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Confidence Sets for a Maximum Point of a Regression Function

by Fang Wan

A maximum point of a regression function is defined as one at which the function

attains its maximum value. The determination of a maximum point of the regres-

sion function over a given covariate region is often of great importance due to its

wide applications. Since the regression function needs to be estimated and its max-

imum point(s) can only be estimated based on random observations, the focus of

this research is therefore to construct confidence sets for a maximum point of the

regression function.

A confidence set for a maximum point of a regression function provides useful in-

formation on where a true maximum point lies, and so has applications in many

real problems. In this thesis, an exact (1− α) level confidence set is provided for a

maximum point of a linear regression function. It is also shown how the construction

method can readily be applied to many other regression models involving a linear

function. Examples are given to illustrate this confidence set and to demonstrate

that it can be substantially smaller than the only other conservative confidence set

that is available in the statistical literature so far.
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Chapter 1

Introduction

Regression analysis is a statistical technique that models and investigates the re-

lationship between a dependent/response variable Y and one or several indepen-

dent/explanatory variables xxx. A regression model is often expressed as

Y = f(x, θx, θx, θ) + e,

where e is the random error, θθθ is the unknown parameter(s) and f(x, θx, θx, θ) is the

regression function of a pre-specified form. A maximum point of the regression

function f(x, θx, θx, θ) is defined as a point in the covariate region at which f(x, θx, θx, θ) attains

its maximum value. A maximum point of f(xxx,θθθ) over a given covariate region may

represent the dose level in the experimental region that maximizes the response,

or the amount of fertilizer that maximizes the crop yield, etc. Due to its wide

applications, the determination of a maximum point of a regression function in a

constrained covariate region is often of great importance.

If the value of θθθ is known, then finding a maximum point is a simple calculus

problem which can be solved according to Hancock (1960), Bliss (1970, pp44-50),

Studier et al. (1975), or Zar (1999, pp458-459). The difficulty lies in that the value

of θθθ is unknown and only an estimator θ̂θθ of θθθ with a certain distribution is available.

Hence the regression function f(xxx,θθθ) needs to be estimated and its maximum points

can only be estimated based on θ̂θθ. The focus of this research is therefore to construct
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Chapter 1

a confidence set for a maximum point of f(xxx,θθθ). However, the computation is much

more challenging than point estimation, which naturally uses the maximum points of

the estimated function f(xxx, θ̂θθ). In fact, the confidence sets constructed in this thesis

are valid for a given maximum point f(xxx,θθθ), regardless of the number of maximum

points f(xxx,θθθ) has.

1.1 Confidence Sets for a Maximum Point

Suppose we have observations YYY from the regression model defined earlier in this

chapter. Let kkk = kkk(θθθ) be a maximum point of f(x, θx, θx, θ). Then a (1−α) level confidence

set for kkk is given by C(YYY ) where the set C(YYY ) satisfies

inf
θθθ
Pθθθ(kkk ∈ C(YYY )) ≥ 1− α.

If the equality holds, then C(YYY ) is an exact (1 − α) level confidence set, otherwise

we call it a conservative (1− α) level confidence set.

A confidence set for a maximum point provides useful information about the regres-

sion function and quantifies where a true maximum point lies. Carter et al. (1983)

consider the relevant applications in cancer chemotherapy, while Farebrother (1998)

deals with response surface models. In fact, one of the objectives of response surface

methodology is to find the path of the ridge, that is, a locus of points, each of which

is a maximum point of the regression function in a given sphere of certain radius

and construct a confidence set for the path; see, for example, Ding et al. (2005)

and Gilmour and Draper (2003). This methodology is known as ridge analysis (see

Hoerl, 1985).

To be specific, in the thesis we consider the simpler situation where the regression

function is a linear function of the form

f(xxx,θθθ) = θ0 + z(xxx)Tθθθ0 (1.1)

where xxx = (x1, · · · , xq)T , z(xxx) is a given p × 1 vector-valued function of xxx, θθθ0 =

(θ1, · · · , θp)T and θθθ = (θ0, · · · , θp)T . The interest is in the maximum points of

2
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f(xxx,θθθ) in a given covariate region of xxx. Note that the maximum points of f(xxx,θθθ) do

not depend on the intercept θ0 and z(xxx)Tθθθ0 contains all the information about the

maximum points of f(xxx,θθθ).

Assume that an estimator θ̂θθ of θθθ is available with normal distribution

θ̂θθ ∼ N(θθθ, σ2Σ) (1.2)

where Σ is a known positive definite matrix, and σ̂2 is an estimator of the error

variance σ2 with distribution σ̂2 ∼ σ2χ2
ν/ν independent of θ̂θθ. The constant ν is the

degrees of freedom (df) of the chi-squared distribution. In the special case that σ2

is a known constant, then σ̂2 = σ2 and ν =∞; hence, without loss of generality, we

assume

θ̂θθ ∼ N(θθθ,Σ) . (1.3)

Our focus is on the construction of a (1−α) level confidence set for a maximum point

of the function f(xxx,θθθ) in a given covariate region of xxx based on the distributional

assumption (1.2), which includes the special case (1.3).

The distributional assumption (1.3) holds asymptotically for many parametric and

semi-parametric models. In the generalized linear, random effects linear and random

effects generalized linear models (cf. Pinheiro and Bates, 2000; McCulloch and Searle,

2001; Faraway, 2006), the mean response E(Y ) may be related to f(xxx,θθθ) by a

given monotone link function. Based on the observed data, one has approximately

θ̂θθ ∼ N(θθθ, Σ̂) where Σ̂ is provided by many statistical software packages that deal

with these models. Hence the method developed in this thesis (for the special case

(1.3)) can readily be applied to construct an asymptotic (1−α) level confidence set

for a maximum point of f(xxx,θθθ) over a given covariate region for these parametric

and semi-parametric models.

It is noteworthy that the construction of a confidence set for a minimum point of

f(xxx,θθθ) in a given region of xxx can be transformed into the construction of a confidence

set for a maximum point of −f(xxx,θθθ) = f(xxx,−θθθ) with the distributional assumption

−θ̂θθ ∼ N(−θθθ, σ2Σ). Hence the methods developed in this thesis can readily be applied

3
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to the construction of a confidence set for a minimum point of f(xxx,θθθ) in a given

region.

1.2 Some Confidence Sets in Literature

1.2.1 Box and Hunter’s Confidence Sets

The method given in Box and Hunter (1954) can be used to construct a confidence

set for a stationary point of f(xxx,θθθ) over the whole covariate region of xxx ∈ Rp. A

program for computing this confidence set is given by Del Castillo and Cahya (2001);

see also Del Castillo (2007, Chapter 7) for details. Box and Hunter’s confidence set

(referred to BH confidence set henceforth) is, however, often mis-used as a confidence

set for a maximum point of f(xxx,θθθ) over a given region; see, e.g., Bliss (1970, pp.44),

Carter et al. (1983, pp.19) and Weisberg (2005, pp. 120). Based on Box and Hunter’s

method, Carter et al. (1982) concluded that if the confidence region does not contact

either axis, then a therapeutic synergism will be claimed (the combination of some

components is preferable to that of any component used alone). Stablein et al. (1983)

modified Box and Hunter’s method by using Lagrange multiplier and proposed a

confidence region for the maximum point within the experimental region according

to the signs of the eigenvalues.

However, according to the definition, a stationary point is a point of the domain of a

differentiable function, where the derivative is zero. It is clear that a maximum point

of f(xxx,θθθ) in a given covariate region is not a stationary point of f(xxx,θθθ) if f(xxx,θθθ) does

not have a stationary point in that region. Even if f(xxx,θθθ) has a stationary point in

the given region, this stationary point may be a turning point or a minimum point

rather than a maximum point. Hence the BH confidence set is not the confidence

set we want. If one uses BH confidence set for a stationary point as the confidence

set for a maximum point of f(xxx,θθθ) only when the eigenvalues or the fitted function

f(xxx, θ̂θθ) indicates that the stationary point is a maximum point, see, e.g., Stablein

et al. (1983), then the data snooping for the curvature at a stationary point will
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invalidate the (1− α) confidence level.

1.2.2 Bootstrap Confidence Sets

Bootstrap is a popular method for assigning measures of accuracy to sample esti-

mates due to its simplicity. In regression problem, a bootstrapping procedure can be

performed by resampling either the residuals or the observations (y1,xxx1), · · · , (yn,xxxn);

see, e.g., Efron and Tibshirani (1993), Davison and Hinkley (1997) and Farebrother

(1998). One can construct bootstrap confidence sets by using different bootstrap

approach, such as the Basic Bootstrap, Percentile Bootstrap or Studentized Boot-

strap. However, the true confidence level of a bootstrap confidence set is difficult to

assess for both large and finite sample sizes.

1.2.3 Rao’s Confidence Sets

Rao (1973, pp.473) provides a general method of constructing a conservative con-

fidence set for r(θθθ) where r(θθθ) is any given function of θθθ. Applying this method,

Carter et al. (1984) construct conservative confidence sets for both the location of,

and the response at, the stationary point of the function f(xxx,θθθ). This method can

also be used directly for the construction of a confidence set for a maximum point;

see Section 3.2 for details.

1.2.4 Confidence Sets Constructed by Using Neyman’s Theorem

Neyman’s Theorem (Neyman, 1937) can be applied to construct an exact (1 − α)

level confidence set for a maximum point of a function by inverting a family of exact

(1 − α) acceptance sets. This method of constructing a (1 − α) confidence set has

been used and generalized to construct numerous intriguing confidence sets; see,

e.g., Lehmann (1986), Stefansson et al. (1988), Hayter and Hsu (1994), Finner and

Strassburge (2002), Huang and Hsu (2007) and Uusipaikka (2008). Note that the

BH confidence set for a stationary point is constructed by using this method too.

5
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Indeed this method is also used in Peterson et al. (2002) and Cahya et al. (2004)

(referred to as PCD and CDP, respectively, henceforth) to construct a confidence

set for a minimum point of f(xxx,θθθ) in Equation (1.1), which is also a confidence set

for a maximum point of f(xxx,−θθθ). However the critical constant recommended by

them for f(xxx,−θθθ) is shown in Chapter 5 to be too small and so the corresponding

confidence level is smaller than the claimed (1− α).

1.3 Outline of the Thesis

In this thesis, we focus on the construction of confidence sets for a maximum point of

a function in a given covariate region, and propose an approach based on Neyman’s

Theorem. The layout of the thesis is as follows:

Chapter 2 introduces Neyman’s Theorem which is used for constructing a confidence

set together with some examples illustrating the constructing procedure. The BH

confidence set for the stationary point(s) is an important application of this theorem

and is also introduced in Chapter 2.

Chapter 3 is concerned with the construction of confidence sets for a maximum point

of a univariate polynomial regression function

f(x,θθθ) = θ0 + θ1x+ θ2x
2 + · · ·+ θpx

p

over the given interval [a, b], and compare our confidence sets with Rao’s (Rao, 1973),

bootstrap and BH confidence sets by using both real and simulation data.

Chapter 4 considers the construction of a confidence set for a maximum point of a

bivariate quadratic regression function

f(xxx,θθθ) = θ0 + θ1x1 + θ2x2 + θ11x
2
1 + θ22x

2
2 + θ12x1x2

over the rectangular region {xxx = (x1, x2) : x1 ∈ [a1, b1], x2 ∈ [a2, b2]}. Rao’s confi-

dence set, bootstrap confidence set and BH confidence set are also discussed in the

examples given in this chapter.

6
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Chapter 5 extends the method of constructing a confidence set for a maximum point

of a linear regression function developed in Chapters 3 and 4 to some more general

models involving a linear function. Generalized linear models, the Cox-proportional

hazard models and a Becker’s H1 model are included as examples to illustrate the

procedure.

Chapter 6 summaries the work presented in this thesis and discuss the possible

future works.

7
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Methods

2.1 Construction of a Confidence Set by Using Ney-

man’s Theorem

The purpose of this chapter is to describe a theorem which may be used to construct

a confidence set for a maximum point of a regression function. This theorem is first

given by Neyman (1937) and has been introduced in many statistical textbooks;

see, e.g., Lehmann (1986, pp214), Rao (1973, pp471), or Casella and Berger (2002,

pp420-422). In fact, Neyman’s Theorem provides a general method of constructing

confidence sets for the parameters or any function of the parameters by inverting a

family of acceptance sets of hypothesis tests, which includes the case of a maximum

point.

We introduce Neyman’s Theorem in Section 2.1 followed by some examples. One

important application of this theorem is the construction of a confidence set for the

solution of simultaneous equations (Box and Hunter, 1954), which is also included

in this section. In Section 2.2, Rao’s confidence set and Bootstrap confidence set

are illustrated and discussed for the applications on a maximum point of a given

function.
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2.1.1 Neyman’s Theorem

Theorem. Suppose a random observation YYY has the distribution h(yyy;γγγ), where γγγ

is the unknown parameter. Let B and Ω be the parameter space and sample space,

respectively. For each γγγ0 ∈ B, let A(γγγ0) ⊂ Ω be the acceptance set of a size α test

of H0 : γγγ = γγγ0, i.e., Pγγγ0 {YYY ∈ A(γγγ0)} ≥ 1− α in which the probability is calculated

at γγγ = γγγ0. For each YYY ∈ Ω, define a set C(YYY ) ⊂ B by

C(YYY ) = { γγγ0 : YYY ∈ A(γγγ0) } . (2.1)

Then the random set C(YYY ) is a (1− α) level confidence set for γγγ.

Proof. Since A(γγγ0) is the acceptance set of a size α test, we have

Pγγγ0(YYY /∈ A(γγγ0)) ≤ α

and hence

Pγγγ0(YYY ∈ A(γγγ0)) ≥ 1− α.

Because γγγ0 is arbitrary, we can replace γγγ0 with γγγ. Then the above inequality,

together with the definition of C(YYY ) in (2.1), shows that the coverage probability of

the set C(YYY ) is given by

Pγγγ(γγγ ∈ C(YYY )) = Pγγγ(YYY ∈ A(γγγ)) ≥ 1− α,

showing that C(YYY ) is a (1− α) level confidence set for γγγ.2

Note that if the size of the test of H0 : γγγ = γγγ0 is equal to α for each γγγ0 ∈ B then the

confidence level of C(YYY ) is equal to (1− α).

2.1.2 Some Simple Examples

Neyman’s Theorem can be applied directly to construct confidence sets. We give

the following examples to illustrate the constructing method.

Example 1. Suppose we have a single random observation Y from N(β, 1), where

β is the unknown mean of the normal distribution. We want to construct a (1− α)

level confidence set for β.

10
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According to Neyman’s Theorem, we can construct a confidence set for β by inverting

a family of acceptance sets for testing H0 : β = β0 for each β0 ∈ (−∞,∞). There

are several ways to build an acceptance set for testing H0 : β = β0.

Because Y ∼ N(β, 1), that is, Y − β ∼ N(0, 1), therefore for each β0 ∈ (−∞,∞) we

may construct an acceptance set as

A(β0) = {Y : |Y − β0| < zα/2}

where za is the upper a point of the standard normal distribution. Note that this

test is of size α exactly. Then according to Neyman’s Theorem, a (1 − α) level

confidence set for β is given by

C(Y ) = {β0 : Y ∈ A(β0)}

= {β0 : |Y − β0| < zα/2}

= {β0 : Y − zα/2 < β0 < Y + zα/2}

= (Y − zα/2, Y + zα/2).

Figure 2.1 illustrates the relationship between the acceptance set A(β0) and the

corresponding confidence set C(Y ).

Alternatively, if we use an acceptance set given by

A(β0) = {Y : Y − β0 < zα}

for each β0 ∈ (−∞,∞), then a (1− α) level confidence set for β is given by

C(Y ) = {β0 : Y − β0 < zα}

= (Y − zα,∞).

Or, if we use

A(β0) = {Y : Y − β0 > −zα},

then the (1− α) level confidence set for β is given by

C(Y ) = {β0 : Y − β0 > −zα}

= (−∞, Y + zα).

11
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Figure 2.1: The relationship between the acceptance set A(β0) and the confidence

set C(Y ).

Example 2. (Continued from Example 1) Now we want to construct a (1−α) level

confidence set for θ = |β|.

We test H0 : θ = θ0 by using the (1− α) level acceptance set

A(θ0) = {Y : |Y | > cθ0}

where cθ0 = c(θ0) > 0 such that Pθ0{Y ∈ A(θ0)} = 1−α. Let N = Y −β ∼ N(0, 1).

Then under the hypothesis H0, we have

Pθ0{Y ∈ A(θ0)} = Pθ0{|Y | ≥ c(θ0)}

= Pθ0{Y ≥ c(θ0)}+ Pθ0{Y ≤ −c(θ0)}

= Pθ0{N ≥ c(θ0)− β}+ Pθ0{N ≤ −c(θ0)− β}

= Pθ0{N ≥ c(θ0)− β}+ Pθ0{N ≥ c(θ0) + β}

= Pθ0{N ≥ c(θ0)− |β|}+ Pθ0{N ≥ c(θ0) + |β|}

= Pθ0{N ≥ c(θ0)− θ0}+ Pθ0{N ≥ c(θ0) + θ0} (2.2)

= Φ(−c(θ0) + θ0) + Φ(−c(θ0)− θ0)

where Equation (2.2) follows directly from the hypothesis θ0 = θ = |β|. By setting

the last expression Φ(−c(θ0) + θ0) + Φ(−c(θ0)− θ0) = 1− α, we have c(θ0) for each

12
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Figure 2.2: The relationship between the 95% level confidence set C(Y ) and the

corresponding acceptance set A(θ0) = {Y : |Y | > cθ0}.

θ0. It is shown that c(θ) is monotone increasing in [0,∞). Then the corresponding

(1− α) level confidence set is given by

C(Y ) = {θ0 : Y ∈ A(θ0)}

= {θ0 : |Y | > cθ0}

= {θ0 : c(θ0) < |Y |}

= {θ0 : θ0 < c−1(|Y |)}

= [0, c−1(|Y |))

where c−1(.) is the inverse function of c(.), which exists uniquely since c(.) is mono-

tone increasing. Figure 2.2 shows the relationship between the 95% level acceptance

set A(θ0) = {Y : |Y | > cθ0} and the corresponding confidence set C(Y ) when

θ ∈ [0, 10].

Example 3. (Continued from example 2) Now we use a different acceptance set for

the size α test H0 : θ = θ0. Let

A(θ0) = {Y : |Y | < d(θ0)}

13
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for each θ0 ∈ [0,∞), where d(θ0) > 0 is the critical value. Under the hypothesis H0,

let β0 = E(Y ) so that θ0 =| β0 |. Similar to Example 2, we have

P{Y ∈ A(θ0)} = P{|Y | < d(θ0)}

= P{−d(θ0) < Y < d(θ0)}

= P{−d(θ0)− β0 < Y − β0 < d(θ0)− β0}

= Φ(d(θ0)− β0)− Φ(−d(θ0)− β0)

= Φ(d(θ0)− β0)− (1− Φ(d(θ0) + β0))

= Φ(d(θ0)− θ0) + Φ(d(θ0) + θ0)− 1,

where d(θ0) can be decided by setting the coverage probability to (1−α). Then the

corresponding (1− α) level confidence set for θ is given by

C(Y ) = {θ0 : Y ∈ A(θ0)}

= {θ0 : |Y | < d(θ0)}

= {θ0 : d−1(|Y |) < θ0}

= (d−1(|Y |),∞)

where d−1(.) is the inverse function of d(.), which exists uniquely since d(.) is mono-

tone increasing. Figure 2.3 shows the relationship between the 95% level acceptance

set A(θ0) = {Y : |Y | < d(θ0)} and the corresponding confidence set C(Y ). The

critical value d(θ) is a function of θ in [0,10], and is represented by the right-hand

side of the two symetric curves.

Example 4. For the simple linear regression model Y = θ0 + θ1x + ε, where ε ∼

N(0, σ2), we have n observations (Yi, xi), i = 1, 2, · · · , n. Let YYY = (Y1, Y2, · · · , Yn)T ,

X be the design matrix X =


1 x1
...

...

1 xn

 and θθθ =

 θ0

θ1

. Then

θ̂θθ =

 θ̂0

θ̂1

 = (XTX)−1XTYYY ∼ N
(
θθθ, (XTX)−1σ2

)
14
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Figure 2.3: The relationship between the 95% level confidence set C(Y ) and the

corresponding acceptance set A(θ0) = {Y : |Y | < dθ0}.

is the least squares estimate of θθθ. Let σ̂2 be an usual estimate of σ2 with degrees of

freedom (n− 2), hence σ̂2/σ2 has the distribution χ2
n−2/(n− 2) and is independent

of the coefficients θ̂θθ.

We want to construct a (1 − α) level confidence set for x0, where x0 is given by

m0 = θ0 + θ1x0 and m0 is a given number. We need an acceptance set for testing

H0 : x0 = t0

with each t0 ∈ (−∞,∞). An exact (1− α) level acceptance set is given by

A(t0) =

{
YYY :

θ̂0 + θ̂1t0 −m0

σ̂
√

(1, t0)(XTX)−1(1, t0)T
< c

}

where the critical value c can be determined such that P{YYY ∈ A(t0)} = 1−α. Since

θ̂0 + θ̂1x0 −m0 ∼ N(0, (1, t0)(X
TX)−1(1, t0)

Tσ2), so

θ̂0 + θ̂1t0 −m0

σ̂
√

(1, t0)(XTX)−1(1, t0)T
∼ TTTn−2,

where TTTn−2 is the standard t distribution with degrees of freedom (n − 2). Hence

the critical value c should be equal to tαn−2. Then the (1 − α) level confidence set

15
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Figure 2.4: The relationship between the value of m0 and the 95% level confidence

set C(YYY ) for x0.

for x0 is given by

C(YYY ) = {t0 : YYY ∈ A(t0)}

=

{
t0 :

θ̂0 + θ̂1t0 −m0

σ̂
√

(1, t0)(XTX)−1(1, t0)T
< tαn−2

}

=

{
t0 : θ̂0 + θ̂1t0 − tαn−2σ̂

√
(1, t0)(XTX)−1(1, t0)T < m0

}
.

Figure 2.4 illustrates the relationship between the value of m0 and the 95% confi-

dence set C(YYY ) for x0. The curve in the figure is

f(t) = θ̂0 + θ̂1t0 − tαn−2σ̂
√

(1, t0)(XTX)−1(1, t0)T ,

and the confidence set C(YYY ) is (−∞, t∗) where t∗ solves f(t∗) = m0.

Since there are different acceptance sets for a size α test, we can construct different

confidence sets for x0. For example, if we use an alternative acceptance set given by

A(t0) =

{
YYY :

θ̂0 + θ̂1t0 −m0

σ̂
√

(1, t0)(XTX)−1(1, t0)T
> −tαn−2

}
,
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then the corresponding (1− α) level confidence set for t0 is given by

C(YYY ) = {t0 : YYY ∈ A(t0)}

=

{
t0 :

θ̂0 + θ̂1t0 −m0

σ̂
√

(1, t0)(XTX)−1(1, t0)T
> −tαn−2

}

=

{
t0 : m0 < θ̂0 + θ̂1t0 + tαn−2σ̂

√
(1, t0)(XTX)−1(1, t0)T

}
.

2.1.3 Confidence Set for the Solution of a Set of Simultaneous

Equations

Suppose we are interested in the solution xxx = (x1, · · · , xp)T of the following simul-

taneous equations 

a10 + a11x1 + a12x2 + · · ·+ a1pxp = 0

a20 + a21x1 + a22x2 + · · ·+ a2pxp = 0

· · ·

ap0 + ap1x1 + ap2x2 + · · ·+ appxp = 0.

(2.3)

Because the true value of (aij , i = 1, · · · , p; j = 0, · · · , p) are unknown, and we only

have their estimates (âij , i = 1, · · · , p; j = 0, · · · , p) which are distributed multi-

normally with mean (aij , i = 1, · · · , p; j = 0, · · · , p) and a p(p + 1) × p(p + 1)

variance-covariance matrix Ωσ2, known apart from σ2. Let σ̂2 be an estimate of σ2

with degrees of freedom φ, hence σ̂2/σ2 is distributed as χ2(φ)/φ and is independent

of the coefficients âij . Box and Hunter (1954) constructed a confidence set for the

solution xxx = (x1, · · · , xp)T using Neyman’s Theorem in the following way. Denote

δ̂i(xxx) = âi0 + âi1x1 + âi2x2 + · · ·+ âipxp, i = 1, 2, · · · , p,

and δ̂δδ(xxx) = (δ̂1(xxx), δ̂2(xxx), . . . , δ̂p(xxx))T . It is clear that E(δ̂δδ(xxx)) = 000. Let

V (xxx) = cov(δ̂δδ(xxx), δ̂δδ(xxx))/σ2

= E[δ̂δδ(xxx)δ̂δδ(xxx)
T

]/σ2,

then
δ̂δδ(xxx)TV (xxx)−1δ̂δδ(xxx)

σ2
∼ χ2(p) and

δ̂δδ(xxx)TV (xxx)−1δ̂δδ(xxx)

pσ̂2
∼ Fp,φ,
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where Fp,φ is the F -distribution with degrees of freedom p and φ. Let xxx0 =

(x01, x
0
2, · · · , x0p) be given and for testing

H0 : xxx0is the solution of the simultaneous equation (2.3),

we construct the (1− α) level acceptance set

A(xxx0) =

{
YYY :

δ̂δδ(xxx0)TV (xxx0)−1δ̂δδ(xxx0)

pσ̂2
≤ fαp,φ

}
,

where fαp,φ is the upper α point of an F distribution with degrees of freedom p and

φ. Directly from Neyman’s Theorem, a (1− α) level confidence set for the solution

xxx is given by

C(YYY ) =

{
xxx :

δ̂δδ(xxx)TV (xxx)−1δ̂δδ(xxx)

pσ̂2
≤ fαp,φ

}
.

A program for computing this confidence set is provided by Del Castillo and Cahya

(2001).

Example: Confidence set for the stationary point of a quadratic function

Suppose we have n observations (Yi, xi), i = 1, · · · , n, from a usual quadratic linear

regression model

Y = θ0 + θ1x+ θ2x
2 + ε, ε ∼ N(0, σ2)

with unknown parameter σ2. Let θ̂θθ = (θ̂0, θ̂1, θ̂2)
T be the least squares estimates of

θθθ = (θ0, θ1, θ2)
T for which we know θ̂θθ ∼ N(θθθ, (XTX)−1σ2), where X =


1 x1 x21
...

...
...

1 xn x2n

.

Let σ̂ be the usual estimate of σ, and σ̂2 ∼ σ2

n−3χ
2
n−3. Moreover, θ̂θθ and σ̂2 are inde-

pendent. We are interested in constructing a confidence set for the stationary point

of the quadratic function f(x,θθθ) = θ0 + θ1x+ θ2x
2.

Since the stationary point of f(x,θθθ) is the solution x of the equation θ1 + 2θ2x = 0,

following the approach given above, we denote δ̂(x) = θ̂1 + 2θ̂2x = (1, 2x)

 θ̂1

θ̂2

.
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Hence

V (x) = E[δ̂(x)δ̂(x)T ]/σ2

= cov[δ̂(x)]/σ2

= cov

(1, 2x)

 θ̂1

θ̂2

 /σ2
= (1, 2x)cov[

 θ̂1

θ̂2

]

 1

2x

 /σ2

= (1, 2x)

 v11 v12

v21 v22

 1

2x



where

 v11 v12

v21 v22

 = cov

 θ̂1

θ̂2

 /σ2.

Then the (1− α) level acceptance set is given by

A(x0) =

{
YYY :

δ̂(x0)
2

V (x0)pσ̂2
≤ fα1,n−3

}

=


YYY :

(θ̂1 + 2θ̂2x0)
2

(1, 2x0)

 v11 v12

v21 v22

 1

2x0

 σ̂2

≤ fα1,n−3


=

{
YYY :

(θ̂1 + 2θ̂2x0)
2

(v11 + 4x0v12 + 4x20v22)σ̂
2
≤ fα1,n−3

}
.

