708 4.3416 0.24%

(1,100) -2.2702 2.1271 4.3973 2.2034 4.4068 0.22%

1− α = 0.99, γ = 0.95

Interval −c2 c1 c1 + c2 c 2c

(18,70) -3.5491 2.6874 6.2365 3.3558 6.7116 7.62%

(1,100) -3.5567 2.8538 6.4105 3.4033 6.8066 6.18%

Example 3.4.

For the data set given in Table 2.3 on how speed (Y ) in miles per hour changes with

the size(x) in inches of a rocket engine’s orifice, we also consider two cases: 1−α = 0.90,

γ = 0.75 and 1− α = 0.95, γ = 0.99 and give Table 3.5 and Table 3.6.

Table 3.5: Critical constants for simultaneous confidence bands UV a and UV and the
percentage of

1− α = 0.90, γ = 0.75

Interval −c2 c1 c1 + c2 c 2c Percentage

(1.2931, 1.4131) -2.4315 2.1853 4.6167 2.3191 4.6382 0.47%

1− α = 0.99, γ = 0.95

Interval −c2 c1 c1 + c2 c 2c

(1.2931, 1.4131) -4.3237 2.7398 7.0635 4.1268 8.2536 16.85%

Table 3.6: Critical constants for simultaneous confidence bands TTa and TT and the
percentage of

1− α = 0.90, γ = 0.75

Interval −c2 c1 c1 + c2 c 2c Percentage

(1.2931, 1.4131) -2.4344 2.1873 4.6216 2.3213 4.6426 0.45%

1− α = 0.99, γ = 0.95

Interval −c2 c1 c1 + c2 c 2c

(1.2931, 1.4131) -4.3440 2.7440 7.0880 4.1425 8.2850 16.89%

From these two examples, we can see the asymmetric bands UV a and TTa perform

better than the corresponding symmetric bands UV and TT as expected.
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3.3 Comparison of the symmetric and asymmetric

confidence bands under the average width cri-

terion

To compare different asymmetric bands, we also use the average width criterion which

has been introduced in Chapter 2. It is clear that, for a given x, the width of the band

in (3.1) is

(c1 + c2)σ̂
√
x′(X ′X)−1x+ (zγ)2ξ,

where c1 and c2 are the critical constants to give confidence level 1 − α. From (2.52),

the average width of the band over a specific interval x ∈ (a, b) is given by∫ b

a

(c1 + c2)σ̂
√
x′(X ′X)−1x+ (zγ)2ξ dx/(b− a). (3.24)

It is noteworthy that each symmetric band is a special case of the corresponding asym-

metric band with c1 = c2.

Specifically, we consider the case that a = x̄ − δ and b = x̄ + δ, i.e., the interval

(a, b) is symmetric about x̄. Denote Sxx = Σn
i=1(xi − x̄)2 and ss = δ/

√
Sxx. Note that

for a simultaneous confidence band, the critical constants c1 and c2 depend only on ss,

γ, n and 1− α. Therefore, the average width of this band also depends only on ss, γ,

n and 1−α. When the design points x1, · · · , xn are given, Sxx = Σn
i=1(xi− x̄)2 is fixed.

So a large value of δ means a wide interval (a, b). In our numerical comparison, we have

used α= 0.10, 0.01, γ = 0.75, 0.95, n= 10, 20, 30, 50, 100 and ss = 0.1, 0.5, 1.0, 10,

50 and investigated all the combinations of these four factors for the bands TBE, TT ,

UV , TBEa, TTa, and UV a.

When x̄ = 0, i.e., the x-values (x1, · · · , xn) are mean adjusted, (3.24) is further

equal to ∫ δ

−δ

(c1 + c2)σ̂
√
x′(X ′X)−1x+ (zγ)2ξ dx/(2δ)

=

∫ δ

−δ

(c1 + c2)σ̂/(2δ)

√
1

n
+

x2

Sxx

+ (zγ)2ξ dx

= (c1 + c2)σ̂
√

Sxx/(2δ)

[(
1

n
+ (zγ)

2ξ

)
ln

(
δ√
Sxx

+

√
δ2

Sxx

+
1

n
+ (zγ)2ξ

)

−1

2

(
1

n
+ (zγ)

2ξ

)
ln

(
1

n
+ (zγ)

2ξ

)
+

δ√
Sxx

√
δ2

Sxx

+
1

n
+ (zγ)2ξ

]
. (3.25)
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Recall that for notational convenience, we use the following labels for the bands to

be compared:

• TBE – the symmetric band in (2.5) with θ =

√
2

ν

Γ(ν
2
)

Γ(ν−1
2
)
and ξ = 0;

• TBEa – the asymmetric band in (3.5) with θ =

√
2

ν

Γ(ν
2
)

Γ(ν−1
2
)
and ξ = 0;

• UV – the symmetric band in (2.31) with θ =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)

and ξ = 1/θ2 − 1;

• UVa – the asymmetric band in (3.15) with θ =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)

and ξ = 1/θ2 − 1;

• TT – the symmetric band in (2.32) with θ =
4ν − 1

4ν
and ξ =

1

2ν
;

• TT – the asymmetric band in (3.16) with θ =
4ν − 1

4ν
and ξ =

1

2ν
.

In Chapter 2, we recommend the symmetric bands TBE, TT and UV among the

six symmetric bands. In this section, we present numerical comparisons of the bands

TBE, TT , UV , TBEa, TTa and UV a under the average width criterion. From (3.25),

we can calculate the average width of each band and so the ratio of the average widths

of any two bands. The ratios of the average bandwidths of TBE, TT , UV , TBEa,

TTa relative to UV are given in Tables 3.7-3.10.

Note that a smaller entry in the tables means a narrower and so better band. It is

clear from the table that an asymmetric band is always no worse than the corresponding

symmetric band. From the definition of ss = δ/
√
Sxx, a smaller value of ss means the

interval (a, b) is narrower. From Tables 3.7-3.10, we can conclude that when ss is small,

i.e., when the interval (a, b) is narrow, TBEa tends to be the best one among the six

bands. When ss is large, i.e, the interval (a, b) is wide, UV a is the best, but TBEa can

perform very badly. For example, from Table 3.8, we can see TBEa is about 30% wider

than UV a when 1 − α = 0.99, γ = 0.95 and ss = 50. Among the three asymmetric

bands, UV a and TTa have hardly any difference between them and are almost always

better than TBEa. Hence either UV a or TTa are recommended overall if the average

band width is of concern.
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Table 3.7: Ratios of the average widths of the bands TBE, TT , UV , TBEa and TTa
relative to UV a (1− α = 0.90, γ = 0.95)

n ss TBE TT UV TBEa TTa UV a

0.1 0.9888 1.0393 1.0402 0.9886 0.9998 1

0.5 1.0142 1.0446 1.0483 1.0126 0.9991 1

10 1.0 1.1193 1.0391 1.0394 1.1179 0.9999 1

10.0 1.3171 1.0220 1.0185 1.3159 1.0035 1

50.0 1.3222 1.0197 1.0160 1.3210 1.0038 1

0.1 0.9839 1.0110 1.0112 0.9836 0.9999 1

0.5 1.0603 1.0133 1.0136 1.0598 0.9998 1

20 1.0 1.1792 1.0123 1.0117 1.1786 1.0007 1

10.0 1.3143 1.0065 1.0048 1.3138 1.0018 1

50.0 1.3175 1.0060 1.0042 1.3170 1.0018 1

0.1 0.9805 1.0071 1.0072 0.9802 0.9999 1

0.5 1.0933 1.0072 1.0072 1.0930 1.0000 1

30 1.0 1.2067 1.0061 1.0056 1.2064 1.0005 1

10.0 1.3114 1.0037 1.0025 1.3113 1.0012 1

50.0 1.3137 1.0034 1.0022 1.3135 1.0012 1

0.1 0.9777 1.0032 1.0033 0.9773 0.9999 1

0.5 1.1361 1.0039 1.0037 1.1359 1.0002 1

50 1.0 1.2346 1.0031 1.0027 1.2344 1.0005 1

10.0 1.3081 1.0016 1.0009 1.3080 1.0007 1

50.0 1.3096 1.0015 1.0008 1.3095 1.0007 1

0.1 0.9838 1.0019 1.0020 0.9835 1.0000 1

0.5 1.1892 1.0018 1.0017 1.1889 1.0001 1

100 1.0 1.2614 1.0013 1.0010 1.2611 1.0003 1

10.0 1.3054 1.0006 1.0003 1.3052 1.0004 1

50.0 1.3062 1.0005 1.0002 1.3059 1.0003 1
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Table 3.8: Ratios of the average widths of the bands TBE, TT , UV , TBEa and TTa
relative to UV a (1− α = 0.99, γ = 0.95)

n ss TBE TT UV TBEa TTa UV a

0.1 1.2356 1.3159 1.3168 0.9904 0.9998 1

0.5 1.2860 1.2612 1.2612 1.0319 0.9993 1

10 1.0 1.3886 1.1897 1.1879 1.1226 1.0003 1

10.0 1.5509 1.0989 1.0925 1.2848 1.0038 1

50.0 1.5501 1.0917 1.0851 1.2891 1.0043 1

0.1 1.1120 1.1706 1.1709 0.9868 0.9999 1

0.5 1.2252 1.1297 1.1295 1.0883 0.9998 1

20 1.0 1.3426 1.0977 1.0966 1.1947 1.0004 1

10.0 1.4575 1.0603 1.0576 1.3033 1.0018 1

50.0 1.4572 1.0569 1.0541 1.3038 1.0017 1

0.1 1.0679 1.1166 1.1168 0.9878 0.9999 1

0.5 1.2186 1.0852 1.0853 1.1274 1.0000 1

30 1.0 1.3298 1.0658 1.0651 1.2316 1.0006 1

10.0 1.4210 1.0439 1.0422 1.3188 1.0010 1

50.0 1.4207 1.0415 1.0398 1.3191 1.0010 1

0.1 1.0376 1.0703 1.0704 0.9909 0.9999 1

0.5 1.2269 1.0465 1.0464 1.1719 1.0000 1

50 1.0 1.3243 1.0376 1.0372 1.2655 1.0003 1

10.0 1.3895 1.0255 1.0246 1.3290 1.0006 1

50.0 1.3899 1.0244 1.0236 1.3294 1.0007 1

0.1 1.0263 1.0311 1.0312 1.0045 0.9999 1

0.5 1.2556 1.0194 1.0192 1.2293 1.0002 1

100 1.0 1.3287 1.0165 1.0161 1.3011 1.0003 1

10.0 1.3710 1.0126 1.0122 1.3428 1.0003 1

50.0 1.3714 1.0122 1.0118 1.3431 1.0004 1
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Table 3.9: Ratios of the average widths of bands relative to Band UV a (1− α = 0.90,
γ = 0.75)

n ss TBE TT UV TBEa TTa UV a

0.1 0.9956 1.0096 1.0099 0.9955 0.9999 1

0.5 0.9993 1.0122 1.0124 0.9978 0.9999 1

10 1.0 1.0264 1.0098 1.0093 1.0242 1.0005 1

10.0 1.0608 1.0052 1.0038 1.0598 1.0015 1

50.0 1.0614 1.0046 1.0033 1.0605 1.0016 1

0.1 0.9937 1.0032 1.0033 0.9936 0.9999 1

0.5 1.0115 1.0035 1.0034 1.0108 1.0001 1

20 1.0 1.0366 1.0035 1.0032 1.0362 1.0004 1

10.0 1.0581 1.0018 1.0012 1.0580 1.0006 1

50.0 1.0586 1.0017 1.0011 1.0585 1.0006 1

0.1 0.9925 1.0019 1.0019 0.9924 0.9999 1

0.5 1.0188 1.0023 1.0022 1.0184 1.0001 1

30 1.0 1.0404 1.0019 1.0016 1.0401 1.0003 1

10.0 1.0568 1.0012 1.0008 1.0567 1.0004 1

50.0 1.0570 1.0011 1.0007 1.0569 1.0003 1

0.1 0.9917 1.0011 1.0011 0.9941 1.0000 1

0.5 1.0281 1.0015 1.0014 1.0278 1.0001 1

50 1.0 1.0461 1.0012 1.0011 1.0457 1.0002 1

10.0 1.0571 1.0007 1.0004 1.0570 1.0003 1

50.0 1.0573 1.0006 1.0003 1.0572 1.0003 1

0.1 0.9924 1.0012 1.0013 0.9921 1.0000 1

0.5 1.0367 1.0008 1.0007 1.0366 1.0001 1

100 1.0 1.0487 1.0005 1.0004 1.0486 1.0001 1

10.0 1.0552 1.0003 1.0002 1.0551 1.0001 1

50.0 1.0553 1.0002 1.0001 1.0552 1.0001 1
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Table 3.10: Ratios of the average widths of bands relative to Band UV a (1−α = 0.99,
γ = 0.75)

n ss TBE TT UV TBEa TTa UV a

0.1 1.0885 1.1287 1.1290 0.9957 0.9999 1

0.5 1.0753 1.0941 1.0943 0.9997 0.9999 1

10 1.0 1.0870 1.0718 1.0714 1.0207 1.0002 1

10.0 1.1001 1.0439 1.0422 1.0519 1.0013 1

50.0 1.0985 1.0413 1.0396 1.0524 1.0011 1

0.1 1.0376 1.0619 1.0620 0.9944 0.9999 1

0.5 1.0478 1.0416 1.0413 1.0105 1.0000 1

20 1.0 1.0661 1.0331 1.0328 1.0333 1.0002 1

10.0 1.0784 1.0209 1.0202 1.0518 1.0007 1

50.0 1.0779 1.0200 1.0192 1.0521 1.0007 1

0.1 1.0185 1.0381 1.0381 0.9938 0.9999 1

0.5 1.0433 1.0273 1.0272 1.0187 1.0001 1

30 1.0 1.0598 1.0218 1.0215 1.0385 1.0002 1

10.0 1.0687 1.0133 1.0130 1.0520 1.0003 1

50.0 1.0684 1.0126 1.0123 1.0521 1.0003 1

0.1 1.0070 1.0208 1.0208 0.9940 1.0000 1

0.5 1.0407 1.0153 1.0152 1.0294 1.0002 1

50 1.0 1.0564 1.0128 1.0126 1.0467 1.0002 1

10.0 1.0642 1.0091 1.0088 1.0564 1.0002 1

50.0 1.0642 1.0089 1.0086 1.0565 1.0003 1

0.1 1.0037 1.0109 1.0109 0.9958 1.0000 1

0.5 1.0453 1.0066 1.0066 1.0395 1.0001 1

100 1.0 1.0561 1.0052 1.0051 1.0511 1.0001 1

10.0 1.0615 1.0040 1.0039 1.0575 1.0001 1

50.0 1.0615 1.0039 1.0038 1.0576 1.0001 1
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3.4 Example

To understand the degradation over time of a drug product, stability studies are

routinely carried out in the pharmaceutical industry. Guideline for Stability Test-

ing ICHQ1, which is harmonized among the US, the EU and Japan, can be viewed at

http://www.ich.org/products /guidelines/quality/article/quality-guidelines.html. These

studies usually consist of a random sample of dosage units (e.g., tablets, capsules, vials)

from a given batch stored under controlled temperature and humidity conditions. Indi-

vidual dosage units are taken at predetermined time points and assayed for the active

pharmaceutical ingredient (drug) content. One frequently used statistical model is the

simple linear regression of drug content (Y ) on time (x): Y = β0 + β1x+ e. For illus-

tration, let us consider the observations on the first batch of Experiment One in Ruberg

and Hsu (1992): (x1, . . . , x9) = (0.014, 0.280, 0.514, 0.769, 1.074, 1.533, 2.030, 3.071, 4.049)

(in years) and (Y1, . . . , Y9) = (100.4, 100.3, 99.7, 99.2, 98.9, 98.2, 97.3, 95.7, 94.5) (in per-

centage). The usual model diagnostic including residual plots shows that the nine

observed data points are nicely fitted by a linear regression line with R2 = 0.9961.

Note that, so long as the data are assumed to follow a standard linear regression mod-

el, the methods proposed in this paper apply to any sample size n ≥ 3.

Here x′β + zγσ is the dividing drug content level at time point x, above which

100(1 − γ)% of all the dosage units are and below which the other 100γ% of all the

dosage units are. It is reasonable to expect from patients’ point of view that a large

proportion, 1 − γ, of all the dosage units should have drug content level above a pre-

specified threshold h. It is therefore of interest to learn how x′β + zγσ changes over

time x (for a small value γ, γ = 0.05 say) and to learn whether or when x′β + zγσ is

above or below the threshold h (e.g., for a hypothetic value h = 98). A simultaneous

confidence band for x′β+zγσ can help us to learn these. As the expiry date required by

the United States Food and Drug Administration (FDA) to be printed on the package

label of the drug is often no longer than two years, it is reasonable to set the time

interval (a, b) = (0, 2).

