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Abstract

This thesis applies game theory to study optimal toehold bidding strategies
during takeover competition, the problem of optimal design of voting rules
and the design of package bidding mechanism to implement the core allo-
cations. It documents three different research questions that are all related

to auction theory.

Chapter 2 develops a two-stage takeover game to explain toehold puzzle
in the context of takeover. Potential bidders are allowed to acquire tar-
get shares in the open market, subject to some limitations. This pre-bid
ownership is known as a toehold. Purchasing a toehold prior to making
any takeover offer looks like a profitable strategy given substantial takeover
premiums. However actual toehold bidding has decreased since 1980s and
now is not common. Its time-series patter is centered on either zero or a

large value.

Chapter 2 develops a two-stage takeover game. In the first stage of this two-
stage game, each bidder simultaneously acquires a toehold. In the second
stage, bidders observe acquired toehold sizes, and process this information
to update their beliefs about rival’s private valuation. Then each bidder

competes to win the target under a sealed-bid second-price auction.

Different from previous toehold puzzle literature focusing on toehold bid-
ding costs in the form of target managerial entrenchment, this chapter devel-
ops a two-stage takeover game and points another possible toehold bidding

cost — the opportunity loss of a profitable resale.

Chapter 2 finds that, under some conditions, there exists a partial pool-

ing Bayesian equilibrium, in which low-value bidders optimally avoid any



toehold, while high-value bidders pool their decisions at one size. The equi-
librium toehold acquisition strategies coincide with the bimodal distribution

of the actual toehold purchasing behavior.

Chapter 3 studies the problem of optimal design of voting rules when each
agent faces binary choice. The designer is allowed to use any type of non-
transferable penalty on individuals in order to elicit agents’ private valua-
tions. And each agent’s private valuation is assumed to be independently

distributed.

Early work showed that the simple majority rule has good normative prop-
erties in the situation of binary choice. However, their results relay on the
assumption that agents’ preferences have equal intensities. Chapter 3 shows
that, under reasonable assumptions, the simple majority is the best voting
mechanism in terms of utilitarian efficiency, even if voters’ preferences are

comparable and may have varying intensities.

At equilibrium, the mechanism optimally assigns zero penalty to every
voter. In other words, the designer does not extract private information
from any agent in the society, because the expected penalty cost of eliciting

private information to select the better alternative is too high.

Chapter 4 presents a package bidding mechanism whose subgame perfect
equilibrium outcomes coincide with the core of an underlying strictly convex
transferable utility game. It adopts the concept of core as a competitive
standard, which enables the mechanism to avoid the well-known weaknesses
of VCG mechanism.

In this mechanism, only core allocations generate subgame perfect equilib-
rium payoffs, because non-core allocations provide arbitrage opportunities
for some players. By the strict convexity assumption, the implementation

of the core is achieved in terms of expectation.
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Chapter 1

Introduction

The thesis titled “Applied Game Theory and Optimal Mechanism Design” shows the
outcome of PhD research training process. It focuses on game theory, in terms of auction
theory, mechanism design and cooperative game theory. It includes three separate
papers, documented in Chapter 2, 3, and 4.

Chapter 2 develops a two-stage takeover game to explain toehold puzzle in the
context of takeover. Prior to making any takeover offer, potential bidders are allowed
to purchase target shares in the open market, subject to some limitations. This pre-
bid ownership is known as a toehold. It seems that toehold bidding is a profitable
strategy given substantial takeover premiums. A bidder with a toehold may benefit
by being a winner that only purchases remaining shares at the substantial takeover
premium, or being a loser that sells out his shareholdings at a higher price. However,
empirical literature has puzzling observation. They summarize that the actual toehold
acquisition behavior follows a bimodal distribution — centered either on zero or a large
size.

The two-stage takeover game has the following structure. In the first stage, each
bidder simultaneously acquires a toehold. The pre-bid share price is normalized to zero.
At the beginning of the second stage, bidders observe acquired toehold sizes, and they
process this information to update their beliefs about rival’s valuation. The second
stage is structured as a sealed-bid second-price auction. Two bidders compete to win
the target.