Hence the (1− α) level confidence set for the stationary point x can be constructed

as

C(YYY ) = {x : YYY ∈ A(x)}

=

{
x :

(θ̂1 + 2θ̂2x)2

(v11 + 4xv12 + 4x2v22)σ̂2
≤ fα1,n−3

}
.

This method given by Box and Hunter has been widely used in constructing the

confidence sets in many practical problems, for example, in constructing confidence

set for the optimal treatment of cancer (Carter et al., 1982) , for shoot regeneration
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protocol (Chakraborty et al., 2010) and for pigs’ preference (Jensen and Pedersen,

2007).

2.2 Other Methods of Constructing a Confidence Set

In this section, confidence sets for a maximum point using Rao’s method and

bootstrap method are constructed. Suppose we have n observations (Yi,xxxi), i =

1, 2, · · · , n, from the linear regression model (1.1)

Y = f(xxx,βββ) + e.

Then the observations can be written as

YYY = Xβββ + eee

where YYY = (Y1, Y2, · · · , Yn)T , X is the design matrix given by

X =


1, z(xxx1)

T

1, z(xxx2)
T

...

1, z(xxxn)T

 ,

eee = (e1, e2, · · · , en)T has the distribution N(000, σ2In) and In is the n × n identity

matrix. Furthermore, the usual estimates of βββ and σ2 are given by

β̂ββ = (XTX)−1XTYYY ∼ N(βββ, (XTX)−1σ2) and σ̂2 =
‖ êee ‖2

n− p− 1
∼ σ2

n− p− 1
χ2
n−p−1,

where êee = (ê1, · · · , ên)T = YYY − ŶYY and ŶYY = Xβ̂ββ.

2.2.1 The Conservative Confidence Set Given by Rao

Rao (1973, pp.473) suggested a conservative confidence set for any function of the

parameters as follows (see also Farebrother, 1998). Let r(.) be any function of βββ,

then a (1− α) level conservative confidence set for r(βββ) is given by

Cc = {r(βββ∗) : βββ∗ ∈ Cβββ},
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where Cβββ is a (1− α) level confidence set for βββ.

To use this method in constructing a (1− α) level confidence set for r(βββ), we need

a confidence set for βββ first. From the distributions of β̂ββ and σ̂2, it is clear that

Cβββ = {βββ∗ : (β̂ββ − βββ∗)T (XTX)(β̂ββ − βββ∗) < (p+ 1)σ̂2fαp+1,n−p−1}

is a (1 − α) level confidence set for βββ. Then, a (1 − α) conservative confidence set

for r(βββ) is given by

Cc = {r(βββ∗) : (β̂ββ − βββ∗)T (XTX)(β̂ββ − βββ∗) < (p+ 1)σ̂2fαp+1,n−p−1}.

2.2.2 The Bootstrap Percentile Confidence Set

The bootstrap method is first introduced by Efron (1979), and has been used in a

variety of estimation problems including the construction of a confidence set for any

function r(βββ). There are two ways to obtain the bootstrap datasets:

(a) Resample the residuals. Randomly choose a set of n bootstrap residuals from

the original residuals {ê1, ê2, · · · , ên} with replacement, and denote it as êeeB =

{êB1 , êB2 , · · · , êBn }. Then a bootstrap sample set is given by YYY B = (Y B
1 , · · · , Y B

n )

where

YYY B = ŶYY + êeeB.

The estimated parameters based on

YYY B = Xβββ + eee

are denoted as β̂ββ
B

. Since the residuals are supposed to distribute normally with mean

0 and variance σ2, one can resample the residuals from the distribution N(0, σ̂2)

instead of from the original residuals. The design matrix is not changed when the

sampling procedure is on the residuals.

(b) Resample the sample pairs (yi,xxxi). Randomly select n data pairs from the origi-

nal sample set (yi,xxxi), i = 1, · · · , n with replacement, and denote them as (yBi ,xxx
B
i ), i =

1, · · · , n. Then, we re-estimate the parameters from

YYY B = XBβββ + eee,
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where YYY B = (yB1 , · · · , yBn )T , and XB =


z(xxx1)

B

...

z(xxxn)B

. The property that the design

matrix changed in each resampled data set is usually undesirable, since the design

is fixed and all the observations are assumed to be from this design. Furthermore,

since the n pairs are selected randomly, it may happen that all the resampled pairs

are the same and hence the parameters can not be estimated from this bootstrap

sample set.

We form N bootstrap sample sets by resampling the residuals. For the ith sample

set, the parameters β̂ββ
B

i are estimated, and the value of r(β̂ββ
B

i ), denoted as mi, can

be computed. To form the bootstrap percentile confidence set, we sort the vector

mmm = (m1,m2, · · · ,mN ) in ascending order and then delete [α×N ] values (see section

3.3 for details). The remaining form the (1− α) percentile confidence set for r(βββ).

In Chapter 3, we construct confidence sets for a maximum point of a univariate poly-

nomial regression function in a given interval of x. We first apply our method of

constructing a confidence set using Neyman’s Theorem on a simple linear regression

model, then extend this method to the quadratic and general univariate polyno-

mial regression models. Rao’s confidence set and bootstrap confidence set are also

discussed in Chapter 3.
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Confidence Set for a Maximum

Point of a Univariate

Polynomial Regression Function

in a Given Interval

In this chapter, we consider the construction of a confidence set for a maximum

point of a univariate polynomial function in a given interval. Univariate functions

are widely employed in real applications when the interest is on one factor alone. In

this case, all other effects are assumed to be fixed and the response is related only to

the factor of interest. A univariate polynomial function, where the parameters are

estimated immediately using least squares estimation, is among the most popular

univariate functions. Actually, many univariate functions can be well approximated

by a polynomial function. Therefore, the univariate polynomial function is a good

starting point in studying the confidence set for a maximum point.

There are four sections in this chapter. Section 3.1 elaborates our method of

constructing a confidence set for a maximum point of a simple linear function, a

quadratic function and a general polynomial function. Rao’s method and bootstrap
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method for the general polynomial case are discussed in Section 3.2 and 3.3. Exam-

ples are given to compare the confidence sets constructed using these methods and

a conclusion is drawn in Section 3.4.

3.1 Our Method

Suppose we have n independent observations (Yi, xi), i = 1, 2, · · · , n, from a univari-

ate polynomial regression model

Y = f(x,θθθ) + e = θ0 + θ1x+ θ2x
2 + · · ·+ θpx

p + e,

where θθθ = (θ0, θ1, · · · , θp)T is the vector of the unknown regression coefficients.

The random error e is unobservable, and is assumed to have a normal distribution

N(0, σ2) with unknown σ2 > 0. Hence we have

YYY = Xθθθ + eee

where YYY = (Y1, Y2, · · · , Yn)T , X is the design matrix given by

X =


1 x1 · · · xp1

1 x2 · · · xp2
...

...
...

...

1 xn · · · xpn

 ,

eee = (e1, e2, · · · , en)T has the distribution N(000, σ2In) and In is the n × n identity

matrix.

Suppose k = k(θθθ) is a maximum point of the regression function f(x,θθθ) in a given

finite interval [a, b]. We want to construct a (1 − α) level confidence set for k by

using Neyman’s Theorem. Note that k must exist since the interval [a, b] is finite

and f(x,θθθ) is a continuous function.

3.1.1 A Simple Linear Regression Model

When p = 1, we have a simple linear regression model

Y = θ0 + θ1x+ e.
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Let

YYY =


Y1

Y2
...

Yn

 , X =


1 x1
...

...

1 xn


and

θ̂θθ =

 θ̂0

θ̂1

 = (XTX)−1XTYYY ∼ N
(
θθθ, (XTX)−1σ2

)

be the least squares estimate of θθθ =

 θ0

θ1

. Let σ̂ be the usual estimate of σ, then

σ̂2 ∼ σ2

n− 2
χ2
n−2.

Moreover, θ̂θθ and σ̂2 are independent.

To apply Neyman’s Theorem, we require an acceptance set for testing

H0 : k = k0,

with each k0 ∈ [a, b]. In the following paragraphs, two methods are given for the

construction of acceptance sets.

Method 1.

Since the regression function is a straight line, it is clear that the slope of this line,

θ1, determines the maximum point(s) in the interval [a, b]. If k0 = a, then it is clear

that θ1 ≤ 0. Thus, our (1− α) level acceptance set is

A(a) = {YYY : θ̂1 ≤ c(a)σ̂v}

where v =

√
var(θ̂1)/σ2, and c(a) is the critical value such that A(a) is a (1 − α)

level acceptance set. Note that

Pk0=a{YYY ∈ A(a)} = Pk0=a{θ̂1 ≤ c(a)σ̂v}

= Pθ1≤0{θ̂1 ≤ c(a)σ̂v}

≥ Pθ1=0{θ̂1 ≤ c(a)σ̂v}.
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When θ1 = 0, we know θ̂1/(σ̂v) ∼ Tn−2. Hence c(a) should be equal to tαn−2, which

is the upper α point of the standard t-distribution with degrees of freedom n− 2.

Similarly, if k0 = b, then θ1 ≥ 0. Thus, a (1− α) level acceptance set is given by

A(b) = {YYY : θ̂1 ≥ −c(b)σ̂v},

where c(b) is such that the acceptance probability of A(b) is (1− α). Since

Pk0=b{YYY ∈ A(b)} = Pk0=b{θ̂1 ≥ −c(b)σ̂v}

= Pθ1≥0{θ̂1 ≥ −c(b)σ̂v}

≥ Pθ1=0{θ̂1 ≥ −c(b)σ̂v},

we have c(b) = tαn−2.

Finally, if k0 = s, s ∈ (a, b), then θ1 = 0. It can be shown that for each s ∈ (a, b), a

(1− α) level acceptance set is

A(s) = {YYY : |θ̂1| ≤ c(s)σ̂v},

where c(s) is such that the acceptance probability of A(s) is (1− α). Note that

Pk0=s{YYY ∈ A(s)} = Pk0=s{| θ̂1 |≤ c(s)σ̂v}

= Pθ1=0{| θ̂1 |≤ c(s)σ̂v}.

Therefore, we have c(s) = t
α/2
n−2 for any s ∈ (a, b).

Method 2.

Intuitively, if k0 is a maximum point, we should have (θ0 + θ1k0) − (θ0 + θ1x) ≥ 0

for ∀x ∈ [a, b]. This implies (θ̂0 + θ̂1k0) − (θ̂0 + θ̂1x) should not be too small. We

therefore construct an acceptance set for k0 as

A(k0) = {YYY : (θ̂0 + θ̂1k0)− (θ̂0 + θ̂1x) ≥ −c(k0)σ̂v(k0, x), ∀x ∈ [a, b]},

where

v(k0, x) =

√
var((θ̂0 + θ̂1k0)− (θ̂0 + θ̂1x))/σ2

=

√
var(θ̂1)(k0 − x)2/σ2

= |k0 − x|v
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with v =

√
var(θ̂1)/σ2. The critical value c(k0) is chosen such that the acceptance

level of A(k0) is (1− α).

If k0 = a, the acceptance set can be expressed as

A(a) = {YYY : (θ̂0 + θ̂1a)− (θ̂0 + θ̂1x) ≥ −c(a)σ̂v(a, x), ∀x ∈ [a, b]}

= {YYY : θ̂1(a− x) ≥ −c(a)σ̂|a− x|v, ∀x ∈ [a, b]}

= {YYY : θ̂1 ≤ c(a)σ̂v}.

The last expression coincides with the acceptance set A(a) constructed in Method

1. Thus we have the same critical value c(a) = tαn−2 as in Method 1.

Similarly, if k0 = b, a (1− α) level acceptance set will be

A(b) = {YYY : (θ̂0 + θ̂1b)− (θ̂0 + θ̂1x) ≥ −c(b)σ̂v(b, x), ∀x ∈ [a, b]}

= {YYY : θ̂1(b− x) ≥ −c(b)σ̂|b− x|v, ∀x ∈ [a, b]}

= {YYY : θ̂1 ≥ −c(b)σ̂v}.

The last expression coincides with the acceptance set A(b) constructed in Method

1, thus we have c(b) = tαn−2.

Finally, if k0 = s with s ∈ (a, b), then

A(s) = {YYY : (θ̂0 + θ̂1s)− (θ̂0 + θ̂1x) ≥ −c(s)σ̂v(s, x), ∀x ∈ [a, s) ∪ (s, b]}

= {YYY : θ̂1(s− x) ≥ −c(s)σ̂|s− x|v, ∀x ∈ [a, s) ∪ (s, b]}

= {YYY : |θ̂1| ≤ c(s)σ̂v}.

The last expression coincides with the acceptance set A(s) constructed in Method

1, and so we have c(s) = −tα/2n−2.

Therefore, we conclude that the acceptance sets given by Method 1 and Method 2

are identical. Neyman’s Theorem allows us to construct a (1 − α) level confidence
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set for k, which is given by

CE(YYY ) = {k0 : YYY ∈ A(k0)}

=



b, if ĥ > t
α/2
n−2

(a, b], if tαn−2 < ĥ ≤ tα/2n−2

[a, b], if − tαn−2 ≤ ĥ ≤ tαn−2
[a, b), if − tα/2n−2 ≤ ĥ < −tαn−2
a, if ĥ < −tα/2n−2

where ĥ = θ̂/(σ̂v). In fact, the coverage probability of the confidence set CE(YYY )

can be evaluated directly as

P (k ∈ CE(YYY )) = P{k ∈ CE(YYY ), ĥ > t
α/2
n−2}

+ P{k ∈ CE(YYY ), tαn−2 < ĥ ≤ tα/2n−2}

+ P{k ∈ CE(YYY ), − tαn−2 ≤ ĥ ≤ tαn−2}

+ P{k ∈ CE(YYY ), − tα/2n−2 ≤ ĥ < −t
α
n−2}

+ P{k ∈ CE(YYY ), ĥ < −tα/2n−2}

= P{k = b, ĥ > t
α/2
n−2}

+ P{k ∈ (a, b], tαn−2 < ĥ ≤ tα/2n−2}

+ P{k ∈ [a, b], − tαn−2 ≤ ĥ ≤ tαn−2}

+ P{k ∈ [a, b), − tα/2n−2 ≤ ĥ < −t
α
n−2}

+ P{k = a, ĥ < −tα/2n−2}.
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Now, if k = a, then

Pk=a(k ∈ CE(YYY )) = Pk=a{a ∈ CE(YYY )}

= Pk=a{a = b, ĥ > t
α/2
n−2}

+ Pk=a{a ∈ (a, b], tαn−2 < ĥ ≤ tα/2n−2}

+ Pk=a{a ∈ [a, b], − tαn−2 ≤ ĥ ≤ tαn−2}

+ Pk=a{a ∈ [a, b), − tα/2n−2 ≤ ĥ < −t
α
n−2}

+ Pk=a{a = a, ĥ < −tα/2n−2}

= Pk=a{−tαn−2 ≤ ĥ ≤ tαn−2}

+ Pk=a{−t
α/2
n−2 ≤ ĥ < −t

α
n−2}

+ Pk=a{ĥ < −t
α/2
n−2}

= Pk=a{ĥ ≤ tαn−2}

= 1− α.

Similarly, if k = b, then

Pk=b(k ∈ CE(YYY )) = Pk=b{b ∈ CE(YYY )}

= Pk=b{ĥ > t
α/2
n−2}

+ Pk=b{tαn−2 < ĥ ≤ tα/2n−2}

+ Pk=b{−tαn−2 ≤ ĥ ≤ tαn−2}

= Pk=b{ĥ ≥ −tαn−2}

= 1− α.

Finally, if k = s ∈ (a, b), then

Pk=s(k ∈ CE(YYY )) = Pk=s{s ∈ CE(YYY )}

= Pk=s{tαn−2 < ĥ ≤ tα/2n−2}

+ Pk=s{tαn−2 ≤ ĥ ≤ tαn−2}

+ Pk=s{−t
α/2
n−2 ≤ ĥ < −t

α
n−2}

= Pk=s{−t
α/2
n−2 ≤ ĥ ≤ t

α/2
n−2}

= 1− α.
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Figure 3.1: Confidence set for a maximum point, k, of f(x) = θ0 + θ1x.

The above results show directly that the confidence level of CE(YYY ) is indeed (1−α).

This of course agrees with Neyman’s Theorem. Figure 3.1 illustrates the confidence

interval for k with the value ĥ computed based on the observations. The confidence

interval is represented by the intersection of ĥ and the shaded region (including

two lines and a rectangular region). For example, if ĥ = (tαn−2 + t
α/2
n−2)/2, then the

corresponding confidence set will be (a, b]. If ĥ = t
α/2
n−2 + 1, then the corresponding

confidence set will be {b}.
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3.1.2 A Quadratic Polynomial Regression Model

When p = 2, we have the quadratic regression model

Y = θ0 + θ1x+ θ2x
2 + e,

with

YYY =


Y1

Y2
...

Yn

 , X =


1 x1 x21

1 x2 x22
...

...
...

1 xn x2n

 and θθθ =


θ0

θ1

θ2

 .

The least squares estimate of θθθ is given by

θ̂θθ =


θ̂0

θ̂1

θ̂2

 = (XTX)−1XTYYY ,

which has the distribution N(θθθ, (XTX)−1σ2). Let σ̂2 be the usual estimate of σ2

which has the distribution

σ̂2 ∼ σ2

n− 3
χ2
n−3,

where χ2
n−3 is the chi-squared distribution with degrees of freedom (n−3). Moreover,

θ̂θθ and σ̂2 are independent.

We define

(XTX)−1 =


v1,1 v1,2 v1,3

v2,1 v2,2 v2,3

v3,1 v3,2 v3,3

 and P2 =

 v2,2 v2,3

v3,2 v3,3

 .

Since  θ̂1

θ̂2

 =

 0 1 0

0 0 1

 θ̂θθ,
the variance-covariance matrix of

 θ̂1

θ̂2

 is given by

σ2

 0 1 0

0 0 1

(XTX
)−1


0 0

1 0

0 1

 = σ2P2.
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Therefore

P−1 ×

 θ̂1 − θ1

θ̂2 − θ2

 /σ ∼ N(0, I2),

and hence

TTT =

 T1

T2

 := P−1 ×

 θ̂1 − θ1

θ̂2 − θ2

 /σ̂ ∼ TTT 2,n−3 (3.1)

where TTT 2,n−3 is the standard bivariate t distribution with degrees of freedom n− 3.

Define the polar coordinates of TTT , (RTTT , ψTTT ), by

T1 = RTTT cosψTTT , T2 = RTTT sinψTTT ,

where ψTTT is uniformly distributed in [0, 2π), and RTTT and ψTTT are independent. Note

that R2
TTT /2 ∼ F2,n−3, where F2,n−3 is the F distribution with degrees of freedom 2

and n− 3. So the cumulative density function of RTTT is given by

FRTTT
(x) = 1− (1 + x2/n− 3)−(n−3)/2.

Moreover, we have

v(k0, x) :=

√
var[(θ̂0 + θ̂1k0 + θ̂2k20)− (θ̂0 + θ̂1x+ θ̂2x2)]/σ2

= | k0 − x |
√
var[θ̂1 + θ̂2(k0 + x)]/σ2

= | k0 − x |
√

(1, k0 + x)P2(1, k0 + x)T

= | k0 − x | ‖ P(1, k0 + x)T ‖ .

3.1.2.1 Theory

To apply Neyman’s Theorem, we require an acceptance set for testing

H0 : k = k0,

for each k0 ∈ [a, b]. Next, we consider three cases: k0 = a, k0 = b and k0 ∈ (a, b).

Case I If k0 = a is a maximum point, then for any x ∈ (a, b], it is clear that

(θ0 + θ1a+ θ2a
2)− (θ0 + θ1x+ θ2x

2) ≥ 0,
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which implies θ1 + θ2(a + x) ≤ 0 for all x ∈ (a, b]. Accordingly, we define an

acceptance set as

A(a) = {YYY : (θ̂0 + θ̂1a+ θ̂2a
2)− (θ̂0 + θ̂1x+ θ̂2x

2) ≥ −c(a)σ̂v(a, x), ∀x ∈ (a, b]}

= {YYY : (θ̂1 + θ̂2(a+ x))(a− x) ≥ −c(a)σ̂v(a, x), ∀x ∈ (a, b]}

= {YYY : θ̂1 + θ̂2(a+ x) ≤ c(a)σ̂ ‖ P(1, a+ x)T ‖, ∀x ∈ (a, b]} (3.2)

where c(a) > 0 is a critical constant such that A(a) is a (1−α) level acceptance set.

To determine c(a), note that

Pk0=a {YYY ∈ A(a)}

= Pk0=a {θ̂1 + θ̂2 (a+ x) ≤ c(a)σ̂ ‖ P(1, a+ x)T ‖, ∀x ∈ (a, b]} (3.3)

≥ Pk0=a {θ̂1 + θ̂2 (a+ x) ≤ c(a)σ̂ ‖ P(1, a+ x)T ‖ +(θ1 + θ2(a+ x)), ∀x ∈ (a, b]}

(3.4)

= Pk0=a {
(1, a+ x)(θ̂1 − θ1, θ̂2 − θ2)T

σ̂ ‖ P(1, a+ x)T ‖
≤ c(a), ∀x ∈ (a, b]}

= Pk0=a { sup
x∈(a,b]

[P(1, a+ x)T ]T [P−1(θ̂1 − θ1, θ̂2 − θ2)T ]

σ̂ ‖ P(1, a+ x)T ‖
≤ c(a)}

= P { sup
x∈(a,b]

[P(1, a+ x)T ]TTTT

‖ P(1, a+ x)T ‖
≤ c(a)} (3.5)

= P {TTT ∈ Rh,a},

where Equation (3.3) follows directly from Equation (3.2), Equation (3.4) follows

from the fact that θ1 + θ2(a+ x) ≤ 0 for all x ∈ (a, b], and

Rh,a =
⋂

x∈(a,b]

Rh,a(x)

with

Rh,a(x) = {TTT :
{P(1, a+ x)T }TTTT
‖ P(1, a+ x)T ‖

≤ c(a)}.

Note that the inequality in (3.4) becomes an equality when θ1 = θ2 = 0 and so

inf
θθθ:k0=a

Pk0=a{YYY ∈ A(a)} = P{TTT ∈ Rh,a}, (3.6)

with the infimum being attained at θ1 = θ2 = 0.
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Figure 3.2: The region Rh,a

Now we consider the computation of P{TTT ∈ Rh,a}. Note that Rh,a is made up by all

the points on the same side as the origin of the straight line that is perpendicular to

P(1, a+ x)T and c(a) distance from the origin in the direction of P(1, a+ x)T . The

region Rh,a is represented by the shaded region in Figure 3.2. The angle φ1 between

P(1, 2a)T and P(1, a+ b)T satisfies

cosφ1 =
[P(1, 2a)T ]T [P(1, a+ b)T ]

‖ P(1, 2a)T ‖ ‖ P(1, a+ b)T ‖
.

Following an argument similar to Liu (2010, pp.28-36), the region Rh,a can be

partitioned into 4 parts. Figure 3.3 depicts the partition of region Rh,a, and the 4

parts are denoted by D1, D2, D3 and D4. Thus,

P{TTT ∈ Rh,a} = P{TTT ∈ D1 ∪D2}+ P{TTT ∈ D3}+ P{TTT ∈ D4}.
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Figure 3.3: The region Rh,a = D1 ∪D2 ∪D3 ∪D4

The probability that TTT lies in the region D1 ∪D2 is given by

P{TTT ∈ D1 ∪D2} = P{|T2| < c(a), ψTTT ∈ (
π

2
,
3π

2
)}

= P{−c(a) < T2 < c(a), ψTTT ∈ (
π

2
,
3π

2
)}

=
1

2
P{−c(a) < T2 < c(a)}

=
1

2
P{T 2

2 < c2(a)}

=
1

2
F1,n−3(c

2(a)),

the probability that TTT lies in the region D3 is given by

P{TTT ∈ D3} =
φ1
2π
P{RTTT < c(a)}

=
φ1
2π
P{R2

TTT /2 ≤
c2(a)

2
}

=
φ1
2π
F2,n−3(

c(a)2

2
),

and finally the probability that TTT lies in the region D4 is given by

P{TTT ∈ D4} =
π − φ1

2π
.
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Therefore,

P{TTT ∈ Rh,a} = P{TTT ∈ D1 ∪D2}+ P{TTT ∈ D3}+ P{TTT ∈ D4}

=
φ1
2π
F2,n−3(

c(a)2

2
) +

π − φ1
2π

+
1

2
F1,n−3(c(a)2),

which implies that

inf
θθθ:k0=a

Pk0=a{YYY ∈ A(a)} =
φ1
2π
F2,n−3(

c(a)2

2
) +

π − φ1
2π

+
1

2
F1,n−3(c(a)2).

Hence c(a) > 0 is solved from

φ1
2π
F2,n−3(

c(a)2

2
) +

π − φ1
2π

+
1

2
F1,n−3(c(a)2) = 1− α.

Case II If k0 = b is a maximum point, then for any x ∈ [a, b), it is clear that

(θ0 + θ1b+ θ2b
2)− (θ0 + θ1x+ θ2x

2) ≥ 0,

which implies θ1+θ2(b+x) ≥ 0 for all x ∈ [a, b). Accordingly, we define an acceptance

set as

A(b) = {YYY : (θ̂0 + θ̂1b+ θ̂2b
2)− (θ̂0 + θ̂1x+ θ̂2x

2) ≥ −c(b)σ̂v(b, x), ∀x ∈ [a, b)}

= {YYY : θ̂1 + θ̂2 (b+ x) ≥ −c(b)σ̂ ‖ P(1, b+ x)T ‖, ∀x ∈ [a, b)} (3.7)

where c(b) > 0 is a critical constant such that A(b) is a (1−α) level acceptance set.

To determine c(b), note that

Pk0=b {YYY ∈ A(b)}

= Pk0=b {θ̂1 + θ̂2 (b+ x) ≥ −c(b)σ̂ ‖ P(1, b+ x)T ‖ ∀x ∈ [a, b)} (3.8)

≥ Pk0=b {θ̂1 + θ̂2 (b+ x) ≥ −c(b)σ̂ ‖ P(1, b+ x)T ‖ +(θ1 + θ2(b+ x)) ∀x ∈ [a, b)}

(3.9)

= Pk0=b {
(1, b+ x)(θ̂1 − θ1, θ̂2 − θ2)T

σ̂ ‖ P(1, b+ x)T ‖
≥ −c(b), ∀x ∈ (a, b]}

= Pk0=b { inf
x∈[a,b)

[P(1, b+ x)T ]T [P−1(θ̂1 − θ1, θ̂2 − θ2)T ]

σ̂ ‖ P(1, b+ x)T ‖
≥ −c(b)}

= P { sup
x∈[a,b)

[P(1, b+ x)T ]T (−TTT )

‖ P(1, b+ x)T ‖
≤ c(b)} (3.10)

= P {(−TTT ) ∈ Rh,b},
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where Equation (3.8) follows directly from Equation (3.7), Equation (3.9) follows

from the fact that θ1 + θ2(b+ x) ≥ 0 for ∀x ∈ [a, b), and

Rh,b =
⋂

x∈[a,b)

Rh,b(x),

where

Rh,b(x) = {TTT :
{P(1, b+ x)T }TTTT
‖ P(1, b+ x)T ‖

≤ c(b)}.

Note that

inf
θθθ:k0=b

Pk0=b{YYY ∈ A(b)} = P{(−TTT ) ∈ Rh,b}, (3.11)

with the infimum being attained at θ1 = θ2 = 0.

Now we consider the computation of P{(−TTT ) ∈ Rh,b}. Since TTT ∼ TTT 2,n−3 and

(−TTT ) ∼ TTT 2,n−3, the probability can be written as

P{(−TTT ) ∈ Rh,b} = P{TTT ∈ Rh,b}.

By comparing this definition of Rh,b with Rh,a, we note that the shape of Rh,b is

similar to that of Rh,a but with the angle φ1 between the two stripes D1 and D2 in

Figure 3.3 replaced by φ2 where φ2 is the angle between P(1, a+b)T and P(1, 2b)T

and so

cosφ2 =
[P(1, a+ b)T ]T [P(1, 2b)T ]

‖ P(1, a+ b)T ‖ ‖ P(1, 2b)T ‖
.