We have written a suite of MATLAB programs, with the inputs Y , X, (a, b), γ

and 1− α, to compute all the simultaneous confidence bands considered in Sections 2

and 3 and their average band widths. For the given Y , X, (a, b) = (0, 2), γ = 0.05

and 1 − α = 0.95, Table 3.11 shows ratios of average band widths among: (i) the

conservative symmetric bands TBEc, TTc and UV c using the conservative critical

constants over (a, b) = (−∞,∞) by using the methods given in Turner and Bowden

(1977) and Thomas and Thomas (1986), (ii) the symmetric bands TBE, TT and UV

using the exact critical constants over (a, b) = (0, 2) by using the methods given in this

paper and (iii) the asymmetric bands TBEa, TTa and UV a using the exact critical

constants over (a, b) = (0, 2) by using the methods given in this paper. For example, the
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Table 3.11: Ratios of the average band widths

Bands Ratio Bands Ratio Bands Ratio
TBEc
TBE

1.015 TTc
TT

1.093 UV c
UV

1.097
TBE
TBEa

1.063 TT
TTa

1.156 UV
UV a

1.156
TBEc
TBEa

1.079 TTc
TTa

1.264 UV c
UV a

1.268

entry 1.264 means that the conservative symmetric band TTc, which is from Thomas

and Thomas (1986), is 26.4% wider than the new asymmetric band TTa. It is clear

from the table that the asymmetric bands are often substantially narrower in terms

of average band width than the corresponding exact symmetric bands, and even much

narrower than the corresponding conservative symmetric bands considered previously

in the literature. Our computation for other data sets shows that the asymmetric bands

can be narrower than the corresponding exact and conservative symmetric bands by

more than the numbers given in Table 3.11. It is clear from the comparison in Section

3.3 and this example that the asymmetric bands UV a or TTa should always be used

in order to reduce the average band width.

In Figure 1, the estimated percentile line x′β̂+ zγσ̂/θ, where θ is for the UV band,

is shown by the dashed line, the asymmetric band UV a is given by the solid lines, and

the conservative symmetric band TTc is given by the broken lines. The UV a band

is contained completely inside, and much narrower than, the conservative symmetric

band TTc which was recommended in Thomas and Thomas (1986) and claimed as the

best band in the literature. For the given h = 98, which is given by the dotted line in

Figure 1, one can infer from the UV a band that, up to time point x = 1.326, the per-

centile line x′β+ zγσ is above h and so at least 1−γ proportion of all the dosage units

have drug content above h by this time point. But beyond the time point x = 1.591,

the percentile line x′β + zγσ is below h and so less than 1 − γ proportion of all the

dosage units have drug content above h. The time point x at which x′β+ zγσ = h can

be any where in the interval (1.326, 1.591). The confidence interval for this x from the

conservative symmetric band TTc is given by (1.322, 1.656), which is wider than the

interval (1.326, 1.591) as expected.
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3.5 Conclusions

In this chapter, we have proposed the methods of constructing exact asymmetric si-

multaneous confidence bands. From results of the thorough comparison and the real

example, it is concluded that asymmetric bands are uniformly and can be very sub-

stantially narrower than the corresponding exact symmetric bands when γ ̸= 0.5.

Therefore, the asymmetric bands should always be used under the average band width

criterion.
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Chapter 4

One-sided Simultaneous Confidence

Bands for a Percentile Line and

One-sided Tolerance Bands for the

Simple Linear Model

4.1 Introduction

4.1.1 One-sided simultaneous confidence bands

Sometimes, we want to bound the percentile line x′β + zγσ from one-side only, either

from below or from above. In this case, it is not efficient to use a two-sided band which

bounds the percentile line from both sides. One-sided bands are suitable for one-sided

inferences. Consider the simple linear regression model given in (1.3). A 1−α one-sided

lower confidence band LC(Y ,X,x) for the percentile line x′β + zγσ over the interval

x ∈ (a, b) satisfies the condition

P{LC(Y ,X,x) ≤ x′β + zγσ for all x ∈ (a, b)} = 1− α, (4.1)

and a one-sided upper simultaneous confidence band UC(Y ,X,x) satisfies the condi-

tion

P{x′β + zγσ ≤ UC(Y ,X,x) for all x ∈ (a, b)} = 1− α. (4.2)

In this chapter, we focus on one-sided simultaneous confidence bands for the per-

centile line x′β + zγσ over the interval x ∈ (a, b) of three forms below: Form I, II and

III

A one-sided upper band of Form I is given by

x′β + zγσ ≤ x′β̂ +
zγ
θ
σ̂ + cσ̂

√
x′(X ′X)−1x for all x ∈ (a, b). (4.3)
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A one-sided upper band of Form II uses constant θ ̸= 0 and ξ ̸= 0 and is given by

x′β + zγσ ≤ x′β̂ +
zγ
θ
σ̂ + cσ̂

√
x′(X ′X)−1x+ (zγ)2ξ for all x ∈ (a, b). (4.4)

A one-sided upper band of Form III is given by

x′β + zγσ ≤ x′β̂ + cσ̂
(
zγ/2 +

√
x′(X ′X)−1x

)
for all x ∈ (a, b). (4.5)

Form I and III have been considered by Turner and Bowden (1979) and Odeh and Mee

(1990) respectively. They investigated the bands over covariate intervals which are all

symmetric about the mean value x̄. We consider one-sided confidence bands over any

given covariate interval (a, b).

Similarly, a lower band of Form I is given by

x′β + zγσ ≥ x′β̂ +
zγ
θ
σ̂ + cσ̂

√
x′(X ′X)−1x for all x ∈ (a, b). (4.6)

A lower band of Form II uses constant θ ̸= 0 and ξ ̸= 0 and is given by

x′β + zγσ ≥ x′β̂ +
zγ
θ
σ̂ + cσ̂

√
x′(X ′X)−1x+ (zγ)2ξ for all x ∈ (a, b). (4.7)

A lower band of Form III is given by

x′β + zγσ ≥ x′β̂ + cσ̂
(
zγ/2 +

√
x′(X ′X)−1x

)
for all x ∈ (a, b). (4.8)

Even though a 1 − α upper band of any one of these three forms uses a different

critical constant from the corresponding 1 − α lower band, the methodologies of con-

struction and computation of the lower band and the upper band are similar. We just

look up the upper bands in the following sections.

4.1.2 One-sided simultaneous tolerance bands

Let Y (x) = x′β+ex denote a future observation with ex ∼ N(0, σ2) being independent

of e in (1.1). Suppose one has the training data set E := {(xj, yj), j = 1, · · · , n} which

is used to fit a regression line of Y on x. A (p, 1 − α) lower simultaneous tolerance

band L(x; E) for the simple linear model x′β + e over x ∈ (a, b) satisfies the condition

PE{PY (x){L(x; E) < Y (x)|E , x} ≥ p for all x ∈ (a, b)} = 1− α, (4.9)

while a one-sided upper simultaneous tolerance band L(x; E) satisfies the condition

PE{PY (x){Y (x) < U(x; E)|E , x} ≥ p for all x ∈ (a, b)} = 1− α, (4.10)
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Note that Φ(zγ) = γ, we can write (4.9) as

P{L(x; E) ≤ x′β + z(1−p)σ for all x ∈ (a, b)} = 1− α. (4.11)

It is clear from (4.1) and (4.11) that L(x; E) is just a 1− α lower confidence band for

the (1− p)-percentile line. Similarly, we can write (4.10) as

P{x′β + zpσ ≤ U(x; E) for all x ∈ (a, b)} = 1− α. (4.12)

From (4.2) and (4.12), we can get U(x; E) is just a 1−α upper confidence band for the

p-percentile line. Therefore, we only need to look at the one-sided confidence bands.

4.2 One-sided bands of Form I

In this section, we focus on Form I. In Section 4.3 and Section 4.4, we will study Form

II and III respectively, since mathematical treatments of these two forms are slightly

different. The constant θ ̸= 0 in (4.3) can be chosen to give different specific confidence

bands and the critical constant c is determined to satisfy the specified confidence level

1−α for given θ ̸= 0. We consider three different bands: SBo, TBUo and TBEo. All

of them are of Form I given in (4.3).

The band SBo is the one-sided version of the two-sided band SB in (2.3) with θ = 1

and has the form

x′β + zγσ ≤ x′β̂ + zγσ̂ + cσ̂
√

x′(X′X)−1x for all x ∈ (a, b). (4.13)

The band TBUo is the one-sided version of the two-sided band TBU in (2.4) with

θ =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)

and given by

x′β + zγσ ≤ x′β̂ +
zγ√

2
ν

Γ( ν+1
2

)

Γ( ν
2
)

σ̂ + cσ̂
√

x′(X ′X)−1x for all x ∈ (a, b). (4.14)

The band TBEo is the one-sided version of the two-sided band TBE in (2.5) with

θ =

√
2

ν

Γ(ν
2
)

Γ(ν−1
2
)
and given by

x′β + zγσ ≤ x′β̂ +
zγ√

2
ν

Γ( ν
2
)

Γ( ν−1
2

)

σ̂ + cσ̂
√
x′(X ′X)−1x, for all x ∈ (a, b). (4.15)

Next, we consider the computation of the critical constant c of the band (4.3). For

this, it is necessary to find an expression of the simultaneous confidence level of the

85



band that is amenable to computation.

The simultaneous confidence level of this band is given by

P
{
x′β + zγσ ≤ x′β̂ +

zγ
θ
σ̂ + cσ̂

√
x′(X ′X)−1x for all x ∈ (a, b)

}
= P

{
min
x∈(a,b)

x′(β̂ − β) + zγ(σ̂/θ − σ)

σ̂
√

x′(X′X)−1x
≥ −c

}

= P

{
min
x∈(a,b)

(Px)′P−1(β̂ − β) + zγ(σ̂/θ − σ)

σ̂
√

(Px)′(Px)
≥ −c

}

= P

{
min
x∈(a,b)

(Px)′σN+ zγ(σ̂/θ − σ)

σ̂
√

(Px)′(Px)
≥ −c

}

= P

{
min
x∈(a,b)

(Px)′N/U + zγ(1/θ − 1/U)√
(Px)′(Px)

≥ −c

}
(4.16)

= P

{
− min

x∈(a,b)

(Px)′N/U + zγ(1/θ − 1/U)√
(Px)′(Px)

≤ c

}
,

where the matrix

P =

(
1/
√
n 0

0 P−1
1

)

is the unique square root of (X ′X)−1 and defined in (1.5),

N =

(
N1

N2

)
= P−1(β̂ − β)/σ ∼ N2(0, I)

and U = σ̂/σ ∼
√

χ2
ν .

Note that Px =

(
1/
√
n

P−1
1 x

)
and so (4.16) is further equal to

P


min
x∈(a,b)

(
1/
√
n

P−1
1 x

)′(
N1/U + (1/θ − 1/U)

√
nzγ

N2/U

)
∥∥∥∥∥
(

1/
√
n

P−1
1 x

)∥∥∥∥∥
≥ −c



=

∫ ∞

0

f σ̂
σ
(u)P


min
x∈(a,b)

(
1/
√
n

P−1
1 x

)′(
N1/u+ (1/θ − 1/u)

√
nzγ

N2/u

)
∥∥∥∥∥
(

1/
√
n

P−1
1 x

)∥∥∥∥∥
≥ −c


du, (4.17)

where f σ̂
σ
(u) is the probability density function of U and given in (1.4).
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The numerical quadrature method and simulation method discussed in two-sided

case can be used for one-sided case for computing the critical constant c. We recom-

mend the projection method and the turning point method because they are faster.

4.2.1 Numerical quadrature method

Denote

k(v) = min
x∈(a,b)

(
1/
√
n

P−1
1 x

)′(
n1/u+ (1/θ − 1/u)

√
nzγ

n2/u

)
∥∥∥∥∥
(

1/
√
n

P−1
1 x

)∥∥∥∥∥
,

where v = (n1, n2, u)
′. The simultaneous confidence level (4.17) becomes∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
f(v)I{k(v)≥−c for all x∈(a,b)}dn1dn2du, (4.18)

where f(v) is the joint probability density function of the random vector of v =

(n1, n2, u)
′ and is given in (2.9) and I{A} is the index function of the set A. Expres-

sion (4.18) involves a three-dimensional integration and can be used to compute the

simultaneous confidence level for a given c via numerical quadrature. Also, for a given

confidence level, the value of critical constant c can be found numerically using this

method. Based on adaptive Simpson rule, the MATLAB built-in function triplequad

can be used for any three-dimensional integration .

Our experience shows this method of computing the exact values of critical constant

c takes substantially longer computation time than the simulation method introduced

in the following section. The numerical quadrature method can however be used to

cross check with the simulation method. The numerical integration method and the

simulation method agree on all the results we have tried.

4.2.2 Simulation method

Let

S = min
x∈(a,b)

(Px)′N/U + zγ(1/θ − 1/U)√
(Px)′(Px)

. (4.19)

The simultaneous confidence level given in (4.16) is therefore given by

P{−S ≤ c}
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The constant c of the 1−α simultaneous confidence band can be found in a similar way

as in the last two chapters. We first generate independent standard bivariate normal

random vectors Ni and variables Ui ∼
√
χ2
ν/ν, i = 1, 2, · · · , R. Then we calculate

Si = min
x∈(a,b)

(Px)′Ni/Ui + zγ(1/θ − 1/Ui)√
(Px)′(Px)

, i = 1, · · · , R.

Finally c is approximated by the ⟨(1 − α)R⟩th largest of the R replicates of −S :

−S1, · · · ,−SR, where ⟨(1 − α)R⟩ denotes the integer part of (1 − α)R. Next we give

two computation methods for calculating S from N and U .

4.2.2.1 Projection method

From (4.19), we have

S = min
x∈(a,b)

(Px)′Z

∥(Px)∥
,

where

Z =

(
Z1

Z2

)
=

(
N1/U + (1/θ − 1/U)

√
nzγ

N2/U

)
.

Denote x1 =

(
1

a

)
and x2 =

(
1

b

)
. Then Px1 =

(
1/
√
n

P−1
1 a

)
and Px2 =

(
1/
√
n

P−1
1 b

)
.

When x changes over the interval (a, b), Px forms a cone bounded by Px1 and Px2.

If −Z belongs to the cone, then

S = min
x∈(a,b)

(Px)′Z

∥Px∥
= −∥Z∥.

Otherwise,

S = min
x∈(a,b)

(Px)′Z

∥Px∥

= min

{
(Px1)

′Z

∥Px1∥
,
(Px2)

′Z

∥Px2∥

}
.

Note that there exist non-zero coefficients λ and κ such that

λZ =

(
1/
√
n

P−1
1 κ

)
.
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It is easy to get that

λ = n−1/2Z1
−1

and

κ = n−1/2Z−1
1 Z2P1.

If a < κ < b and λ < 0, then the vector −Z lies inside the cone spanned by Px1 and

Px2. Otherwise, the projection of −Z lies outside the cone.

For the special case of (a, b) = (−∞,∞), note that

(Px1)
′Z

∥Px1∥
= lim

a→−∞

(
1/
√
n

P−1
1 a

)′(
N1/U + (1/θ − 1/U)

√
nzγ

N2/U

)
∥∥∥∥∥
(

1/
√
n

P−1
1 a

)∥∥∥∥∥
= −N2/U,

and

(Px2)
′Z

∥Px2∥
= lim

b→∞

(
1/
√
n

P−1
1 b

)′(
N1/U + (1/θ − 1/U)

√
nzγ

N2/U

)
∥∥∥∥∥
(

1/
√
n

P−1
1 b

)∥∥∥∥∥
= N2/U.

Therefore,

S =

{
−∥Z∥, ifλ < 0;

−|N2/U |, ifλ > 0.

4.2.2.2 Turning point method

Denote h(x) =
(Px)′N/U + zγ(1/θ − 1/U)√

(Px)′(Px)
. Then S in (4.19) can be written as

S = min
x∈(a,b)

h(x) = min
x∈(a,b)

f(x)√
g(x)

,

where

f(x) = (Px)′N/U + zγ(1/θ − 1/U),

g(x) = (Px)′(Px).
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Note that P =

(
1/
√
n 0

0 P−1
1

)
, N =

(
N1

N2

)
and x =

(
1

x

)
, then

f(x) = P−1
1 U−1N2x+ U−1n−1/2N1 + zγ(θ

−1 − U−1),

df

dx
= P−1

1 U−1N2,

g(x) = P−2
1 x2 + n−1,

dg

dx
= 2P−2

1 x.

Solving from d
dx

(
f√
g

)
|xt = 0, we can find the turning point of the function h(x) is

xt =
P1N2n

−1

n−1/2N1 + zγ(Uθ−1 − 1)
. Therefore, if a < xt < b, the minimum value of h(x) is

attained at either x = a or b or xt, otherwise, the minimum value of h(x) is attained

at either x = a or b, i.e.,

S = min
x∈(a,b)

h(x) =

{
min{h(a), h(xt), h(b)}, if a < xt < b;

min{h(a), h(b)}, if xt ≤ a or xt ≥ b.

For the special case of (a, b) = (−∞,∞),

h(−∞) = lim
x→−∞

h(x) = −N2/U,

h(∞) = lim
x→∞

h(x) = N2/U.

Hence

S = min
x∈(−∞,∞)

h(x) = min {−|N2/U |, h(xt)} .
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4.3 One-sided bands of Form II

Different from Section 4.2, in this section, we focus on the bands of Form II in (4.4)

with ξ ̸= 0. We consider three bands: V o, UV o and TTo. All of them are of the form

(4.4).

The band Vo is the one-sided version of the two-sided band V in (2.26) with θ = 1

and ξ = 1− 2

ν

(
Γ(ν+1

2
)

Γ(ν
2
)

)2

, and given by

x′β+zγσ ≤ x′β̂+zγσ̂+cσ̂

√√√√x′(X ′X)−1x+ (zγ)2

(
1− 2

ν

(
Γ(ν+1

2
)

Γ(ν
2
)

)2
)

for all x ∈ (a, b).