Three Bayesian equilibria — perfect separating Bayesian equilibrium, unrestricted

partial pooling Bayesian equilibrium and restricted partial pooling Bayesian equilibrium



1. INTRODUCTION

— are proposed and analyzed. At perfect separating Bayesian equilibrium, bidder’s
toehold acquisition strategy is strictly increasing or/and decreasing. At unrestricted
partial pooling Bayesian equilibrium, low-value bidders pool their toehold decisions
at 0r, while high-value bidders pool at 6. The restricted partial pooling Bayesian
equilibrium means that the lower toehold size 6;, is restricted to be zero. That is,
low-value bidders acquire zero toehold, while high-value bidders acquire 6.

Among these equilibria, chapter 2 finds that, under some conditions, only the re-
stricted partial pooling Bayesian equilibrium exists. Signal jamming occurs in equilib-
rium. When bidders play strict toehold acquisition strategies (no signal jamming) in
the first stage of the game, they perfectly reveal their private information, and the sec-
ond stage is the one under complete information, resulting in their rival’s aggressively
bidding behavior that wipes out winner’s payoff. Then bidders attempt to keep their
rival in doubt about their private information by playing non-strict toehold acquisition
strategies at equilibrium.

Chapter 2 indicates that bidders, under this two-stage takeover game, may face a
toehold bidding cost —the opportunity loss of a profitable resale. For instance, suppose
bidder 1 is a low-value player. At equilibrium, bidder 1 chooses zero toehold, and
truthfully bids in the second stage. Let bidder 1 deviate by acquiring 6. When she
faces low-value rival, her deviation has no effect on rival’s bidding strategy. That is,
along the equilibrium path, her rival still processes truthfully bidding strategy. If she
wins the target, she pays the rest of shares at rival’s valuation. If she loses the target,
she resells her toehold at a relatively lower price (bidder 1’s valuation) and pays the
resale cost d. Under some conditions, the low-value bidder’s expected toehold cost is
higher than its benefit. In addition, a high-value bidder’s expected toehold benefit
overweighs its cost. As a result, high-values optimally prefer toehold bidding.

Chapter 3 studies the problem of optimal design of voting rules when each voter faces
binary choice. This chapter introduces a voting mechanism. The designer is allowed to
use any type of non-transferable penalty on individuals in order to elicit agents’ private
valuations. Each agent’s private valuation is assumed to be independently distributed.

Early studies indicate that the simple majority rule has good normative properties.
However their results rely on the assumption that agents’ preference has equal inten-

sities. This chapter shows that, under reasonable assumptions, the simple majority is



the best voting mechanism in terms of utilitarian efficiency, even if voters’ preferences
are comparable and may have varying intensities.

The mechanism, at equilibrium, works as follows. After all agents truthfully report
their valuations to the mechanism, it produces a social decision and recommends a
penalty scheme, in such a way that each agent has incentive to follow. At equilibrium,
the mechanism optimally assigns zero penalty to every agent. The mechanism does not
need actually to know all agents’ valuations, but simply selects the alternative, which
is preferred by the majority in the society. It may select a sub-efficient alternative, but
can achieve a higher welfare. The reason is simply because the expected penalty cost
is too high.

Chapter 4 introduces a package bidding mechanism. In many auction environments,
bidders are more interested in the packages of items they win. Under the package
auction, any bidder is allowed to bid directly for any non-trivial subset of items being
sold. It is partially important when items are complements.

This chapter adopts the concept of core as a competitive standard, which enables
the package bidding mechanism to avoid the well-known weakness (such as collusion,
shill bidding) of VCG mechanism.

The mechanism has three stages. In stage 1, a player i is randomly selected as
the first mover, and he or she proposes a payoff vector to the grand coalition. The
proposed payoff vector is interpreted as the amounts must be paid by the first mover to
remaining players for which they agree to cooperate with coalitional decision or action.
In stage 2, the rest of players move sequentially to accept or reject the proposed payoff
vector. In the final stage, trading with rejectors occurs.