Using a similar argument to the one used to compute P{TTT ∈ Rh,a}, we have

P{TTT ∈ Rh,b} =
φ2
2π
F2,n−3(

c(b)2

2
) +

π − φ2
2π

+
1

2
F1,n−3(c(b)

2).

Hence, the critical value c(b) is the positive solution of

φ2
2π
F2,n−3(

c(b)2

2
) +

π − φ2
2π

+
1

2
F1,n−3(c(b)

2) = 1− α.

Case III Finally, if k0 = s, s ∈ (a, b), is a maximum point, then for any x ∈

[a, s) ∪ (s, b], it is clear that

(θ0 + θ1s+ θ2s
2)− (θ0 + θ1x+ θ2x

2) ≥ 0,
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which implies θ1 + θ2(s+ x) ≥ 0 for x ∈ [a, s), and θ1 + θ2(s+ x) ≤ 0 for x ∈ (s, b].

Accordingly, for each s ∈ (a, b), we define an acceptance set

A(s) = {YYY : (θ̂0 + θ̂1s+ θ̂2s
2)− (θ̂0 + θ̂1x+ θ̂2x

2) ≥ −c(s)σ̂v(s, x), ∀x ∈ [a, s) ∪ (s, b]}

= {YYY : (θ̂1 + θ̂2(s+ x))(s− x) ≥ −c(s)σ̂v(s, x), ∀x ∈ [a, s) ∪ (s, b]}

= {YYY : θ̂1 + θ̂2 (s+ x) ≥ −c(s)σ̂ ‖ P(1, s+ x)T ‖, ∀x ∈ [a, s),

θ̂1 + θ̂2 (s+ x) ≤ c(s)σ̂ ‖ P(1, s+ x)T ‖, ∀x ∈ (s, b]} (3.12)

where c(s) > 0 is a critical constant such that A(s) is a (1−α) level acceptance set.

To determine c(s), note that

Pk0=s {YYY ∈ A(s)}

= Pk0=s {θ̂1 + θ̂2 (s+ x) ≥ −c(s)σ̂ ‖ P(1, s+ x)T ‖, ∀x ∈ [a, s),

θ̂1 + θ̂2 (s+ x) ≤ c(s)σ̂ ‖ P(1, s+ x)T ‖, ∀x ∈ (s, b]} (3.13)

≥ Pk0=s {θ̂1 + θ̂2(s+ x) ≥ −c(s)σ̂ ‖ P(1, s+ x)T ‖ +(θ1 + θ2(s+ x)), ∀x ∈ [a, s),

θ̂1 + θ̂2(s+ x) ≤ c(s)σ̂ ‖ P(1, s+ x)T ‖ +(θ1 + θ2(s+ x)), ∀x ∈ (s, b]}

(3.14)

= Pk0=s { inf
x∈[a,s)

[P(1, s+ x)T ][P−1(θ̂1 − θ1, θ̂2 − θ2)T ]

σ̂ ‖ P(1, s+ x)T ‖
≥ −c(s),

sup
x∈(s,b]

[P(1, s+ x)T ]T [P−1(θ̂1 − θ1, θ̂2 − θ2)T ]

σ̂ ‖ P(1, s+ x)T ‖
≤ c(s)}

= P { inf
x∈[a,s)

[P(1, s+ x)T ]T TTT

‖ P(1, s+ x)T ‖
≥ −c(s), sup

x∈(s,b]

[P(1, s+ x)T ]TTTT

‖ P(1, s+ x)T ‖
≤ c(s)}(3.15)

= P {TTT ∈ Rh(s)} (3.16)

where Equation (3.13) follows directly from Equation (3.12), Equation (3.14) follows

from the fact that θ1+θ2(s+x) ≥ 0 for x ∈ [a, s), and θ1+θ2(s+x) ≤ 0 for x ∈ (s, b].

The region Rh(s) ⊂ R2 in (3.16) is given by

Rh(s) =
⋂

x∈[a,s)∪(s,b]

Rh(s, x) (3.17)

where

Rh(s, x) =

{
TTT :

[P(1, x+ s)T ]TTTT

‖ P(1, x+ s)T ‖
> −c(s)

}
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Figure 3.4: The region Rh(s)

if x ∈ [a, s), and

Rh(s, x) =

{
TTT :

[P(1, x+ s)T ]TTTT

‖ P(1, x+ s)T ‖
< c(s)

}
if x ∈ (s, b]. Note that for each s ∈ (a, b),

inf
θθθ:k0=s

Pk0=s{YYY ∈ A(s)} = P{TTT ∈ Rh(s)}, (3.18)

with the infimum being attained at θ1 = θ2 = 0.

Now we consider the computation of P{TTT ∈ Rh(s)}. Note that the set Rh(s, x) is

given by the region bounded by a straight line that is perpendicular to P(1, s+ x)T

and c(s) distance away from the origin. Hence Rh(s) is the intersection of all such

regions with x ∈ [a, s)∪ (s, b]. Figure 3.4 depicts the region Rh(s), which is bounded

by two parallel straight lines, two parts of the circle and another two straight lines.

Angle φ3(s) is the angle between P(1, a+ s)T and P(1, b+ s)T , and so

cosφ3(s) =
[P(1, a+ s)T ]T [P(1, s+ b)T ]

‖ P(1, a+ s)T ‖ ‖ P(1, s+ b)T ‖
.

The region Rh(s) can be partitioned in to C1 and C2 , therefore

P{TTT ∈ Rh(s)} = P{TTT ∈ C1}+ P{TTT ∈ C2}.
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Using the method of Wynn and Bloomfield (1971) following Liu (2010, pp.18-24):

P{TTT ∈ C1} =
1

2
P{|T2| < c(s)}

=
1

2
P{T 2

2 < c2(s)}

=
1

2
F1,n−3(c

2(s)).

Now we consider the region C2. The region C2 can be further partitioned into a half

disc and the remaining region. We rotate the remaining region around the disc to a

position so that C2 is symmetric about the t1-axis. Figure 3.5 shows the region C2

after rotation. The half disc is denoted as D1, and the remaining region (the shaded

region) is denoted as D2. The probability that TTT lies in the region D1 is given by

P{TTT ∈ D1}

= P

{
RTTT < c(s), ψTTT ∈ [0,

π

2
) ∪ (

3π

2
, 2π)

}
=

1

2
P{RTTT < c(s)}

=
1

2
P

{
‖ TTT ‖2

2
≤ c2(s)

2

}
=

1

2
F2,n−3

(
c2(s)

2

)
.

Let

φ(s) =
π − φ3(s)

2
,

then the probability that TTT lies in the region D2 is given by

P{TTT ∈ D2}

= 2P{RTTT > c(s), ψTTT ∈ [0, φ(s)), (cos(φ(s)), sin(φ(s)))TTT < c(s)}

= 2P

{
ψTTT ∈ [0, φ(s)), c(s) < RTTT <

c(s)

cos(φ(s)− ψTTT )

}

=
φ(s)

π

(
1 +

c2(s)

n− 3

)−(n−3)
2

− 1

π

∫ φ(s)

0

(
1 +

c2(s)

(n− 3) cos2(φ(s)− ψ)

)−(n−3)
2

dψ

where the last equation above follows directly from the cumulative density function

40



Chapter 3

Figure 3.5: The region C2.

of RTTT . Then

P{TTT ∈ C2} =
1

2
F2,n−3

(
c2(s)

2

)
+
φ(s)

π

(
1 +

c2(s)

n− 3

)−(n−3)
2

− 1

π

∫ φ(s)

0

(
1 +

c2(s)

(n− 3) cos2(φ(s)− ψ)

)−(n−3)
2

dψ.

Hence, the probability P{TTT ∈ Rh(s)} is equal to

1

2
F1,n−3(c

2(s)) +
1

2
F2,n−3

(
c2(s)

2

)
+
φ(s)

π

(
1 +

c2(s)

n− 3

)−(n−3)
2

− 1

π

∫ φ(s)

0

(
1 +

c2(s)

(n− 3) cos2(φ(s)− ψ)

)−(n−3)
2

dψ.

Therefore, the critical value c(s) is such that the last expression is equal to (1− α).

Having found c(k0) for each k0 ∈ [a, b], we summarize our (1 − α) level acceptance

set as

A(k0) =
{
YYY : (θ̂1 + θ̂2(k0 + x))(k0 − x) ≥ −c(k0)σ̂v(k0, x), ∀x ∈ [a, b] \ k0

}
.

(3.19)

Then according to Neyman’s Theorem, a (1−α) level confidence set for a maximum

41



Chapter 3

point, k, based on YYY is given by

CE(YYY ) = {k0 ∈ [a, b] : YYY ∈ A(k0)}

=
{
k0 ∈ [a, b] : (θ̂1 + θ̂2(k0 + x))(k0 − x) ≥ −c(k0)σ̂v(k0, x), ∀x ∈ [a, b] \ k0

}
.

(3.20)

In other words, a point k0 ∈ [a, b] is in the set CE(YYY ) if and only if for any x ∈

[a, b] \ k0, we have

(θ̂1 + θ̂2(k0 + x))(k0 − x) ≥ −c(k0)σ̂v(k0, x).
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3.1.2.2 Computation

In this section, we first present the direct approach of computing the confidence set

in practice. Then to reduce the complexity of computation, we present a p-value

method which avoids the computation of critical values.

Direct approach. After the critical values are computed, we construct the confi-

dence set directly from Equation (3.20) by testing whether a point k0 in [a, b] is in

the confidence set. Let

ĥ(z) =
θ̂1 + θ̂2z

σ̂ ‖ P(1, z)T ‖
, (3.21)

then the confidence set in Equation (3.20) can be written as

CE(YYY ) = {k0 ∈ [a, b] : ĥ(k0 + x)
k0 − x
|k0 − x|

≥ −c(k0), ∀x ∈ [a, b] \ k0}.

Since ĥ(z) is a continuous function, the inequality in CE(YYY ) implies

a ∈ CE(YYY ) ⇔ sup
x∈[a,b]

ĥ(a+ x) ≤ c(a),

b ∈ CE(YYY ) ⇔ inf
x∈[a,b]

ĥ(b+ x) ≥ −c(b),

s ∈ CE(YYY ) ⇔

 infx∈[a,s] ĥ(s+ x) ≥ −c(s)

supx∈[s,b] ĥ(s+ x) ≤ c(s)
.

Note that from the definition of ĥ(z) in Equation (3.21) the function ĥ(z) has a

single stationary point z0 over (−∞,∞) which is given by

z0 =
v23θ̂1 − v22θ̂2
v23θ̂2 − v33θ̂1

.

Therefore, we have the following results.

If (z0 − a) /∈ [a, b], then

a ∈ CE(YYY )⇔ max(ĥ(a+ a), ĥ(b+ a)) ≤ c(a); (3.22)

alternatively, if (z0 − a) ∈ [a, b], then

a ∈ CE(YYY )⇔ max(ĥ(a+ a), ĥ(b+ a), ĥ(z0)) ≤ c(a). (3.23)
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Similarly, if (z0 − b) /∈ [a, b], then

b ∈ CE(YYY )⇔ min(ĥ(a+ b), ĥ(b+ b)) ≥ −c(b); (3.24)

alternatively, if (z0 − b) ∈ [a, b], then

b ∈ CE(YYY )⇔ min(ĥ(a+ b), ĥ(b+ b), ĥ(z0)) ≥ −c(b). (3.25)

Finally, for s ∈ (a, b), if (z0 − s) /∈ [a, s] ∪ [s, b], then

s ∈ CE(YYY )⇔

 min(ĥ(a+ s), ĥ(2s)) ≥ −c(s)

max(ĥ(b+ s), ĥ(2s)) ≤ c(s)
; (3.26)

alternatively, if (z0 − s) ∈ [a, s], then

s ∈ CE(YYY )⇔

 min(ĥ(a+ s), ĥ(2s), ĥ(z0)) ≥ −c(s)

max(ĥ(b+ s), ĥ(2s)) ≤ c(s)
; (3.27)

otherwise, if (z0 − s) ∈ [s, b], then

s ∈ CE(YYY )⇔

 min(ĥ(a+ s), ĥ(2s)) ≥ −c(s)

max(ĥ(b+ s), ĥ(2s), ĥ(z0)) ≤ c(s)
. (3.28)

Theoretically, we need to check each point k0 ∈ [a, b] whether it is in the confidence

set by verifying the above inequalities. However, the interval [a, b] contains infinite

points and thus we can not check each point k0 ∈ [a, b] to determine whether it is in

the confidence set. Hence, we choose a finite grid of points in the interval [a, b] with

resolution d, that is, {a = s1, s2, · · · , sJ = b} with si − si−1 = d. If d is small, then

the grid of points can give a fine approximation to the set [a, b]. We only check each

point in the grid to determine whether it is in the confidence set.

In practice, it is time consuming to construct the confidence set in this way, since the

computation of the critical values takes time, especially for c(s) with s ∈ (a, b) which

involves solving an equation of integration. To reduce the computation burden, we

use conservative critical constants to quickly narrow down the possible points that

could be in the set CE(YYY ) and then compute the critical value c(k0) for only the

remaining points.
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Conservative confidence set method. Recall that in Section 3.1.2.1, we have

Equation (3.5) equal to (1− α), that is,

P

{
sup
x∈(a,b]

[P(1, a+ x)T ]TTTT

‖ P(1, a+ x)T ‖
≤ c(a)

}
= 1− α,

where TTT is defined to have a standard bivariate t-distribution with degrees of freedom

(n− 3). Note that
‖ TTT ‖2

2
∼ F2,n−3,

where F2,n−3 is the standard F-distribution with degrees of freedom 2 and (n− 3).

Let c1 =
√

2fα2,n−3 where fα2,n−3 is the upper α point of the distribution F2,n−3, then

we have

P{‖ TTT ‖≤ c1} = 1− α. (3.29)

Equation (3.29) can be written as

P

{
sup
ρρρ∈R2

| ρρρTTT |
‖ ρρρ ‖

≤ c1

}
= 1− α,

hence

P

{
sup
ρρρ∈R2

ρρρTTT

‖ ρρρ ‖
≤ c1

}
≥ 1− α.

Since {P(1, a+ x)T : x ∈ [a, b]} ⊂ R2, comparing this equation with Equation (3.5),

we conclude that c(a) < c1.

In a similarly way, we have c(b) < c1.

For s ∈ (a, b), since the probability in Equation (3.15) is equal to (1− α), that is,

P

{
sup
x∈(s,b]

[P(1, s+ x)T ]T TTT

‖ P(1, s+ x)T ‖
≤ c(s), inf

x∈[a,s)

[P(1, s+ x)T ]T TTT

‖ P(1, s+ x)T ‖
≥ −c(s)

}
= 1− α.

Note that Equation (3.29) can be expressed in the form

P

{
sup
ρρρ∈R2

ρρρTTT

‖ ρρρ ‖
≤ c1, inf

ρρρ∈R2

ρρρTTT

‖ ρρρ ‖
≥ −c1

}
= 1− α.

Comparing the above two equations, we therefore conclude

c(s) ≤ c1
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Figure 3.6: The critical values c(s), c1 and c2.

for all s ∈ (a, b).

Therefore, we have proved c(k0) < c1 for any k0 ∈ [a, b], and hence a conservative

confidence set C0(YYY ) for a maximum point is given by substituting c1 =
√

2fα2,n−3

for c(k0) in Equation (3.20):

C0(YYY ) =
{
k0 ∈ [a, b] : (θ̂1 + θ̂2(k0 + x))(k0 − x) ≥ −c1σ̂v(k0, x), ∀x ∈ [a, b] \ k0

}
=

{
k0 ∈ [a, b] : ĥ(k0 + x)

k0 − x
|k0 − x|

≥ −
√

2fα2,n−3, ∀x ∈ [a, b] \ k0
}
.

Yet following from Hochberg and Quade (1975) or Liu (2010, pp68), another con-

servative critical value c2 is solved from

1

2
F2,n−3

(
c22
2

)
+

1

2
F1,n−2

(
c22
)

= 1− α,

and is less conservative compared with c1.

Figure 3.6 presents the relationships between the critical value c(s) and the conser-

vative critical values c1 and c2. The bold curve bounds the region Rh(s), which is

the same as shown in Figure 3.4, and the outer circle bounds the region {TTT :‖ TTT ‖≤√
2fα2,n−3}. The region bounded by the dashed curve is associated with c2 and is

the same as region Rh,a if the angle φ1 in Rh,a is equal to π. This critical value is

less conservative than c1, thus the associated conservative confidence set contains
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less grid points than the one associated with c1. Therefore to construct a confidence

set, it is more efficient to check the grid points in the conservative confidence set

with critical value c2 than the one with c1. It is not important which conservative

critical value we choose to use in the quadratic case, because the exact critical val-

ues are not difficult to compute. But in the general polynomial case when the exact

critical values need to be approximated using a large number of simulation, it saves

a lot of time if we construct the confidence set by checking the grid points in the

conservative confidence set with c2 instead of c1.

We compute this conservative confidence set directly as we did in the Direct Method,

by substituting the conservative critical value (take c1 for example) for c(k0), k0 ∈

[a, b], in Equation (3.22)-(3.28). Therefore, if (z0 − a) /∈ [a, b], then

a ∈ C0(YYY )⇔ max(ĥ(2a), ĥ(b+ a)) ≤ c1; (3.30)

otherwise, if (z0 − a) ∈ [a, b], then

a ∈ C0(YYY )⇔ max(ĥ(2a), ĥ(b+ a), ĥ(z0)) ≤ c1. (3.31)

Similarly, if (z0 − b) /∈ [a, b], then

b ∈ C0(YYY )⇔ min(ĥ(a+ b), ĥ(2b)) ≥ −c1; (3.32)

otherwise, if (z0 − b) ∈ [a, b], then

b ∈ C0(YYY )⇔ min(ĥ(a+ b), ĥ(2b), ĥ(z0)) ≥ −c1. (3.33)

Finally, for s ∈ (a, b), if (z0 − s) /∈ [a, s] ∪ [s, b], then

s ∈ C0(YYY )⇔

 min(ĥ(a+ s), ĥ(2s)) ≥ −c1

max(ĥ(b+ s), ĥ(2s)) ≤ c1
; (3.34)

alternatively, if (z0 − s) ∈ [a, s], then

s ∈ C0(YYY )⇔

 min(ĥ(a+ s), ĥ(2s), ĥ(z0)) ≥ −c1

max(ĥ(b+ s), ĥ(2s)) ≤ c1
; (3.35)
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otherwise, if (z0 − s) ∈ [s, b], then

s ∈ C0(YYY )⇔

 min(ĥ(a+ s), ĥ(2s)) ≥ −c1

max(ĥ(b+ s), ĥ(2s), ĥ(z0)) ≤ c1
. (3.36)

In practice, to construct the confidence set, we still check each grid point instead of

each point in the interval [a, b]. However, as been pointed out earlier, this conser-

vative confidence set is not the ultimate result we want, but a way to narrow down

the possible range of points that could be in the set CE(YYY ). Then, we construct

the exact (1 − α) level confidence set CE(YYY ) by checking each grid point in the

conservative confidence set C0(YYY ). Next, we will illustrate how to use the p-value

method to construct the acceptance sets, which does not involve the computation

of critical values.

The p-value method. Since the construction of acceptance sets using critical

values directly is inefficient, we use the p-value method instead. A p-value is the

probability of having a value of the test statistic that is even more extreme than the

one based on the observed data, assuming the null hypothesis is true. When testing

the null hypothesis, we reject H0 if and only if the p-value is less than the significant

level α.

Let θ̂∗1, θ̂∗2, and σ̂∗ be the usual estimates of θ1, θ2, and σ based on the observation

YYY ∗. Note that θ̂1, θ̂2, and σ̂ are random variables based on random observation YYY ,

while θ̂∗1, θ̂∗2, and σ̂∗ are estimated based on the observation YYY ∗. We distinguish

these concepts only for introducing p-values in this section and Section 3.1.3.3.

Define

ĥ∗(z) =
θ̂∗1 + θ̂∗2z

σ̂∗ ‖ P(1, z)T ‖
.

Next, we discuss the computation of the p-value separately for each of the three

cases: k0 = a, k0 = b and k0 ∈ (a, b).

Case I Recall that in Section 3.1.2.1, our (1− α) level acceptance set A(a) is given

48



Chapter 3

by

A(a) = {YYY : (θ̂1 + θ̂2(a+ x))(a− x) ≥ −c(a)σ̂v(a, x), ∀x ∈ (a, b]}

= {YYY : sup
x∈(a,b]

ĥ(a+ x) ≤ c(a)}.

We define

Wa(YYY ) = sup
x∈(a,b]

ĥ(a+ x)

and

wa = Wa(YYY
∗) = sup

x∈(a,b]
ĥ∗(a+ x).

Note that Wa(YYY ) is a random variable, but wa is the observed value of Wa(YYY ) based

on YYY ∗. Define

pa = 1− inf
θθθ:k0=a

P{Wa(YYY ) ≤ wa}

= sup
θθθ:k0=a

(1− P{Wa(YYY ) ≤ wa})

= sup
θθθ:k0=a

P{Wa(YYY ) > wa}.

As

a ∈ CE(YYY ∗) ⇔ YYY ∗ ∈ A(a)

⇔ wa ≤ c(a)

⇔ inf
θθθ:k0=a

P{Wa(YYY ) ≤ wa} ≤ 1− α,

we have

a /∈ CE(YYY ∗) ⇔ inf
θθθ:k0=a

P{Wa(YYY ) ≤ wa} > 1− α

⇔ sup
θθθ:k0=a

P{Wa(YYY ) > wa} < α

⇔ pa < α.

It is clear that pa is a p-value for testing H0 : k0 = a.

If wa ≥ 0, then following the mathematical derivation in Section 3.1.2.1, we have

1− pa = inf
θθθ:k0=a

Pk0=a{Wa(YYY ) ≤ wa}

= Pk0=a

{
sup
x∈(a,b]

[P(1, a+ x)T ]TTTT

‖ P(1, a+ x)T ‖
≤ wa

}

=
φ1
2π
F2,n−3(

w2
a

2
) +

1

2
F1,n−3(w

2
a) +

π − φ1
2π
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where TTT ∼ TTT 2,ν , that is,

pa = 1− φ1
2π
F2,n−3(

w2
a

2
)− 1

2
F1,n−3(w

2
a)−

π − φ1
2π

. (3.37)

We reject H0 : k = a if and only if pa < α.

Otherwise, if wa < 0, then wa = − | wa |, we have

1− pa = inf
θθθ:k0=a

Pk0=a{Wa(YYY ) ≤ − | wa |}

= P

{
sup
x∈(a,b]

[P(1, a+ x)T ]TTTT

‖ P(1, a+ x)T ‖
≤ − | wa |

}
. (3.38)

Since

pa = 1− P

{
sup
x∈(a,b]

[P(1, a+ x)T ]TTTT

‖ P(1, a+ x)T ‖
≤ − | wa |

}

≥ 1− P
{

[P(1, a+ b)T ]TTTT

‖ P(1, a+ b)T ‖
≤ − | wa |

}
≥ 1− P

{
[P(1, a+ b)T ]TTTT

‖ P(1, a+ b)T ‖
≤ 0

}
= 1− 0.5

= 0.5

and α is much smaller than 0.5, we can not reject H0 : k0 = a when wa < 0.

Case II Similarly, by using previous notations, we have

A(b) = {YYY : (θ̂0 + θ̂1b+ θ̂2b
2)− (θ̂0 + θ̂1x+ θ̂2x

2) ≥ −c(b)σ̂v(b, x), ∀x ∈ [a, b)}

= {YYY : inf
x∈[a,b)

ĥ(b+ x) ≥ −c(b)}.

Define

Wb(YYY ) = inf
x∈[a,b)

ĥ(b+ x), wb = Wb(YYY
∗) = inf

x∈[a,b)
ĥ∗(b+ x),

and a p-value

pb = 1− inf
θθθ:k0=b

Pk0=b{Wb(YYY ) ≥ wb}

for testing H0 : k0 = b.

If wb ≤ 0, by using a similar argument in computing pa, we have

1− pb =
φ2
2π
F2,n−3

(
w2
b

2

)
+

1

2
F1,n−3(w

2
b ) +

π − φ2
2π

,
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thus

pb = 1− φ2
2π
F2,n−3

(
w2
b

2

)
+

1

2
F1,n−3(w

2
b ) +

π − φ2
2π

.

Alternatively, if wb > 0, then

pb = 1− inf
θθθ:k0=b

Pk0=b{Wb(YYY ) ≥ wb}

= 1− P
{

inf
x∈[a,b)

[P(1, b+ x)T ]TTTT

‖ P(1, b+ x)T ‖
≥ wb

}
≥ 1− P

{
[P(1, a+ b)T ]TTTT

‖ P(1, a+ b)T ‖
≥ wb

}
≥ 1− P

{
[P(1, a+ b)T ]TTTT

‖ P(1, a+ b)T ‖
≥ 0

}
= 1− 0.5

= 0.5.

We reject H0 : k0 = b if and only if pb < α. Since α is always much smaller than

0.5, we can not reject H0 : k0 = b.

Case III Finally, for s ∈ (a, b), our (1− α) level acceptance set is

A(s) = {YYY : (θ̂0 + θ̂1s+ θ̂2s
2)− (θ̂0 + θ̂1x+ θ̂2x

2) ≥ −c(s)σ̂v(s, x), ∀x ∈ [a, s) ∪ (s, b]}

= {YYY : inf
x∈[a,s)∪(s,b]

ĥ(s+ x)
s− x
| s− x |

≥ −c(s)}.

Let

Ws(YYY , s) = inf
x∈[a,s)∪(s,b]

ĥ(s+ x)
s− x
| s− x |

,

ws(s) = Ws(YYY
∗, s) = inf

x∈[a,s)∪(s,b]
ĥ∗(s+ x)

s− x
| s− x |

,

and define

ps(s) = 1− inf
θθθ:k0=s

Pk0=s{Ws(YYY , s) ≥ ws(s)}.

As

s ∈ CE(YYY ∗) ⇔ YYY ∗ /∈ A(s)

⇔ ws(s) ≥ −c(s)

⇔ inf
θθθ:k0=s

Pk0=s{Ws(YYY , s) ≥ ws(s)} ≤ 1− α,
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we have

s /∈ CE(YYY ∗) ⇔ inf
θθθ:k0=s

Pk0=s{Ws(YYY , s) ≥ ws(s)} > 1− α

⇔ ps(s) < α.

Thus, ps(s) is a p-value for testing H0 : k0 = s.

Following the mathematical derivation in Section 3.1.2.1, if ws(s) ≤ 0, then we have

1− ps(s) = inf
θθθ:k0=s

Pk0=s(Ws(YYY , s) ≥ ws(s))

= inf
θθθ:k0=s

Pk0=s

{
inf

x∈[a,s)∪(s,b]
ĥ(s+ x)

s− x
| s− x |

≥ ws(s)
}

= P

{
inf

x∈[a,s)

[P(1, s+ x)T ]T TTT

‖ P(1, s+ x)T ‖
≥ ws(s), sup

x∈(s,b]

[P(1, s+ x)T ]TTTT

‖ P(1, s+ x)T ‖
≤ −ws(s)

}

=
1

2
F1,n−3(ws(s)

2) +
1

2
F2,n−3

(
ws(s)

2

2

)
+
φ(s)

π

(
1 +

ws(s)
2

n− 3

)n−3
2

− 1

π

∫ φ(s)

0

(
1 +

ws(s)
2

(n− 3) cos2(φ(s)− ψ)

)−n−3
2

dψ

where φ(s) is defined in Section 3.1.2.1. Thus,

ps(s) = 1− 1

2
F1,n−3(ws(s)

2)− 1

2
F2,n−3

(
ws(s)

2

2

)
− φ(s)

π

(
1 +

ws(s)
2

n− 3

)n−3
2

+
1

π

∫ φ(s)

0

(
1 +

ws(s)
2

(n− 3) cos2(φ(s)− ψ)

)−n−3
2

dψ.