The band UV is the one-sided version of the two-sided band UV in (2.31) with θ =√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)

and ξ =
ν

2

(
Γ(ν

2
)

Γ(ν+1
2
)

)2

− 1, and given by

x′β+ zγσ ≤ x′β̂+
zγ√

2
ν

Γ( ν+1
2

)

Γ( ν
2
)

σ̂+ cσ̂
√
x′(X ′X)−1x+ (zγ)2(1/θ2 − 1) for all x ∈ (a, b).

The band TTo is the one-sided version of the two-sided band TT in (2.32) with θ =
4ν − 1

4ν
and ξ =

1

2ν
, and given by

x′β+ zγσ ≤ x′β̂+
zγ

(4ν − 1)/(4ν)
σ̂+ cσ̂

√
x′(X ′X)−1x+ (zγ)2/(2ν), for all x ∈ (a, b).

Next we consider the computation of the critical constant c in the band (4.4). The

simultaneous confidence level of this band is given by

P

{
x′β + zγσ ≤ x′β̂ +

zγ
θ
σ̂ + cσ̂

√
x′(X ′X)−1x+ (zγ)2ξ for all x ∈ (a, b)

}
= P

{
min
x∈(a,b)

x′(β̂ − β) + zγ(σ̂/θ − σ)

σ̂
√

x′(X′X)−1x+ (zγ)2ξ
≥ −c

}

= P

{
min
x∈(a,b)

(Px)′P−1(β̂ − β) + zγ(σ̂/θ − σ)

σ̂
√
(Px)′(Px) + (zγ)2ξ

≥ −c

}

= P

{
min
x∈(a,b)

(Px)′σN+ zγ(σ̂/θ − σ)

σ̂
√
(Px)′(Px) + (zγ)2ξ

≥ −c

}

= P

{
min
x∈(a,b)

(Px)′N/U + zγ(1/θ − 1/U)√
(Px)′(Px) + (zγ)2ξ

≥ −c

}
, (4.20)

where the matrix P is defined in (1.5), N =

(
N1

N2

)
= P−1(β̂ − β)/σ ∼ N2(0, I)
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and U = σ̂/σ ∼
√

χ2
ν .

The confidence level given in (4.20) is further equal to

P


min
x∈[a,b]

(
Px

zγ
√
ξ

)′(
N/U

(1/θ − 1/U)/
√
ξ

)
∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
≥ −c



=

∫ ∞

0

f σ̂
σ
(u)P


min
x∈[a,b]

(
Px

zγ
√
ξ

)′(
N/u

(1/θ − 1/u)/
√
ξ

)
∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
≥ −c


du, (4.21)

where f σ̂
σ
(u) is the probability density function of U and given in (1.4).

Next we give two different methods for computing the critical constant c.

4.3.1 Numerical quadrature method

Denote

k(v) = min
x∈[a,b]

(
Px

zγ
√
ξ

)′(
n/u

(1/θ − 1/u)/
√
ξ

)
∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
,

where v = (n′, u) = (n1, n2, u)
′. The simultaneous confidence level (4.21) becomes∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
f(v)I{k(v)≥−c}dv, (4.22)

where f(v) is the joint probability density function of the random vector of v =

(n1, n2, u)
′ and is given in (2.9) and I{A} is the index function of the set A. Expres-

sion (4.22) involves a three-dimensional integration and can be used to compute the

simultaneous confidence level via numerical integration. We have used the MATLAB

built-in function triplequad for this purpose. Then the value of critical constant can

be found numerically by searching for c so that the simultaneous confidence level is

equal to 1− α.
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4.3.2 Simulation method

Let

S = min
x∈(a,b)

(Px)′N/U + zγ(1/θ − 1/U)√
(Px)′(Px) + (zγ)2ξ

. (4.23)

The simultaneous confidence level is therefore given by

P{−S ≤ c}.

The constant c of the 1− α simultaneous confidence band is therefore the 100(1− α)

percentile of the random variable −S. This population percentile can be approximated

by the sample percentile by using simulation in the following way. We first generate

standard bivariate normal random vectorsNi and variables Ui ∼
√

χ2
ν

ν
, i = 1, 2, · · · , R.

Then we calculate

Si = min
x∈(a,b)

(Px)′Ni/Ui + zγ(1/θ − 1/Ui)√
(Px)′(Px) + (zγ)2ξ

, i = 1, · · · , R.

Finally c is approximated by the ⟨(1 − α)R⟩th largest of the R replicates of −S :

−S1, · · · ,−SR, where ⟨(1 − α)R⟩ denotes the integer part of (1 − α)R. Next we give

two computation methods for calculating S from N and U .

4.3.2.1 Projection method

S in (4.23) can also be expressed as

S = min
x∈[a,b]

(
Px

zγ
√
ξ

)′(
N/U

(1/θ − 1/U)/
√
ξ

)
∥∥∥∥∥
(

Px

zγ
√
ξ

)∥∥∥∥∥
.

Denote x1 =

(
1

a

)
, x2 =

(
1

b

)
, d1 =

(
Px1

zγ
√
ξ

)
, d2 =

(
Px2

zγ
√
ξ

)
and the

matrix M = (d1,d2). Let L(M ) be the linear plane spanned by d1 and d2 and

H = M (M ′M )−1M ′ be the projection matrix to L(M). If the projection of the

vector −

(
N/U

(1/θ − 1/U)/
√
ξ

)
to the plane L(M ) belongs to the cone spanned by d1

and d2, then

S = −

∥∥∥∥∥H
(

N/U

(1/θ − 1/U)/
√
ξ

)∥∥∥∥∥ .
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Otherwise,

S = min


d′
1

(
N/U

(1/θ − 1/U)/
√
ξ

)
∥d1∥

,

d′
2

(
N/U

(1/θ − 1/U)/
√
ξ

)
∥d2∥


= min

(
(Px1)

′N/U + zγ(1/θ − 1/U)√
(Px1)′(Px1) + (zγ)2ξ

,
(Px2)

′N/U + zγ(1/θ − 1/U)√
(Px2)′(Px2) + (zγ)2ξ

)
.

Similar to Section 3.2.2.1, we have the following way to judge whether the projection

of a given vector, −

(
N/U

(1/θ − 1/U)/
√
ξ

)
for example, belongs to the cone spanned

by d1 and d2 or not. Two non-zero coefficients λ and κ are given in (2.39) and (2.40) If

and only if a < κ < b and λ < 0 , the projection of the vector −

(
N/U

(1/θ − 1/U)/
√
ξ

)
to the plane L(M ) belongs to the cone spanned by d1 and d2.

For the special case of x ∈ (−∞,∞), we have

d′
1

(
N/U

(1/θ − 1/U)/
√
ξ

)
∥d1∥

= lim
a→−∞

(
1/
√
n

P−1
1 a

)′(
N/U

(1/θ − 1/U)/
√
ξ

)
∥∥∥∥∥
(

1/
√
n

P−1
1 a

)∥∥∥∥∥
= −N2/U,

and

(d2)
′

(
N/U

(1/θ − 1/U)/
√
ξ

)
∥d2∥

= lim
b→∞

(
1/
√
n

P−1
1 b

)′(
N/U

(1/θ − 1/U)/
√
ξ

)
∥∥∥∥∥
(

1/
√
n

P−1
1 b

)∥∥∥∥∥
= N2/U.

Therefore,

S =

 −

∥∥∥∥∥H
(

N/U

(1/θ − 1/U)/
√
ξ

)∥∥∥∥∥ , ifλ < 0;

−|N2/U |, ifλ > 0.

4.3.2.2 Turning point method

Denote

h(x) =
(Px)′N/U + zγ(1/θ − 1/U)√

(Px)′(Px) + (zγ)2ξ
.
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Then S in (4.23) can be written as

S = min
x∈(a,b)

h(x) = min
x∈(a,b)

f(x)√
g(x)

,

where

f(x) = (Px)′N/U + zγ(1/θ − 1/U),

g(x) = (Px)′(Px) + (zγ)
2ξ.

Note that P =

(
1/
√
n 0

0 P−1
1

)
, N =

(
N1

N2

)
and x =

(
1

x

)
, and so

f(x) = P−1
1 U−1N2x+ U−1n−1/2N1 + zγ(θ

−1 − U−1),

f ′(x) = P−1
1 U−1N2,

g(x) = P−2
1 x2 + n−1 + (zγ)

2ξ,

g′(x) = 2P−2
1 x.

Solving from
(

f√
g

)′
|xt = 0, we have the turning point of h(x) is xt =

P1N2(n
−1 + (zγ)

2ξ)

n−1/2N1 + zγ(U/θ − 1)
.

Therefore, if a < xt < b, the minimum value of h(x) is attained at either x = a or b or

xt, otherwise, the minimum value of h(x) is attained at either x = a or b, i.e.,

S = min
x∈(a,b)

h(x) =

{
min{h(a), h(xt), h(b)}, if a < xt < b;

min{h(a), h(b)}, if xt ≤ a or xt ≥ b.

For the special case of (a, b) = (−∞,∞),

h(−∞) = lim
x→−∞

h(x) = −N2/U,

h(∞) = lim
x→∞

h(x) = N2/U.

Hence

S = min
x∈(a,b)

h(x) = min {−|N2/U |, h(xt)} .
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4.4 One-sided bands of Form III

In this section, we focus on the band of Form III in (4.5) . The simultaneous confidence

level of this band is given by

P
{
x′β + zγσ ≤ x′β̂ + cσ̂

(
zγ/2 +

√
x′(X ′X)−1x

)
for all x ∈ (a, b)

}
= P

{
min
x∈(a,b)

x′(β̂ − β)− zγσ

σ̂(zγ/2 +
√
x′(X′X)−1x)

≥ −c

}

= P

{
min
x∈(a,b)

(Px)′P−1(β̂ − β)− zγσ

σ̂(zγ/2 +
√
x′(X′X)−1x)

≥ −c

}

= P

{
min
x∈(a,b)

(Px)′σN− zγ

σ̂(zγ/2 +
√
x′(X′X)−1x)

≥ −c

}

= P

{
min
x∈(a,b)

(Px)′N/U − zγ/U

zγ/2 +
√

x′(X′X)−1x
≥ −c

}
, (4.24)

where the matrix P is defined in (1.5), N =

(
N1

N2

)
= P−1(β̂ − β)/σ ∼ N2(0, I)

and U = σ̂/σ ∼
√

χ2
ν .

Note that (4.24) is further equal to

∫ ∞

0

f σ̂
σ
(u)P

{
min
x∈(a,b)

(Px)′N/U − zγ

zγ/2 +
√

x′(X′X)−1x
≥ −c

}
du,

where f σ̂
σ
(u) is the probability density function of U and given in (1.4).

4.4.1 Numerical quadrature method

Denote

k(v) = min
x∈(a,b)

(Px)′N/U − zγ

zγ/2 +
√

x′(X′X)−1x
,

where v = (n1, n2, u)
′. The simultaneous confidence level (4.21) becomes∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
f(v)I{k(v)≥−c}dv, (4.25)

where f(v) is the joint probability density function of the random vector of v =

(n1, n2, u)
′ and is given in (2.9) and I{A} is the index function of the set A. Thus, solving

for c will require three dimensional numerical quadrature. We can use the MATLAB

built-in function triplequad for this purpose. But we recommend the simulation

method below, turning point method, rather than this numerical quadrature method,
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since the latter one takes much longer computation time than the former one.

4.4.2 Simulation method

Let

S = min
x∈(a,b)

(Px)′N/U − zγ/U

zγ/2 +
√
x′(X′X)−1x

. (4.26)

The simultaneous confidence level is given by

P{−S ≤ c}.

To approximate c, we first generate standard bivariate normal random vectors Ni and

variables Ui ∼
√

χ2
ν

ν
, i = 1, 2, · · · , R. Then we calculate

Si = min
x∈(a,b)

(Px)′Ni/Ui − zγ/Ui

zγ/2 +
√
x′(X′X)−1x

., i = 1, · · · , R.

Finally c is approximated by the ⟨(1 − α)R⟩th largest of the R replicates of −S :

−S1, · · · ,−SR, where ⟨(1 − α)R⟩ denotes the integer part of (1 − α)R. Next we give

the turning point method for calculating S from N and U .

4.4.2.1 Turning point method

Denote

h(x) =
(Px)′N/U − zγ/U

zγ/2 +
√
x′(X′X)−1x

.

Then S in (4.26) can be written as

S = min
x∈(a,b)

h(x) = min
x∈(a,b)

f(x)√
g(x)

,

where

f(x) = (Px)′N/U − zγ/U,

g(x) = zγ/2 +
√

(Px)′(Px).
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Note that P =

(
1/
√
n 0

0 P−1
1

)
, N =

(
N1

N2

)
and x =

(
1

x

)
, and so

f(x) = P−1
1 U−1N2x+ U−1n−1/2N1 − zγU

−1, (4.27)

f ′(x) = P−1
1 U−1N2, (4.28)

g(x) = zγ/2 +

√
P−2
1 x2 + n−1, (4.29)

g′(x) =
P−2
1 x√

P−2
1 x2 + n−1

. (4.30)

The turning point(s) should be the root(s) of the equation(
f

g

)′

= 0. (4.31)

Substituting (4.27) - (4.30) into (4.31) gives

N2zγ/2

√
n−1 + P−2

1 x2 +N2n
−1 = P−1

1 (n−1/2N1 − zγ)x. (4.32)

Square both sides of (4.32), we have

Ax2 +Bx+ C = 0, (4.33)

whereA = P−2
1 [N2

2 (zγ)
2/4−n−1N2

1+2n−1/2N1zγ−(zγ)
2], B = 2P−1

1 N2n
−1(n−1/2N1−zγ)

and C = N2
2n

−1[(zγ)
2/4 − n−1]. When B2 − AC > 0, there are two roots of equation

(4.33). When B2−AC = 0, there is only one root of equation (4.33). When B2−AC <

0, there is no root. Next, we just need to check whether there is/are any root(s) of the

equation (4.33) belonging to the covariate interval (a, b). If so, the minimum value of

h(x) is then attained at either x = a or x = b or the root(s). Otherwise, the minimum

value of h(x) is then attained at either x = a or x = b.

There is another idea of finding the turning point(s) of (4.31). Denote y = P−1
1 x.

From (4.32), we have √
y2 + n−1 = jy − l, (4.34)

where j = 2(N1N
−1
2 n−1/2/zγ − 1/N2) and l = 2n−1/zγ. Then the left-side of (4.34) is

the positive part of the hyperbola z2 = y2+n−1 and the right-side of (4.34) is a straight

line. When |j| ≤ 1, there is no root of (4.34). When j > 1 or j < −1, there is one

root yt of (4.34). Then we just need to check whether the root belongs to the interval

(P−1
1 a, P−1

1 b). If so, the minimum value of h(x) is then attained at either x = a or

x = b or P1yt . Otherwise, the minimum value of h(x) is then attained at either x = a

or x = b.
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4.5 Comparison of the one-sided simultaneous band-

s under the average width criterion

To compare different one-sided simultaneous confidence bands, we use the average

width criterion which has been introduced in Chapter 2. Here, we define the ’width’

of a one-sided band as the distance between the band and the unbiased estimated line

x′β̂+
zγ
θu

σ̂, where θu =
√

2
ν

Γ( ν+1
2

)

Γ( ν
2
)

and so x′β̂+
zγ
θu

σ̂ is the uniformly minimum variance

unbiased estimator of x′β + zγσ. Hence, for a given x0 = (1, x0)
′, the width of the

band of form (4.6) is taken as

x0
′β̂ +

zγ
θ
σ̂ + cσ̂

√
x0

′(X ′X)−1x0 −
(
x0

′β̂ +
zγ
θu

σ̂

)
= zγσ̂

(
1

θ
− 1

θu

)
+ cσ̂

√
x0

′(X ′X)−1x0.

The width of the band of form (4.7) is

x0
′β̂ +

zγ
θ
σ̂ + cσ̂

√
x0

′(X ′X)−1x0 + (zγ)2ξ −
(
x0

′β̂ +
zγ
θu

σ̂

)
= zγσ̂

(
1

θ
− 1

θu

)
+ cσ̂

√
x0

′(X ′X)−1x0 + (zγ)2ξ.

The width of the band of form (4.8) is given by

x0
′β̂ + cσ̂

(
zγ/2 +

√
x0

′(X ′X)−1x0

)
−
(
x0

′β̂ +
zγ
θu

σ̂

)
= zγσ̂

(
c

2
− 1

θu

)
+ cσ̂

√
x0

′(X ′X)−1x0.

Hence, over a specific covariate interval x ∈ (a, b), the average width of a band in (4.6)

is given by ∫ b

a

[
zγσ̂

(
1

θ
− 1

θu

)
+ cσ̂

√
x′(X ′X)−1x

]
dx/(b− a). (4.35)

The average width of a band in (4.7) is given by∫ b

a

[
zγσ̂

(
1

θ
− 1

θu

)
+ cσ̂

√
x′(X ′X)−1x+ (zγ)2ξ

]
dx/(b− a). (4.36)
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The average width of a band in (4.8) is given by∫ b

a

[
zγσ̂

(
c

2
− 1

θu

)
+ cσ̂

√
x′(X ′X)−1x

]
dx/(b− a) (4.37)

= σ̂zγ

(
c

2
− 1

θu

)
+

∫ b

a

cσ̂
√
x′(X ′X)−1x dx/(b− a). (4.38)

Specifically, we consider the case that a = x̄−δ and b = x̄+δ, i.e., the interval (a, b)

is symmetric about x̄. Denote Sxx = Σn
i=1(xi − x̄)2 and ss = δ/

√
Sxx. Note that for a

simultaneous confidence band, the critical constant c depends only on ss, γ, n and the

confidence level 1− α. Therefore, the average width of this band also depends only on

ss, γ, n and 1−α. When the design points x1, · · · , xn are given, Sxx = Σn
i=1(xi− x̄)2 is

fixed. So a large value of δ means a wide interval (a, b). In our numerical comparison,

we have used α= 0.10, 0.01, γ = 0.75, 0.95, n= 10, 20, 30, 50, 100 and ss = 0.1,

0.5, 1.0, 10, 50 and investigated all the combinations of these four factors for all the

one-sided bands of Form I, II and III.