The main result is that the subgame perfect equilibrium outcomes coincide with the
core of an underlying strictly convex transferable utility game. Under any subgame that
starts after player ¢ has proposed a payoff m, the 7 is the subgame perfect equilibrium
outcome if and only if it is a core allocation (Lemma 4.4.1 and Lemma 4.4.2). By
the strict convexity assumption, the implementation of the core is achieved in terms of
expectation. In addition, the first mover with monopoly power receives the best payoff

in the core.
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Chapter 2

Toehold Puzzle and Two-stage

Takeover (Game

Purchasing a toehold prior to making any takeover offer looks like a profitable strategy
given substantial takeover premiums. However, toehold bidding has decreased since
1980s and now is not common. Its time-series pattern is summarized as bimodal dis-
tribution, on average is centered on either zero or a large size. Chapter 2 develops a
two-stage takeover game, in which acquired toehold size is regarded as a signal partially
revealing each player’s private information. Different from previous toehold puzzle lit-
erature focusing on toehold bidding costs in form of target managerial entrenchment,
this Chapter points another possible toehold bidding cost — the opportunity loss of
a profitable resale. Under some conditions, there exists a restricted partial pooling
Bayesian equilibrium, in which low-values prefer zero toehold while high-values pool

their decisions at one size.

2.1 Introduction

2.1.1 Toehold Puzzle

Before launching any bid, the bidding firm is allowed to purchase target shares in the
open market, subject to some limitations. This pre-bid ownership is known as a toe-
hold. It seems that buying a toehold is a profitable strategy given costly takeover
premiums. Within a takeover battle, the bidding firm with a toehold may benefit by

being a winner that only purchases remaining shares at the full takeover premium, or
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by being a loser that sells out his shareholdings at a higher price. There are substantial
theoretical studies support this view. Burkart| (1995) and Singh (1998)) demonstrates
that a bidder with a toehold bids aggressively at equilibrium. Walkling] (1985)), Betton
& Eckbol (1995)), Bulow et al.| (1999) show that a toehold increases a bidder’s prob-
ability of winning in a takeover battle. Under Bulow et al.| (1999)’s common-value
mode]lﬂ7 toehold bidders’ aggressively bidding behavior increases winner’s curse for a
non-toehold bidder causing him to bid conservatively. As a result, toehold bidders bid
more aggressively. They find that a toehold may reduce the price paid by the winner.
Moreover, they show that, given the initial bidder holding a toehold, a new entrant
attempts to purchase the similar amount. This result is consistent with the empirical
evidence from Betton & Eckbo, (2000).

Despite theoretical studies indicating the benefits of toehold bidding, empirical
literature documents puzzling observations. Bradley et al. (1988) find that over half
the bidders in their sample did not acquire any pre-bid ownership. More specifically,
236 successful tender offers were reported, but 155 of them did not hold any toehold
over the period 1963 to 1986. Betton et al.|(2009) document more than 10,000 initial
acquirers bidding for publicly traded U.S. targets during 1973 to 2002. They find
that the toehold bidding declined sharply since 1980s, and now is rare. Only 3%
of initial bidders purchased short-term toeholds ﬂ Once toehold bidding exists, the
acquired amount were very large — around 20%. So they summarize the actual toehold
acquisition behavior follows a bimodal distribution. That is, on average, bidders either

process non toehold bidding or purchase a large amount of toehold.

2.1.2 Costs of Toehold Bidding

Given bidders are rational, there must exist some costs of toehold bidding that prevent
many bidders from choosing it as their optimal strategy in the context of takeover
battle. One possible cost is due to the mandatory information disclosure laws. Since
1968s Williams Act, toehold purchases of 5% or more than is required to file 13d with

the Securities and Disclosure rules. It makes toeholds too costly since bidders have to

n (almost) common value settings, [Klemperer| (1998) points the existence of the great effect of a

small asymmetry (e.g. toehold ) on the outcomes of standard auctions.
2The short-term toehold acquisition is occurred during the six months until the announcement of

initial offer. This six-month period is defined as the actual bidding strategy being formulated.
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reveal their intentions early in the takeover battle. However, Bulow et al. (1999) find
that toehold bidding was common in the early 1980s. The passage of disclosure laws in
the 1970s, therefore, cannot explain this time-series pattern of the entire sample period.