Alternatively, if ws(s) > 0, then

ps(s) = 1− inf
θθθ:k0=s

Pk0=s{Ws(YYY , s) ≥ ws(s)}

= 1− P

{
inf

x∈[a,s)

[P(1, s+ x)T ]T TTT

‖ P(1, s+ x)T ‖
≥ ws(s), sup

x∈(s,b]

[P(1, s+ x)T ]TTTT

‖ P(1, s+ x)T ‖
≤ −ws(s)

}

≥ 1− P
{

[P(1, s+ a)T ]T TTT

‖ P(1, s+ a)T ‖
≥ ws(s),

[P(1, s+ b)T ]TTTT

‖ P(1, s+ b)T ‖
≤ −ws(s)

}
(3.39)

≥ 1− P
{

[P(1, s+ a)T ]T TTT

‖ P(1, s+ a)T ‖
≥ 0,

[P(1, s+ b)T ]TTTT

‖ P(1, s+ b)T ‖
≤ 0

}
(3.40)

≥ 1− P
{

[P(1, s+ a)T ]T TTT

‖ P(1, s+ a)T ‖
≥ 0

}
= 1− 0.5

= 0.5.
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We reject H0 : k0 = s if and only if ps(s) < α. Since α is always much smaller than

0.5, we can not reject the null hypothesis when ws(s) > 0.
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3.1.2.3 Examples

Example 1. We consider the simulation data in Table 3.1, which is generated

from the quadratic polynomial regression model Y = −5x2 + 3x + 2 + e where

e ∼ N(0, 102), with x evenly chosen from a given interval [a, b] = [−5, 5]. The fitted

regression function is Ŷ = −4.8830x2 + 2.3958x + 2.3750 and the standard error is

σ̂ = 10.4254 with degrees of freedom equal to 18.

A confidence set can be constructed to quantify the plausible value of a maximum

point of the true quadratic function in the given interval [−5, 5]. To construct a

95% level confidence set for a maximum point, we check the grid points from −5 to

5 with resolution d = 0.001. Figure 3.7 shows the conservative critical values c1, c2

and the exact critical value c(k) over k ∈ [−5, 5]. The conservative confidence set

using the critical value c1 =
√

2f0.052,18 = 2.6663 is given by C0(YYY ) = [0.041, 0.462].

Then, by using the p-value on each grid point in C0(YYY ), we finally get the exact

95% level confidence set CE(YYY ) = [0.059, 0.441]. Computation of CE(YYY ) takes

27 seconds. The 95% confidence sets using bootstrap method and Rao’s method

are [0.111, 0.392] and [0.040, 0.456], respectively. The BH confidence set for the

stationary point is given by [0.090, 0.410]. The data, fitted regression function, and

all the five confidence sets are plotted in Figure 3.8. The true maximum point, 0.3,

is also plotted for comparison.

The conservative confidence set constructed using critical value c2 = 2.4487 is given

by [0.057, 0.443], which is about 10% shorter than the set C0. Since in the quadratic

case, the computation of CE(YYY ) is very fast and hence it does not matter much

whether we use critical value c1 or c2.

Example 2. We consider the simulation data in Table 3.2, which is generated

from the quadratic polynomial regression model Y = −5x2 + 3x + 2 + e where

e ∼ N(0, 102). The fitted regression function is Ŷ = −5.3786x2 + 3.9892x+ 5.6275

and the standard error is σ̂ = 7.9622 with degrees of freedom equal to 8.

A confidence set can be constructed to quantify the plausible value of a maximum
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Table 3.1: Simulation data used in Example 1.

x y x y x y

-5 -130.74 -1.5 -14.706 2 -3.42

-4.5 -118.63 -1 -14.323 2.5 -9.21

-4 -68.168 -0.5 2.1941 3 -49.937

-3.5 -71.114 0 -11.362 3.5 -63.16

-3 -50.861 0.5 9.3932 4 -60.289

-2.5 -26.082 1 16.236 4.5 -89.749

-2 -23.407 1.5 -11.668 5 -101.1

Figure 3.7: The 95% level critical values for different x ∈ [−5, 5] in Example 1.
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Figure 3.8: The 95% level confidence sets in Example 1. The five confidence sets

plotted, from top to bottom, are CE(YYY ), C0(YYY ), Rao’s confidence set Cc(YYY ), boot-

strap confidence set, and the BH confidence set for the stationary point.

point of the true quadratic function in the given interval [−5, 5]. To construct a

95% level confidence set for a maximum point, we check the grid points from −5 to

5 with resolution d = 0.001. The conservative confidence set using the critical value

c1 =
√

2f0.052,8 = 2.9863 is given by C0(YYY ) = [0.1590, 0.6000]. Then, by using the

p-value on each grid point in C0(YYY ), we finally get the exact 95% level confidence

set CE(YYY ) = [0.179, 0.577]. The 95% confidence sets using bootstrap method and

Rao’s method are [0.252, 0.487] and [0.160, 0.590], respectively. The BH confidence

set for the stationary point is given by [0.210, 0.540]. The data, fitted regression

function, true regression function and its true maximum point, 0.3, are plotted in

Figure 3.9, and so are the confidence sets.

Example 3. We consider the simulation data in Table 3.3, which is generated

from the quadratic polynomial regression model Y = −5x2 + 3x + 2 + e where

e ∼ N(0, 202). The fitted regression function is Ŷ = −4.6813x2 + 3.5333x− 7.9066

and the standard error is σ̂ = 21.7859 with degrees of freedom equal to 8.

A confidence set can be constructed to quantify the plausible value of a maximum
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Table 3.2: Simulation data used in Example 2.

x y x y x y

-5 -142.33 -1 -17.465 3 -30.727

-4 -106.66 0 13.909 4 -64.254

-3 -50.747 1 11.892 5 -109.87

-2 -21.123 2 -12.376

Figure 3.9: The 95% level confidence sets in Example 2. The five confidence sets

plotted, from top to bottom, are CE(YYY ), C0(YYY ), Rao’s confidence set Cc(YYY ), boot-

strap confidence set, and the BH confidence set for the stationary point.
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point of the true quadratic function in the given interval [−5, 5]. To construct a

95% level confidence set for a maximum point, we check the grid points from −5 to

5 with resolution d = 0.001. A conservative confidence set using the critical value

c1 =
√

2f0.052,8 = 2.9863 is given by C0(YYY ) = [−0.300, 1.274]. Then, by using the

p-value on each grid point in C0(YYY ), we finally get the exact 95% level confidence

set CE(YYY ) = [−0.226, 1.149]. The 95% confidence sets using bootstrap method

and Rao’s method are [−0.001, 0.798] and [−0.291, 1.129], respectively. The BH

confidence set for the stationary point is given by [−0.130, 1.00]. The data, fitted

regression function, true regression function and its true maximum point, 0.3, are

plotted in Figure 3.10, and so are the confidence sets.

Table 3.3: Simulation data used in Example 3.

x y x y x y

-5 -107.8295 -1 -9.7163 3 -48.4298

-4 -128.9016 0 2.1787 4 -70.0236

-3 -85.6109 1 16.7390 5 -108.4093

-2 -35.4707 2 -26.4454

Example 4. We consider the simulation data in Table 3.4, which is generated from

the quadratic polynomial regression model Y = −x2+2x+1+e where e ∼ N(0, 102).

The fitted regression function is Ŷ = −0.9146x2+0.9465x+1.9889 and the standard

error is σ̂ = 9.1076 with degrees of freedom equal to 8.

A confidence set can be constructed to quantify the plausible value of a maximum

point of the true quadratic function in the given interval [0, 10]. To construct a

95% level confidence set for a maximum point, we check the grid points from 0

to 10 with resolution d = 0.001. A conservative confidence set using the critical

value c1 =
√

2f0.052,8 = 2.9863 is given by C0(YYY ) = [0, 2.996]. Then, by using the

p-value on each grid point in C0(YYY ), we finally get the exact 95% level confidence

set CE(YYY ) = [0, 2.851]. The 95% confidence sets using bootstrap method and Rao’s

method are [0, 2.315] and [0, 2.092], respectively. The BH confidence set for the
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Figure 3.10: The 95% level confidence sets in Example 3. The five confidence

sets plotted, from top to bottom, are CE(YYY ), C0(YYY ), Rao’s confidence set Cc(YYY ),

bootstrap confidence set, and the BH confidence set for the stationary point.

stationary point is given by [0, 2.650]. The data, fitted regression function, true

regression function and its true maximum point, x = 1, are plotted in Figure 3.11,

and so are the confidence sets.

Table 3.4: Simulation data used in Example 4.

x y x y x y

0 6.9128 4 -7.1951 8 -36.05

1 -4.436 5 -14.482 9 -80.74

2 4.8034 6 -23 10 -74.718

3 -12.091 7 -37.179

Example 5. We consider the simulation data in Table 3.5, which is generated from

the quadratic polynomial regression model Y = x2−2x+1+e where e ∼ N(0, 102).

The fitted regression function is Ŷ = 0.9734x2+−3.4488x+9.9499 and the standard

error is σ̂ = 4.5741 with degrees of freedom equal to 8.

To construct a 95% level confidence set for a maximum point in the interval [0, 10], we
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Figure 3.11: The 95% level confidence sets in Example 4. The five confidence

sets plotted, from top to bottom, are CE(YYY ), C0(YYY ), Rao’s confidence set Cc(YYY ),

bootstrap confidence set, and the BH confidence set for the stationary point.

Figure 3.12: The 95% level confidence sets in Example 5. The five confidence

sets plotted, from top to bottom, are CE(YYY ), C0(YYY ), Rao’s confidence set Cc(YYY ),

bootstrap confidence set, and the BH confidence set for the stationary point. All

the confidence sets for a maximum point contain just one element 10, yet the BH

confidence set is for the stationary point and is an interval.
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check the grid points from 0 to 10 with resolution d = 0.001. The conservative con-

fidence set using the critical value c1 =
√

2f0.052,8 = 2.9863 is given by C0(YYY ) = {10}.

Then, by using the p-value on {10}, we finally get the exact 95% level confidence

set CE(YYY ) = {10}. Computation of CE(YYY ) takes 21 seconds. The 95% confidence

sets using bootstrap method and Rao’s method are both {10}, respectively. The

BH confidence set for the stationary point is given by [0, 2.75]. The data, fitted

regression function, true regression function and its true maximum point, 10, are

plotted in Figure 3.12, and so are the confidence sets.

Table 3.5: Simulation data used in Example 5.

x y x y x y

0 9.9564 4 15.771 8 46.041

1 7.3096 5 21.689 9 49.249

2 6.7786 6 22.444 10 78.66

3 4.4031 7 32.225

Table 3.6: Simulation data used in Example 6.

x y x y x y

-5 122.6744 -1 -4.4647 3 50.2729

-4 65.3442 0 13.9092 4 83.7464

-3 48.2533 1 18.8916 5 125.1329

-2 24.8768 2 21.6237

Example 6. We consider the simulation data in Table 3.6, which is generated from

the quadratic polynomial regression model Y = 5x2 + 2 + e, where e ∼ N(0, 102).

The fitted regression function is Ŷ = 4.6214x2 + 0.9892x+ 5.6275 and the standard

error is σ̂ = 7.9622 with degrees of freedom equal to 8.

A confidence set can be constructed to quantify the plausible value of a maximum

point of the true quadratic function in the given interval [−5, 5]. To construct a

95% level confidence set for a maximum point, we check the grid points from −5
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Figure 3.13: The 95% level confidence sets in Example 6. The five confidence

sets plotted, from top to bottom, are CE(YYY ), C0(YYY ), Rao’s confidence set Cc(YYY ),

bootstrap confidence set, and the BH confidence set for the stationary point.

to 5 with resolution d = 0.01. A conservative confidence set using the critical value

c1 =
√

2f0.052,8 = 2.9863 is given by C0(YYY ) = {−5, 5}. Then, by using the p-value

method on {−5, 5}, we get the 95% level confidence set CE(YYY ) = {−5, 5}. The

computation of CE(YYY ) takes 24 seconds. The 95% confidence sets using bootstrap

method and Rao’s method are {−5, 5} and {−5, 5}, respectively. The BH confidence

set for the stationary point is given by [−0.300, 0.080]. The data, fitted regression

function, and the confidence sets are plotted in Figure 3.13.

Example 7. The data of crop yields, denoted by Y, for the amounts of fertilizer

used, denoted by x are shown in Table 3.7 (Sullivan and Sullivan, 2002). The fitted

quadratic regression model is Ŷ = 3.8939 + 1.0765x − 0.0171x2 and the standard

error is σ̂ = 1.4270.

From the residual plots (Figure 3.14) and normal probability plot (Figure 3.15),

the normality assumption of the residuals seems reasonable. The exploratory index

R2 = 0.9494, so the data fit the quadratic model well. To construct a 95% level

confidence set for the amount of fertilizer that maximizes crop yields, we check the
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Table 3.7: Data of crop yields and fertilizer used (Sullivan and Sullivan, 2002).

Plot Fertilizer,x(Pounds/100ft2) Yield(Bushels)

1 0 4

2 0 6

3 5 10

4 5 7

5 10 12

6 10 10

7 15 15

8 15 17

9 20 18

10 20 21

11 25 20

12 25 21

13 30 21

14 30 22

15 35 21

16 35 20

17 40 19

18 40 19
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Figure 3.14: Residual plots

grid points from 0 to 40 with resolution d = 0.1. A conservative confidence set using

the critical value c1 =
√

2f0.052,15 = 2.7138 is given by C0(YYY ) = [27.9, 38.4]. Then,

by using the p-value on each grid point in C0(YYY ) = [27.9, 38.4], we finally get the

exact 95% level confidence set CE(YYY ) = [28.17, 37.32]. The 95% confidence sets

using bootstrap method and Rao’s method are [28.827, 35.308] and [27.933, 37.502],

respectively. The BH confidence set for the stationary point is given by [28.52, 36.40].

The data, regression function and the confidence sets are depicted in Figure 3.16.

The reason that there are only 17 data points in Figure 3.16 is that the 17th and

18th data points are the same, and thus overlapped.

Example 8. The sample mean and standard deviation data given in Table 3.8 is

the summary of the clinical dose response data given in Table 3.9. We fit the data

in Table 3.9 to a quadratic regression function. The estimated parameters based on
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Figure 3.15: Normal probability plot of the residuals

these data are

θ̂θθ
∗

=


0.3898

1.7581

−1.2204

 , σ̂∗ = 0.7084

and the exploratory index R2 = 0.1071.

A confidence set can be constructed to quantify the plausible value of a maximum

point of the quadratic model Y = θ2x
2+θ1x+θ0+e in the given interval [0, 1] based

on the summary information in Table 3.8. The significance level is α = 0.05. We

check the grid points from 0 to 1 with resolution d = 0.001. A conservative confidence

set using the critical value c1 =
√

2f0.052,97 = 2.5335 is given by C0(YYY ) = [0.524, 1].

Then, by using the p-value on each grid point in C0(YYY ), we finally get the exact

95% level confidence set CE(YYY ) = [0.536, 1]. Instead of using Table 3.9, we get the

same estimates of parameters and hence the same confidence set using just Table

3.8(see Appendix).

The 95% confidence sets using bootstrap method and Rao’s method are [0.555, 1]
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Figure 3.16: The 95% level confidence sets for the amount of fertilizer used that

maximize the crop yields in Example 7. The five confidence sets plotted, from top

to bottom, are CE(YYY ), C0(YYY ), Rao’s confidence set Cc(YYY ), bootstrap confidence

set, and the BH confidence set for the stationary point.

.
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and [0.51, 1], respectively. The BH confidence set for the stationary point is given

by [0.552, 1]. The data points, fitted regression curve, and the confidence sets are

plotted in Figure 3.17.

Table 3.8: Summary of clinical dose response data (Rom et al., 1994)

Dose Sample size Sample mean Sample Std Dev

0 20 0.34 0.52

0.05 20 0.46 0.49

0.2 20 0.81 0.74

0.6 20 0.93 0.76

1 20 0.95 0.95

Example 9. Summary of a set of clinical dose response data is given in Table 3.10.

We fit the data to a quadratic regression function. The estimated parameters based

on these data are

θ̂θθ
∗

=


−1.6669

−0.0443

0.0001

 , σ̂∗ = 15.4992

and the exploratory index R2 = 0.0147 is very small, which may be due to the large

error variance of the data.

A confidence set can be constructed to quantify the plausible value of a maximum

point of the quadratic model Y = θ2x
2 + θ1x + θ0 + e in the given interval [0, 400]

based on the summary information in Table 3.10. The significance level is α = 0.05.

We check the grid points from 0 to 400 with resolution d = 1. Using the critical value

c1 =
√

2f0.052,97 = 2.5335, a conservative confidence set is given by C0(YYY ) = [0, 400].

Then, by using the p-value on each point in C0(YYY ), we finally get the exact 95%

level confidence set CE(YYY ) = [0, 400]. The 95% confidence sets using bootstrap

method and Rao’s method are both [0, 400], respectively. The BH confidence set

for the stationary point is also given by [0, 400]. The data points, fitted regression

curve, and the confidence sets are plotted in Figure 3.18.
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Figure 3.17: The 95% level confidence sets in Example 8. The five confidence

sets plotted, from top to bottom, are CE(YYY ), C0(YYY ), Rao’s confidence set Cc(YYY ),

bootstrap confidence set, and the BH confidence set for the stationary point.
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Table 3.9: Clinical dose response data (Rom et al., 1994)

dose response dose response dose response
0 0.354621644 0.05 1.353800979 0.2 1.198081819
0 0.136528014 0.05 0.154980239 0.2 1.56768394
0 -0.017221273 0.05 -0.070838037 0.2 -0.155607279
0 0.367483563 0.05 0.583740909 0.2 0.20658777
0 0.395127618 0.05 0.962598527 0.2 1.853465242
0 0.357965911 0.05 0.381388876 0.2 0.995682873
0 0.312936459 0.05 -0.004695991 0.2 2.452234157
0 -0.044915902 0.05 0.519304935 0.2 -0.52039887
0 0.623091387 0.05 -0.36332213 0.2 0.048856237
0 0.03951218 0.05 0.338903336 0.2 0.633128014
0 -0.30840357 0.05 0.145620717 0.2 0.528413238
0 -0.452964305 0.05 0.442803406 0.2 0.422902023
0 -0.201709236 0.05 -0.021949664 0.2 1.233325825
0 1.560869091 0.05 0.37259824 0.2 1.867825704
0 0.561286293 0.05 1.528976072 0.2 1.057835057
0 0.336241137 0.05 0.149471298 0.2 0.34534894
0 -0.159375068 0.05 0.374063362 0.2 0.404851371
0 0.992604728 0.05 1.0116782 0.2 0.48420331
0 0.806987008 0.05 0.281306267 0.2 0.571199878
0 1.237442253 0.05 0.994656155 0.2 1.010696185

0.6 1.172221004 1 2.248445841
0.6 0.667558102 1 2.173688799
0.6 1.777681617 1 1.254509265
0.6 0.309735795 1 1.864626603
0.6 0.309735795 1 1.864626603
0.6 0.05646191 1 -1.113082058
0.6 0.900065687 1 1.198415091
0.6 0.738302949 1 1.97485829
0.6 0.227879049 1 0.62533415
0.6 1.385106066 1 1.330258137
0.6 0.912390582 1 0.149454689
0.6 0.299300126 1 0.887139996
0.6 0.278917304 1 0.563064088
0.6 0.270043807 1 0.730863126
0.6 0.569625173 1 -0.771473861
0.6 1.604328006 1 0.494778358
0.6 1.576944531 1 0.303110251
0.6 2.924508962 1 0.425231331
0.6 0.171532376 1 2.557773784
0.6 2.160523738 1 1.12889658
0.6 0.685611744 1 0.948335871
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Figure 3.18: The 95% level confidence sets in Example 9. The five confidence

sets plotted, from top to bottom, are CE(YYY ), C0(YYY ), Rao’s confidence set Cc(YYY ),

bootstrap confidence set, and the BH confidence set for the stationary point.

Table 3.10: Summary of clinical dose response data (Rom et al., 1994)

Dose Sample size Sample mean Sample Std Dev

0 16 1.4 16

50 8 3.0 15.68

100 8 7.7 15.68

200 8 5.1 15.68

400 7 4.5 15.75
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3.1.3 A General Polynomial Regression Model

When p ≥ 2, we have the polynomial regression model

Y = θ0 + θ1x+ θ2x
2 + · · ·+ θpx

p + e

with e ∼ N(0, σ2). Let

YYY =



Y1

Y2

...

Yn


, X =



1 x1 x21 · · · xp1

1 x2 x22 · · · xp2
...

...
... · · ·

...

1 xn x2n · · · xpn


and θθθ =



θ0

θ1

...

θp


.

It is clear that X is non-singular. The least squares estimate of θθθ is given by

θ̂θθ =



θ̂0

θ̂1

...

θ̂p


= (XTX)−1XTYYY

and hence has the distribution N(θθθ, (XTX)−1σ2). Let σ̂2 be the usual estimate of

σ2 which has the distribution

σ̂2 ∼ σ2

n− p− 1
χ2
n−p−1,

where χ2
n−p−1 is the chi-squared distribution with degrees of freedom (n − p − 1).

Moreover, θ̂θθ and σ̂2 are independent. Let

θθθ0 =



θ1

θ2

...

θp


, θ̂θθ

0
=



θ̂1

θ̂2

...

θ̂p


, and P2 =

[
000 Ip

]
(XTX)−1

 000

Ip

 ,

thus the variance-covariance matrix of θ̂θθ
0

is given by

cov

([
000 Ip

]
(XTX)−1XTYYY

)
= σ2P2.
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Therefore

P−1 × (θ̂θθ
0
− θθθ0)/σ ∼ N(0, Ip),

and hence

TTT := P−1 × (θ̂θθ
0
− θθθ0)/σ̂ ∼ TTT p,n−p−1,

where TTT p,n−p−1 is the multivariate t-distribution with p elements, and the degrees

of freedom is (n− p− 1).

In this section, we use the subscript p to indicate a function’s definition related to

the polynomial regression.

3.1.3.1 Theory

To apply Neyman’s Theorem to construct the confidence set for a maximum point

of the polynomial regression function

f(x,θθθ) = θ0 + θ1x+ θ2x
2 + · · ·+ θpx

p,

we require an acceptance set for testing

H0 : k = k0

for each k0 ∈ [a, b]. For z1 6= z2, we define three functions gp, vp and hp as

gp(z1, z2, p) :=
(z1, · · · , zp1)T − (z2, · · · , zp2)T

z1 − z2

=
(z1 − z2, · · · , zp1 − z

p
2)T

z1 − z2
= (1, z1 + z2, · · · , zp−11 + zp−21 z2 + · · ·+ z1z

p−2
2 + zp−12 )T ,

vp(z1, z2, θ̂θθ) : =

√
var[(θ̂0 + θ̂1z1 + · · ·+ θ̂pz

p
1)− (θ̂0 + θ̂1z2 + · · ·+ θ̂pz

p
2)]/σ2

= | z1 − z2 |
√
gp(z1, z2, p)TP2gp(z1, z2, p)

and

ĥp(z1, z2) :=
gp(z1, z2, p)

T θ̂θθ
0

σ̂
√
gp(z1, z2, p)TP2gp(z1, z2, p)

.

In what follows, we consider three cases: k0 = a, k0 = b and k0 ∈ (a, b).
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Case I If k0 = a is a maximum point, then for any x ∈ (a, b], we have

(θ0 + θ1a+ · · ·+ θpa
p)− (θ0 + θ1x+ · · ·+ θpx

p) ≥ 0,

or equivalently

(a− x)gp(a, x, p)
Tθθθ0 ≥ 0.

This implies that gp(a, x, p)
Tθθθ0 ≤ 0 for all x ∈ (a, b], since (a − x) is negative for

x ∈ (a, b]. Accordingly, we define an acceptance set

A(a) = {Y : (θ̂0 + θ̂1a+ · · ·+ θ̂pa
p)− (θ̂0 + θ̂1x+ · · ·+ θ̂px

p) ≥ −c(a)σ̂vp(a, x, θ̂θθ),

∀x ∈ (a, b]}

= {Y : (a− x)gp(a, x, p)
T θ̂θθ

0
≥ −c(a)σ̂vp(a, x, θ̂θθ), ∀x ∈ (a, b]}

= {Y : gp(a, x, p)
T θ̂θθ

0
≤ c(a)σ̂

√
gp(a, x, p)TP2gp(a, x, p), ∀x ∈ (a, b]} (3.41)

= {Y : sup
x∈(a,b]

ĥp(a, x) ≤ c(a)}

where c(a) > 0 is a critical constant that can be calculated such that A(a) is a

(1− α) level acceptance set. To determine c(a), note that

Pk0=a {Y ∈ A(a)}

= Pk0=a {gp(a, x, p)T θ̂θθ
0
≤ c(a)σ̂

√
gp(a, x, p)TP2gp(a, x, p), ∀x ∈ (a, b]} (3.42)

≥ Pk0=a {gp(a, x, p)T θ̂θθ
0
≤ c(a)σ̂

√
gp(a, x, p)TP2gp(a, x, p) + gp(a, x, p)

Tθθθ0, ∀x ∈ (a, b]}

(3.43)

= Pk0=a

{
gp(a, x, p)

T (θ̂θθ
0
− θθθ0)

σ̂
√
gp(a, x, p)TP2gp(a, x, p)

≤ c(a), ∀x ∈ (a, b]

}

= Pk0=a

{
sup
x∈(a,b]

gp(a, x, p)
T (θ̂θθ

0
− θθθ0)

σ̂
√
gp(a, x, p)TP2gp(a, x, p)

≤ c(a)

}

= Pk0=a

{
sup
x∈(a,b]

[Pgp(a, x, p)]
T [P−1(θ̂θθ

0
− θθθ0)]

σ̂
√
gp(a, x, p)TP2gp(a, x, p)

≤ c(a)

}

= P

{
sup
x∈(a,b]

[Pgp(a, x, p)]
TTTT

‖ Pgp(a, x, p) ‖
≤ c(a)

}
(3.44)

where Equation (3.42) follows directly from Equation (3.41), and Equation (3.43)

follows from the fact that gp(a, x, p)
Tθθθ0 ≤ 0 for ∀x ∈ (a, b]. Note that

inf
θθθ:k0=a

Pk0=a{Y ∈ A(a)} = P

{
sup
x∈(a,b]

[Pgp(a, x, p)]
TTTT

‖ Pgp(a, x, p) ‖
≤ c(a)

}
,
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with the infimum being attained at θ1 = θ2 = · · · = θp = 0. Then the critical value

c(a) is the unique solution of

P

{
sup
x∈(a,b]

[Pgp(a, x, p)]
TTTT

‖ Pgp(a, x, p) ‖
≤ c(a)

}
= 1− α. (3.45)

Case II If k0 = b is a maximum point, then for any x ∈ [a, b),

(θ0 + θ1b+ · · ·+ θpb
p)− (θ0 + θ1x+ · · ·+ θpx

p) ≥ 0

which implies gp(b, x, p)
Tθθθ0 ≥ 0 for all x ∈ [a, b). Accordingly, we define an accep-

tance set as

A(b) = {Y : (θ̂0 + θ̂1b+ · · ·+ θ̂pb
p)− (θ̂0 + θ̂1x+ · · ·+ θ̂px

p) ≥ −c(b)σ̂vp(b, x, θ̂θθ),

∀x ∈ [a, b)}

= {Y : (b− x)gp(b, x, p)
T θ̂θθ

0
≥ −c(b)σ̂vp(b, x, θ̂θθ), ∀x ∈ [a, b)}

= {Y : gp(b, x, p)
T θ̂θθ

0
≥ −c(b)σ̂

√
gp(b, x, p)TP2gp(b, x, p), ∀x ∈ [a, b)} (3.46)

= {Y : inf
x∈[a,b)

ĥp(b, x) ≥ −c(b)}

where c(b) > 0 is a critical constant such that A(b) is a (1−α) level acceptance set.