When x̄ = 0, i.e., the x-values (x1, · · · , xn) are mean adjusted and (a, b) = (−δ, δ),

(4.35) is further calculated to be∫ δ

−δ

[
zγσ̂

(
1

θ
− 1

θu

)
+ cσ̂

√
x′(X ′X)−1x

]
dx/(2δ)

=

∫ δ

−δ

zγσ̂/(2δ)

(
1

θ
− 1

θu

)
dx+

∫ δ

−δ

cσ̂/(2δ)

√
1

n
+

x2

Sxx

dx

= σ̂zγ

(
1

θ
− 1

θu

)
+ cσ̂

√
Sxx/(2δ)

[
1

n
ln

(
δ√
Sxx

+

√
δ2

Sxx

+
1

n

)

+
1

2n
lnn+

δ√
Sxx

√
δ2

Sxx

+
1

n

]
, (4.39)

(4.36) is equal to∫ δ

−δ

[
zγσ̂

(
1

θ
− 1

θu

)
+ cσ̂

√
x′(X ′X)−1x+ (zγ)2ξ

]
dx/(2δ)

=

∫ δ

−δ

zγσ̂/(2δ)

(
1

θ
− 1

θu

)
dx+

∫ δ

−δ

cσ̂/(2δ)

√
1

n
+

x2

Sxx

+ (zγ)2ξ dx

= σ̂zγ

(
1

θ
− 1

θu

)
+ cσ̂

√
Sxx/(2δ)

[(
1

n
+ (zγ)

2ξ

)
ln

(
δ√
Sxx

+

√
δ2

Sxx

+
1

n
+ (zγ)2ξ

)

−1

2

(
1

n
+ (zγ)

2ξ

)
ln

(
1

n
+ (zγ)

2ξ

)
+

δ√
Sxx

√
δ2

Sxx

+
1

n
+ (zγ)2ξ

]
, (4.40)
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and (4.37) is equal to∫ δ

−δ

[
zγσ̂

(
c

2
− 1

θu

)
+ cσ̂

√
x′(X ′X)−1x

]
dx/(2δ)

=

∫ δ

−δ

zγσ̂/(2δ)

(
c

2
− 1

θu

)
dx+

∫ δ

−δ

cσ̂/(2δ)

√
1

n
+

x2

Sxx

dx

= σ̂zγ

(
c

2
− 1

θu

)
+ cσ̂

√
Sxx/(2δ)

[
1

n
ln

(
δ√
Sxx

+

√
δ2

Sxx

+
1

n

)

+
1

2n
lnn+

δ√
Sxx

√
δ2

Sxx

+
1

n

]
. (4.41)

From (4.39) - (4.41), we can calculate the average width of each band and so the

ratio of the average widths of any two bands. The ratios of the average bandwidths of

SBo, TBUo, TBEo, V o, TTo, OMo relative to UV o are given in Tables 4.1-4.4.

We want to choose a band with small entries in the tables. The smaller entries in

the tables mean the corresponding band is narrower and so better. From the definition

of ss = δ/
√
Sxx, a smaller value of ss means the interval (a, b) is narrower. From Tables

4.1-4.4, we can conclude that if confidence level 1 − α is chosen as 0.90 , UV o is the

best among the seven bands. However, if we choose a bigger confidence level, 0.99 for

example, OMo is the best among the seven bands.

To further compare the band OMo and UV o for the 95th percentile line, we choose

three more different confidence level values: 0.95, 0.85, 0.80. We provide the ratios of

the average bandwidths of OMo relative to UV o in Tables 4.5. From this table, it is

clear that OMo performs better than UV o when we choose a big confidence level, 0.95

for example. However, UV o is better than UV o when confidence level is less than 0.85.

4.6 Conclusions

One-sided simultaneous confidence bands have been studied in this chapter. Methods

have been given to compute the exact one-sided simultaneous confidence bands for the

percentile line over a finite interval of the covariate x. It is observed that the exact

bands can be much narrower than the corresponding conservative bands.
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Table 4.1: Ratios of the average widths of bands relative to Band UV o (1− α = 0.90,
γ = 0.95)

n ss SBo TBUo TBEo V o TTo OMo UV o

0.1 0.9861 0.9869 0.9891 0.9991 0.9998 0.9915 1

0.5 1.0155 1.0099 0.9992 0.9963 0.9993 0.9899 1

10 1.0 1.1453 1.1266 1.0867 1.0030 1.0005 1.0323 1

10.0 1.3921 1.3415 1.2287 1.0299 1.0039 1.0372 1

50.0 1.4025 1.3484 1.2267 1.0331 1.0038 1.0191 1

0.1 0.9804 0.9813 0.9831 0.9990 0.9999 0.9867 1

0.5 1.0585 1.0514 1.0366 0.9989 1.0000 1.0106 1

20 1.0 1.1790 1.1619 1.1267 1.0041 1.0005 1.0500 1

10.0 1.3216 1.2874 1.2170 1.0176 1.0015 1.0376 1

50.0 1.3259 1.2902 1.2165 1.0194 1.0016 1.0260 1

0.1 0.9753 0.9762 0.9777 0.9990 0.9999 0.9818 1

0.5 1.0832 1.0753 1.0597 1.0000 1.0000 1.0236 1

30 1.0 1.1926 1.1767 1.1449 1.0045 1.0005 1.0569 1

10.0 1.2950 1.2675 1.2124 1.0136 1.0009 1.0375 1

50.0 1.2972 1.2688 1.2116 1.0146 1.0009 1.0277 1

0.1 0.9725 0.9729 0.9741 0.9990 1.0000 0.9785 1

0.5 1.1176 1.1091 1.0930 1.0010 1.0002 1.0391 1

50 1.0 1.2063 1.1925 1.1651 1.0043 1.0004 1.0618 1

10.0 1.2722 1.2513 1.2103 1.0097 1.0006 1.0364 1

50.0 1.2733 1.2520 1.2097 1.0105 1.0006 1.0288 1

0.1 0.9748 0.9747 0.9746 0.9991 0.9999 0.9770 1

0.5 1.1565 1.1487 1.1337 1.0018 1.0001 1.0562 1

100 1.0 1.2182 1.2073 1.1854 1.0039 1.0002 1.0643 1

10.0 1.2539 1.2397 1.2109 1.0068 1.0004 1.0349 1

50.0 1.2542 1.2395 1.2103 1.0072 1.0002 1.0291 1
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Table 4.2: Ratios of the average widths of bands relative to Band UV o (1− α = 0.99,
γ = 0.95)

n ss SBo TBUo TBEo V o TTo OMo UV o

0.1 0.9910 0.9909 0.9914 0.9995 0.9998 0.9978 1

0.5 1.0783 1.0735 1.0628 0.9998 1.0004 1.0020 1

10 1.0 1.2429 1.2309 1.2027 1.0067 1.0019 0.9968 1

10.0 1.5241 1.4946 1.4247 1.0275 1.0058 0.8355 1

50.0 1.5353 1.5040 1.4296 1.0295 1.0059 0.7968 1

0.1 0.9886 0.9886 0.9886 0.9996 0.9999 0.9972 1

0.5 1.1344 1.1281 1.1142 1.0006 1.0001 1.0022 1

20 1.0 1.2865 1.2737 1.2455 1.0064 1.0012 0.9796 1

10.0 1.4567 1.4329 1.3810 1.0168 1.0025 0.8325 1

50.0 1.4621 1.4372 1.3831 1.0178 1.0026 0.8053 1

0.1 0.9876 0.9875 0.9875 0.9995 0.9998 0.9963 1

0.5 1.1677 1.1605 1.1462 1.0013 1.0003 1.0024 1

30 1.0 1.3036 1.2907 1.2647 1.0059 1.0008 0.9693 1

10.0 1.4285 1.4077 1.3652 1.0131 1.0013 0.8353 1

50.0 1.4320 1.4105 1.3665 1.0139 1.0013 0.8129 1

0.1 0.9911 0.9910 0.9904 0.9996 0.9999 0.9964 1

0.5 1.2095 1.2019 1.1871 1.0020 1.0001 0.9969 1

50 1.0 1.3202 1.3084 1.2850 1.0052 1.0006 0.9599 1

10.0 1.4032 1.3863 1.3525 1.0091 1.0007 0.8430 1

50.0 1.4050 1.3877 1.3530 1.0093 1.0009 0.8252 1

0.1 1.0057 1.0050 1.0036 0.9996 0.9999 0.9987 1

0.5 1.2539 1.2467 1.2328 1.0021 1.0002 0.9868 1

100 1.0 1.3304 1.3206 1.3016 1.0040 1.0003 0.9457 1

10.0 1.3767 1.3642 1.3399 1.0060 1.0004 0.8537 1

50.0 1.3777 1.3650 1.3403 1.0063 1.0004 0.8403 1
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Table 4.3: Ratios of the average widths of bands relative to Band UV o (1− α = 0.90,
γ = 0.75)

n ss SBo TBUo TBEo V o TTo OMo UV o

0.1 0.9942 0.9948 0.9966 0.9991 0.9999 0.9951 1

0.5 0.9967 0.9965 0.9969 0.9983 0.9998 0.9975 1

10 1.0 1.0279 1.0233 1.0134 1.0034 1.0005 1.0078 1

10.0 1.0737 1.0583 1.0242 1.0147 1.0013 0.9945 1

50.0 1.0753 1.0587 1.0217 1.0156 1.0011 0.9887 1

0.1 0.9920 0.9928 0.9945 0.9991 0.9999 0.9917 1

0.5 1.0079 1.0066 1.0044 1.0001 1.0000 1.0039 1

20 1.0 1.0327 1.0281 1.0189 1.0032 1.0003 1.0125 1

10.0 1.0576 1.0478 1.0272 1.0091 1.0006 1.0037 1

50.0 1.0585 1.0478 1.0263 1.0097 1.0006 1.0005 1

0.1 0.9909 0.9916 0.9931 0.9992 0.9999 0.9900 1

0.5 1.0147 1.0131 1.0099 1.0010 1.0001 1.0090 1

30 1.0 1.0367 1.0322 1.0237 1.0035 1.0002 1.0163 1

10.0 1.0542 1.0461 1.0296 1.0070 1.0003 1.0074 1

50.0 1.0547 1.0463 1.0289 1.0075 1.0003 1.0050 1

0.1 0.9895 0.9901 0.9915 0.9992 0.9999 0.9880 1

0.5 1.0217 1.0198 1.0157 1.0013 1.0001 1.0140 1

50 1.0 1.0385 1.0346 1.0267 1.0030 1.0001 1.0190 1

10.0 1.0499 1.0440 1.0317 1.0055 1.0002 1.0113 1

50.0 1.0502 1.0439 1.0312 1.0056 1.0001 1.0092 1

0.1 0.9900 0.9905 0.9914 0.9993 1.0000 0.9884 1

0.5 1.0296 1.0274 1.0233 1.0015 1.0000 1.0207 1

100 1.0 1.0401 1.0372 1.0308 1.0023 1.0001 1.0218 1

10.0 1.0472 1.0428 1.0339 1.0037 1.0001 1.0149 1

50.0 1.0472 1.0427 1.0337 1.0039 1.0001 1.0136 1
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Table 4.4: Ratios of the average widths of bands relative to Band UV o (1− α = 0.99,
γ = 0.75)

n ss SBo TBUo TBEo V o TTo OMo UV o

0.1 0.9955 0.9956 0.9964 0.9995 0.9999 1.0012 1

0.5 1.0111 1.0095 1.0068 1.0005 1.0000 1.0041 1

10 1.0 1.0463 1.0420 1.0310 1.0044 1.0012 0.9754 1

10.0 1.0925 1.0815 1.0558 1.0124 1.0015 0.8680 1

50.0 1.0943 1.0824 1.0549 1.0129 1.0016 0.8512 1

0.1 0.9938 0.9940 0.9947 0.9995 0.9999 1.0022 1

0.5 1.0245 1.0224 1.0185 1.0015 1.0000 0.9957 1

20 1.0 1.0527 1.0477 1.0382 1.0038 1.0004 0.9593 1

10.0 1.0791 1.0706 1.0523 1.0080 1.0008 0.8696 1

50.0 1.0800 1.0709 1.0516 1.0084 1.0007 0.8576 1

0.1 0.9932 0.9934 0.9941 0.9995 1.0000 1.0038 1

0.5 1.0306 1.0282 1.0234 1.0015 1.0002 0.9913 1

30 1.0 1.0529 1.0483 1.0395 1.0036 1.0003 0.9521 1

10.0 1.0722 1.0650 1.0506 1.0066 1.0005 0.8713 1

50.0 1.0727 1.0650 1.0501 1.0069 1.0004 0.8612 1

0.1 0.9936 0.9939 0.9944 0.9996 0.9999 1.0055 1

0.5 1.0349 1.0327 1.0286 1.0009 1.0001 0.9829 1

50 1.0 1.0538 1.0501 1.0432 1.0032 1.0002 0.9436 1

10.0 1.0648 1.0597 1.0488 1.0048 1.0002 0.8721 1

50.0 1.0655 1.0599 1.0487 1.0052 1.0003 0.8634 1

0.1 0.9971 0.9972 0.9975 0.9998 1.0000 1.0088 1

0.5 1.0427 1.0406 1.0364 1.0014 1.0001 0.9698 1

100 1.0 1.0539 1.0513 1.0450 1.0020 1.0001 0.9320 1

10.0 1.0598 1.0556 1.0485 1.0028 1.0001 0.8728 1

50.0 1.0599 1.0556 1.0484 1.0030 1.0001 0.8664 1
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Table 4.5: Ratios of the average widths of OMo relative to UV o (γ = 0.95)

n ss 1− α = 0.95 1− α = 0.85 1− α = 0.80

0.1 0.9946 0.9883 0.9851

0.5 0.9948 0.9830 0.9744

10 1.0 1.0183 1.0406 1.0480

2.0 1.0145 1.0923 1.1239

8.0 0.9581 1.1068 1.1698

10.0 0.9510 1.1051 1.1703

50.0 0.9240 1.0948 1.1676

0.1 0.9913 0.9802 0.9737

0.5 1.0081 1.0100 1.0101

20 1.0 1.0200 1.0742 1.0993

2.0 1.0023 1.1112 1.1599

8.0 0.9531 1.1160 1.1891

10.0 0.9480 1.1147 1.1896

50.0 0.9292 1.1084 1.1886

0.1 0.9898 0.9753 0.9671

0.5 1.0137 1.0310 1.0410

30 1.0 1.0162 1.0922 1.1283

2.0 0.9933 1.1195 1.1785

4.0 0.9661 1.1234 1.1967

8.0 0.9470 1.1207 1.2013

10.0 0.9426 1.1197 1.2017

50.0 0.9271 1.1149 1.2013

0.1 0.9874 0.9690 0.9587

0.5 1.0174 1.0575 1.0774

50 1.0 1.0087 1.1100 1.1583

2.0 0.9813 1.1277 1.1962

8.0 0.9405 1.1263 1.2116

10.0 0.9369 1.1254 1.2119

50.0 0.9245 1.1217 1.2115

0.1 0.9868 0.9676 0.9563

0.5 1.0172 1.0935 1.1312

100 1.0 0.9959 1.1281 1.1923

2.0 0.9670 1.1361 1.2161

8.0 0.9328 1.1319 1.2246

10.0 0.9301 1.1312 1.2246

50.0 0.9205 1.1284 1.2244
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Chapter 5

Two-sided Simultaneous Tolerance

Bands, Prediction and Calibration

The basic model which will be assumed throughout this chapter is the simple lin-

ear regression model (1.3). In previous chapters, we study methods of constructing

simultaneous confidence bands. This chapter treats the other three problems associ-

ated with linear regression analysis: simultaneous prediction intervals, simultaneous

tolerance bands and statistical calibration.

5.1 Prediction

For one future observation Yf0 = x′
f0
β + ef0 at xf0 , a specific value of the independent

variable x, where ef0 ∼ N(0, σ2), one can construct an exact prediction interval for Yf0 .

Since Yf0−x′
f0
β̂ = ef−x′

f0
(β̂−β) ∼ N(0, σ2(1+x′

f0
(X ′X)−1xf0) where xf0 = (1, xf0)

′,

then
Yf0

−x′
f0

β̂

σ̂
√

1+x′
f0

(X′X)−1xf0

has a t distribution with ν degrees of freedom and

P
{
Yf0 ∈ x′

f0
β̂ ± tα/2ν σ̂

√
1 + x′

f0
(X ′X)−1xf0

}
= 1− α. (5.1)

Thus a 1− α perdition interval for Yf0 is x′
f0
β̂ ± t

α/2
ν σ̂

√
1 + x′

f0
(X ′X)−1xf0 .