To determine c(b), note that

Pk0=b {Y ∈ A(b)}

= Pk0=b {gp(b, x, p)T θ̂θθ
0
≥ −c(b)σ̂

√
gp(b, x, p)TP2gp(b, x, p), ∀x ∈ [a, b)} (3.47)

≥ Pk0=b {gp(b, x, p)T θ̂θθ
0
≥ −c(b)σ̂

√
gp(b, x, p)TP2gp(b, x, p) + gp(b, x, p)

Tθθθ0, ∀x ∈ [a, b)}

(3.48)

= Pk0=b

{
gp(b, x, p)

T (θ̂θθ
0
− θθθ0)

σ̂
√
gp(b, x, p)TP2gp(b, x, p)

≥ −c(b), ∀x ∈ [a, b)

}

= Pk0=b

{
inf

x∈[a,b)

gp(b, x, p)
T (θ̂θθ

0
− θθθ0)

σ̂
√
gp(b, x, p)TP2gp(b, x, p)

≥ −c(b)

}

= Pk0=b

{
inf

x∈[a,b)

[Pgp(b, x, p)]
T [P(θ̂θθ

0
− θθθ0)]

σ̂
√
gp(b, x, p)TP2gp(b, x, p)

≥ −c(b)

}

= P

{
inf

x∈[a,b)

[Pgp(b, x, p)]
TTTT

‖ Pgp(b, x, p) ‖
≥ −c(b)

}
(3.49)
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where Equation (3.47) follows directly from Equation (3.46), and Equation (3.48)

follows from the fact that gp(b, x, p)
Tθθθ0 ≥ 0 for all x ∈ [a, b). Note that

inf
θθθ:k0=b

{Y ∈ A(b)} = P

{
inf

x∈[a,b)

[Pgp(b, x, p)]
TTTT

‖ Pgp(b, x, p) ‖
≥ −c(b)

}
,

with the infimum being attained at θ1 = θ2 = · · · = θp = 0. Then the critical value

c(b) is the unique solution of

P

{
inf

x∈[a,b)

[Pgp(b, x, p)]
TTTT

‖ Pgp(b, x, p) ‖
≥ −c(b)

}
= 1− α. (3.50)

Case III If k0 = s for s ∈ (a, b) is a maximum point, then for any x ∈ [a, s)∪ (s, b],

(θ0 + θ1s+ · · ·+ θps
p)− (θ0 + θ1x+ · · ·+ θpx

p) ≥ 0

which implies gp(s, x, p)
Tθθθ0 ≥ 0 for x ∈ [a, s) and gp(s, x, p)

Tθθθ0 ≤ 0 for x ∈ (s, b].

Accordingly, for each s ∈ (a, b), we define an acceptance set

A(s) = {Y : (θ̂0 + θ̂1s+ · · ·+ θ̂ps
p)− (θ̂0 + θ̂1x+ · · ·+ θ̂px

p) ≥ −c(s)σ̂vp(s, x, θ̂θθ),

∀x ∈ [a, s) ∪ (s, b]}

= {Y : (s− x)gp(s, x, p)
T θ̂θθ

0
≥ −c(s)σ̂vp(s, x, θ̂θθ), ∀x ∈ [a, s) ∪ (s, b]}

= {Y : gp(s, x, p)
T θ̂θθ

0
≥ −c(s)σ̂

√
gp(s, x, p)TP2gp(s, x, p), ∀x ∈ [a, s)

gp(s, x, p)
T θ̂θθ

0
≤ c(s)σ̂

√
gp(s, x, p)TP2gp(s, x, p), ∀x ∈ (s, b]} (3.51)

= {Y : inf
x∈[a,s)

ĥp(s, x) ≥ −c(s), sup
x∈(s,b]

ĥp(s, x) ≤ c(s)}

where c(s) > 0 is a critical constant such that A(s) is a (1−α) level acceptance set.
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To determine c(s), note that

Pk0=s {Y ∈ A(s)}

= Pk0=s {gp(s, x, p)T θ̂θθ
0
≥ −c(s)σ̂

√
gp(s, x, p)TP2gp(s, x, p), ∀x ∈ [a, s),

gp(s, x, p)
T θ̂θθ

0
≤ c(s)σ̂

√
gp(s, x, p)TP2gp(s, x, p), ∀x ∈ (s, b]} (3.52)

≥ Pk0=s {gp(s, x, p)T θ̂θθ
0
≥ −c(s)σ̂

√
gp(s, x, p)TP2gp(s, x, p) + gp(s, x, p)

Tθθθ0, ∀x ∈ [a, s),

gp(s, x, p)
T θ̂θθ

0
≤ c(s)σ̂

√
gp(s, x, p)TP2gp(s, x, p) + gp(s, x, p)

Tθθθ0, ∀x ∈ (s, b]}

(3.53)

= Pk0=s

{
inf

x∈[a,s)

gp(s, x, p)
T (θ̂θθ

0
− θθθ0)

σ̂
√
gp(s, x, p)TP2gp(s, x, p)

≥ −c(s),

sup
x∈(s,b]

gp(s, x, p)
T (θ̂θθ

0
− θθθ0)

σ̂
√
gp(s, x, p)TP2gp(s, x, p)

≤ c(s)

}

= Pk0=s

{
inf

x∈[a,s)

[Pgp(s, x, p)]
T [P−1(θ̂θθ

0
− θθθ0)]

σ̂
√
gp(s, x, p)TP2gp(s, x, p)

≥ −c(s),

sup
x∈(s,b]

[Pgp(s, x, p)]
T [P−1(θ̂θθ

0
− θθθ0)]

σ̂
√
gp(s, x, p)TP2gp(s, x, p)

≤ c(s)

}

= P

{
inf

x∈[a,s)

[Pgp(s, x, p)]
TTTT

‖ Pgp(s, x, p) ‖
≥ −c(s), sup

x∈(s,b]

[Pgp(s, x, p)]
TTTT

‖ Pgp(s, x, p) ‖
≤ c(s)

}
(3.54)

where Equation (3.52) follows directly from Equation (3.51), and Equation (3.53)

follows from the fact that gp(s, x, p)
Tθθθ0 ≥ 0 for x ∈ [a, s) and gp(s, x, p)

Tθθθ0 ≤ 0 for

x ∈ (s, b]. Note that

inf
θθθ:k0=s

Pk0=s{Y ∈ A(s)}

= P

{
inf

x∈[a,s)

[Pgp(s, x, p)]
TTTT

‖ Pgp(s, x, p) ‖
≥ −c(s), sup

x∈(s,b]

[Pgp(s, x, p)]
TTTT

‖ Pgp(s, x, p) ‖
≤ c(s)

}
,

with the infimum being attained at θ1 = θ2 = · · · = θp = 0. Then the critical value

c(s) is the unique solution of

P

{
inf

x∈[a,s)

[Pgp(s, x, p)]
TTTT

‖ Pgp(s, x, p) ‖
≥ −c(s), sup

x∈(s,b]

[Pgp(s, x, p)]
TTTT

‖ Pgp(s, x, p) ‖
≤ c(s)

}
= 1− α. (3.55)

Having found c(k0) for each k0 ∈ [a, b], we summarize our (1 − α) level acceptance

set as

A(k0) =

{
YYY :

k0 − x
|k0 − x|

ĥp(k0, x) ≥ −c(k0), ∀x ∈ [a, b] \ k0
}
. (3.56)
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Then according to Neyman’s Theorem, a (1−α) level confidence set for a maximum

point, k, based on YYY is given by

CE(YYY ) = {k0 ∈ [a, b] : YYY ∈ A(k0)}

=

{
k0 ∈ [a, b] :

k0 − x
|k0 − x|

ĥp(k0, x) ≥ −c(k0), ∀x ∈ [a, b] \ k0
}
.

(3.57)

In other words, a point k0 ∈ [a, b] is in the set CE(YYY ) if and only if for any x ∈

[a, b] \ k0,
k0 − x
|k0 − x|

ĥp(k0, x) ≥ −c(k0).

The interval [a, b] contains infinite many points and thus we can not check whether

each point k0 ∈ [a, b] is in the confidence set. Hence, like in the quadratic case,

we choose a finite grid of points on the interval [a, b] with resolution d, that is,

{a = s1, s2, · · · , sJ = b} with si− si−1 = d. If d is small, then the grid of points can

give a fine approximation to the set [a, b]. We only check each point in the grid to

see whether it is in the confidence set.
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3.1.3.2 Conservative Critical Constants

Recall that in Section 3.1.3.1, we need to find c(k0) for each grid point k0 ∈ [a, b]

in order to decide the confidence set. However, the computation for each c(k0)

is time consuming, since it requires a large number m of replications to reach a

certain accuracy level (the computation details are given later in Section 3.1.3.3).

Similar to the quadratic case, we reduce the computational expense by using a

conservative critical value, which reduces the number of points for which we must

compute c(k0) from all the grid points k0 in [a, b] to only the grid points in the

conservative confidence set C0(YYY
∗).

The F critical constants. Note that TTT ∼ TTT p,n−p−1, therefore

‖ TTT ‖2

p
∼ Fp,n−p−1,

where Fp,n−p−1 is the standard F-distribution with degrees of freedom p and n−p−1.

Denote fαp,n−p−1 as the upper α point of the distribution Fp,n−p−1, then we have

P{‖ TTT ‖≤
√
pfαp,n−p−1} = 1− α.

Let cp =
√
pfαp,n−p−1, then we have

P

{
sup
ρρρ∈Rp

ρρρTTT

‖ ρρρ ‖
≤ cp

}
= P

{
sup
ρρρ∈Rp

|ρρρTTT |
‖ ρρρ ‖

≤ cp

}
= P

{
inf
ρρρ∈Rp

ρρρTTT

‖ ρρρ ‖
≥ −cp

}
= 1− α.

Hence, we have

P

{
sup

x∈(−∞,∞)

[Pgp(a, x, p)
T ]TTTT

‖ Pgp(a, x, p)T ‖
≤ cp

}

≥ P

{
sup
ρρρ∈Rp

ρρρTTT

‖ ρρρ ‖
≤ −cp

}
= 1− α. (3.58)

As (a, b] ⊂ (−∞,∞), comparing the probability statement (3.58) with the probabil-

ity statement (3.45), we conclude that c(a) < cp.
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Similarly, we have

P

{
inf

x∈(−∞,∞)

[Pgp(b, x, p)
T ]TTTT

‖ Pgp(b, x, p)T ‖
≥ −cp

}
≥ P

{
inf
ρρρ∈Rp

ρρρTTT

‖ ρρρ ‖
≥ −cp

}
= 1− α. (3.59)

Comparing the probability statement (3.59) with the probability statement (3.50),

we conclude that c(b) < cp.

Finally, for s ∈ (a, b), we have

P

{
sup

x∈(−∞,∞)

[Pgp(s, x, p)
T ]TTTT

‖ Pgp(s, x, p)T ‖
≤ cp, inf

x∈(−∞,∞)

[Pgp(s, x, p)
T ]TTTT

‖ Pgp(s, x, p)T ‖
≥ −cp

}

= P

{
sup

x∈(−∞,∞)

|[Pgp(s, x, p)T ]TTTT |
‖ Pgp(s, x, p)T ‖

≤ cp

}

≥ P

{
sup
ρρρ∈Rp

|ρρρTTT |
‖ ρρρ ‖

≤ cp

}
= 1− α. (3.60)

Comparing the probability statement (3.60) with the probability statement (3.55),

we conclude that c(s) < cp for all s ∈ (a, b).

Thus, substituting
√
pfαp,n−p−1 for c(k0) in Equation (3.57), the conservative confi-

dence set is given by

C0(YYY ) =

{
k0 ∈ [a, b] :

k0 − x
|k0 − x|

ĥp(k0, x) ≥ −cp, ∀x ∈ [a, b] \ k0
}
. (3.61)

Instead of checking all the grid points in [a,b], we only check the grid points in

the conservative confidence set to determine the exact confidence set and thus get

significant savings in computing time.

An improved conservative critical constant. Similarly to the univariate quadratic

case, an improved conservative critical constant ch is solved from

1

2
Fp,n−p−1

(
c2h
p

)
+

1

2
Fp−1,n−p−1

(
c2h
p− 1

)
= 1− α.

The proof is as follows.

First, we show that there exists at least one vector uuu = (u1, u2, · · · , up)T such that
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uuuT gp(a, x, p) > 0 for all x ∈ (−∞,∞). Note that

uuuT gp(a, x, p)

= uuuT [1, a+ x, a2 + ax+ x2, · · · , ap−1 + ap−2x+ · · ·+ axp−2 + xp−1]T

= u1 + u2(a+ x) + u3(a
2 + ax+ x2) + · · ·+ up(a

p−1 + ap−2x+ · · ·+ axp−2 + xp−1)

= (u1 + u2a+ u3a
2 + · · ·+ upa

p−1) + (u2 + u3a+ · · ·+ upa
p−2)x+ · · ·+ upx

p−1,

and the last expression is a polynomial function of x. Therefore, a sufficient condition

for a uuu satisfying uuuT gp(a, x, p) > 0 for all x ∈ (−∞,∞) is


u2 = 0, · · · , up = 0

u1 > 0.

We

choose u1 = 1 and so uuu = [1, 0, 0, . . . , 0]T . Let vvv = P−1uuu, hence vvvTPgp(a, x, p) > 0

for all x ∈ (−∞,∞). Therefore, all Pgp(a, x, p) are in the same side of a plane

(hyperplane) that is perpendicular to vvv through 000. Note that all the possible values

of the random vector TTT ∼ TTT p,n−p−1 such that

sup
x∈(a,b]

[Pgp(a, x, p)
T ]TTTT

‖ Pgp(a, x, p)T ‖
≤ c(a)

must fall in the region bounded by all the planes (hyperplanes) that are perpendicu-

lar to Pgp(a, x, p), x ∈ (a, b], and c(a) distance away from the origin in the direction

of Pgp(a, x, p). We define this region to be R(a, p, c(a)). Clearly R(a, p, c(a)) is larger

than the region bounded by all the planes that are perpendicular to {www : vvvTwww > 0}

and c(a) distance away in the direction of www, denoted by RH(vvv, p, c(a)), which is

actually a cylinder of radius c(a) connected to a semisphere of the same radius.

Hence if P {TTT ∈ R(a, p, c(a))} = P {TTT ∈ RH(vvv, p, ch)} then the critical constant ch

must be larger than c(a).

Next, we show that there exists at least one vector uuu, such that uuuT gp(s, x, p) > 0 for

all x < s and uuuT gp(s, x, p) < 0 for all x > s. Note that

uuuT gp(s, x, p) = (u1 + u2s+ u3s
2 + · · ·+ ups

p−1) + (u2 + u3s+ · · ·+ ups
p−2)x

+ · · ·+ upx
p−1,

and the last expression is a polynomial function of x. Therefore, a sufficient condition
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for a uuu satisfying uuuT gp(s, x, p) > 0, ∀x < s and uuuT gp(s, x, p) < 0, ∀x > s is
u2 < 0, u3 = 0, · · · , up = 0

u1 + u2s+ u2s = 0

.

We choose u2 = −1 to give u1 = 2s and so uuu = [2s,−1, 0, 0, . . . , 0]T . Recall that

vvv = P−1uuu, we have 
vvvTPgp(s, x, p) > 0, ∀x ∈ (−∞, s)

vvvTPgp(s, x, p) < 0, ∀x ∈ (s,+∞)

. (3.62)

Therefore, Pgp(s, x, p), ∀x ∈ [a, s) and −Pgp(s, x, p),∀x ∈ (s, b] are in the same side

of a plane (hyperplane) that is perpendicular to vvv. Note that, all the possible values

of the random vector TTT ∼ TTT p,n−p−1 that satisfy

inf
x∈[a,s)

[Pgp(s, x, p)
T ]TTTT

‖ Pgp(s, x, p)T ‖
≥ −c(s), sup

x∈(s,b]

[Pgp(s, x, p)
T ]TTTT

‖ Pgp(s, x, p)T ‖
≤ c(s)

must fall in the region bounded by all the planes (hyperplanes) each with a condition

either (1) perpendicular to Pgp(s, x, p) and c(s) distance away from the origin in the

direction of Pgp(s, x, p) if x ∈ [a, s), or (2) perpendicular to Pgp(s, x, p) and c(s)

distance away from the origin in the opposite direction of Pgp(s, x, p) if x ∈ (s, b]. We

define this region to be R(s, p, c(s)). Clearly R(s, p, c(s)) is larger than RH(vvv, p, c(s)).

Hence if P {TTT ∈ R(s, p, c(s))} = P {TTT ∈ RH(vvv, p, ch)} then the critical constant ch

must be larger than c(s). The same conclusion is reached by Hochberg and Quade

(1975), but using a different approach.

Hence, ch is a conservative critical constant and we use it to construct a conservative

confidence set for a maximum point

Ch(YYY ) =

{
k0 ∈ [a, b] :

k0 − x
|k0 − x|

ĥp(k0, x) ≥ −ch,∀x ∈ [a, b] \ k0
}
. (3.63)

Note that ch is less conservative than cp, thus the confidence set Ch(YYY ) contains less

grid points than the one associated with cp, C0(YYY ), and so is more efficient in the

construction of CE(YYY ).
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3.1.3.3 Computation

Similar to the computation of the confidence set for a maximum point of a quadratic

regression function, we first present the direct approach by using simulated critical

values. Then in order to reduce the complexity of computation, we present the

conservative critical value method to reduce the possible points that could be in the

confidence set. We also present the p-value method here, but in this case, the p-value

method takes approximately the same computation time as the direct approach.

Simulating critical values. Since the critical value c(k0) for k0 ∈ [a, b] is difficult

to solve from Equations (3.45), (3.50) and (3.55), we use simulation to find an

approximation to c(k0).

Let

Ga(TTT ) = sup
x∈(a,b]

[Pgp(a, x, p)
T ]TTTT

‖ Pgp(a, x, p)T ‖
,

Gb(TTT ) = − inf
x∈[a,b)

[Pgp(b, x, p)
T ]TTTT

‖ Pgp(b, x, p)T ‖
,

and for each s ∈ (a, b)

Gs(s,TTT ) = max

(
− inf
x∈[a,s)

[Pgp(s, x, p)
T ]TTTT

‖ Pgp(s, x, p)T ‖
, sup
x∈(s,b]

[Pgp(s, x, p)
T ]TTTT

‖ Pgp(s, x, p)T ‖

)
.

Then from Equations (3.45), (3.50) and (3.55), respectively, we have

P{Ga(TTT ) ≤ c(a)} = 1− α,

P{Gb(TTT ) ≤ c(b)} = 1− α

and

P{Gs(s,TTT ) ≤ c(s)} = 1− α.

Here we only illustrate the simulation method for finding the critical value c(a). The

critical constants c(b) and c(s) are found in a similar way.

Step 1. Simulate independent TTT i ∼ TTT p,n−p−1, i = 1, 2, · · · ,m.

Step 2. For each TTT i, i = 1, 2, · · · ,m, we compute Ga(TTT i). From the definition of
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Ga(TTT i), the supremum can only be attained at the end points a, b, and the stationary

points in the interval (a, b) of

mi(x) =
[Pgp(a, x, p)

T ]TTTT i
‖ Pgp(a, x, p)T ‖

.

Let Ui(x) = [Pgp(a, x, p)
T ]TTTT i and Vi(x) =‖ Pgp(a, x, p)

T ‖2, then the stationary

points satisfy

dmi(x)

dx
=

d

dx

[
Ui(x)√
Vi(x)

]
= 0,

or

dUi(x)

dx
Vi(x)− 1

2
Ui(x)

dVi(x)

dx
= 0

since

d

dx

[
Ui(x)√
Vi(x)

]
=

[
dUi(x)

dx

√
Vi(x)− Ui(x)

d
√
Vi(x)

dx

]
V −1i (x)

=

[
dUi(x)

dx
Vi(x)− 1

2
Ui(x)

dVi(x)

dx

]
V
− 3

2
i (x).

Note that Ui(x), Vi(x), dUi(x)/dx and dVi(x)/dx are all polynomial functions with

orders (p− 1), (2p− 2), (p− 2) and (2p− 3), respectively, so dmi(x)/dx is of order

(3p − 5). Therefore, there are (3p − 5) roots, which we find numerically by using

MATLAB. The stationary points of mi(x) in the interval [a, b] are the real roots

among the (3p−5) roots in [a, b], and are denoted by r1, · · · , rq, with 0 ≤ q ≤ (3p−5).

It follows that

Ga(TTT i) = max{mi(a),mi(b),mi(r1), · · · ,mi(rq)}.

Step 3. Use the [(1 − α) × m]th largest value of Ga(TTT i), i = 1, 2, · · · ,m, as the

approximation of c(a).

In this way, we simulate c(k0) for each k0 ∈ [a, b] and then determine the confidence

set according to Equation (3.57).

The P-Value Method. Instead of computing the critical values, we can use the

p-values to construct confidence sets similar to that in the quadratic case. However,
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simulation is still necessary for computing the p-value.

Let

ĥ∗p(z1, z2) :=
gp(z1, z2, p)

T θ̂θθ
∗0

σ̂∗
√
gp(z1, z2, p)TP2gp(z1, z2, p)

where θ̂θθ
∗0

and σ̂∗ are the estimates of θθθ0 and σ based on the observation YYY ∗. Next,

we discuss the computation of the p-value separately for each of the three cases:

k0 = a, k0 = b and k0 ∈ (a, b).

Case I. Recall that in section 3.1.3.1, our (1−α) level acceptance set A(a) is given

by

A(a) = {YYY : sup
x∈(a,b]

ĥp(a, x) ≤ c(a)}.

We define

W (p)
a (YYY ) := sup

x∈(a,b]
ĥp(a, x)

and

w(p)
a := Wa(YYY

∗) = sup
x∈(a,b]

ĥ∗p(a, x).

Note that W
(p)
a (YYY ) is a random variable, but w

(p)
a is the observed value of W

(p)
a (YYY )

based on YYY ∗. Define

p(p)a = 1− inf
θθθ:k0=a

P{W (p)
a (YYY ) ≤ w(p)

a }.

As

a ∈ CE(YYY ∗) ⇔ YYY ∗ ∈ A(a)

⇔ w(p)
a ≤ c(a)

⇔ inf
θθθ:k0=a

P{W (p)
a (YYY ) ≤ w(p)

a } ≤ 1− α,

we have

a /∈ CE(YYY ∗) ⇔ inf
θθθ:k0=a

P{W (p)
a (YYY ) ≤ w(p)

a } > 1− α

⇔ 1− inf
θθθ:k0=a

P{W (p)
a (YYY ) ≤ w(p)

a } < α

⇔ p(p)a < α.
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It is clear that p
(p)
a is a p-value for testing H0 : k0 = a. From the definition of Ga(TTT ),

we have

p(p)a = 1− inf
θθθ:k0=a

Pk0=a{W (p)
a (YYY ) ≤ w(p)

a }

= 1− P

{
sup
x∈(a,b]

[Pgp(a, x, p)
T ]TTTT

‖ Pgp(a, x, p)T ‖
≤ w(p)

a

}
= P

{
Ga(TTT ) > w(p)

a

}
where TTT ∼ TTT p,n−p−1. Next, we employ the following steps to simulate the p-value

p
(p)
a .

Step 1. Sample independent TTT i ∼ TTT p,n−p−1, i = 1, 2, · · · ,m.

Step 2. For each TTT i, i = 1, 2, · · · ,m, we compute Ga(TTT i) as we did earlier in this

section.

Step 3. Compare Ga(TTT i) with w
(p)
a for each i, and let na denote the number of

Ga(TTT i) that is larger than w
(p)
a . Then, we use na/m as an approximation to p

(p)
a .

Case II. Recall that in Section 3.1.3.1, the (1−α) level acceptance set A(b) is given

by

A(b) = {YYY : inf
x∈[a,b)

ĥp(b, x) ≥ −c(b)}.

We define

W
(p)
b (YYY ) := inf

x∈[a,b)
ĥp(b, x)

and

w
(p)
b := Wb(YYY

∗) = inf
x∈[a,b)

ĥ∗p(b, x).

Note that W
(p)
b (YYY ) is a random variable, but w

(p)
b is the observed value of W

(p)
b (YYY )

when YYY = YYY ∗. Define

p
(p)
b = 1− inf

θθθ:k0=b
P{W (p)

b (YYY ) ≥ w(p)
b }.

As

b ∈ CE(YYY ∗) ⇔ YYY ∗ ∈ A(b)

⇔ w(p)
a ≥ −c(b)

⇔ inf
θθθ:k0=b

P{W (p)
b (YYY ) ≥ w(p)

b } ≤ 1− α,
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we have

b /∈ CE(YYY ∗) ⇔ inf
θθθ:k0=b

P{W (p)
b (YYY ) ≥ w(p)

b } > 1− α

⇔ 1− inf
θθθ:k0=b

P{W (p)
b (YYY ) ≥ w(p)

b } < α

⇔ p
(p)
b < α.

It is clear that p
(p)
b is a p-value for testing H0 : k0 = b. From the definition of Gb(TTT )

we have

p
(p)
b = 1− inf

θθθ:k0=b
Pk0=b{W

(p)
b (YYY ) ≥ w(p)

b }

= 1− Pk0=b
{

inf
x∈[a,b)

[Pgp(b, x, p)
T ]TTTT

‖ Pgp(b, x, p)T ‖
≥ w(p)

b

}
= P

{
Gb(TTT ) > −w(p)

b

}
where TTT ∼ TTT p,n−p−1. Then, we employ the following steps to simulate the p-value

p
(p)
b .

Step 1. Simulate independent TTT i ∼ TTT p,n−p−1, i = 1, 2, · · · ,m.

Step 2. For each TTT i, i = 1, 2, · · · ,m, we compute Gb(TTT i).

Step 3. Compare Gb(TTT i) with −w(p)
b for each i, and let nb denote the number of

Gb(TTT i) that is larger than −w(p)
b . Then, we use nb/m as the approximation to p

(p)
b .

Case III. Recall that in Section 3.1.3.1, for s ∈ (a, b), our (1− α) level acceptance

set A(s) is given by

A(s) = {YYY : ĥp(s, x) ≥ −c(s) ∀x ∈ [a, s), ĥp(s, x) ≤ c(s) ∀x ∈ (s, b]}

= {YYY :
s− x
|s− x|

ĥp(s, x) ≥ −c(s), ∀x ∈ [a, s) ∪ (s, b]}.

Let

W (p)
s (YYY , s) = inf

x∈[a,s)∪(s,b]

s− x
| s− x |

ĥp(s, x),

w(p)
s (s) = Ws(YYY

∗, s) = inf
x∈[a,s)∪(s,b]

s− x
| s− x |

ĥ∗p(s, x),

and

p(p)s (s) = 1− inf
θθθ:k0=s

Pk0=s{W (p)
s (YYY , s) ≥ w(p)

s (s)}.
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Because

s ∈ CE(YYY ∗) ⇔ YYY ∗ /∈ A(s)

⇔ w(p)
s (s) ≥ −c(s)

⇔ inf
θθθ:k0=s

Pk0=s{W (p)
s (YYY , s) ≥ w(p)

s (s)} ≤ 1− α,

we have

s /∈ CE(YYY ∗) ⇔ inf
θθθ:k0=s

Pk0=s{W (p)
s (YYY , s) ≥ w(p)

s (s)} > 1− α

⇔ p(p)s (s) < α.

Thus, p
(p)
s (s) is a p-value for testing H0 : k0 = s. We have

p(p)s (s) = 1− inf
θθθ:k0=s

Pk0=s(W
(p)
s (YYY , s) ≥ w(p)

s (s))

= 1− inf
θθθ:k0=s

Pk0=s

{
inf

x∈[a,s)∪(s,b]
ĥ(s+ x)

s− x
| s− x |

≥ w(p)
s (s)

}
= 1− P

{
inf

x∈[a,s)

[Pgp(s, x, p)
T ]T TTT

‖ Pgp(s, x, p)T ‖
≥ w(p)

s (s), sup
x∈(s,b]

[Pgp(s, x, p)
T ]TTTT

‖ Pgp(s, x, p)T ‖
≤ −w(p)

s (s)

}
= P

{
Gs(s,TTT ) ≥ −w(p)

s (s)
}

We reject H0 : k0 = s if and only if p
(p)
s (s) < α. Then, we employ the following

steps to simulate the p-value p
(p)
s (s).

Step 1. Simulate independent TTT i ∼ TTT p,n−p−1, i = 1, 2, · · · ,m.

Step 2. For each TTT i, i = 1, 2, · · · ,m, we compute Gs(s,TTT i).

Step 3. Compare Gs(s,TTT i) with −w(p)
s (s) for each i, and let ns(s) denote the

number of Gs(s,TTT i) that is larger than −w(p)
s (s). Then, we use ns(s)/m as an

approximation to p
(p)
s (s).
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3.1.3.4 Examples

Table 3.11: Perinatal mortality data for black infants (Selvin, 1998)

i xi Yi i xi Yi i xi Yi

1 0.85 -0.3556 13 2.05 1.0972 25 3.25 1.7774

2 0.95 0.1089 14 2.15 1.3382 26 3.35 1.7538

3 1.05 0.3880 15 2.25 1.3254 27 3.45 2.0933

4 1.15 0.4399 16 2.35 1.4241 28 3.55 1.7594

5 1.25 0.6513 17 2.45 1.4632 29 3.65 1.7538

6 1.35 0.7022 18 2.55 1.4906 30 3.75 1.9478

7 1.45 0.7706 19 2.65 1.6324 31 3.85 1.8351

8 1.55 0.7523 20 2.75 1.5383 32 3.95 1.9830

9 1.65 0.7934 21 2.85 1.6955 33 4.05 1.7429

10 1.75 1.0233 22 2.95 1.7538 34 4.15 1.8827

11 1.85 0.8918 23 3.05 1.6998 35 4.25 1.8269

12 1.95 1.0959 24 3.15 1.7903

Example 1. The data of perinatal mortality rate (PMR) and birth weight (BW) is

given by Selvin (1998). Selvin considered fitting a 4th order polynomial regression

model between Y = log(−log(PMR)) and x = BW . Table 3.11 shows the data

(x, Y ) for 35 black infants. The fitted 4th order polynomial regression function is

Ŷ = −2.861 + 4.809x− 2.316x2 + 0.568x3 − 0.054x4,

and σ̂ = 0.108.

From the normal probability plot (Figure 3.19) and the residual plots (Figure 3.20),

the normality assumption of the error seems reasonable. The exploratory index

R2 = 0.909, so the 4th order polynomial model fit the data well. To construct a 95%

level confidence set for a maximum point, we check the grid points from 0.85 to 4.25

88



Chapter 3

Figure 3.19: Normal probability plot of black infant data

with resolution d = 0.01. A conservative confidence set C0(YYY ) using its conservative

critical value c2 = 3.1424 is given by [3.60, 4.25]. Then, we compute the critical

values (based on 10, 000 simulations) for the grid points in C0(YYY ) and decide whether

each grid point is in the exact confidence set CE(YYY ). The set CE(YYY ) is given by

[3.62, 4.25] and the computation takes 338 seconds. Then we use 100, 000 simulations

to calculate the confidence set again, we still get [3.62, 4.25]. Computation of this

new CE(YYY ) takes 3369 seconds. It seems 10, 000 simulations in this case is sufficient.

The bootstrap confidence set and Rao’s confidence set Cc(YYY ) are given by [3.65, 4.11]

and [3.58, 4.25], respectively. The data points, fitted regression curve and the 95%

confidence sets are plotted in Figure 3.21. The horizontal line segments, from top

to bottom, represent CE(YYY ), C0(YYY ), Cc(YYY ) and bootstrap confidence set.

Example 2. Table 3.12 shows the data Y = log(−log(PMR)) and x = BW for 35

white infants. The fitted 4th order polynomial regression function is

Ŷ = −2.842 + 4.179x− 1.803x2 + 0.421x3 − 0.039x4,
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Table 3.12: Perinatal mortality data for white infants (Selvin, 1998)

i xi Yi i xi Yi i xi Yi

1 0.85 -0.4761 13 2.05 1.1204 25 3.25 1.7429

2 0.95 -0.1950 14 2.15 1.0919 26 3.35 1.8114

3 1.05 0.0849 15 2.25 1.2771 27 3.45 1.8269

4 1.15 0.2464 16 2.35 1.2771 28 3.55 1.8351

5 1.25 0.3791 17 2.45 1.3731 29 3.65 1.8351

6 1.35 0.4715 18 2.55 1.4241 30 3.75 1.8437

7 1.45 0.5364 19 2.65 1.4775 31 3.85 1.8527

8 1.55 0.6340 20 2.75 1.5165 32 3.95 1.8722

9 1.65 0.7391 21 2.85 1.6018 33 4.05 1.8437

10 1.75 0.7551 22 2.95 1.6751 34 4.15 1.8939

11 1.85 0.8042 23 3.05 1.6830 35 4.25 1.8527

12 1.95 0.9128 24 3.15 1.7429
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Figure 3.20: Residual plot of black infant data

and σ̂ = 0.058.

From the normal probability plot (Figure 3.22) and the residual plots (Figure 3.23),

the normality assumption of the error seems reasonable. The exploratory index

R2 = 0.994, so the 4th order polynomial model fit the data well. To construct a

95% level confidence set for a maximum point, we check the grid points from 0.85 to

4.25 with resolution d = 0.01. A conservative confidence set using its conservative

critical value c2 = 3.1424 is given by C0(YYY ) = [3.75, 4.20]. Then, we compute the

critical values (based on 100, 000 simulations) for the grid points in C0(YYY ) and decide

whether each grid point is in the exact confidence set CE(YYY ). The set CE(YYY ) is given

by [3.76, 4.19] and the computation takes 2395 seconds. The bootstrap confidence set

and Rao’s confidence set Cc(YYY ) are given by [3.76, 4.05] and [3.72, 4.24], respectively.

The data points, fitted regression curve and the 95% confidence sets are plotted in

Figure 3.24. The horizontal line segments, from top to bottom, represent CE(YYY ),

C0(YYY ), Cc(YYY ) and bootstrap confidence set.

Example 3. Table 3.13 shows the data Y = log(−log(PMR)) and x = BW for

91



Chapter 3

Figure 3.21: The 95% level confidence sets for a maximum point based on black

infant data. The horizontal line segments, from top to bottom, represent CE(YYY ),

C0(YYY ), Cc(YYY ) and bootstrap confidence set.
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Figure 3.22: Normal probability plot of white infant data

Figure 3.23: Residual plot of white infant data
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Figure 3.24: The 95% level confidence sets for a maximum point based on white

infant data. The horizontal line segments, from top to bottom, represent CE(YYY ),

C0(YYY ), Cc(YYY ) and bootstrap confidence set.
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Table 3.13: Perinatal mortality data for non-black and non-white infants (Selvin,

1998)

i xi Yi i xi Yi i xi Yi

1 0.85 -0.4337 13 2.05 1.1329 25 3.25 1.5126

2 0.95 -0.2376 14 2.15 1.1161 26 3.35 1.5905

3 1.05 0.0508 15 2.25 1.1209 27 3.45 1.7130

4 1.15 0.4103 16 2.35 1.2330 28 3.55 1.6367

5 1.25 0.2727 17 2.45 1.1727 29 3.65 1.6358

6 1.35 0.5511 18 2.55 1.1759 30 3.75 1.8273

7 1.45 0.6673 19 2.65 1.4988 31 3.85 1.5862

8 1.55 0.6860 20 2.75 1.4763 32 3.95 1.6953

9 1.65 0.7556 21 2.85 1.3615 33 4.05 1.7289

10 1.75 0.8515 22 2.95 1.3539 34 4.15 1.7840

11 1.85 0.7294 23 3.05 1.5560 35 4.25 1.5445

12 1.95 1.0599 24 3.15 1.5707

95



Chapter 3

35 non-black and non-white infants. The fitted 4th order polynomial regression

function is

Ŷ = −4.108 + 6.758x− 3.485x2 + 0.851x3 − 0.078x4,

and σ̂ = 0.093.

From the normal probability plot (Figure 3.25) and the residual plots (Figure 3.26),

the normality assumption of the error seems reasonable. The exploratory index

R2 = 0.978, so the 4th order polynomial model fit the data well. To construct a 95%

level confidence set for a maximum point, we check the grid points from 0.85 to 4.25

with resolution d = 0.01. A conservative confidence set using its conservative critical

value c2 = 3.1424 is given by C0(YYY ) = [3.71, 4.25]. Then, we compute the critical

values (based on 100000 simulations) for the grid points in C0(YYY ), and determine

whether a grid point is in the exact confidence set CE(YYY ). The set CE(YYY ) is given by

[3.71, 4.24] and the computation takes 2721 seconds. The bootstrap confidence set

and Rao’s confidence set Cc(YYY ) are given by [3.74, 4.10] and [3.67, 4.25], respectively.

The data points, fitted regression curve and the 95% confidence sets are plotted in

Figure 3.27. The horizontal line segments, from top to bottom, represent CE(YYY ),

C0(YYY ), Cc(YYY ) and bootstrap confidence set.
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Figure 3.25: Normal probability plot of non-black and non-white infant data

Figure 3.26: Residual plot of non-black and non-white infant data
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Figure 3.27: The 95% level confidence sets for a maximum point based on non-

black and non-white infant data. The horizontal line segments, from top to bottom,

represent CE(YYY ), C0(YYY ), Cc(YYY ) and bootstrap confidence set.
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3.2 Rao’s Method

Recall that in Chapter 2, a (1 − α) level conservative confidence set for any given

function r(θθθ) can be constructed by using Rao’s method. In this section, we focus

on the univariate polynomial function

f(x,θθθ) := θ0 + θ1x+ · · ·+ θpx
p

and elaborate the method on the construction of confidence sets for the maximum

point.

Let k(θθθ) be a maximum point of the function f(x,θθθ) in a given interval [a, b], then

a (1− α) level conservative confidence set for k(θθθ) is given by

{k(βββ) ∈ [a, b] : βββ ∈ Cθθθ}

where

Cθθθ = {βββ : (θ̂θθ − βββ)T (XTX)(θ̂θθ − βββ) ≤ (p+ 1)σ̂2fαp+1,n−p−1}.

However, note that a maximum point of f(x,θθθ) = θ0 +θ1x+ · · ·+θpx
p depends only

on θθθ0 := (θ1, θ2, · · · , θp), but not θ0. Therefore, the confidence set should be given

by

Cc = {k(βββ0) ∈ [a, b] : βββ0 ∈ C0
θθθ}

where

C0
θθθ = {βββ0 : (θ̂θθ

0
− βββ0)TP2

R(θ̂θθ
0
− βββ0) ≤ pσ̂2fαp,n−p−1}

with θ̂θθ
0

:= (θ̂1, θ̂2, · · · , θ̂p) and P2
R =

[
000 Ip

]
(XTX)

 000

Ip

.

According to Carter et al. (1984), the confidence set C0
θθθ can be computed using polar

co-ordinates. Note that the constraint

(θ̂θθ
0
− βββ0)TP2

R(θ̂θθ
0
− βββ0) ≤ pσ̂2fαp,n−p−1

is just

zzzTzzz ≤ pσ̂2fαp,n−p−1,
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which means zzz lies inside a sphere of radius rrad =
√
pσ̂2fαp,n−p−1. The vector zzz can

be written in the polar co-ordinates of the following form:

z1 = r cos(φ1)

z2 = r sin(φ1) cos(φ2)

...
...

zp−1 = r sin(φ1) sin(φ2) · · · cos(φp−1)

zp = r sin(φ1) sin(φ2) · · · sin(φp−1),

for r ∈ [0, rrad], φ1 ∈ [0, π), φ2 ∈ [0, π), · · · , φp−2 ∈ [0, π) and φp−1 ∈ [0, 2π).

In practice, to compute the confidence set C0
θθθ , we replace each of the intervals

[0, rrad], [0, 2π) and [0, π) by a set of grid points and denote these sets as Gr, Gφ

and Gp−1, respectively. There are a total of N = (#Gr) × (#Gφ)p−2 × (#Gp−1)

different points {r, φ1, φ2, · · · , φp−1}, where r takes a value in Gr, φ1, φ2, · · · , φp−2

take values in Gφ and φp−1 takes a value in Gp−1. For the ith point, we compute zzz =

(z1, z2, · · · , zp) using the definition of the polar co-ordinate, and βββ0i = θ̂θθ
0
−P−1R zzzi.

If the grid points of Gr, Gφ and Gp−1 are dense enough, then the (1 − α) level

confidence set C0
θθθ can be represented by {βββ0i , i = 1, 2, · · · , N}.

Now for each βββ0i , we compute the maximum point(s) of f(x,βββ0i ) = [x, · · · , xp]βββ0i .

If βββ0i = 000, then any point in the interval [a, b] is a maximum point. Otherwise,

the function f(x,βββ0i ) has at most (p− 1) stationary points, which can be found by

solving the equation

df(x,βββ0i )

dx
= [1, 2x, · · · , (p− 1)xp−2, pxp−1]βββ0i = 0.

Denote the stationary point(s) in (a, b) by si1, s
i
2, · · · , sik, where k ≤ (p − 1). Then

the maximum point(s) of f(x,βββ0i ) must lie within the finite set

{a, b, si1, si2, · · · , sik}.

For each βββ0i ∈ C0
θθθ , we compute the maximum point(s) using the method above, and

all these maximum points form a (1− α) level Rao’s confidence set for k(θθθ).
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3.3 Bootstrap Method

When using Bootstrap method to construct a (1 − α) level confidence set for a

maximum point of the univariate polynomial regression function

f(x,θθθ) = θ0 + θ1x+ · · ·+ θpx
p

in a given interval [a, b], we employ the following steps:

Step 1. Randomly choose a set of n bootstrap residuals from the original resid-

uals ê1, ê2, · · · , ên with replacement, and denote these bootstrap residuals as êeeB =

(êB1 , ê
B
2 , · · · , êBn )T .

Step 2. Form the bootstrap sample set yB1 , y
B
2 , · · · , yBn , where

YYY B =



yB1

yB2
...

yBn


:= Xθ̂θθ + êeeB.

The design matrix X remains the same as in the original data set.

Step 3. Estimate the parameter θ̂θθ
B

based on the bootstrapped data YYY B, that is,

θ̂θθ
B

= (XTX)−1XTYYY B.

Step 4. Find the maximum points of the function

f(x, θ̂θθ
B

) = θ̂B0 + θ̂B1 x+ · · ·+ θ̂Bp x
p

in the interval [a, b]. This can be done by comparing the values of f(x, θ̂θθ
B

) at a, b

and all the stationary points of f(x, θ̂θθ
B

) that lie in (a, b).

Repeat the above steps N times, where N is usually 1000 or larger, and define the

set Smax to be the set that contains all the maximum points from the N repetitions.

Then, the number of points in Smax, ns say, should be equal to or larger than N .

Sort the points in Smax in ascending order, and drop the smallest [α2ns] and the

largest [α2ns] values. Then use the remaining points in Smax as a (1−α) confidence

set for a maximum point.
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The advantage of bootstrap percentile confidence set for a maximum point is that it

is simple and hence is much faster to construct than other confidence sets. However,

there are a number of disadvantages in using bootstrap percentile confidence set.

Firstly, there are no fixed rules on which [nsα] points should be dropped from all of

the maximum points Smax computed from bootstrapped samples. In Figure 3.28(a),

the 2 line segments represent all of the maximum points Smax of the fitted regres-

sion functions (which is represented by the curves) computed from N bootstrapped

samples. Clearly in this case, it is not appropriate to drop the smallest [α2ns] and

the largest [α2ns] points. Instead, it is more appropriate to drop the smallest and

largest [α4ns] points from the points represented by the line segment in the left and

the smallest and largest [α4ns] points from the points represented by the line segment

in the right.

A plausible way of selecting the [ns(1 − α)] points is choosing the smallest content

that captures any [ns(1 − α)] points. Or in other words, we choose the [ns(1 − α)]

points with the highest fitted density (see Gibb et al., 2007).

Secondly, it is not clear whether we should treat all of the maximum points in Smax

equally, if there are different numbers of maximum points of f(x, θ̂θθ
B

) for different

θ̂θθ
B

. Figure 3.28(b) illustrates this situation. For one bootstrapped parameter θ̂θθ
B

,

the fitted regression function is depicted by the upper curve, which has 2 maximum

points. For another θ̂θθ
B

, the fitted regression function is depicted by the lower curve,

which has only 1 maximum point. It is not clear whether we should treat these three

maximum points in Smax equally.

Finally, due to the problems identified above, it might be difficult to establish the

large sample asymptotic coverage. For a finite sample, the coverage probability may

not be close to the nominal (1− α) level.
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(a) (b)

Figure 3.28: Bootstrap method.
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3.4 Summary

In this chapter, we have considered constructing a confidence set for a maximum

point of the regression function in univariate polynomial models. When p ≤ 2, the

critical constants in the confidence set can be computed using analytical method.

For a general p ≥ 3, finding the critical constants involves a (p − 1) dimensional

integration and so becomes difficult by using a numerical quadrature. Hence we

employ a simulation-based method to find c(k0) for each k0 for a general p.

From the examples given in Section 3.1, we conclude that our confidence set CE(YYY )

is always smaller thus better than Rao’s confidence set Cc(YYY ) and of course better

than the conservative confidence set C0(YYY ). Although Bootstrap confidence set

seems even smaller, its coverage probabilities is hard to define and may not be close

to the nominal 1−α. As explained earlier, the BH confidence set is for the stationary

points, but not for the maximum point. Therefore, we recommend the set CE(YYY )

when a confidence set for a maximum point of a univariate polynomial function is

of interest.

As for the computation time, the set CE(YYY ) takes the longest time in the gen-

eral univariate case when p ≥ 3 due to the simulation. However, the computation

time increases dramatically for Rao’s confidence set Cc(YYY ) when the order of the

regression function increases.
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Confidence Set for a Maximum

Point of a Bivariate Quadratic

Regression Function in a Given

Rectangular Region

We have discussed the construction of a (1−α) level confidence set for a maximum

point of the general univariate polynomial regression function in Chapter 3. In this

chapter, we extend the method to a bivariate quadratic regression function, which is

the most used regression function in response surface methodology. A confidence set

for a maximum point of a bivariate function has important applications in clinical

trials, when the interest is often the combination of components in drugs to reach

an optimal performance of treatments.

We propose the method of constructing a confidence set for a maximum point in

Section 4.1.1 and elaborate the computation in Section 4.1.2. Rao’s method and

bootstrap method for the bivariate quadratic case are illustrated in Sections 4.2 and

4.3. Examples are given to compare our confidence sets with other confidence sets.

Section 4.4 concludes this chapter with a discussion.
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4.1 Our Method

4.1.1 Theory

Suppose we have the regression model

Y = f(xxx,θθθ) + e

in the rectangular region χ2 = {xxx = (xxx(1),xxx(2)) ∈ R2 : xxx(1) ∈ [a1, b1], xxx(2) ∈

[a2, b2]}, where

f(xxx,θθθ) = θ0 + θ1xxx(1) + θ2xxx(2) + θ11xxx(1)2 + θ22xxx(2)2 + θ12xxx(1)xxx(2),

e ∼ N(0, σ2) and θθθ = (θ0, θ1, θ2, θ11, θ22, θ12)
T is the vector of unknown regression

coefficients. We are interested in constructing a (1 − α) level confidence set for a

maximum point of f(xxx,θθθ).

Let YYY = (y1, y2, · · · , yn)T be a vector of n observations corresponding to the design

matrix

X =



1 xxx1(1) xxx1(2) xxx1(1)2 xxx1(2)2 xxx1(1)xxx1(2)

1 xxx2(1) xxx2(2) xxx2(1)2 xxx2(2)2 xxx2(1)xxx2(2)

...
...

...
...

...
...

1 xxxn(1) xxxn(2) xxxn(1)2 xxxn(2)2 xxxn(1)xxxn(2)


,

and eee = (e1, e2, · · · , en)T ∼ N(000, Inσ
2) be the random errors. Then the regression

model can be written in the following matrix form

YYY = Xθθθ + eee.

The least squares estimate of θθθ is

θ̂θθ = (XTX)−1XTYYY ∼ N(θθθ, (XTX)−1σ2)

and σ̂2 =‖ êee ‖2 /(n − 6), where êee = YYY −Xθ̂θθ. Define a 5 × 5 symmetric matrix P

such that

P2 = (000 I5) (XTX)−1

 000

I5

 .
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Let kkk = kkk(θθθ) ∈ χ2 be a maximum point of f(xxx,θθθ) in χ2. For kkko ∈ χ2, if kkk = kkko, we

have

f(kkko, θθθ)− f(xxx,θθθ) ≥ 0, ∀xxx ∈ χ2 \ kkko.

Therefore, for each kkko = (ko1, k
o
2) ∈ χ2, a (1− α) level acceptance set for testing the

null hypothesis

H0 : kkk = kkko

is given by

A(kkko) = {YYY : f(kkko, θ̂θθ)− f(xxx, θ̂θθ) ≥ −c(kkko)σ̂
√
gggb(kkk

o,xxx)TP2gggb(kkk
o,xxx),∀xxx ∈ χ2 \ kkko}

= {YYY : inf
xxx∈χ2\kkko

f(kkko, θ̂θθ)− f(xxx, θ̂θθ)

σ̂
√
gggb(kkk

o,xxx)TP2gggb(kkk
o,xxx)

≥ −c(kkko)}, (4.1)

where

gggb(kkk
o,xxx) = [ko1 − x1, ko2 − x2, ko1

2 − x12, ko2
2 − x22, ko1ko2 − x1x2]T

with xxx = (x1, x2). It is clear from the definition above that

f(kkko, θθθ)− f(xxx,θθθ) = gggb(kkk
o,xxx)θθθ0

where θθθ0 = (θ1, θ2, θ11, θ22, θ12)
T . The estimate of θθθ0 is denoted by θ̂θθ

0
and given by

θ̂θθ
0

= (000 I5) θ̂θθ.

The critical value c(kkko) in Equation (4.1) is chosen such that the coverage probability

of A(kkko) is equal to (1− α) under H0.
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Next, we determine the critical value c(kkko). Note that

P{YYY ∈ A(kkko)}

= P

{
inf

xxx∈χ2\kkko
f(kkko, θ̂θθ)− f(xxx, θ̂θθ)

σ̂
√
gggb(kkk

o,xxx)TP2gggb(kkk
o,xxx)

≥ −c(kkko)

}
(4.2)

≥ P

{
inf

xxx∈χ2\kkko
[f(kkko, θ̂θθ)− f(xxx, θ̂θθ)]− [f(kkko, θθθ)− f(xxx,θθθ)]

σ̂
√
gggb(kkk

o,xxx)TP2gggb(kkk
o,xxx)

≥ −c(kkko)

}
(4.3)

= P

{
inf

xxx∈χ2\kkko
gggb(kkk

o,xxx)T (θ̂θθ
0
− θθθ0)

σ̂ ‖ Pgggb(kkk
o,xxx)T ‖

≥ −c(kkko)

}

= P

{
inf

xxx∈χ2\kkko
[Pgggb(kkk

o,xxx)T ]T [P−1(θ̂θθ
0
− θθθ0)]

σ̂ ‖ Pgggb(kkk
o,xxx)T ‖

≥ −c(kkko)

}

= P

{
inf

xxx∈χ2\kkko
[Pgggb(kkk

o,xxx)T ]TTTT

‖ Pgggb(kkk
o,xxx)T ‖

≥ −c(kkko)
}

(4.4)

where TTT ∼ T5,n−6, Equation (4.2) follows directly from Equation (4.1), and Equation

(4.3) follows from the fact that f(kkko, θθθ)− f(xxx,θθθ) ≥ 0 ∀xxx ∈ χ2 \ kkko. Note that

inf
θθθ:kkk=kkko

Pkkk=kkko{Y ∈ A(kkko)} = P

{
inf

xxx∈χ2\kkko
[Pgggb(kkk

o,xxx)T ]TTTT

‖ Pgggb(kkk
o,xxx)T ‖

≥ −c(kkko)
}
,

with the infimum being attained at θθθ0 = 000. Then the critical value c(kkko) is the

unique solution of

P

{
inf

xxx∈χ2\kkko
[Pgggb(kkk

o,xxx)T ]TTTT

‖ Pgggb(kkk
o,xxx)T ‖

≥ −c(kkko)
}

= 1− α. (4.5)

According to Neyman’s Theorem, a (1−α) level confidence set for a maximum point,

kkk, based on the observation YYY is given by

CE(YYY ) = {kkko ∈ χ2 : YYY ∈ A(kkko)}

=

{
kkko ∈ χ2 : inf

xxx∈χ2\kkko
f(kkko, θ̂θθ)− f(xxx, θ̂θθ)

σ̂
√
gggb(kkk

o,xxx)TP2gggb(kkk
o,xxx)

≥ −c(kkko)

}
. (4.6)

Peterson et al. (2002) considered this problem and proposed an approach to the

confidence region for a maximum point. Their confidence set for a maximum point

is given by {
kkko ∈ χ2 : inf

xxx∈χ2\kkko
f(kkko, θ̂θθ)− f(xxx, θ̂θθ)

σ̂
√
gggb(kkk

o,xxx)TP2gggb(kkk
o,xxx)

≥ −cα

}
,
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where the critical value is cα =
√
qfαq,n−p−1 with q = 2 and p = 5. However,

this critical value does not seem correct to us. Our approach above constructs a

confidence set which has the same form but with different critical values from theirs.
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4.1.2 Computation

In order to construct the confidence set given in Equation (4.6), we need to check

whether YYY is in the acceptance set A(kkko) for each kkko ∈ χ2. Since the region χ2 is

continuous and thus contains infinite number of points, we choose a finite grid S on

the region χ2 as a substitute for χ2. The resolution of the grid is (d1, d2), that is,

S = {(x1, x2) : x1 ∈ S1, x2 ∈ S2} where

S1 = {s1 = a1, s2, · · · , sk1 = b1} and S2 = {ss1 = a2, ss2, · · · , ssk2 = b2}

with si − si−1 = d1 and ssj − ssj−1 = d2 for i = 2, · · · , k1; j = 2, · · · , k2. If d1 and

d2 are small, then S gives a fine approximation to the region χ2. Therefore, in this

section, we only check each point in S and not each point in χ2 in computing the

conservative confidence set and the exact confidence set.

In what follows, we first approximate the critical values in Equation (4.6) by sim-

ulated critical values. Then, in order to reduce the complexity of computation, we

present the conservative critical value method, which serves to narrow down the

range of points that could be in the exact confidence set before we compute the

critical values.

Simulating critical values. To construct the confidence set in Equation (4.6), we

need the critical value c(kkko) for each kkko ∈ S first. Since the exact critical value c(kkko)

is difficult to solve from Equation (4.5), we use simulation to find an approximation

to c(kkko).

Let

G(kkko,xxx,TTT ) =
[Pgggb(kkk

o,xxx)T ]TTTT

‖ Pgggb(kkk
o,xxx)T ‖

,

then from Equation (4.5), we have

P{ inf
xxx∈χ2\kkko

G(kkko,xxx,TTT ) ≥ −c(kkko)} = 1− α.

The simulation method for finding the critical value c(kkko) follows three steps.

Step 1. Sample independent TTT i ∼ TTT 5,n−6, i = 1, 2, · · · ,m.
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Step 2. For each TTT i, i = 1, 2, · · · ,m, compute

inf
xxx∈χ2\kkko

G(kkko,xxx,TTT i).

Since the form of G(kkko,xxx,TTT i) is complicated and the infimum on xxx ∈ χ2 \ kkko is

difficult to find analytically, we use numerical methods. One way to approximate this

infimum is to compute G(kkko,xxx,TTT i) at each xxx in the set S \kkko, or a fine grid of points

on the region χ2, and then use the minimum of these values as an approximation

to the infimum. Alternatively, by using the method of computing the infimum of a

univariate function in Section 3.1.3.2, we can compute infxxx(2)∈[a2,b2]G(kkko,xxx,TTT i) at

each fixed xxx(1) ∈ S1, and use the minimum of these values as an approximation to

infxxx∈χ2\kkko G(kkko,xxx,TTT i).