One may also wish to predict the values of k(≥ 2) future observations Yf1 , Yf2 , · · · ,
Yfk at k given settings of the independent variable xf1 , xf2 , · · · , xfk , respectively. The

natural predictors are still given by x′
fi
β̂, i = 1, · · · , k. Here Yfi = x′

fi
β + efi with

efi ∼ N(0, σ2), i = 1, · · · , k. The simultaneous prediction intervals for these k future

observations can be given by the general form

P
{
Yfi ∈ x′

fi
β̂ ± cσ̂

√
1 + x′

fi
(X ′X)−1xfi , i = 1, · · · , k

}
= 1− α. (5.2)

Liberman (1961) chose c as (kFα
k,ν)

−1/2 and so gave the prediction intervals as Yfi ∈
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x′
fi
β̂ ± (kFα

k,ν)
−1/2σ̂

√
1 + x′

fi
(X ′X)−1xfi , i = 1, · · · , k, which are conservative.

Liberman (1961) also considered the following conservative prediction intervals. The

idea is simple. An exact prediction interval for k = 1 is given by (5.1). For k ≥ 2,

simply replacing t
α/2
ν by t

α/2k
ν will give the confidence level at least 1 − α by using

Bonferroni Inequality, that is,

P{Yfi ∈ x′
fi
β̂ ± tα/2kν σ̂

√
1 + x′

fi
(X ′X)−1xfi , i = 1, · · · , k} > 1− α. (5.3)

This can be easily explained by taking the special case k = 2. Suppose A and B are

two events and P (A) = P (B) = α/2. Then P (A or B) = P(A) + P(B) − P(AB) ≤
P(A)+P(B) = α. Therefore, P (Ac ∩Bc) = 1−P (A or B) ≥ 1−α. Let A be the event

that the first future observation fails to fall into its prediction interval, and B be the

event that the second future observation fails to fall into its prediction interval. Then

1 − P (A or B) is the probability that both two future observations belong to their

corresponding prediction intervals. This probability is greater than 1−α. We are able

to construct exact prediction intervals for a finite number k ≥ 2 of future observations

in the following way. From (5.2), we have

P
{
Yfi ∈ x′

fi
β̂ ± cσ̂

√
1 + x′

f0
(X ′X)−1xfi , i = 1, · · · , k

}
= P

 |Yfi − x′
fi
β̂|

σ̂
√

1 + x′
fi
(X ′X)−1xfi

≤ c, i = 1, · · · , k


= P

 max
i=1,··· ,k

|Yfi − x′
fi
β̂|

σ̂
√

1 + x′
fi
(X ′X)−1xfi

≤ c


= P

 max
i=1,··· ,k

∣∣∣∣Yfi
−x′

fi
β

σ
−

x′
fi
β̂−x′

fi
β

σ

∣∣∣∣
(σ̂/σ)

√
1 + x′

fi
(X ′X)−1xfi

≤ c

 . (5.4)

Denote Nfi =
Yfi

−x′
fi
β

σ
, i = 1, · · · , k. It is clear that Nfi ∼ N(0, 1) for each i. Let

P =

(
1/
√
n 0

0 P−1
1

)
be the square root of (X ′X)−1 which is given in (1.5). Denote

U = σ̂/σ ∼
√

χ2
ν/ν and N0 = (N01, N02)

′ = P−1(β̂ − β)/σ ∼ N (0, I). We have
x′
fi
β̂−x′

fi
β

σ
= (Pxfi)

′P−1(β̂ − β)/σ = (Pxfi)
′N0 = N01/

√
n + N02P

−1
1 xfi . Therefore,

(5.4) can be written as

P

 max
i=1,··· ,k

|Nfi − (Pxfi)
′N0|

U
√
1 + x′

fi
(X ′X)−1xfi

≤ c

 (5.5)

= P{S ≤ c}, (5.6)
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where S = max
i=1,··· ,k

|Nfi
−(Pxfi

)′N0|
U
√

1+x′
fi
(X′X)−1xfi

. Similar to Chapter 2-4, we can use simulation

method and numerical quadrature method to calculate the critical constant c in (5.5).

In each simulation of S, we first generate independent standard normal vector

N0 ∼ N(0, I), Nfi ∼ N(0, 1), i = 1, · · · , k and U ∼
√
χ2
ν/ν and then calculate S from

its definition in (5.6). Donnelly (2003) suggested to use simulation to find c.

The probability in (5.5) can also be expressed as

∫ ∞

u=0

∫ ∞

n2=−∞

∫ ∞

n1=−∞
P

 max
i=1,··· ,k

∣∣Nfi − (n1/
√
n+ n2P

−1
1 xfi)

∣∣
u
√

1 + x′
fi
(X ′X)−1xfi

≤ c

 f(v)dv, (5.7)

where f(v) is the joint probability density function of the random vector of v =

(n1, n2, u)
′. Since N01 ∼ N(0, 1), N02 ∼ N(0, 1) and U ∼

√
χ2
ν/ν are independent and

from (1.4), we have

f(v) = π−1e−(n2
1+n2

2+νu2)/22−ν/2νν/2uν−1/Γ(ν/2).

Denote Sxxi = 1 + x′
fi
(X ′X)−1xfi and

k(v) = P

 max
i=1,··· ,k

∣∣Nfi − (n1/
√
n+ n2P

−1
1 xfi)

∣∣
u
√

1 + x′
fi
(X ′X)−1xfi

≤ c

 .

Then

k(v) = P
{
n1/

√
n+ n2P

−1
1 xfi − cu

√
Sxxi ≤ Nfi

≤ n1/
√
n+ n2P

−1
1 xfi + cu

√
Sxxi, i = 1, · · · , k

}
=

k∏
i=1

[
Φ
(
n1/

√
n+ n2P

−1
1 xfi + cu

√
Sxxi

)
− Φ

(
n1/

√
n+ n2P

−1
1 xfi − cu

√
Sxxi

)]
.

Expression (5.7) is therefore equal to∫ ∞

u=0

∫ ∞

n2=−∞

∫ ∞

n1=−∞
k(v)f(v)dv.

It involves a three-dimensional integration and can be used to compute c for a given

confidence level 1− α.

It should be emphasized that the prediction intervals given above are only for a finite

number of future observations. If the number of future observations k is very large,

these prediction intervals may be very wide. If the number of future observations k is

infinite, these prediction intervals cannot be used at all. In some cases, the total number

of predictions may be unknown. In these circumstances, we should use simultaneous
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tolerance bands for prediction, which bracket 100p percent proportion of all future

observations with a certain confidence level 1− α.

5.2 Calibration

Calibration, also known as discrimination and the reverse prediction, has been widely

used in measurement science and other applications. Statistical calibration with re-

gression has a history dating back to Eisenhart (1939). Suppose one has the training

data set E := {(xj, yj), j = 1, · · · , n} which is used to fit a regression line of Y on x.

He also has k additional observations Yf1 , Yf2 , · · · , Yfk . But the corresponding values

of independent variable xf1 , xf2 , · · · , xfk are unknown. Then calibration intervals can

be used to estimate the unknown xf1 , xf2 , · · · , xfk and bracket them with a certain

confidence level. Comparing with calibration, the prediction problem is the reverse.

The values xf1 , xf2 , · · · , xfk are known, and the aim is to predict Yf1 , Yf2 , · · · , Yfk .

5.2.1 Finite number of calibrations

Suppose the value of k is finite. From (5.3), we know that, when c = t
α/2k
ν all the

points x which satisfy

x′
fi
β̂ − cσ̂

√
1 + x′

fi
(X ′X)−1xfi ≤ Yfi ≤ x′

fi
β̂ + cσ̂

√
1 + x′

fi
(X ′X)−1xfi (5.8)

form a confidence interval for the unknown xfi . The k confidence sets for the unknown

xf1 , xf2 , · · · , xfk have a combined probability 1− α. Note that (5.8) is equivalent to(
Yfi − x′

fi
β̂
)2

≤ c2σ̂2
[
1 + x′

fi
(X ′X)−1xfi

]
.

The confidence set for each xfi is the given by

C(Yfi) =

{
x :
(
Yfi − x′β̂

)2
≤ c2σ̂2

[
1 + x′(X ′X)−1x

]}
.

5.2.2 Infinite number of calibrations

When k, the number of calibrations is infinite, simultaneous tolerance bands should

be used to give infinitely many calibration sets. Assume x is a desirable but expensive

or difficult measurement and Y represents a cheaper and more convenient instrument

response obtainable. After fitting the linear regression model based on the training data

set, for each given future Y value, one can get the confidence set for the corresponding

x, from a simultaneous tolerance band.
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Krishnamoorthy (2001) provided a data set from a calibration experiment of breath-

alyzers which are used to measure blood alcohol concentration. Let x be the true alco-

hol level in blood stream and Y the reading on a breathalyzer of a driver. Policemen

usually use breathalyzer to test drivers blood alcohol concentration values. To test a

person’s real blood alcohol is expensive and difficult. But to use breathalyzer is conve-

nient. After the fit, from a training data set, for a future breathalyzer reading Y , one

can find the corresponding calibration confidence set for x. Denote the confidence set

for the unknown x by C(Y ). For an infinite sequence of future Y values, the infinite

sequence of confidence sets C(Y ) have the property that: with confidence level 1 − α

(with respect to the training data set), the proportion of confidence sets C(Y ) contain-

ing the true x values is at least p, where 0 < 1−α < 1 and 0 < p < 1 are pre-specified

factors. It has been pointed out that this property is desirable in many applications

in the literature, see Lieberman and Miller (1963), Scheffé (1973), Mee et al. (1991)

and Mee and Eberhardt (1996). For example, the traffic police who use breathalyzers

to catch drunk drivers would require the two factors 1 − α and p to be close to one.

Assume a prior that all the unknown x values corresponding to the future Y -values are

in a given interval (a, b). For example, the true blood alcohol level of a person cannot

be less than 0 or more than a threshold. The (p, 1− α)-simultaneous tolerance bands

[L(x; E), U(x; E)] over the interval x ∈ (a, b) satisfy

PE{PY (x){L(x; E) < Y (x) < U(x; E)|E , x} ≥ p for all x ∈ (a, b)} ≥ 1− α,

where Y (x) denotes a future Y -value corresponding to x and Y (x) is independent of

the training data E . The probability PY (x) is with respect to Y (x) and conditional on

E , and the probability PE is with respect to E . Then for each future Y the confidence

set C(Y ) for the corresponding x is defined as

C(Y ) = {x ∈ (a, b) : L(x; E) < Y < U(x; E)}.

It is shown in Scheffé (1973, Appendix B) that for an infinite sequence of future Y -

values, at least p proportion of confidence sets C(Y ) contain the true x-values with

confidence level 1− α.

Construction of (p, 1− α)-simultaneous tolerance bands is first addressed by

Lieberman and Miller (1963), and there are three construction methods in the litera-

ture so far. The first is the probability set method by Wilson (1967) and

Limam and Thomas (1988). These bands are conservative and two-sided. The second

is the construction of central p-proportion simultaneous confidence bands by

Lieberman and Miller (1963), Lieberman et al. (1967) and Scheffé (1973). These bands

are also conservative and two-sided.

The third is an exact method by Mee et al. (1991) for two-sided bands and
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Odeh and Mee (1990) for one-sided bands. Since the first two methods are conserva-

tive while Mee et al. (1991) method is exact, the two-sided bands of Mee et al. (1991)

are usually narrower and so better than the conservative bands, as demonstrated nu-

merically in Mee et al. (1991). The focus of this chapter is the construction of exact

two-sided (p, 1 − α)-simultaneous tolerance bands. One example is demonstrated in

Section 5.3.6.

5.3 Simultaneous tolerance bands

Let Y (x) = x′β+ex denote a future observation at x with ex ∼ N(0, σ2). Assume Y (x)

is independent of Y in (1.3). For a given x value, a (p, 1 − α)-tolerance interval for

Y (x) contains at least 100p% proportion of the Y (x) distribution with 1−α confidence

level. In some practical problems, one may be interested in infinite future observations

corresponding to x values in a prespecified covariate interval (a, b) based on the same

training data set E := {(xj, yj), j = 1, · · · , n}, or equivalently (β̂, σ̂). This is the

motivation of constructing simultaneous tolerance bands over a constrained covariate

interval. Based on the same training data set, a (p, 1−α)-simultaneous tolerance band

for infinite future observations Y (x) over x ∈ (a, b) contains at least 100p% proportion

of the Y (x) distribution for any x ∈ (a, b) simultaneously with confidence level 1− α.

Denote the coverage probability at x by

C(x, β̂, σ̂) = PY (x){x′β̂ − k(x)σ̂ ≤ Y (x) ≤ x′β̂ + k(x)σ̂}, (5.9)

where the tolerance factor k(x) is a positive function of x and sought to satisfy the

condition

Pβ̂,σ̂{C(x, β̂, σ̂) ≥ p for all x ∈ (a, b)} ≥ 1− α. (5.10)

Then
[
x′β̂ − k(x)σ̂,x′β̂ + k(x)σ̂

]
is called a simultaneous tolerance band for Y (x) over

x ∈ (a, b), which contains at least p proportion of Y (x) distribution simultaneously for

all x ∈ (a, b) with confidence level 1− α.

Let b = (β̂ − β)/σ ∼ N (0, (X ′X)−1) and U = σ̂/σ ∼
√

χ2
ν/ν denote the two

pivotal quantities. Then the coverage probability in (5.9) can be expressed in terms of

the pivotal quantities as

C(x′b, k(x)U) = Φ (x′b+ k(x)U)− Φ (x′b− k(x)U) . (5.11)

It is clear that (5.11) is a decreasing function of |x′b| and an increasing function of
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k(x). Then (5.10) can be rewritten as

P{C(x′b, k(x)U) ≥ p for all x ∈ (a, b)} = 1− α. (5.12)

Methods of constructing simultaneous tolerance bands for given p, (a, b) and 1− α

have been considered by many authors as pointed out in Section 5.2.2 above. In the

following sections, different methods will be discussed.

5.3.1 Probability Set Methods

Denote G as a (1− α) level probability set for (b, U), i.e.,

P{(b, U) ∈ G} ≥ 1− α.

Suppose k(x) is the optimal tolerance factor based on G in the sense that

k(x) = min {k : C(x′b, kU) ≥ p, for (b, U) ∈ G} . (5.13)

Then (b, U) ∈ G implies that C(x′b, k(x)U) ≥ p for all x ∈ (−∞,∞). Therefore

P{C(x′b, k(x)U) ≥ p, x ∈ (−∞,∞)} ≥ P{(b, U) ∈ G} ≥ 1− α.

Wilson (1967), Limam and Thomas (1988) and Chvosteková (2013) constructed two-

sided simultaneous tolerance bands by using the probability set method over x ∈
(−∞,∞).

5.3.1.1 The method of Wilson (1967)

Wilson (1967) constructed probability set for (b, U) as

GW = {(b, U) : b′(X ′X)b+ 2ν(U −m)2 ≤ c}, (5.14)

where ν = n− 2 and m = [(2ν − 1)/(2ν)]1/2. By noting that b′(X ′X)b+ 2ν(U −m)2

has the approximate distribution χ2
3 as n → ∞, Wilson suggested to use c = χ2

3(1−α)

and so GW is an approximate 1− α probability set for (b, U).

Note that b′(X ′X)b ∼ χ2
2 and U ∼

√
χ2
ν/ν. Expression (5.14) implies (U −m)2 ≤

c/(2ν) and therefore U ∈ m ±
√
c/(2ν). As a matter of fact, this method can be

improved as the exact value of c can be found such that

1− α =

∫ m+
√

c/(2ν)

m−
√

c/(2ν)

χ2
2

(
c− 2ν(u−m)2

)
f σ̂

σ
(u)du,
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where χ2
2(.) denotes the cumulative distribution function of the chi-square distribution

with 2 degrees of freedom, and f σ̂
σ
(u) denotes the probability density function of U =

σ̂/σ and given in (1.4).

For given x and k, define the following sets in R2

H(x, k) = {(y, r) : y = x′b, r = kU, (b, U) ∈ GW} (5.15)

and

Sp = {(y, r) : C(y, r) ≥ p}.

From (5.11), C(y, r) = Φ(y + r) − Φ(y − r) and therefore Sp = {(y, r) : Φ(y + r) −
Φ(y − r) ≥ p}. The optimal tolerance factor in (5.13) becomes

k(x) = min {k : H(x, k) ⊆ Sp} .

Let P denote the square root matrix of (X ′X)−1. Then, for each x and b, we have

|x′b| = |(Px)′(P−1b)|

≤ |(Px)′| · |P−1b|

=
√

x′(P ′P )x ·
√

b′(X ′X)b. (5.16)

It is clear that

max
x∈(−∞,∞)

|x′b|√
x′(X ′X)−1x

≤
√
b′(X ′X)b. (5.17)

Inequality (5.17) is also known as the Scheffé projection result; see e.g. Miller (1981).

Applying (5.17) to (5.14) gives

|x′b| ≤ Ax(U) for all x ∈ (−∞,∞), U ∈ [m−
√
c/(2ν),m+

√
c/(2ν)], (5.18)

where

Ax(U) = [c− 2ν(U −m)2]1/2δ(x)

and

δ(x) =
√

x′(X ′X)−1x

is the standard error of x′b. Then the set H(x, k) is enlarged to

H∗(x, k) = {(y, r) = (x′b, kU) : y2/δ(x)2 + 2ν(r/k −m)2 ≤ c},
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and the tolerance factor k(x) is also enlarged to satisfy

k(x) = min {k : H∗(x, k) ⊆ Sp} . (5.19)

The shape of H∗(x, k) is an ellipse. H∗(x, k) ⊆ Sp means that H∗(x, k) must be

contained in Sp. When k decreases, the ellipse H∗(x, k) has its centre move towards

the origin and the r-axis smaller. The k value which makes this ellipse tangent to Sp

is the k(x) satisfying (5.19). However Wilson (1967) did not find the exact value of

k(x) such that the ellipse is tangent to the (lower) boundary of Sp, neither did the

Modified Wilson method in Limam and Thomas (1988) nor Chvosteková (2013). They

approximated the boundary of the region Sp and used the k(x) for which the ellipse is

tangent to the approximate boundary of Sp instead.

More precisely, they all used the upper branch of the hyperbola (r−r0)−y2 = h2 as

the approximation of the (lower) boundary of Sp, where r0 = Φ−1(p) and h2 is chosen

to give a good approximation; see the following table given by Wilson.

Table 5.1: Table of h

p r0 h2

0.50 0 0.455

0.75 0.674 0.250

0.80 0.842 0.107

0.90 1.28 0.0657

0.95 1.65 0.0438

0.99 2.33 0.0244

The optimal tolerance factor is chosen such that the ellipsoidal set H∗(x, k) is on and

above the hyperbola. Substituting y2 = (r − r0)
2 − h2 into the boundary equation of

H∗(x, k) gives a quadratic function of r

(r − r0)
2 − h2 − h2 − [c− 2ν(r/k −m)2]δ(x)2 = 0.

Setting the discriminant of this the quadratic equation in r equal to 0 and solving

the quadratic equation in k gives two solutions. The largest one is used as Wilson’s

tolerance factor. This method is not only conservative but also approximate, and so

not recommended.

5.3.1.2 The method of Limam and Thomas (1988)

Limam and Thomas (1988) constructed 1−α probability set GLT for the pivotal quan-

tities (b, U) as

GLT = {(b, U) : b′(X ′X)b ≤ U2c21 and U ≥ c2}, (5.20)
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where c2 =
√

χ2
ν(α/2)/ν and c21 = 2F2,ν(1 − α/2) with F2,ν(1 − α/2) being (1 − α/2)

point of the F distribution with 2 and ν degrees of freedom.

Since β̂ ∼ N (β, σ2(X ′X)−1) and σ̂2 ∼ σ2χ2
ν/ν, we know that event A = {(β̂ −

β)′(X ′X)(β̂ − β) ≤ σ2c21} satisfies P (A) ≥ 1 − α/2 and event B = {0 < σ < σ̂/c2}
satisfies P (B) ≥ 1 − α/2. Applying the Bonferroni inequality to the events A and B

gives P{(b, u) ∈ GLT} > 1 − α. Actually we can find the exact values of c1 and c2 in

(5.20) such that P{(b, u) ∈ GLT} = 1− α.

Similar to Wilson’s method, Limam and Thomas (1988) then tried to find the opti-

mal tolerance factor satisfying (5.13) with G = GLT . Applying Scheffé projection result

(5.17) again to GLT gives

|x′b| ≤ Uc1δ(x) for all x and (b, U) ∈ GLT ,

where δ(x) =
√

x′(X ′X)−1x. Hence we have

C(x′b, k(x)U) ≥ C(Uc1δ(x), k(x)U) for all (b, U) ∈ GLT ,

since C(y, r) = Φ(y + r) − Φ(y − r) is decreasing in |y|. Also, note that the function

C(Uc1δ(x), k(x)U) = Φ [U (c1δ(x) + k(x))] − Φ[U(c1δ(x) − k(x))] is increasing in U

when C ≥ 1/2. Therefore

C(Uc1δ(x), k(x)U) ≥ C(c2c1δ(x), c2k(x)) for all U ≥ c2.

The optimal tolerance factor k can be solved from the equation

p = C(c2c1δ(x), c2k(x))

= Φ(c2c1δ(x) + c2k(x))− Φ(c2c1δ(x)− c2k(x)).

This method is conservative but not approximate.

5.3.1.3 The modified Wilson Method in Limam and Thomas (1988)

Based on the method of Wilson (1967), Limam and Thomas (1988) proposed a modified

method. This method is still approximately conservative. They enlarged GW , the

probability set for (b, U), to GMW to give a smaller c in (5.14) and consequently a

smaller tolerance factor k(x). From (5.18) and C(x′b, kU) = Φ(x′b+kU)−Φ(x′b−kU)

is decreasing function in |x′b|, we know

C(x′b, kU) ≥ C(Ax(u), kU) for (b, u) ∈ GW ,
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where Ax(U) = [c− 2ν(U −m)2]1/2δ(x). Since Ax(U) decreases and kU increases in U ,

the coverage C(Ax(U), kU) = Φ(Ax(U)+kU)−Φ(Ax(U)−kU) is increasing in U over

U ∈ [m,m+
√
c/(2ν)], then C(Ax(U), kU) is minimized at U = m. Therefore, only the

subset of GW on U ∈ [m−
√
c/(2ν),m],is needed for determining the tolerance factor

k(x).

The set GMW in Limam and Thomas (1988) is defined as GMW = GM1 ∪ GM2,

where

GM1 = {(b, U) : b′(X ′X)b+ 2ν(U −m)2 ≤ cm for m−
√
c/(2ν) ≤ U ≤ m}

and

GM2 = {(b, U) : b′(X ′X)b ≤ U2cm/m
2 for U ≥ m}.

For c = cm, we have GMW ⊂ GW and therefore P{GMW} < P{GW}. Likewise,

P{GMW} = P{GW} implies cm < c. It is clear that the set GM2 intersects with

GM1 at U = k. The value of cm can be computed such that

1− α =

∫ m

m−
√

c/(2ν)

χ2
2

(
cm − 2ν(u−m)2

)
f σ̂

σ
(u)du+

∫ ∞

m

χ2
2

(
cmu

2/m2
)
f σ̂

σ
(u)du.

For a given cm, the tolerance factor k(x) can be computed by using the Wilson’s

method.

As a matter of fact, this method can be improved further. One can construct

GM2∗ = {(b, U) : b′(X ′X)b ≤ ςU2c∗/m2 for U ≥ m} with ς > 1 to make the proba-

bility set GMW larger and consequently the value of c∗ smaller. But this conservative

method is still based on the Wilson’s method which evolves approximation and so not

recommended.

5.3.1.4 The Method of Chvosteková

Chvosteková (2013) constructed the (1− α) probability set for (b, U) as

GC = {(b, U) : b′(X ′X)b− n ln[U2(n− 2)] ≤ cC}, (5.21)

where cC satisfies

P (χ2
2 ≤ cC + n ln[u2(n− 2)])

=

∫ ∞

0

P
(
χ2
2 ≤ cC + n ln[u2(n− 2)]

)
f σ̂

σ
(u)du = 1− α.

Chvosteková (2013) considered the tolerance factor k(x) in (5.13) as a function of

d = δ(x) =
√

x′(X ′X)−1x. Similar to the modified Wilson Method, for a given cC ,
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the tolerance factor k(d) can be computed by using the Wilson’s method such that

P{C(x′b, k(x)U) ≥ p, x ∈ (−∞,∞)} ≥ P{(b, U) ∈ GC} ≥ 1− α.

Again, this method is approximately conservative and so not recommended.

5.3.2 Simultaneous tolerance bands for central p proportion

Lieberman and Miller (1963) and Scheffé (1973) considered tolerance bands for the

central p proportion. The central p proportion of the standard normal distribution

centered at x′β is given by

Ix(p) = (x′β − z(1+p)/2σ,x
′β + z(1+p)/2σ) for all x ∈ (a, b) (5.22)

where z(1+p)/2 is the two-sided p-percentile point of the normal distribution, that is,

p =
1√
2π

∫ z(1+p)/2

−z(1+p)/2

exp(−y2/2)dy.

Simultaneous tolerance bands which contain the central p-proportion over x ∈ (a, b)

have the general form as

P{Ix(p) ⊂ x′β̂ ± k(x)σ̂ for all x ∈ (a, b)} = 1− α. (5.23)

Since Y (x) = x′β + e with e ∼ N(0, σ2), then P{Y (x) ∈ Ix(p)} = p and the band in

(5.23) satisfies

P
{
PY (x)

[
x′β̂ − k(x)σ̂ ≤ Y (x) ≤ x′β̂ + k(x)σ̂

]
≥ p for all x ∈ (a, b)

}
≥ 1− α.

Lieberman and Miller (1963) proposed a method of constructing tolerance bands for a

fixed p and all values of x ∈ (−∞,∞). They also considered methods for different p and

all x ∈ (−∞,∞). Scheffé (1973) considered the construction of conservative tolerance

bands for a fixed p central proportion over a finite covariate interval x ∈ (a, b).

5.3.2.1 The method of Lieberman (1963) for central p proportion

Lieberman and Miller (1963) constructed tolerance bands for a fixed p central propor-

tion in regression. For the simple linear regression case, they considered the tolerance

bands over the whole range x ∈ (−∞,∞) such that, at the specified confidence level

1 − α, simultaneously for all x ∈ (−∞,∞), at least the central p proportion of the

Y (x) distribution is contained in the tolerance bands. The tolerance band constructed
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by Lieberman and Miller (1963) is of the form

1− α = P
{
Ix(p) ⊂ x′β̂ ± cLσ̂

√
x′(X ′X)−1x for all x ∈ (−∞,∞)

}
. (5.24)

Here the constant cL satisfies

1− α = P

{
(Z1 ±

√
nz(1+p)/2)

2 + Z2
2

χ2
ν/ν

≤ (cL)
2

}
, (5.25)

where Z1 ∼ N(0, 1), Z2 ∼ N(0, 1) and χ2
ν are independent random variables.

Lemma 5.3.1. For C > 0,
n∑

i=1

a2i ≤ C2,

if and only if ∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤ C

(
n∑

i=1

b2i

)−1/2

for all b1, · · · , bn,

provided a1b1 ̸= 0.

Lemma 5.3.1 can be easily proved by using Cauchy-Schwarz inequality; see Lieber-

man and Miller (1963). Notice that (5.24) is equivalent to

P

{∣∣∣∣∣ 1√
n

√
n(β0 − β̂0)

σ
+

x√
Sxx

√
Sxx(β1 − β̂1)

σ
± z(1+p)/2

∣∣∣∣∣ ≤
cLσ̂
√
1/n+ x2/Sxx

σ
for all x ∈ (−∞,∞)

}
. (5.26)

Since β̂ = (β̂0, β̂1) ∼ N (β, σ2(X ′X)−1) and (X ′X)−1 =

(
1/
√
n 0

0 1/
√
Sxx

)
, then

we have
√
n(β0−β̂0)

σ
∼ N(0, 1) and

√
Sxx(β1−β̂1)

σ
∼ N(0, 1). Therefore, (5.26) can be written

as

P

{∣∣∣∣ 1√
n

(
Z1 ±

√
nz(1+p)/2

)
+

x√
Sxx

Z2

∣∣∣∣ ≤
cLσ̂
√
1/n+ x2/Sxx

σ
for all x ∈ (−∞,∞)

}
. (5.27)

Applying Lemma 5.3.1 to (5.27) gives (5.25). The critical constant cL in (5.25) can be

solved by numerical quadrature method. For a given cL, note that the probability in

119



(5.25) can be expressed as

h(cL) =

∫ ∞

−∞

∫ ∞

0

[
Φ(
√

cL2u2 − y2 −
√
nz(1+p)/2)−

Φ(−
√
cL2u2 − y2 +

√
nz(1+p)/2)

]
f σ̂

σ
(u)φ(y)dudy.

where f σ̂
σ
(u) is the probability density function of

√
χ2
ν/ν and φ(y) = 1√

2π
e−y2/2 is the

probability density function of the standard normal distribution. We can search for

the value of cL such that h(cl) = 1− α.

5.3.2.2 The method of Scheffé (1973)

Scheffé (1973) also considered tolerance bands for central p proportion in regression.

For the simple linear regression case, the tolerance band is of the form

Ix(p) ⊂ x′β̂ ± σ̂
[
c1 + c2

√
x′(X ′X)−1x

]
for all x ∈ [a, b],

where Ix(p) is the central p proportion of the standard normal distribution centered at

x′β given in (5.22), and the critical constants c1 and c2 are determined such that

P
{
Ix(p) ⊂ x′β̂ ± σ̂

[
c1 + c2

√
x′(X ′X)−1x

]
for all x ∈ [a, b]

}
= 1− α. (5.28)

It is clear that the band in (5.28) satisfies

P
{
PY (x)

[
x′β̂ − σ̂

(
c1 + c1

√
x′(X ′X)−1x

)
≤ Y (x) ≤ x′β̂+

σ̂
(
c1 + c2

√
x′(X ′X)−1x

)]
≥ p for all x ∈ [a, b]

}
≥ 1− α. (5.29)

The fact that the probability of the event in (5.28) is 1−α implies that the probability

in (5.29) is at least 1−α. Using the pivotal quantities b = (β̂−β)/σ ∼ N (0, (X ′X)−1)

and U = σ̂/σ ∼
√

χ2
ν/ν in (5.29) gives the following probability statement

P
{
PN

[
x′b̂− U

(
c1 + c1

√
x′(X ′X)−1x

)
≤ N ≤ x′b̂+

U
(
c1 + c2

√
x′(X ′X)−1x

)]
≥ p for all x ∈ [a, b]

}
≥ 1− α, (5.30)

where N ∼ N(0, 1). It is worth noting that sufficient conditions for (5.30) are that

x′b̂− U
[
c1 + c2

√
x′(X ′X)−1x

]
≤ −z(1+p)/2 and

x′b̂+ U
[
c1 + c2

√
x′(X ′X)−1x

]
≥ z(1+p)/2 for all x ∈ [a, b]
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or ∣∣∣x′b̂
∣∣∣ ≤ U

[
c1 + c2

√
x′(X ′X)−1x

]
− z(1+p)/2 for all x ∈ [a, b]. (5.31)

The probability of the event in (5.31) is equivalent to the probability in (5.28). Note

that the probability space of (b̂, U) is 3-dimensional. In order to calculate c1 and c2 in

a reduced 2-dimensional space, they used Cauchy-Schwarz inequality to enlarge |x′b|
in (5.31):

|x′b| = |(Px)′(P−1b)|

≤ ∥(Px)′∥∥P−1b∥

= χ2∥(Px)′∥

= χ2

√
x′(X ′X)−1x, for all x ∈ [a, b],

where P is the square root matrix of (X ′X)−1. Thus, the condition (5.31) can be

satisfied if

χ2 ≤
U
[
c1 + c2

√
x′(X ′X)−1x

]
− z(1+p)/2√

x′(X ′X)−1x
for all x ∈ [a, b],

in another word,

χ2 ≤ inf
x∈[a,b]

U
[
c1 + c2

√
x′(X ′X)−1x

]
− z(1+p)/2√

x′(X ′X)−1x
.

Let

I(U, c1, c2, p) = inf
x∈[a,b]

U
[
c1 + c2

√
x′(X ′X)−1x

]
− z(1+p)/2√

x′(X ′X)−1x

and GS be the set in the 2-dimensional (χ2, U)-space where

χ2 ≤ I(U, c1, c2, p). (5.32)

The next question is how to choose c1 and c2 such that

P{(χ2, U) ∈ GS} = 1− α.

Denote

S(x) =
√
x′(X ′X)−1x,

S1 = inf
x∈[a,b]

S(x) and S2 = sup
x∈[a,b]

S(x).

121



(1 )/2

1

p
z

c

+

(1 )/2

1 2 1

p
z

S c c

+

+

(1 )/2

1

p
z

S

+
-

(1 )/2

2

p
z

S

+
- 0 2 (1 )/2

1

p
c z

c

+

U

Figure 5.1: The shaded set is GS

It is straightforward that

I(U, c1, c2, p) = c2U + inf
x∈[a,b]

c1U − z(1+p)/2

S(x)

=


c2U +

c1U − z(1+p)/2

S1

if U ≤ z(1+p)/2/c1,

c2U +
c1U − z(1+p)/2

S2

if U ≥ z(1+p)/2/c1.

Substituting this into (5.32) gives

χ2 ≤

{ (
c2 + S−1

1 c1
)
U − S−1

1 z(1+p)/2 if U ≤ z(1+p)/2/c1,(
c2 + S−1

2 c1
)
U − S−1

2 z(1+p)/2 if U ≥ z(1+p)/2/c1.
(5.33)

To simplify the calculation of c1 and c2, Scheffé (1973) defined

c1 = cz(1+p)/2A, where A = ν1/2/χ2,α(ν)

with χ2,α(ν) being the lower α-point of χ2(ν), and

c2 = cB, where B =
√

2F1−α(2, ν)

with F1−α(2, ν) being the upper α-point of the F (2, ν) distribution. Using this in (5.33)

gives

χ2 ≤

{
c
(
B + S−1

1 z(1+p)/2A
)
U − S−1

1 z(1+p)/2 if U ≤ 1/(cA),

c
(
B + S−1

2 z(1+p)/2A
)
U − S−1

2 z(1+p)/2 if U ≥ 1/(cA).
(5.34)

The constant c can be determined so that the probability of the event in (5.34) is 1−α.