An alternative way to compute the infimum is through the direct use of the Mat-

lab function fmincon. However, fmincon function only finds a local infimum near

the starting point chosen by the users. Therefore, the result is not guaranteed to

be the global infimum in the region χ2. To search for the infimum, we vary the

starting points in fmincon, and use the minimum of all the fmincon outputs as an

approximation to the global infimum. However, the computation will take longer

when there are more starting points. We suggest using the maximum point(s) of the

fitted regression function in the given region χ2 and kkko as the starting points. This

seems to work well based on empirical experience.

Step 3. Sort the values of infxxx∈χ2\kkko G(kkko,xxx,TTT i), i = 1, 2, · · · ,m, in increasing

order. Use the [α×m]th value as an approximation to −c(kkko).

In this way, we simulate c(kkko) for each kkko ∈ S and then decide the confidence set

according to Equation (4.6).

The Conservative Confidence Set. From Section 4.1.1, we need to find c(kkko) for

each grid point kkko ∈ S in order to decide the confidence set. However, the simulation

for each c(kkko) is time consuming, since it involves a large number of replications, m,

to reach a certain accuracy. As in the univariate case, we reduce the computation

by first using a conservative critical value to construct a conservative confidence
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set C0(YYY ), and then only computing c(kkko) for the grid points kkko in C0(YYY ). By

constructing C0(YYY ) first, we only need to compute the critical values for each of

the grid points that lie in C0(YYY ), not for each grid point in S. In this way, the

computation burden is greatly reduced.

Note that TTT ∼ TTT 5,n−6, therefore

‖ TTT ‖2

5
∼ F5,n−6,

where F5,n−6 is the standard F-distribution with degrees of freedom 5 and n − 6.

Denote fα5,n−6 as the upper α point of the distribution F5,n−6, then we have

P{‖ TTT ‖≤
√

5fα5,n−6} = 1− α,

that is

P

{
inf
ρρρ∈R5

ρρρTTT

‖ ρρρ ‖
≥ −

√
5fα5,n−6

}
= 1− α.

Hence, we have

P

{
inf

xxx∈S\kkko
[Pgggb(kkk

o,xxx)T ]TTTT

‖ Pgggb(kkk
o,xxx)T ‖

≥ −
√

5fα5,n−6

}
≥ P

{
inf
ρρρ∈R5

ρρρTTT

‖ ρρρ ‖
≥ −

√
5fα5,n−6

}
= 1− α. (4.7)

By comparing the probability statement (4.7) with the probability statement (4.5),

we conclude c(kkko) <
√

5fα5,n−6.

Thus, by substituting
√

5fα5,n−6 for c(kkko) in Equation (4.6), the conservative confi-

dence set is given by

C0(YYY ) =

{
kkko ∈ S : inf

xxx∈χ2\kkko
f(kkko, θ̂θθ)− f(xxx, θ̂θθ)

σ̂
√
gggb(kkk

o,xxx)TP2gggb(kkk
o,xxx)

≥ −
√

5fα5,n−6

}
. (4.8)

By using the conservative confidence set first, we do not need to compute the critical

value c(kkko) for each kkko ∈ S, but only for kkko in the conservative confidence set C0(YYY )

to determine the confidence set CE(YYY ). The computational expense is significantly

reduced.
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4.1.3 Examples

Example 1. Suppose we have 21 × 21 observations (x1, x2, y) from the regression

model

Y = 2x1 + 3x2 − x21 − 5x22 − 2x1x2 + e

where e ∼ N(0, 1), x1 ∈ {−1,−0.9, · · · , 1} and x2 ∈ {−1,−0.9, · · · , 1}. The fitted

bivariate quadratic regression model is

Ŷ = −0.0212 + 2.0545x1 + 3.0370x2 − 1.1933x21 − 4.8154x22 − 1.9195x1x2,

and σ̂ = 0.9539. To construct a 95% level confidence set for a maximum point

in the region [−1, 1] × [−1, 1], we construct the conservative confidence set C0(YYY )

first. Then, we compute the critical values (based on 1000 simulations) for the grid

points in C0(YYY ) and determine whether each grid point is in the exact confidence

set CE(YYY ). Figure 4.1(a) shows the fitted response surface. In Figure 4.1 (b)-(d),

the shaded regions represent the 95% level corresponding confidence sets. In Figure

4.1(e), the whole dotted region represents the confidence set C0(YYY ) in Equation

(4.8) while the light dotted region represents the confidence set CE(YYY ). The cross

in each confidence set represents the true maximum point. Computation of CE(YYY )

takes approximately 50 minutes.

Example 2. Suppose we have 6 × 6 observations (x1, x2, y) from the regression

model

Y = 2 + 2x1 + 3x2 + x21 + 5x22 + 2x1x2 + e,

where e ∼ N(0, 102), x1 ∈ {0, 2, · · · , 10} and x2 ∈ {0, 1, · · · , 5}. The fitted bivariate

quadratic regression model is

Ŷ = 0.1773 + 1.5707x1 + 4.2067x2 + 1.1001x21 + 4.9186x22 + 1.9834x1x2,

and σ̂ = 9.7201. To construct a 95% level confidence set for a maximum point

in the region [0, 10] × [0, 5], we construct the conservative confidence set C0(YYY )

first. Then, we compute the critical values (based on 10000 simulations) for the

grid points in C0(YYY ) and determine whether each grid point is in the confidence set
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(a) Fitted response surface (b) BH confidence set

(c) Bootstrap confidence set (d) Rao’s confidence set Cc(YYY )

(e) Confidence set C0(YYY ) and CE(YYY )

Figure 4.1: The response surface and 95% confidence sets in Example 1
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(a)Fitted response surface (b) The confidence sets

Figure 4.2: The response surface and 95% confidence sets in Example 2

CE(YYY ). Figure 4.2(a) shows the fitted response surface. In Figure 4.2(b), the shaded

region represents the BH confidence set, the cross inside the region represents the

true stationary point, and the point in the upper-right conner represents all other

confidence sets computed in this example.

Example 3. Suppose we have 5 × 5 observations (x1, x2, y) from the regression

model

Y = 1 + x1 + x2 + x21 − 2x22 + x1x2 + e,

where e ∼ N(0, 252). The fitted bivariate quadratic regression function is

Ŷ = −1.8403 + 0.95602x1 + 1.4354x2 + 0.94671x21 − 1.8555x22 + 1.1818x1x2,

and σ̂ = 25.095, x1 ∈ {−10,−5, · · · , 10} and x2 ∈ {−10,−5, · · · , 10}. To construct

a 95% level confidence set for a maximum point in the region [−10, 10]×[−10, 10], we

construct the conservative confidence set C0(YYY ) first. Then, we compute the critical

values (based on 1000 simulations) for the grid points in C0(YYY ) and determine

whether each grid point is in the confidence set CE(YYY ). Figure 4.3 shows the fitted

response surface, the confidence set using our method and using other methods. The

shaded region in each figure represents the confidence set and the cross near the edge

on the right represents the true maximum point. The other cross in Figure 4.3(b)

115



Chapter 4

(a) Fitted response surface (b) BH confidence set

represents the true stationary point.

Example 4. Suppose we have 5 × 5 observations (x1, x2, y) from the regression

model

Y = 10x1 + 10x2 − 5x21 − 5x22 − 10x1x2 + e,

where e ∼ N(0, 1), x1 ∈ {−1,−0.5, · · · , 1} and x2 ∈ {−1,−0.5, · · · , 1}. The fitted

bivariate quadratic regression function is

Ŷ = 0.0023851 + 10.144x1 + 10.266x2 − 5.2619x21 − 4.5582x22 − 9.6445x1x2,

and σ̂ = 0.84128. To construct a 95% level confidence set for a maximum point

in the region [−1, 1] × [−1, 1], we construct the conservative confidence set C0(YYY )

first. Then, we compute the critical values (based on 1000 simulations) for the grid

points in C0(YYY ) and determine whether each grid point is in the confidence set

CE(YYY ). Figure 4.4 shows the fitted response surface, the confidence set using our

method and using other methods. The shaded region in each figure represents the

corresponding confidence set and the line lies within the confidence set represents

the true maximum points. In Figure 4.4(e), the light dotted region represents the

set CE(YYY ) while the whole dotted region represents C0(YYY ).

Example 5. Table 4.1 shows the data of a central composite design for a chemical

process (Myers, 2009, pp 48, table 2.8), resulting from an investigation into the

effect of two variables, reaction temperature (x1) and reactant concentration (x2),
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(c) Bootstrap confidence set (d) Rao’s confidence set Cc(YYY )

(e) Confidence set C0(YYY ) (f) Confidence set CE(YYY )

Figure 4.3: The response surface and 95% confidence sets in Example 3

(a) Fitted response surface (b) BH confidence set
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(c) Bootstrap confidence set (d) Rao’s confidence set Cc(YYY )

(e) Confidence set C0(YYY ) and CE(YYY )

Figure 4.4: The response surface and 95% confidence sets in Example 4
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Table 4.1: Data of a central composite design for the chemical process (Myers, 2009)

observation run temperature(oC) conc.(%) x1 x2 y

1 4 200 15 -1 -1 43

2 12 250 15 1 -1 78

3 11 200 25 -1 1 69

4 5 250 25 1 1 73

5 6 189.65 20 -1.414 0 48

6 7 260.35 20 1.414 0 78

7 1 225 12.93 0 -1.414 65

8 3 225 27.07 0 1.414 74

9 8 225 20 0 0 76

10 10 225 20 0 0 79

11 9 225 20 0 0 83

12 2 225 20 0 0 81

Figure 4.5: The residual plot and normal probability plot in Example 5
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(a) Fitted response surface (b) Box and Hunter’s confidence set

on the percentage conversion of a chemical process (y). The fitted bivariate quadratic

regression model is

Ŷ = 79.75 + 10.18x1 + 4.22x2 − 8.50x21 − 5.25x22 − 7.75x1x2,

and σ̂ = 2.49. From the residual plots and normal probability plot (Figure 4.5), the

normality assumption of the residuals seemed reasonable. To construct a 95% level

confidence set for a maximum point, we check the grid points in the rectangular

region edged by ±1.414 first and construct the conservative confidence set C0(YYY ).

Then, we compute the critical values (based on 1000 simulations) for the grid points

in C0(YYY ) and determine whether each grid point is in the confidence set CE(YYY ).

Figure 4.6 shows the fitted response surface, the confidence set using our method and

using other methods. Computation of the confidence set CE(YYY ) takes approximately

5 hours.
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(c) Bootstrap confidence set (d) Rao’s confidence set Cc(YYY )

(e) Confidence set C0(YYY ) and CE(YYY )

Figure 4.6: The response surface and 95% confidence sets in Example 5
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4.2 Rao’s Method

The construction of confidence sets for a maximum point of a general univariate

polynomial function using Rao’s method has been illustrated in Section 3.2. In this

section, we construct a confidence set for the bivariate quadratic function

f(xxx,θθθ) = θ0 + θ1x1 + θ2x2 + θ11x
2
1 + θ22x

2
2 + θ12x1x2

in a given covariate region χ2 following the same steps. We briefly describe the

procedure next.

Let k(θθθ) be a maximum point of the function f(xxx,θθθ) in χ2, then a (1 − α) level

conservative confidence set for k(θθθ) is given by

Cc = {k(βββ0) ∈ [a, b] : βββ0 ∈ C0
θθθ}

where

C0
θθθ = {βββ0 : (θ̂θθ

0
− βββ0)TP2

R(θ̂θθ
0
− βββ0) ≤ 5σ̂2fα5,n−6}

with θ̂θθ
0

:= (θ̂1, θ̂2, θ̂11, θ̂22, θ̂12) and P2
R =

[
000 I5

]
(XTX)

 000

I5

.

The constraint

(θ̂θθ
0
− βββ0)TP2

R(θ̂θθ
0
− βββ0) ≤ 5σ̂2fα5,n−6

can be written as

zzzTzzz ≤ 5σ̂2fα5,n−6,

where z = PR(θ̂θθ
0
− βββ0). Following Section 3.2, the vector zzz can be written in the

following polar co-ordinates:

z1 = r cos(φ1)

z2 = r sin(φ1) cos(φ2)

z3 = r sin(φ1) sin(φ2) cos(φ3)

z4 = r sin(φ1) sin(φ2) sin(φ3) cos(φ4)

z5 = r sin(φ1) sin(φ2) sin(φ3) sin(φ4),
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for r ∈ [0, rrad], φ1, φ2, φ3 ∈ [0, π) and φ4 ∈ [0, 2π).

We replace each of the intervals [0, rrad], [0, 2π) and [0, π) by a set of grid points

and denote these sets as Gr, Gφ and G4, respectively. There are a total of N =

(#Gr) × (#Gφ)3 × (#G4) points {r, φ1, φ2, φ3, φ4}, where r takes a value in Gr,

φ1, φ2 and φ3 take values in Gφ and φ4 takes a value in G4. For the ith point, we

compute zzz = (z1, z2, · · · , z5) using the definition of the polar co-ordinate, and

βββ0i = θ̂θθ
0
−P−1R zzzi. If the grid points of Gr, Gφ and G4 are densely chosen, then the

(1− α) level confidence set C0
θθθ can be represented by {βββ0i , i = 1, 2, · · · , N}.

Now for each βββ0i , we compute the maximum point(s) of f(xxx,βββ0i ) = [x1, x2, x
2
1, x

2
2, x1x2]βββ

0
i

in χ2. Note that the maximum point(s) are either at the stationary point(s) of the

function f(xxx,βββ0i ), or on the boundary of the rectangular region χ2. The stationary

point(s) can be found, if exist, by solving the equation

∂f(xxx,βββ0i )

∂xj
= 0, j = 1, 2,

that is, 
[1, 0, 2x1, 0, x2]βββ

0
i = 0

[0, 1, 0, 2x2, x1]βββ
0
i = 0

.

The boundary of χ2 is made of 4 line segments and at each line segment f(xxx,βββ0i ) is

a univariate quadratic polynomial function whose maximum point(s) can be found

according to Section 3.2. Hence the maximum point(s) of f(xxx,βββ0i ) in the covariate

region χ2 is determined by comparing the function values at the maximum points

of the 4 line segments and at the stationary point(s).

For each βββ0i ∈ C0
θθθ , we compute the maximum point(s) using the method above, and

all these maximum points form a (1− α) level Rao’s confidence set for k(θθθ).
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4.3 Bootstrap Method

When using Bootstrap method to construct a (1 − α) level confidence set for a

maximum point of the bivariate quadratic function

f(xxx,θθθ) = θ0 + θ1x1 + θ2x2 + θ11x
2
1 + θ22x

2
2 + θ12x1x2

in a given covariate region χ2, we modify the constructing method in Section 3.3.

The resampling and parameter estimation steps are the same as in the univariate

case:

Step 1. Randomly choose a set of n bootstrap residuals from the original resid-

uals ê1, ê2, · · · , ên with replacement, and denote these bootstrap residuals as êeeB =

(êB1 , ê
B
2 , · · · , êBn )T .

Step 2. Form the bootstrap sample set yB1 , y
B
2 , · · · , yBn , where

YYY B =



yB1

yB2
...

yBn


:= Xθ̂θθ + êeeB.

The design matrix X remains the same as in the original data set.

Step 3. Estimate the parameter θ̂θθ
B

based on the bootstrapped data YYY B, that is,

θ̂θθ
B

= (XTX)−1XTYYY B.

Step 4. Find the maximum points of the function f(xxx,θθθB) in χ2. This can be done

by comparing the values of f(xxx, θ̂θθ
B

) at the stationary point(s) that lie in χ2 and on

the boundary as discussed in Section 4.2.

Repeat the above steps N times, where N is usually 1000 or larger, and define the

set Smax to be the set that contains all the maximum points from the N repetitions.

Then, the number of points in Smax, ns say, should be equal to or larger than N .

Any [(1− α)ns] points in Smax form a (1− α) level confidence set for k(θθθ).

A plausible way of selecting the [(1− α)ns] points is to first estimate the density at

each of the ns points in Smax and then select the [(1−α)ns] points with the highest
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density. This density estimation can be implemented by using the matlab function

kde2d which uses a Gaussian kernel.

125



Chapter 4

4.4 Summary

In this chapter, we have investigated the confidence sets for the popular quadratic

response surface models. The theory of our method covers the bivariate case as well

as the univariate case. But computing the critical constants becomes even more

difficult than that in the univariate case. We use the Matlab function fmincon to find

the minimum values. However, fmincon does not guarantee that the minimization

leads to a global minimum. This applies to the calculation of the confidence sets

for Equation (4.6). The calculated critical values may therefore be larger than the

true critical values and the infimum of the left-hand side of the inequality in (4.6)

may also be larger than the true values. To improve the accuracy, one can vary the

starting point when using fmincon and select the smallest one as an approximation

to the global minimum in the constrained covariate region.

From the examples given in Section 4.1.3, we note that the smallest confidence

sets are bootstrap confidence sets. But due to the reasons stated earlier, we do

not recommend bootstrap confidence set and BH confidence set. The confidence

set CE(YYY ) is always appeared to be smaller than or equal to Rao’s confidence set

Cc(YYY ) and of course smaller than the conservative confidence set C0(YYY ). Hence we

conclude that it is better to use our method in constructing a confidence set in the

bivariate case.

As for the computation time, our method generally takes the longest time due to

the use of simulation in computing the critical constants.
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Extensions to other models

In Chapters 3 and 4, we have constructed an exact (1 − α) level confidence set for

a maximum point for normal-error univariate polynomial regression models and bi-

variate quadratic regression models. This method can be extended to some other

models which involve a linear function. If the estimates of the coefficients in the lin-

ear function of these models are normally distributed, then our method can directly

be applied to produce the corresponding (1−α) level confidence set for a maximum

point. However, in many statistical models such as generalized linear models, ran-

dom effects linear models and random effects generalized linear models (cf. Dobson,

2001; Pinheiro and Bates, 2000; McCulloch and Searle, 2001), only the maximum

likelihood estimators of fixed effects regression coefficients can be obtained. In that

case, our method can still be applied to produce the corresponding (1− α) asymp-

totic confidence sets via the large sample approximate normal distribution of the

maximum likelihood estimators.

In this chapter, we consider to construct a confidence set for a maximum point of

the mean response E(Y ) for models other than ordinary linear regression models.

Sections 5.1-5.3 consider three specific models to illustrate the method.

Suppose (Y1,xxx1), (Y2,xxx2), · · · , (Yn,xxxn) are n observations from a pre-specified model
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which involves a linear function

f(xxx,θθθ) = θ0 + z(xxx)Tθθθ0

where z is a given p×1 vector-valued function of the observation xxx, θθθ = (θ0, · · · , θp)T

and θθθ0 = (θ1, · · · , θp)T . Furthermore, suppose the mean response E(Y ) is related

to f(xxx,θθθ) by a given monotone function. Therefore the confidence set for E(Y )

can be derived from that of f(xxx,θθθ). If the assumption holds, then the problem of

constructing a confidence set for a maximum point of E(Y ) is translated to that of

a linear function f(xxx,θθθ). Next, we consider the construction of a confidence set for

a maximum point kkk of f(xxx,θθθ) in a given region χ.

Following Neyman’s Theorem in Chapter 2, a (1 − α) level confidence set for kkk is

given by

C(YYY ) = {kkko ∈ χ : YYY ∈ A(kkko)}

where A(kkko) is a (1− α) level acceptance set for testing H : kkk = kkko for each kkko ∈ χ.

A (1− α) level acceptance set can be constructed as

A(kkko) =

{
YYY : f(kkko, θ̂θθ)− f(xxx, θ̂θθ) ≥ −c(kkko)

√
ˆvar[f(kkko, θ̂θθ)− f(xxx, θ̂θθ)],∀xxx ∈ χ

}
where each critical value c(kkko) can be determined such that P{YYY ∈ A(kkko)} = 1−α.

In fact, if an estimator θ̂θθ
0

of θθθ0 is available with normal distribution

θ̂θθ
0
∼ N(θθθ0,Σ)

then the above acceptance set becomes

A(kkko) =

{
YYY : f(kkko, θ̂θθ)− f(xxx, θ̂θθ) ≥ −c(kkko)σ̂

√
[z(kkko)− z(xxx)]TV[z(kkko)− z(xxx)], ∀xxx ∈ χ

}
=

{
YYY : f(kkko, θ̂θθ)− f(xxx, θ̂θθ) ≥ −c(kkko)σ̂ ‖ [z(kkko)− z(xxx)]TP ‖, ∀xxx ∈ χ

}
(5.1)

where Σ = σ2V is a positive definite variance-covariance matrix and P2 = V. The

estimator of the error variance σ2 has a distribution of σ̂2 ∼ σ2χ2
ν/ν and is denoted

by σ̂2. The determination of each critical constant c(kkko) employs the same procedure

discussed in Chapters 3 and 4.
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However, when the distribution of θ̂θθ
0

is otherwise not normal or not available, the

procedure is adapted to produce an asymptotic (1 − α) confidence set for kkk. From

the Central Limit Theory, if the sample size is large, approximately we have

θ̂θθ
0
∼ N(θθθ0,Σ)

with Σ = J−1(θθθ0) where J(θθθ0) is the Fisher Information matrix of θθθ0. Furthermore,

Σ̂ = J−1(θ̂θθ
0
) is usually used to approximate the variance-covariance matrix Σ. Let

P2 = Σ̂ and σ̂ = 1, then the acceptance set is the same as we constructed in Equation

(5.1)

A(kkko) =
{
YYY : f(kkko, θ̂θθ)− f(xxx, θ̂θθ) ≥ −c(kkko) ‖ [z(kkko)− z(xxx)]TP ‖,∀xxx ∈ χ

}
.

Note that

P {YYY ∈ A(kkko)}

= P
{
f(kkko, θ̂θθ)− f(xxx, θ̂θθ) ≥ −c(kkko) ‖ [z(kkko)− z(xxx)]TP ‖,∀xxx ∈ χ

}
≥ P

{
[z(kkko)− z(xxx)]T (θ̂θθ

0
− θθθ0) ≥ −c(kkko) ‖ [z(kkko)− z(xxx)]TP ‖,∀xxx ∈ χ

}
(5.2)

= P

{
inf

∀xxx∈χ\kkko
[z(kkko)− z(xxx)]T (θ̂θθ

0
− θθθ0)

‖ [z(kkko)− z(xxx)]TP ‖
≥ −c(kkko)

}

= P

{
inf

∀xxx∈χ\kkko
[z(kkko)− z(xxx)]TP[P−1(θ̂θθ

0
− θθθ0)]

‖ [z(kkko)− z(xxx)]TP ‖
≥ −c(kkko)

}

= P

{
inf

∀xxx∈χ\kkko
{[z(kkko)− z(xxx)]TP}NNN
‖ [z(kkko)− z(xxx)]TP ‖

≥ −c(kkko)
}

where Equation (5.2) follows from the fact that [z(kkko) − z(xxx)]Tθθθ0 ≥ 0 under the

hypothesis kkk = kkko,

NNN = P−1(θ̂θθ
0
− θθθ0) ∼ N(0, Ip)

and Ip is the p× p identity matrix. Therefore, c(kkko) is solved from

P

{
inf

∀xxx∈χ\kkko
{[z(kkko)− z(xxx)]TP}NNN
‖ [z(kkko)− z(xxx)]TP ‖

≥ −c(kkko)
}

= 1− α (5.3)

using a similar inference and computation procedure to that used in Chapters 3

and 4. We take generalized linear models, Cox’s proportional hazard models and a

Becker’s H1 model as examples to illustrate the method.
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5.1 Generalized Linear Models

In statistics, the term generalized linear models (GLMs) refers to a class of models

which are generalized from ordinary linear regression. The GLMs allow the lin-

ear model to be related to the response variable via a link function and allow the

magnitude of the variance of each measurement to be a function of its predicted

value.

A generalized linear model has three components:

1. Response Y with a probability distribution from the exponential family

fexp(y;β) = exp[yb(β) + c(β) + d(y)].

2. A linear predictor f(xxx,θθθ) .

3. A monotone link function h such that h[E(Y )] = f(xxx,θθθ).

Suppose we have n observations (Y1,xxx1), (Y2,xxx2), · · · , (Yn,xxxn) from a generalized

linear model in the form

h[E(Y )] = f(xxx,θθθ) = θ0 + z(xxx)Tθθθ, (5.4)

where h is a strictly monotone, differentiable function and Yi has a distribution

fexp(yi;βi) = exp[yib(βi) + c(βi) + d(yi)], (5.5)

with unknow parameter βi (the βis don’t need to be identical). We are interested

in constructing a confidence set for a maximum point of E(Y ) = h−1(f(xxx,θθθ)) in a

given region χ based on observations (Y1,xxx1), (Y2,xxx2), · · · , (Yn,xxxn).

5.1.1 Method

Since h is a monotone function, a maximum point of E(Y ) is either a maximum

point of f(xxx,θθθ) or a maximum point of f(xxx,−θθθ), depending on whether the function

h is increasing or decreasing. Without loss of generality, we assume h is a strictly

increasing function. Therefore, a point kkk is a maximum point of E(Y ) if and only
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if it is a maximum point of f(xxx,θθθ). Hence a (1 − α) level confidence set for a

maximum point of E(Y ) is a (1 − α) level confidence set for a maximum point of

f(xxx,θθθ). Our problem of constructing a confidence set for a maximum point of E(Y )

is therefore translated to that of constructing a confidence set for a maximum point

of a polynomial function f(xxx,θθθ), which we have already discussed in Chapters 3 and

4. A similar argument clearly goes through for other fixed or random effects linear

or generalized linear models so long as the regression function involved is a linear

function.

Parameter and its covariance matrix

To construct a confidence set for a maximum point kkk of f(xxx,θθθ), we first need an

estimator of θθθ and its distribution. This step can be done by using the maximum

likelihood method (see Dobson(2002) for details). From Equation (5.5) we have

µi := E(Yi) = −c′(βi)/b
′
(βi)

η := h(µi)

and var(Yi) = [b
′′
(βi)c

′
(βi)− c

′′
(βi)b

′
(βi)]/[b

′
(βi)]

3.

The log-likelihood function for Yi is given by

li = yib(βi) + c(βi) + d(yi),

and the log-likelihood function for YYY is

l =

n∑
i=1

li =

n∑
i=1

[yib(βi) + c(βi) + d(yi)].

The maximum likelihood estimator for θθθ, θ̂θθ, is the solution of

∂l

∂θj
= Uj =

n∑
i=1

[
∂li
∂θj

]
= 0, (5.6)

i = 0, 1, · · · , n; j = 1, · · · , p, with E[θ̂θθ] = θθθ and var[θ̂θθ] = J−1(θθθ) where J(θθθ) is

the Fisher Information matrix. Although the maximum likelihood estimator can be

obtained by solving Equation (5.6) analytically, it is difficult to give an expression

in most of the cases. Therefore numerical methods are usually used in parameter

estimation. We simply use here the procedure illustrated by Dobson (2002).
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Note that Equation (5.6) can be simplified by using the chain rule for differentiation,

that is,

Uj =
n∑
i=1

[
∂li
∂βi
· ∂βi
∂µi
· ∂µi
∂θj

]
(5.7)

=
n∑
i=1

[
b
′
(βi)(yi − µi) · b

′
(βi)var(Yi) ·

∂µi
∂ηi

xij

]
(5.8)

=
n∑
i=1

[
(yi − µi)
var(Yi)

xij(
∂µi
∂ηi

)

]
. (5.9)

Hence the (j, k)th element of the variance-covariance matrix of [U1, · · · , Up] is given

by

Jj,k := E(UjUk) =
n∑
i=1

[
xijxik
var(Yi)

(
∂µi
∂ηi

)2
]
. (5.10)

To solve
∂l

∂θθθ
= UUU = 000,

Newton-Raphson method is applied. The estimate is given by iteration

θ̂θθ
(m)

= θ̂θθ
(m−1)

+ [J (m−1)]−1UUU (m−1) (5.11)

where θ̂θθ
(m)

is the estimate of θθθ at the m-th iteration, J (m) = J(θ̂θθ
(m)

) = (Ji,k) is the

Fisher information and UUU (m) is the score vector evaluated at θ̂θθ
(m)

. Let W be an

n× n diagonal matrix with elements

wii =
1

var(Yi)

(
∂µi
∂ηi

)2

,

then Equation (5.10) can be expressed as

J = XTWX.

Let zzz be a vector with elements

zi =

p∑
k=1

xikθ
(m−1)
k + (yi − µi)

(
∂ηi
∂µi

)

with µi and ∂ηi/∂µi evaluated at θθθ(m−1), then Equation (5.11) becomes

XTWXθθθ(m) = XTWzzz.
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Thus θθθ(m) is obtained by an iterative weighted least squares procedure and Σ̂ is

approximated by J−1(θ̂θθ
0
). In Matlab, this procedure is implemented by the function

glmfit

[θ̂θθ, dev, stats] = glmfit(X, yyy, distr),

where the output dev is the deviance of the fit at the solution θ̂θθ, and stats includes

the summary statistics such as the estimated variance-covariance matrix of θ̂θθ, the

residuals and the degrees of freedom for error.

As long as θ̂θθ and Σ̂ are obtained, the acceptance set (5.1) is constructed using the

critical constant c(kkko) solved from Equation (5.3). However, because the standard

Normal distribution rather than the T-distribution is used in Equation (5.3), the

critical value in computing the conservative confidence set C0(YYY ) should be
√
χ2
p

following a similar inference given in Section 3.1.3.2.

5.1.2 Example

Table 5.1: Survival data for the CTX experiment (Carter et al., 1983)

group number 1 2 3 4 5 6 7

CTX(mg/kg) 0.0 65.7 92.0 164 230 296 414

] of mice 16 8 8 8 8 8 8

] surviving 21 days 0 3 5 8 8 5 0

This example considers the survival data for the cyclophosphamide (CTX) experi-

ment given in Carter et al. (1983). Female mice were randomly divided into a control

group (16 mice) and six treatment groups (8 mice per group) at different levels of

CTX. Carter et al. (1983) were particularly interested in the probability of survival

of at least 21 days. Table 5.1 summarizes the observations on 21-day survival from

the experiment. The usual model fitting procedure suggests that the following lo-

gistic regression model of 21-day survival probability p on dose level x =CTX fits
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Figure 5.1: The three 95% confidence sets in Example 5.1.2; CE(Y) is given by the

top broken line, C0(Y) is given by the middle dot line, and Cc(Y) is given by the

bottom solid line.
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the observed data very well:

p(x,θθθ) = (1 + exp(−f(x,θθθ)))−1 with f(x,θθθ) = θ0 + θ1x+ θ2x
2.

Figure 5.1 plots the observed 21-day survival relative frequencies (given by the ∗’s)

and the fitted logistic regression curve. The parameter estimates are given by

θ̂θθ =


−7.4333

0.1209

−0.0003

 and Σ̂ =


8.1865 −0.1249 0.0003

−0.1249 0.0020 −0.0000

0.0003 −0.0000 0.0000

 .

It is clearly of interest to construct a confidence set for the CTX level in the ob-

served covariate range x ∈ [0, 414] that maximizes the 21-day survival probability.

Using α = 0.05, resolution d = 0.1 and numerical quadrature, the asymptotic confi-

dence sets are computed to be CE(Y) = [173.5, 239.9], C0(Y) = [169.7, 297.1] and

Cc(Y) = [169.7, 297.0]. The three confidence sets are indicated by the three line

segments in Figure 5.1. It is clear that the width 66.4 of CE(Y) is much smaller

than both the widths 127.4 and 127.3 of C0(Y) and Cc(Y) respectively. The critical

constants in this example were computed by using numerical quadrature, and the

computation time of CE(Y) was 47 seconds on the same PC.
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5.2 Cox’s Proportional Hazard Models

In survival analysis, there are three ways to describe the population

• f(t)-the density function, which gives the instantaneous probability of an event

at time t.

• h(t)-the hazard function, which gives the instantaneous potential for an event

to occur given that an event has not occurred yet up to time t.

• S(t)-the survivor function, which gives the probability an individual survives

longer than time t.

Let the distribution function be F (t) =
∫ t
0 f(s)ds, then the hazard function and

survivor function can be expressed as

S(t) = 1− F (t) and h(t) =
f(t)

S(t)
.

It is clear that the hazard function h(t) is non-negative for all t ∈ [0,∞).

A proportional hazard model assumes that the hazard function takes the following

form

h(t,xxx) = λ(t)exp(f(xxx,θθθ)) = λ(t)exp(g(xxx)Tβββ), (5.12)

where λ(t) is a smooth function of t and is positive for all t ≥ 0. However, a Cox’s

proportional hazard model (cf. Cox, 1972, 1975; Kleinbaum and Klein, 2005) assume

λ(t) can take any value since it is irrelevant to the parameter estimation using Cox’s

partial maximum likelihood (Cox, 1975).

Given observations (Y1,xxx1), (Y2,xxx2), · · · , (Yn,xxxn), the interest is on the construction

of a confidence set for a minimum point of the hazard function h(t,xxx) at any time

t in a covariate region χ.

5.2.1 Method

Because λ(t) is positive for all t ≥ 0, hence a minimum point of h(t,xxx) is a minimum

point of f(x, βx, βx, β), that is, a 1−α level confidence set for a maximum point of f(x,−θx,−θx,−θ).
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Our problem is therefore translated to that of constructing a confidence set for a

maximum point of f(xxx,−θθθ) in a given covariate region χ.

According to the inference at the beginning of this chapter, to construct a confidence

set for a maximum point of f(xxx,−θθθ), we need an estimator of θθθ and its distribu-

tion first. The parameter estimation can be done by using Cox’s partial maximum

likelihood method.

Cox’s Partial Maximum Likelihood

Let t1, t2, · · · , tn be n distinct failure times and there is no tie between these times.

The Cox’s partial likelihood is given by

L =
n∏
j=1

Lj ,

where

Lj =
λ(tj)exp(f(xxx,θθθ)∑

xxx∈R(tj)
λ(tj)exp(f(xxx,θθθ))

=
exp(f(xxx,θθθ))∑

xxx∈R(tj)
exp(f(xxx,θθθ))

with R(tj) being the set of individuals any of whom may be found fail at time tj .

When there are ties in the survival time, several methods are provided to approxi-

mate the partial likelihood, see Breslow (1970) and Efron (1977) for more informa-

tion.

The parameters are solved from

∂ logL

∂θi
= 0, i = 1, 2, · · · , p+ 1.

The estimates can be obtained by using the Matlab command

[θ̂θθ, logL,H, stats] = coxphfit(X,T )

where X is the matrix of the observations on predictor variables and T is the vector

of time-to-event data. The output logL is the log-likelihood, H is a two-column

matrix which contains the T values in the first column and the estimated baseline

cumulative hazard in the second column. stats is a structure which contains the

summary statistics such as the estimated variance-covariance matrix of θ̂θθ.

According to the Central Limit Theory, approximately we have

θ̂θθ ∼ N(θθθ, Σ̂).
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Then the critical values can be determined by solving Equation (5.3) and a (1 −

α) level confidence set for a maximum point of f(xxx,−θθθ) can then be constructed

following the previous inference directly.

5.2.2 Example

This example considers the survival data in a murine cancer chemotherapy exper-

iment that used the drugs 5-Fluorouracil and Teniposide given by Stablein et al.

(1983). A series combinations of 5-Fluorouracil (5FU) and Teniposide (VM26) was

given to treat 127 mice with leukemia. The original data of combinations and sur-

vival times were recorded in Table 5.2. These data were scaled to be

x1 =
5FU(mg/kg)− 130

130

x2 =
VM26(mg/kg)− 13

13

and analyzed using a proportional hazard model

h(t,xxx) = λ(t)exp(f(xxx,θθθ))

where f(xxx,θθθ) = θ1x1 + θ2x2 + θ3x
2
1 + θ4x

2
2 + θ5x1x2. The usual model fitting proce-

dure suggests that this proportional hazard model fits the observed data well. The

parameter estimates are given by

θ̂θθ =



0.5702

0.7712

0.0279

−0.2695

0.2196


and Σ̂ =



0.0284 0.0124 0.0198 0.0044 0.0199

0.0124 0.0297 0.0041 0.0205 0.0200

0.0198 0.0041 0.0699 −0.0037 0.0240

0.0044 0.0205 −0.0037 0.0747 0.0220

0.0199 0.0200 0.0240 0.0220 0.0532


.

It is clearly of interest to construct a confidence set for the dose combination kkk at

which the hazard function h(t,xxx) is minimized, i.e., f(xxx,−θθθ) is maximized. We

consider the constrained region {xxxTxxx ≤ 1} following Stablein et al. (1983). Using

α = 0.05, resolution d = 0.1 and simulation N = 10, 000, the asymptotic confidence
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(a) Confidence set C0(YYY ) (b) Confidence set CE(YYY )

(c) Confidence set Cc(YYY ) (d) Confidence set using PCD’s critical value

Figure 5.2: The 95% confidence sets in Example 5.2.2.
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regions CE(YYY ) and C0(YYY ) are computed and depicted in Figure 5.2. Rao’s confi-

dence set Cc(YYY ) is also depicted. It is clear that CE(YYY ) is smaller than C0(YYY ).

The computation time for C0(YYY ) is 74 seconds while for CE(YYY ) is 11.2 hours and

for Cc(YYY ) is 55 minutes. Figure 5.2(d) depicts the asymptotic confidence set using

PCD’s critical value. However, it is too small due to the incorrect critical value.
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Table 5.2: 5FU+VM26 combination experiment (Stablein et al., 1983)

Treatment levels
Days of survival

5FU(mg/kg) VM26(mg/kg)

0.0 0.00 8,9(2),10(5)

0.0 9.71 10,13(5),14(2)

0.0 19.40 8,10,13,14(4),15

0.0 25.90 9,14(4),15(3)

35.6 9.71 13,14(3),15(3),17

48.5 4.85 9,13(2),14(3),15(2)

48.5 19.40 14(2),15(2),16(4)

97.1 0.00 8(2),10,11,12(2),14,16

97.1 3.56 8,9(2),11(2),13(2),16

97.1 9.71 8,10,11,16(2),17(2),18

97.1 25.9 16(3),17,18(3),19

194.0 0.00 10, 13(6),14

194.0 4.85 11(2),14(3),16,17

194.0 19.40 8,14,16,20(4),21

259.0 0.00 9,11,12(3),13(3)

259.0 9.71 16(2),17,18(2),19(2),20

The number in the parentheses indicates the number of animals dead on that day.
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5.3 A Becker’s H1 Model

In this section, we consider a Becker’s H1 Model (Becker, 1968, 1978)

Y = β1x1+β2x2+β3x3+β12min(x1, x2)+β13min(x1, x3)+β23min(x2, x3)+e (5.13)

where x1, x2, x3 ≥ 0 satisfy x1 + x2 + x3 = 1, βββ = [β1, β2, β3, β12, β13, β23]
T is the

unknown parameter and e ∼ N(0, σ2) is the random error. Let xxx = (x1, x2) and

f(xxx,θθθ) = β3 + [z(xxx)]Tθθθ0, where

θθθ0 = [β1 − β3, β2 − β3, β12, β13, β23]T ,

z(xxx) = [x1, x2,min(x1, x2),min(x1, 1− x1 − x2),min(x2, 1− x1 − x2)]T ,

then the Becker’s H1 Model can be written as

Y = f(xxx,θθθ) + e. (5.14)

Note that unlike Generalized Linear Models and Cox Proportional Hazard model,

the regression function in Becker’s H1 Model is linear in the parameter θθθ and so

the parameters can be estimated from least squares estimation as usual. However,

it is different from ordinary linear functions since f(xxx,θθθ) is not differentiable in the

covariate region Rcons where

Rcons = {xxx = (x1, x2) : x1 + x2 ≤ 1, x1, x2 ≥ 0} .

We want to find the confidence set for a maximum point of f(xxx,θθθ) in Rcons.

5.3.1 Method

Neyman’s Theorem can be applied directly to construct a confidence set for kkk, a

maximum point of f(xxx,θθθ) in xxx ∈ Rcons. Following the acceptance set in Equation

(5.1), a natural (1−α) level acceptance set for testing H0 : kkk = kkko for each kkko ∈ Rcons

can be constructed as

A(kkko) =
{
YYY : f(kkko, θ̂θθ)− f(xxx, θ̂θθ) ≥ −c(kkko)σ̂ ‖ [z(kkko)− z(xxx)]TP ‖, ∀xxx ∈ Rcons

}
=

{
YYY : inf

xxx∈Rcons\kkko
[z(kkko)− z(xxx)]TPTTT

‖ [z(kkko)− z(xxx)]TP ‖
≥ −c(kkko)

}
.
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Figure 5.3: The partition of the covariate region Rcons.

To compute the critical value c(kkko), we employ the simulation-based method de-

scribed in Section 4.1.2. Let

h(kkko,xxx) =
[z(kkko)− z(xxx)]TPTTT

‖ [z(kkko)− z(xxx)]TP ‖
, (5.15)

where TTT = P−1(θ̂θθ
0
− θθθ0)/σ̂ ∼ Tp,n−p−1. Next, we compute the infimum of h(kkko,xxx)

in each realization of TTT .

Note that, the covariate region Rcons can be partitioned into the following 6 parts:

(1) x1 ≤ x2 ≤ 1− x1 − x2; (2) x2 ≤ x1 ≤ 1− x1 − x2; (3) x2 ≤ 1− x1 − x2 ≤ x1;

(4) x1 ≤ 1− x1 − x2 ≤ x2; (5) 1− x1 − x2 ≤ x1 ≤ x2; (6) 1− x1 − x2 ≤ x2 ≤ x1,

as shown in Figure 5.3 and in each of the 6 parts function z(xxx) is differentiable and

has a specific expression, so does its derivative zi(xxx) (see Table 5.3). Therefore, in

each of the parts, the infimum of h(kkko,xxx) can be attained either at its stationary

point(s) that lies in Rcons, or on the boundary.

We first investigate the stationary points of h(kkko,xxx) by letting

∂h(kkko,xxx)/∂xi = 0, i = 1, 2,

which gives

[z(kkko)− z(xxx)]TPTTTzi(xxx)P2[z(kkko)− z(xxx)]− [Pzi(xxx)]TTTT [z(kkko)− z(xxx)]TP2[z(kkko)

−z(xxx)] = 0 (5.16)
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Table 5.3: The expressions of z(xxx) and zi(xxx) in each of the 6 parts

Part z(xxx) z1(xxx) z2(xxx)

(1) [x1, x2, x1, x1, x2]
T [1, 0, 1, 1, 0]T [0, 1, 0, 0, 1]T

(2) [x1, x2, x2, x1, x2]
T [1, 0, 0, 1, 0]T [0, 1, 1, 0, 1]T

(3) [x1, x2, x2, 1− x1 − x2, x2]T [1, 0, 0,−1, 0]T [0, 1, 1,−1, 1]T

(4) [x1, x2, x1, x1, 1− x1 − x2]T [1, 0, 1, 1,−1]T [0, 1, 0, 0,−1]T

(5) [x1, x2, x1, 1− x1 − x2, 1− x1 − x2]T [1, 0, 1,−1,−1]T [0, 1, 0,−1,−1]T

(6) [x1, x2, x2, 1− x1 − x2, 1− x1 − x2]T [1, 0, 0,−1,−1]T [0, 1, 1,−1,−1]T

where zi(xxx) = ∂z(xxx)/∂xi. The left-hand side of Equation (5.16) can be further

expressed as

z(xxx)T {PTTTzi(xxx)P2 −P2[Pzi(xxx)]TTTT}z(xxx) + [Pz(kkko)]TTTTzi(xxx)TP2z(kkko)

−[Pzi(xxx)]TTTTz(kkko)TP2z(kkko) + {2[Pzi(xxx)]TTTTz(kkko)TP2 − zi(xxx)P2z(kkko)(PTTT )T

−[Pz(kkko)]TTTTzi(xxx)P2}z(xxx). (5.17)

Note that Equation (5.17) is a bivariate quadratic function of xxx = (x1, x2) in each

of the 6 parts, hence the analytical solution(s) of Equation (5.16), if exist, can be

found. However, one can still use numerical method to solve the equations.

Then we check the value of h(kkko,xxx) on the boundary of each part. Note that the

boundary is made of three segments on which h(kkko,xxx) is a univariate function.

Therefore its infimum can be found according to Section 3.1.

Finally, the infimum of h(kkko,xxx) in the covariate region Rcons is attained by the

minimum value of h(kkko,xxx) evaluated at its stationary point and that on the boundary

in all of the 6 parts.

We generate N independent TTT ∼ Tp,n−p−1 and use the [α × N ]th infimum as an

approximation to −c(kkko). Then a (1−α) level confidence set can be constructed by

using Neyman’s Theorem, that is, by inverting A(kkko) with kkko ∈ Rcons.
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5.3.2 Example

Table 5.4: The formulation components (%) and the response

x1 1 0 0 0.5 0.5 0 0.333 0.666 0.167 0.167 0.333

x2 0 1 0 0.5 0 0.5 0.333 0.167 0.666 0.167 0.333

x3 0 0 1 0 0.5 0.5 0.333 0.167 0.666 0.666 0.333

Y 18.9 15.2 35.0 16.1 18.9 31.2 19.3 18.2 17.7 30.1 19.0

This example considers the formulation of a controlled-release drug substance to

aid in obtaining more uniform blood levels (Frisbee and McGinity, 1994). The

formulation components were recorded in Table 5.4, with x1 is the percentage of

Pluronic F68, x2 is the percentage of polyoxyethlene 40 monostearate, and x3 is the

percentage of polyoxyethylene sorbitan fatty acid ester NF. The response Y is the

observed glass transition temperature (OC) (the smaller the better). The interest

lies in constructing a confidence set for the formulation factors that minimize the

response in the region constrained by x1 + x2 + x3 = 1 and x1, x2, x3 ≥ 0. Hence,

we construct a confidence set for a minimum point of function f(xxx,θθθ) in Equation

(5.14), that is, a maximum point of function f(xxx,−θθθ), in the constrained region

Rcons = {xxx = (x1, x2) : x1 + x2 ≤ 1, x1, x2 ≥ 0} .

The response surface model that gives a good fit was a Becker’s H1 model in Equation

(5.13) (Becker, 1968). Following the inference earlier, we use its equivalent expression

(5.14) instead. The parameter estimates are given by

θ̂θθ =



−36.2719

17.6436

20.8057

2.8033

18.0089

−9.7532


and Σ̂ =



0.7936 −0.8008 −0.8008 0.1624 −0.6384 −0.6384

−0.8008 1.6013 0.8006 −0.7999 0.0007 0.8014

−0.8008 0.8006 1.6013 −0.7999 0.8014 0.0007

0.1624 −0.7999 −0.7999 4.0156 −0.7844 −0.7844

−0.6384 0.0007 0.8014 −0.7844 4.0170 −0.7837

−0.6384 0.8014 0.0007 −0.7844 −0.7837 4.0170


.
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(a) Confidence set C0(YYY ) (b) Confidence set CE(YYY )

(c) Confidence set Cc(YYY ) (d) Confidence set using PCD’s critical value

Figure 5.4: The 95% confidence sets in Example 5.3.2.
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Using α = 0.05, resolution d = 0.03 and simulation N = 5, 000, the confidence

regions CE(YYY ) and C0(YYY ) are computed and depicted in Figure 5.4. It is clear that

CE(YYY ) is smaller than C0(YYY ) and Cc(YYY ) (see Figure 5.4(c)). The computation time

for C0(YYY ) is 44 seconds while for CE(YYY ) is 24 hours and for Cc(YYY ) is 1.5 hour. Figure

5.4(d) depicts the asymptotic confidence set using PCD’s critical value. However, it

is too small due to the incorrect critical value.
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5.4 Summary

In this chapter, we have extended the method of constructing a confidence set for a

maximum point of functions in linear regression models to other models. In partic-

ular, the distributional assumption

θ̂θθ ∼ N(θθθ,Σ)

holds asymptotically for many parametric and semi-parametric models. As long

as the estimates of parameters are obtained, an asymptotic confidence set for a

maximum point can be constructed by using our method.

Generalized linear models, Cox’s proportional hazard models and a Becker’s H1

model are studied and analyzed in this chapter. From the examples in each section,

we conclude that our confidence set CE(YYY ) is always smaller thus better than Rao’s

confidence set Cc(YYY ) and the conservative confidence set C0(YYY ). The computation

of CE(YYY ) takes generally the longest time among the three confidence sets. However,

the difference is subject to the linear function involved in the model, that is, if the

linear function involved is a univariate quadratic one then the time difference in

computation will not be substantial.
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Conclusion and Future Works

In this chapter, we give a summary of the work presented in this thesis and provide

some possible areas for future studies.

6.1 Summary

The construction of a confidence set for a maximum point of a function is an impor-

tant statistical issue with immediate applications in many real problems. The only

confidence set available in the statistical literature so far that guarantees a (1− α)

confidence level is Rao’s confidence set Cc(YYY ). However, Rao’s confidence set is a

conservative one and sometimes it can be very conservative. In this thesis one exact

confidence set CE(YYY ) and one conservative confidence set C0(YYY ) for a maximum

point of a function in a given covariate region are provided. These two new con-

fidence sets are constructed by using Neyman’s Theorem, that is, by inverting a

family of acceptance sets of hypothesis tests.

Chapters 3, 4 and 5 have considered three types of models separately. Starting with

a simple linear regression model, the construction method of an exact confidence

set has been elaborated with details and then the theory for the general univariate

polynomial regression models are derived. The bivariate quadratic regression models
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has been investigate in Chapter 4 and the method can be generalized to multiple

regression functions. Although in that case the computation is expected to be much

more intensive. In Chapter 5, we have extended the method to other models which

involve a linear function. An exact (1−α) level confidence set can be constructed if

the estimates of the parameters are normally distributed. An asymptotic (1−α) level

confidence set is constructed if the estimates of the parameters are asymptotically

normally distributed.

Examples of confidence sets constructed using both simulated and real data sets

are provided and discussed throughout Chapters 3 to 5. These examples serve to

illustrate the method and demonstrate the wide applicability of the confidence sets

developed in this thesis. In all the examples, the new exact confidence set CE(YYY )

is almost always (and in some cases substantially) smaller and so better than the

new conservative confidence set C0(YYY ) and Rao’s conservative confidence set Cc(YYY ).

This is expected since the new exact confidence set CE(YYY ) is purpose-built while

the new conservative confidence set C0(YYY ) uses a conservative critical constant and

Rao’s confidence set Cc(YYY ) is a by-product of the standard confidence ellipsoid for

the coefficient vector θθθ.

The new exact confidence set CE(YYY ) is in general most demanding computationally

due to the simulation in computing the critical constants. However, it is the only

confidence set for a maximum point that guarantees an exact (1 − α) confidence

level. Therefore, the construction method developed in this thesis is recommended

when an exact confidence set for a maximum point is of interest.

6.2 Future Works

As we mentioned earlier, the method developed in this thesis can be applied to the

construction of a confidence set for a maximum point of a function in some models of

a more general form, such as a multiple quadratic regression function. Indeed, they

can also be applied to many parametric and semi-parametric models that involve a
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linear regression function as well as quantile regression models (cf. Koenker, 2005)

where the q-quantile may be modeled by f(xxx,θθθ). Hence one possible area of the

future work is to investigate and construct confidence sets for a large variety of

models.

However, the computation for the confidence set of a maximum point for a multi-

variate function will be much more intensive than for the univariate and bivariate

functions. Therefore, another possible area of the future work is to construct ex-

act confidence sets for a maximum point by inverting a range of acceptance sets in

different forms, such as

A(kkk0) =
{
YYY : f(kkk0, θ̂θθ)− f(xxx, θ̂θθ) ≥ −c(kkk0)σ̂,∀xxx ∈ χ

}
. (6.1)

The inequality in the acceptance set (6.1) is simpler than the one we used in this

thesis, say, acceptance set (4.1), because the right-hand side of (6.1) is of a constant

form while (4.1) has a hyperbolic form. Hence the computation should be less

intensive in constructing an exact confidence set.
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Appendix

The construction of confidence

sets using only the summary

statistics in polynomial

regression

In this section, we demonstrate how to construct a confidence set using only the

summary statistics (as given in Example 8 of Chapter 3) in univariate polynomial

regression.

Suppose we have observations (Yi,j , xi), i = 1, 2, · · · , k; j = 1, 2, · · · , ni. The regres-

sion model is

Yi,j = f(xi, θθθ) = xxxiθθθ + ei,j

for i = 1, 2, · · · , k; j = 1, 2, · · · , ni, where ei,j ∼ N(0, σ2) and

θθθ =



θ0

θ1

...

θp


, xxxi = (1, xi, x

2
i , · · · , x

p
i ).
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Alternatively, we write the model in the matrix form

YYY = Xθθθ + eee

where

X =



X1

X2

...

Xk


,YYY =



y1,1

...

y1,n1

...

yk,1

...

yk,nk



, eee =



e1,1

...

e1,n1

...

ek,1

...

ek,nk



,

and

Xi =



xxxi

xxxi

...

xxxi


=



1 xi x2i · · · xpi

1 xi x2i · · · xpi
...

...
... · · ·

...

1 xi x2i · · · xpi


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is a ni × (p+ 1) matrix. Then, the least squares estimate of θθθ is given by

θ̂θθ =
(
XTX

)−1
XTYYY

=


(XT

1 X
T
2 · · ·XT

k )



X1

X2

...

Xk




(XT

1 X
T
2 · · ·XT

k )



y1,1

y1,2

...

yk,nk


= (

k∑
i=1

XT
i X

T
i )−1(

k∑
i=1

Xi
Tyyyi)

= (
k∑
i=1

Xi
TXi)

−1



∑k
i=1 niȳi∑k
i=1 nixiȳi

...∑k
i=1 nix

p
i ȳi



where

yyyi =



yi,1

yi,2

...

yi,ni


, ȳi =

1

ni

ni∑
j=1

yi,j and ȳ =
1

n

k∑
i=1

ni∑
j=1

yi,j =
1

n

k∑
i=1

niȳi.

Denote n =
∑k

i=1 ni and ȲYY = ȳ (1, 1, · · · , 1)T is a n× 1 vector, then the estimate of

σ2 is given by

σ̂2 =
1

n− p− 1
(YYY − ŶYY )T (YYY − ŶYY )

=
1

n− p− 1
SSE

=
1

n− p− 1
(SST − SSR)
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where ŶYY = Xθ̂θθ = X(
∑k

i=1Xi
TXi)

−1



∑k
i=1 niȳi∑k
i=1 nixiȳi

...∑k
i=1 nix

p
i ȳi


, the total sum of squares is

given by

SST = (YYY − ȲYY )T (YYY − ȲYY )

=
k∑
i=1

ni∑
j=1

(yi,j − ȳ)2

=
k∑
i=1

ni∑
j=1

(yi,j − ȳi + ȳi − ȳ)2

=

k∑
i=1

ni∑
j=1

(yi,j − ȳi)2 +

k∑
i=1

ni∑
j=1

(ȳi − ȳ)2

=

k∑
i=1

(ni − 1)s2i +

k∑
i=1

ni(ȳi − ȳ)2

=
k∑
i=1

(ni − 1)s2i +
k∑
i=1

niȳ
2
i − nȳ2,

and the residual sum of squares is given by

SSR = (ȲYY − ŶYY )T (ȲYY − ŶYY )

= ȲYY
T
ȲYY − 2ŶYY

T
ȲYY + ŶYY

T
ŶYY

= −nȳ2 + ŶYY
T
ŶYY .

Thus, we have

σ̂2 =
1

n− p− 1

(
k∑
i=1

(ni − 1)s2i +
k∑
i=1

niȳ
2
i − ŶYY

T
ŶYY

)
.

Therefore, we obtain the estimates θ̂θθ and σ̂2 based only on the summary statistics

of a data set (observations of the independent variable, sample size, sample mean

and sample standard deviation). Then, a (1−α) level confidence set for a maximum

point of the regression function can be constructed as

C(YYY ) = {k0 ∈ [a, b] : YYY ∈ A(k0)}
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where

A(k0) = {YYY : f(k0, θ̂θθ)− f(x, θ̂θθ) ≥ −c(k0)σ̂vp(k0, x, θ̂θθ),∀x ∈ [a, b] \ k0}

is the corresponding (1− α) level acceptance set.
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