Denote the probability by P (c). It is clear that the point
z(1+p)/2

S1c2+c1
in the figure (5.21)
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can be written as
z(1+p)/2

c(S1B+z(1+p)/2A)
. Then

P (c) =

∫ 1
cA

z(1+p)/2
c(S1B+z(1+p)/2A)

f σ̂
σ
(u)

{∫ L1(u)

0

fχ2(y)dy

}
du

+

∫ ∞

1
cA

f σ̂
σ
(u)

{∫ L2(u)

0

fχ2(y)dy

}
du, (5.35)

where

L1(u) = c
(
B + S−1

1 z(1+p)/2A
)
u− S−1

1 z(1+p)/2

and

L2(u) = c
(
B + S−1

2 z(1+p)/2A
)
u− S−1

2 z(1+p)/2.

Recall that f σ̂
σ
(u) is the probability density function of U which is given in (1.4). The

probability density function of χ2 is

fχ2(y) = y exp(−y2/2).

The critical constant c can be solved so that the probability P (c) in (5.35) is 1 − α.

Scheffé’s method is doubly conservative since the tolerance bands are only for central

p proportion, and also involves Cauchy-Schwarz inequality. This method can be easily

generalised to polynomial regression.

In fact, this method can be improved. Note that the probability of event (5.34) is

P (c1, c2) =

∫ z(1+p)/2
c1

z(1+p)/2
c2S1+c1

f σ̂
σ
(u)

{∫ L1(u)

0

fχ2(y)dy

}
du

+

∫ ∞

z(1+p)/2
c1

f σ̂
σ
(u)

{∫ L2(u)

0

fχ2(y)dy

}
du, (5.36)

where

L∗
1(u) =

(
c2 + S−1

1 c1
)
u− S−1

1 z(1+p)/2

and

L∗
2(u) =

(
c2 + S−1

2 c1
)
u− S−1

2 z(1+p)/2.

Then we can search for the one pair of c1 and c2 directly from (5.36) such that

P (c1, c2) = 1− α and also the average width of the band is smallest.
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5.3.2.3 Exact simultaneous tolerance bands for central p proportion

The focus of this section is the construction of exact two-sided (p, 1−α)-simultaneous

tolerance bands. This topic is new. The tolerance band is of the form

Ix(p) ⊂ x′β̂ ± σ̂
(
z(1+p)/2/θ + c

√
x′(X ′X)−1x+ z2(1+p)/2ξ

)
for all x ∈ (a, b),

where θ =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)

and ξ =
ν

2

(
Γ(ν

2
)

Γ(ν+1
2
)

)2

−1. The critical constant c can be chosen

such that

P
{
Ix(p) ⊂ x′β̂ ± σ̂

(
z(1+p)/2/θ + c

√
x′(X ′X)−1x+ z2(1+p)/2ξ

)
for all x ∈ (a, b)} = 1− α. (5.37)

This particular form of simultaneous tolerance bands is used because the two-sided

confidence bands for the 100p-percentile line of a similar form studied in Chapter 2

and 3 work well in comparison with several other forms and the critical constant c can

be computed as shown below.

To find the critical constant c, the probability in (5.37) is written as

P
{
Ix(p) ⊂ x′β̂ ± σ̂

(
z(1+p)/2/θ + c

√
x′(X ′X)−1x+ z2(1+p)/2ξ

)
for all x ∈ (a, b)

}
= P {Q∗ ≤ c} ,

where

Q∗ = max {Q1, Q2}

Q1 = max
x∈(a,b)

x′(β̂ − β) + z(1+p)/2(σ̂/θ − σ)

σ̂
√
x′(X′X)−1x+ (z(1+p)/2)2ξ

Q2 = max
x∈(a,b)

−x′(β̂ − β) + z(1+p)/2(σ̂/θ − σ)

σ̂
√
x′(X′X)−1x+ (z(1+p)/2)2ξ

.

Note that

Q1 = max
x∈(a,b)

(Px)′N/U + z(1+p)/2(1/θ − 1/U)√
(Px)′(Px) + (z(1+p)/2)2ξ

Q2 = max
x∈(a,b)

−(Px)′N/U + z(1+p)/2(1/θ − 1/U)√
(Px)′(Px) + (z(1+p)/2)2ξ

,

where P is the square root matrix of (X ′X)−1, N = P−1(β̂ − β)/σ ∼ N(0, I) and

U = σ̂/σ ∼
√

χ2
ν/ν and is independent of N .

Similar to Section 2.2.2, the following simple simulation-based method for find-
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ing c fast and accurately is used. A large number R of independent replicates of

Q1 : Q11, · · · , Q1R and Q2 : Q21, · · · , Q2R are simulated. Then we get a sequence

of Q∗ : Q∗
1, · · · , Q∗

R satisfying Q∗
j = max{Q1j, Q2j}, j = 1 · · · , R. The 1 − α-quantile

Q∗
1, · · · , Q∗

R is used as c. It is well known that this approximation approaches c almost

surely as R approaches infinity, see Serfling (1980). This approach of using sample

quantile to approximate the population quantile has been used successfully in solv-

ing many problems; see for example, Edwards and Berry (1987), Liu et al. (2004) and

Liu et al. (2005).

In each simulation, independent N and U are simulated first and then Q1, Q2 and

so Q∗ can be computed by using projection method, turning point method or quadratic

programming method as discussed in Section 2.2.2.

This method can be easily generated to polynomial regression and multiple regres-

sion.

5.3.3 The method of Mee et al. (1991)

Mee et al. (1991) proposed a method of constructing tolerance bands over a constrained

region which is symmetric about the mean of the observations of the covariate variable.

This method is conservative for both simple and multiple linear regression. For the

simple linear regression case, Mee et al. (1991) considered the tolerance factor k(x)

in (5.13) as a function of d = δ(x) =
√
x′(X ′X)−1x. Suppose d belongs to a finite

interval (dmin, dmax). Without loss of generality, assume the covariate is mean-centered,

i.e., x̄ = 0, we have

d2 = x′(X ′X)−1x =
1

n
+

(x− x̄)2∑
(xi − x̄)2

=
1

n
+

x2

Sxx

,

where Sxx =
∑

x2
i . Then d ∈ (dmin, dmax) implies x ∈ X , where

X =

(
−(nd2max − 1)Sxx

n
,−(nd2min − 1)Sxx

n

)
∪
(
(nd2min − 1)Sxx

n
,
(nd2max − 1)Sxx

n

)
.

It is clear that X is the union of two intervals symmetric about the origin 0 unless

nd2min − 1 = 0. When d2min = 1/n, then X =
(
− (nd2max−1)Sxx

n
, (nd

2
max−1)Sxx

n

)
.

They constructed tolerance bands over x ∈ X as

P {C(x′b, k(d)U) ≥ p for all x ∈ X} > 1− α. (5.38)

Particularly they chose

k(d) = λ(z(1+p)/2 + 2d) (5.39)
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for the simple linear regression where z(1+p)/2 is the 100(1 + p)/2 percentile of the

standard normal distribution and λ is a constant which depends on n, p, 1 − α and

(dmin, dmax).

Using Cauchy-Schwarz inequality gives

max
d=
√

x′(X′X)−1x

|x′b|

= max
d=
√

x′(X′X)−1x

|(Px)′(P−1b)|

≤ max
d=
√

x′(X′X)−1x

∥(Px)′∥∥P−1b∥ (5.40)

= d∥P−1b∥

∼ dχ2,

where P =

(
1/
√
n 0

0 1/
√
Sxx

)
. It is noteworthy that the inequality in (5.40) is strict

with probability 1. The constant λ in k(d) was chosen by Mee et al. (1991) such that

P {Φ[dχ2 + k(d)U ]− Φ[dχ2 − k(d)U ] ≥ p for all d ∈ (dmin, dmax)}

= P

{
min

dmin≤d≤dmax

Φ[dχ2 + k(d)U ]− Φ[dχ2 − k(d)U ] ≥ p

}
(5.41)

= 1− α.

Note that the tolerance factor k(d) determined in this way guarantees (5.38). Therefore,

the table of λ values given in the paper Mee et al. (1991) are conservative. A computer

program is given in Mee and Reeve (1989) for computing the constant λ such that the

probability in (5.41) is 1 − α. In next section, we introduce another method for the

computation of λ.

5.3.3.1 A new computation method for finding k(d)

The simultaneous tolerance bands given in Mee et al. (1991) were recommended in

the literature as they were constructed over a finite region and had no approximation

involved. In this section, we give a method of computing the constant λ which satisfies

P{ min
dmin≤d≤dmax

Φ[dχ2 + k(d)U ]− Φ[dχ2 − k(d)U ] ≥ p} = 1− α,

where k(d) = λ(z(1+p)/2 + 2d). Denote

g(d) = Φ[dχ2 + k(d)U ]− Φ[dχ2 − k(d)U ]

= Φ[dχ2 + λ(z(1+p)/2 + 2d)U ]− Φ[dχ2 − λ(z(1+p)/2 + 2d)U ],
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and

G = min
dmin<d<dmax

g(d).

We have

g′(d) = (χ2 + 2λU)φ[dχ2 + λ(z(1+p)/2 + 2d)U ]− (χ2 − 2λU)φ[dχ2 − λ(z(1+p)/2 + 2d)U ],

where φ(y) = 1√
2π
e−y2/2.

For each given d value, when χ2 − 2λU ≤ 0, it is clear that g′(d) > 0 and so

G = g(dmin). When χ2 − 2λU > 0, in order to find G, we need to solve the equation

g′(d) = 0, i.e.,

(χ2 + 2λU)φ[dχ2 + λ(z(1+p)/2 + 2d)U ] = (χ2 − 2λU)φ[dχ2 − λ(z(1+p)/2 + 2d)U ].

Taking log function on both sides gives

−1

2
[(χ2 + 2λU)d+ λUz(1+p)/2]

2 + log[(χ2 + 2λU)/
√
2π]

= −1

2
[(χ2 − 2λU)d+ λUz(1+p)/2]

2 + log[(χ2 − 2λU)/
√
2π].

Then we have a quadratic equation in d

4χ2λUd2 + 2χ2λUz(1+p)/2d− log
χ2 + 2λU

χ2 − 2λU
= 0. (5.42)

Let the discriminant of the quadratic equation (5.42) denote by

∆ = 4(χ2λUz(1+p)/2)
2 + 16χ2λU log

χ2 + 2λU

χ2 − 2λU
.

Since χ2+2λU
χ2−2λU

> 1, then log χ2+2λU
χ2−2λU

> 0. It is clear that ∆ > 0 and so the equation (5.42)

has two roots

d1 =
−2χ2λUz(1+p)/2d−

√
∆

8(χ2λUz(1+p)/2)
and d2 =

−2χ2λUz(1+p)/2d+
√
∆

8(χ2λUz(1+p)/2)
.

Then

G =



min[g(dmin), g(dmax)] if d2 < dmin,

min[g(dmin), g(d2), g(dmax)] if d1 < dmin < d2 < dmax,

min[g(dmin), g(d1) g(d2), g(dmax)] if dmin < d1 < d2 < dmax,

min[g(dmin), g(d1), g(dmax)] if dmin < d1 < dmax < d1,

min[g(dmin), g(dmax)] if dmax < d1;

The critical constant λ can be found by using the simulation method. We first
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generate independent variables χ2,i and Ui, i = 1, 2, · · · , R. Denote

gi(d) = Φ[dχ2,i + ki(d)Ui]− Φ[dχ2,i − ki(d)U ]

= Φ[dχ2,i + λi(z(1+p)/2 + 2d)U ]− Φ[dχ2,i − λi(z(1+p)/2 + 2d)Ui]

and Gi = min
dmin<d<dmax

gi(d). We can find λi such that the corresponding Gi = p, i =

1, 2, · · · , R. Then λ can be approximated by the ⟨(1−α)R⟩th largest of the R replicates

of λi, i = 1, 2, · · · , R, where ⟨(1−α)R⟩ denotes the integer part of (1−α)R.We can also

use numerical quadrature method to find λ. Then the probability in (5.41) becomes

h(λ) =

∫ ∞

0

∫ ∞

0

fχ2(x)f σ̂
σ
(u)I{

min
dmin<d<dmax

f(d)≥p

}dxdu, (5.43)

where fχ2(x) is the probability density function of χ2 and f σ̂
σ
(u) is the probability

density function of U . We can search the value of λ such that h(λ) = 1− α.

5.3.3.2 The choice of the constant κ

To improve the method of Mee et al. (1991), we can search for the best κ such that

the band below has the smallest average band width. Denote d =
√
x′(X ′X)−1x =√

1/n+ x2/Sxx and k(d) = λ(z(1+p)/2+κd), where z(1+p)/2 is the 100(1+p)/2 percentile

of the standard normal distribution and λ. This new type of simultaneous tolerance

bands has the general form

Y (x) ∈ x′β̂ ± k(d)σ̂ for all d ∈ (dmin, dmax), (5.44)

where Y (x) = x′β + e with e ∼ N(0, 1). Throughout this section, we choose dmin =

1/
√
n, then

x ∈
(
−(nd2max − 1)Sxx/n, (nd

2
max − 1)Sxx/n

)
.

Mee et al. (1991) chose κ = (q + 2)−1/2 where q − 1 is the number of covariates.

Particularly, for the simple linear regression case with q = 2, they used κ = 2.

Define the coverage C(x) for x′β̂ ± σ̂λ(z(1+p)/2 + κd) by

C(x) = P
{
Y (x) ∈

[
x′β̂ ± σ̂λ(z(1+p)/2 + κd)

]}
= Φ

[
x′b+ λ(z(1+p)/2 + κd)U

]
− Φ

[
x′b− λ(z(1+p)/2 + κd)U

]
,

where b = (β̂ − β)/σ and U = σ̂/σ.
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Similar to (5.41), the critical constant λ in (5.44) can be determined such that

P{Φ[dχ2 + k(d)U ]− Φ[dχ2 − k(d)U ] ≥ p for all d ∈ (dmin, dmax)}

= P{ min
dmin≤d≤dmax

Φ[dχ2 + k(d)U ]− Φ[dχ2 − k(d)U ] ≥ p} (5.45)

= 1− α,

where k(d) = λ(z(1+p)/2 + κd). Using Cauchy-Schwarz inequality, one can easily prove

that the tolerance factor k(d) determined in this way can guarantee

P{Φ(x′b+ k(d)U)− Φ(x′b− k(d)U) ≥ p for all d ∈ (dmin, dmax)} > 1− α. (5.46)

Denote d =
√
(1 + τ 2)/n and δ =

√
Sxx/n then x ∈ (−τδ, τδ) . The average width of

the band in (5.44) over x ∈ (−τδ, τδ) is given by

AWκ =

∫ τδ

−τδ

2k(d)σ̂dx/(2τδ). (5.47)

AWκ/σ̂ =

∫ τδ

−τδ

2
[
λ(z(1+p)/2 + κ

√
1/n+ x2/Sxx)

]
dx/(2τδ)

= 2z(1+p)/2λ+
κλ

τ
√
n

[
1

2
ln

τ +
√
1 + τ 2

−τ +
√
1 + τ 2

+ τ
√
1 + τ 2

]
.

The value of κ depends on n, τ , p and 1 − α. We provide the optimal values of κ in

Table 5.2 for the pre-specified p = 0.95 and 1 − α = 0.95. The value AWκ means the

average width of a band with a specific coefficient κ, while AWM means the average

width of the band given in Mee et al. (1991). The value κ is chosen as 2 in Mee et al.

(1991). In the table, for example, when n = 100 and τ = 2, from our investigation,

the ’best’ κ = 1 results in the narrowest band with the average band width 4.6530σ̂.

Comparing AWκ with the ’best’ κ to AWM , the difference is small. From the table, we

can conclude that κ does not contribute to the average band width much and so can

be stuck to κ = 2 in the following construction of bands.
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Table 5.2: Table of κ when p = 0.95 and 1− α = 0.95

n τ κ AWκ/σ̂ AWM/σ̂

10 0.5 1.80 7.4501 7.4508

10 1 1.80 7.6824 7.6839

10 2 1.80 8.3908 8.3944

10 3 1.80 9.2401 9.2482

10 4 1.80 10.1459 10.1595

20 0.5 1.50 5.7630 5.7657

20 1 1.50 5.8920 5.8991

20 2 1.70 6.3151 6.3219

20 3 1.80 6.8345 6.8406

20 4 1.90 7.3952 7.3986

30 0.5 1.10 5.2562 5.2615

30 1 1.20 5.3477 5.3597

30 2 1.60 5.6650 5.6794

30 3 1.70 6.0688 6.0793

30 4 1.80 6.5043 6.5134

40 0.5 1.00 5.0006 5.0067

40 1 1.10 5.0712 5.0873

40 2 1.50 5.3285 5.3500

40 3 1.70 5.6668 5.6835

40 4 1.80 6.0358 6.0482

50 0.5 1.00 4.8434 4.8499

50 1 1.00 4.9003 4.9195

50 2 1.30 5.1171 5.1453

50 3 1.60 5.4115 5.4346

50 4 1.70 5.7362 5.7536

100 0.5 0.60 4.5040 4.5117

100 1 0.70 4.5327 4.5573

100 2 1.00 4.6530 4.7020

100 3 1.10 4.8418 4.8879

100 4 1.50 5.0543 5.0967

5.3.3.3 A computation method of constructing exact bands based on Mee

et al. (1991)

In fact, we can improve the method of Mee et al. (1991) by finding the exact maximum

value of |x′b| for a given d =
√
x′(X ′X)−1x. Since |x′b| = |(Px)′(P−1b)| , P−1b ∼
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N2(0, I) = (N1, N2)
′ and d2 = 1/n+ x2/Sxx, then

max
d=
√

x′(X′X)−1x

|x′b|

= max
d=
√

x′(X′X)−1x

∣∣∣∣∣
(

1√
n
,

x√
Sxx

)(
N1

N2

)∣∣∣∣∣
= max

d=
√

x′(X′X)−1x

∣∣∣∣(N1√
n
,
xN2√
Sxx

)∣∣∣∣
=

|N1|√
n

+ |N2|
√
d2 − 1

n

The modified k(d) can be calculated such that

1− α = P

{
min

dmin≤d≤dmax

Φ

[
|N1|√
n

+ |N2|
√
d2 − 1

n
+ k(d)U

]
−

Φ

[
|N1|√
n

+ |N2|
√

d2 − 1

n
− k(d)U

]
≥ p

}
.

Denote

g(d) = Φ

[
χ11√
n
+ χ12

√
d2 − 1

n
+ k(d)U

]
− Φ

[
χ11√
n
+ χ12

√
d2 − 1

n
− k(d)U

]

= Φ

[
χ11√
n
+ χ12

√
d2 − 1

n
+ λ(z(1+p)/2 + 2d)U

]
−

Φ

[
χ11√
n
+ χ12

√
d2 − 1

n
− λ(z(1+p)/2 + 2d)U

]
,

where χ11 and χ12 are independent and
√
χ2
1 distributed. The constant λ can be found

by using the simulation method. We generate independent variables χ11,i, χ12,i and Ui,

i = 1, 2, · · · , R. Denote

gi(d) = Φ

[
χ11,i√

n
+ χ12,i

√
d2 − 1

n
+ λ(z(1+p)/2 + 2d)Ui

]
−

Φ

[
χ11,i√

n
+ χ12,i

√
d2 − 1

n
− λ(z(1+p)/2 + 2d)Ui

]

Since for a given value λ, MATLAB built-in function fmin can be used to calculate

Gi = min
dmin<d<dmax

gi(d), then we can search the values of λi such that the corresponding

Gi = p, i = 1, 2, · · · , R. The value of λ can be approximated by the ⟨(1 − α)R⟩ th

largest of the R replicates of λi, i = 1, 2, · · · , R, where ⟨(1− α)R⟩ denotes the integer
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part of (1− α)R.

5.3.4 Exact simultaneous tolerance bands over any given finite

interval

In this section, we present methods of constructing exact simultaneous tolerance bands

over any given finite covariate interval, which includes symmetric intervals and the

whole range (−∞,∞) as special cases.

5.3.4.1 Constant-width tolerance bands over a finite interval

The hyperbolic bands proposed by Lieberman and Miller (1963) all have widths at

x proportional to σ̂
√
x′(X ′X)−1x, the standard error of x′β̂. The bands by Scheffé

(1973) contained central p proportion and have widths at x equal σ̂
(
c1 + c2

√
x′(X ′X)−1x

)
for all x ∈ (a, b), where c1 and c2 are constants. The bands by Mee et al. (1991) also

have widths at x equal σ̂
(
c1 + c2

√
x′(X ′X)−1x

)
, where c1 and c2 are constants, but

their bands are only for finite intervals which are symmetric about x̄, the mean of the

observations on the variable x. These three types of bands have a common proper-

ty that the width of a band is smaller when x is nearer the center of the covariates

x̄ and becomes larger when x is further away from the center. Sometimes, one may

need a band that has the same width for all x ∈ (a, b). To the author’s knowledge,

there is little information in literature about two-sided simultaneous tolerance band

over any finite interval x ∈ (a, b). Two-sided constant width band is first addressed

by Eberhardt and Mee (1994) and claimed as a good balance between efficiency and

simplicity for linear calibration problems. A tolerance band that has the same width

over the covariate interval (a, b) is called a constant width tolerance band and of the

general form:

Y (x) ⊂ x′β̂ ± kσ̂ for all x ∈ (a, b),

where k is the critical constant determined such that

1− α = P
{
PY (x)

[
x′β̂ − kσ̂ ≤ Y (x) ≤ x′β̂ + kσ̂

]
≥ p for all x ∈ (a, b)

}
. (5.48)

Let b = (β̂ − β)/σ ∼ N (0, (X ′X)−1) and U = σ̂/σ ∼
√

χ2
ν/ν. Then (5.48) can be

expressed as

1− α = P {PN [x′b− kU ≤ N ≤ x′b+ kU ] ≥ p for all x ∈ (a, b)} , (5.49)
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where N ∼ N(0, 1). We therefore have that the critical constant k should be chosen

satisfying

1− α = P

{
min

x∈(a,b)
[Φ(x′b+ kU)− Φ(x′b− kU)] ≥ p

}
. (5.50)

Note that (P−1b) ∼ N (0, I), where P is the square root matrix of (X ′X)−1, and

given by

P =

(
1/
√
n 0

0 1/
√
Sxx

)
.

Let (N1, N2)
′ = (P−1b) ∼ N2(0, I). We have

x′b = (Px)′(P−1b) =
N1√
n
+

xN2√
Sxx

.

Denote by

C(x′b, kU) = [Φ(x′b+ kU)− Φ(x′b− kU)]

and

g(x) = |x′b| = N1√
n
+

xN2√
Sxx

.

Note that C(x′b, kU) is a decreasing function of |x′b|. Thus, for a given value of U , in

order to find min
x∈(a,b)

C(x′b, kU), we only need to find max
x∈(a,b)

|g(x)|. Since g(x) is a linear

function, then

max
x∈(a,b)

|g(x)| =

 |g(a)| if a+b
2

≤ −N1

√
Sxx/n

N2
,

|g(b)| if a+b
2

≥ −N1

√
Sxx/n

N2
.

Denote by h(a, b) = max
x∈(a,b)

|x′b| = max
x∈(a,b)

|g(x)|. Thus

h(a, b) = max{|g(a)|, |g(b)|}

=
|g(a)|+ |g(b)|+ |(|g(a)| − |g(b)|)|

2
.

Let C(k) = min
x∈(a,b)

C(x′b, kU). Then we have, for a give value of U and a finite interval

(a, b),

C(k) = min
x∈(a,b)

C(x′b, kU) = Φ(h(a, b) + kU)− Φ(h(a, b)− kU). (5.51)

Simulation method can be used to calculate the critical constant k. Generate Ni =

(N1,i, N2,i)
′ ∼ N (0, I) and Ui ∼

√
χ2
ν/ν, i = 1, 2, · · · , R. For each i and any k, Ci(k)

is easily calculated from (5.51), i.e.,

Ci(k) = min
x∈(a,b)

C(x′b, kU) = Φ(hi(a, b) + kUi)− Φ(hi(a, b)− kUi).
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Then for each i, we can search for the one ki such that

Ci(ki) = p.

After obtaining all ki, i = 1, 2, · · · , R, we sort them in ascending order. Since C(x′b, kU)

is an increasing function of k, then the ⟨(1 − α)R⟩th largest simulated value of the R

replicates of ki, can be used as the critical constant k, that satisfies the probability in

(5.48) is at least 1− α.

We can also use numerical quadrature method since the probability statement in

(5.49) can be written as

µ(k) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

φ(x1)φ(x2)f σ̂
σ
(u)I{Φ(h(a,b)+kU)−Φ(h(a,b)−kU)≥p}dudx1dx2, (5.52)

where φ(x1) =
1√
2π
e−x2

1/2 and φ(x2) =
1√
2π
e−x2

2/2 are the probability density function

of the independent standard normal variables N1 and N2. Then we can search for the

value of k such that µ(k) = 1− α.

5.3.4.2 New exact simultaneous tolerance bands over any given finite in-

terval

In this section, we consider simultaneous tolerance bands of the general form

P
{
PY (x)

[
Y (x) ∈ x′β̂ ± λk(x)σ̂

]
≥ p for all x ∈ (a, b)

}
, (5.53)

where k(x) =
(
z(1+p)/2/θ +

√
x′(X ′X)−1x+ z2(1+p)/2ξ

)
, θ =

√
2

ν

Γ(ν+1
2
)

Γ(ν
2
)

and ξ =

ν

2

(
Γ(ν

2
)

Γ(ν+1
2
)

)2

− 1. The probability in (5.53) can be written as

P
{
P
(
e/σ ∈ x′(β̂ − β)/σ ± λk(x)σ̂/σ

)
≥ p for all x ∈ (a, b)

}
= P

{
min
a≤x≤b

Φ
[
(Px)′N ± λU

(
z(1+p)/2/θ + 2

√
x′(X ′X)−1x+ z2(1+p)/2ξ

)]
≥ p

}
.

The critical constant λ can be calculated by using the simulation method. We first

generate independent variables Ni and Ui, i = 1, 2, · · · , R. Denote

gi(x) = Φ
[
(Px)′Ni ± λUi

(
z(1+p)/2/θ + 2

√
x′(X ′X)−1x+ z2(1+p)/2ξ

)]
and Gi = min

a<x<b
gi(x). Since for a given value λ, MATLAB built-in function fmin can

be used to calculate Gi then we can search the values of λi such that the corresponding

Gi = p, i = 1, 2, · · · , R. The value of λ can be approximated by the ⟨(1 − α)R⟩th
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largest of the R replicates of λi, i = 1, 2, · · · , R, where ⟨(1− α)R⟩ denotes the integer

part of (1− α)R.

5.3.5 Comparison of the two-sided simultaneous tolerance band-

s under the average width criterion

To compare different simultaneous tolerance bands, we use the average width criterion.

For a simultaneous tolerance band[
x′β̂ − k(x)σ̂,x′β̂ + k(x)σ̂

]
∀x ∈ (a, b),

the average width is ∫ b

a

(width at x) dx

b− a
=

∫ b

a

2k(x)σ̂ dx

b− a

The smaller the average width, the better the band. In this section, we only consider

five different kind of bands:

• Scheffé - the band of Scheffé (1973) in Section 5.3.2.2

• Mee - the band of Mee et al. (1991) in Section 5.3.3.1

• ExactC - the exact simultaneous tolerance band for central p proportion in Sec-

tion 5.3.2.3

• Limam - the band of Limam and Thomas (1988) in Section 5.3.1.2

• Exact - the exact simultaneous tolerance bands for p-proportion over any given

finite interval in Section 5.3.4.2

Mee et al. (1991) considered an example with n = 15, p = 0.75, 1 − α = 0.95. Let

(a, b) = (τ1
√
Sxx/n, τ2

√
Sxx/n). In Mee et al. (1991), the values of τ1 and τ2 were

chosen as -4 and 4 respectively and so the interval (a, b) is symmetric about 0. We

study three different cases:

Case1 Case2 Case3

τ1 0 3 8

τ2 4 4 10

The ratios of the average widths of Scheffé, Mee, ExactC, Limam relative to Exact are

given in the Table 5.3.5.
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Table 5.3: Ratios of the average widths relative to the Exact band

Bands Case1 Bands Case2 Bands Case3

Scheffé 1.283 Scheffé 1.413 Scheffé 1.344

Limam 1.152 Limam 1.387 Limam 1.427

ExactC 1.198 ExactC 1.120 ExactC 1.093

Mee 1.076 Mee 1.199 Mee 1.241

Exact 1 Exact 1 Exact 1

We need to emphasize that none of these three intervals (a, b) considered in this example

is symmetric. But in Mee et al. (1991), only conservative bands over a symmetric

covarite interval can be constructed. The value 1.283 in the table is larger than 1. It

means Scheffé’s band under Case1 is 28% wider than our new Exact band. From our

investigation, the band Exact performs better than the other bands all the time.

5.3.6 Example

Krishnamoorthy (2001) provide data from a calibration experiment of breathalyzers,

which are used to measure blood alcohol concentration, see Table 5.3.6.

Table 5.4: Data from Krishnamoorthy et al. (2001)

Observation Breathalyzer Blood alcohol concentration reading

(i) (Y ) (x)

1 .145 .160

2 .156 .170

3 .181 .180

4 .108 .100

5 .180 .170

6 .112 .100

7 .081 .060

8 .104 .100

9 .176 .170

10 .048 .056

11 .092 .111

12 .144 .162

13 .121 .143

14 .065 .079

15 .000 .006

In the calibration experiment conducted in a laboratory, the percentages of alcohol

concentration in blood of a sample of 15 subjects were measured on a breathalyzer
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(Y ) and by a laboratory test (x). The measure x is assumed to be without measure-

ment error and so exact, as the laboratory test is accurate. A simple linear regression

model can be used based on the 15 pairs of observations, with the fitted least squares

line Y = 0.0013 + .958x, σ̂ = 0.0137, R2 = 0.93, ν = 13, min(x1, · · · , x15) = .006,

max(x1, · · · , x15) = .180, x̄ = .1178, and Sxx =
∑n

i=1(xi − x̄)2 = .0386. To infer the

true x-values corresponding to the future Y -values obtained form drivers is the main

purpose of the experiment. From the policemen’s point of view, a lower confidence

bound on x is desirable in order to determine whether the blood alcohol concentration

of a driver is above the legal limit. In many states in the USA, the legal limit is 0.1

percent. For this, one can construct the Exact simultaneous tolerance band based on

the training data from the calibration experiment. For p = 0.90, 1 − α = 0.95 and

(a, b) = (.006, .180), the λ in the simultaneous tolerance band Exact is 1.0735 by using

the method in the Section 5.3.4.2. When x = 0.1,, the upper simultaneous tolerance

limit is 0.134. Hence if the breathalyzer reading of a future driver is Y = 0.134 or

above then the lower confidence bound on the true blood alcohol concentration is at

least 0.1, the legal limit. The two-sided Exact simultaneous tolerance band is plotted

in Figure 5.1.

Figure 5.2: The two-sided Exact STB with (p, 1− α) = (0.90, 0.95)

0.006 0.1 0.18

0

0.134

0.181

Blood alcohol concentration (x)

 B
re

at
ha

ly
ze

r 
re

ad
in

g 
(Y

)

137



5.4 Conclusions

Statistical calibration using regression is a useful statistical tool with many application-

s. The key component for inference related to infinitely many future observed Y -values

is the construction of (p, 1 − α)-simultaneous tolerance bands. In this chapter, the

construction of two-sided (p, 1−α)-simultaneous tolerance bands has been considered.

The method of constructing exact bands for central p proportion over any finite inter-

val has been proposed. This method can readily be generalised to multiple regression

and polynomial regression. Furthermore, a method of constructing exact simultaneous

tolerance bands has been considered. This method is uniformly better than the other

methods.

138



Chapter 6

Conclusions and Future Work

Methods have been given in this thesis to compute the exact symmetric simultaneous

confidence bands for the percentile line over a finite interval of the covariate x. The

work allows us to compare, in terms of average band width, the exact symmetric bands

with the conservative symmetric bands which use the critical values over the entire

range x ∈ (−∞,∞) previously given in the literature. It is observed that the exact

symmetric bands can be much narrower than the corresponding conservative symmetric

bands. Furthermore, we have proposed asymmetric bands which are uniformly and can

be very substantially narrower than the corresponding exact symmetric bands when

γ ̸= 0.5. So the asymmetric bands should always be used under the average band

width criterion. The confidence bands for a percentile line generalize the confidence

bands for the mean regression function and can have applications in real problems as

demonstrated in the example in Chapter 3.

Turner and Bowden (1979) considered one-sided simultaneous confidence bands for

a percentile line but only gave conservative critical constants over the whole range

(−∞,∞). Exact one-sided simultaneous confidence bands for a percentile line over a

finite covariate interval has been studied in this thesis.

For comparison between bands, one can also use the area/volume of a confidence set

corresponding to a confidence band, see Liu and Hayter (2007), instead of the average

band width. Although only simple linear regression is considered in this thesis, as in

several published papers, the methods proposed in this thesis can easily be generalized

to multiple linear regression and polynomial regression.

Statistical calibration using regression is a useful statistical tool with many appli-

cations. The key component for inference related to infinitely many future observed

Y -values is the construction of (p, 1 − α)-simultaneous tolerance bands. The central

p content simultaneous tolerance bands and the bands constructed from a probability

set are intrinsically conservative. Mee et al. (1991) proposed a method of constructing

two-sided (p, 1 − α)-simultaneous tolerance bands over a constrained region which is

symmetric about the mean of the observations of the covariate variable. This method
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is conservative for simple linear regression and better than other methods published in

the literature.

In this thesis, the construction of exact two-sided (p, 1−α)-simultaneous tolerance

bands has been considered. The method of constructing exact bands for central p

proportion over any finite interval has been proposed. This method can readily be

generalised to multiple regression and polynomial regression. Furthermore, a method

of constructing exact simultaneous tolerance bands has been considered. This method

is uniformly better than the other methods. Simultaneous tolerance bands have appli-

cations in real problems as demonstrated in the example in Chapter 5.

6.1 Summary

The contributions of the current work to the body of knowledge may be summarised

as:

• Methods given in this work allow the construction of exact symmetric simultane-

ous confidence bands for a percentile line over a finite covariate interval x ∈ (a, b);

• The exact symmetric simultaneous confidence bands are uniformly narrower than

the corresponding conservative symmetric bands over x ∈ (a, b);

• Asymmetric simultaneous confidence bands proposed in this work are uniformly

narrower than the corresponding exact symmetric bands over x ∈ (a, b);

• Calibration and the construction of simultaneous tolerance bands has been dis-

cussed;

• Methods given in this work allow the construction of exact simultaneous tolerance

bands over x ∈ (a, b);

• Methods proposed in this work can be generalized to multiple regression and

polynomial regression.
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