Another possible cost is the stock market illiquidity. Market illiquidity makes toe-
hold bidding too costly, because toeholds cannot be exchanged or sold easily. Bulow
et al.| (1999) and Dasgupta & Tsui (2004]), however, show that the declining in toehold
bidding occurs when there is a steady increasing in stock market liquidity.

The last possible cost of toehold bidding is due to target managerial entrenchment.
Goldman & Qian| (2005) find out there exists a toehold bidding cost when entrenched
target management successfully rejects the takeover offer. In their model, the degree
of target entrenchment is an exogenous variable. Given successful resistance, there is a
negative correlation between target share price and the rejected bidder’s toehold size.
Bidders trade off expected toehold benefits (higher success probability) with expected
toehold cost (decreased share price). Thus, at equilibrium, some bidders optimally
play non toehold bidding strategy. However, the empirical evidence from |Betton et al.
(2009) reject such negative correlation, and they regard target entrenchment degree as
an endogenous variable.

In Betton et al.| (2009)’s two-stage takeover game, an initial bidder approaches the
target to negotiate a merger in which the initial bidder achieves a termination fee if
the target withdraws from the negotiated agreement. In the second stage, the initial
bidder competes with a public bidder without a toehold under a sealed-bid second-price
auction.

In their model, toehold costs arise endogenously in the form of costs of resistance
from entrenched management. Toehold bidding directly reduces management team’s
expected private payoff at equilibrium, causing the target to reject merger negotiations.
And it in turn dictates initial bidder’s equilibrium toehold acquisition strategy. Since
fiduciary requirement, the target must consider any public bid in the interim period
after concluding merger negotiations but before final shareholders’ approval. The fact of
this “fiduciary out” waiting period (the second stage in their model) contributes to the

inclusion of provisions for target termination fees in takeover agreememﬂ They focus

!Because of fiduciary out clause, the winner has to compete with any public bidder before share-
holders’ approval. Since mid-1980s, the agreement includes a termination item, in which the winner
will receive a breakup fee if target withdraws due to its fiduciary out clause, see [Burch| (2001), |Officer
(2003)), Boone & Mulherin| (March 2007)).
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on a particular rejection cost — the opportunity loss of termination fee. At equilibrium,
some bidders optimally choose zero toehold to avoid this rejection cost, while some
bidders purchase a toehold greater than a threshold, at where the expected toehold

bidding benefit offsets expected rejection cost.

2.1.3 The General Takeover Process

Recall that in Betton et al.|(2009), pre-public stage is modeled as a merger negotiation
between the target and a single bidder (the initial bidder). The question is how this
pre-public takeover process is actually carried out. Empirical evidence from Boone
& Mulherin| (March 2007) point the existence of pre-public, private takeover process.
They find that it is a highly competitive market where half of the targets are auctioned
among multiple bidders, while the remainder negotiates with a single bidder.

Actual corporative takeover is a very complex process, but follows some general
characteristics described by Boone & Mulherin (2007), [Boone & Mulherin (March
2007)), |Gorbenko & Malenko| (2012)) and Hansen| (2001). It has two stages: private
and public takeover stage. The private stage starts when the firm (i.e.the Board) de-
cides to sell itself and contacts a group of potential biddersﬂ Those potential bidders
are asked to sign confidentiality /standstill agreements to assess target’s nonpublic in-
formation, and agree to stop trading any target shares. After learning that information,
some of the potential bidders submit several rounds of bids, and the process is similar
to an English auction. Then the winning bidder and the Board affirm and sign the
takeover agreement, followed by a public announcement. It should be mentioned here,
Betton et al.| (2009) document the winner from private stage of takeover process as an
initial bidder. At the public takeover stage, any public bid should be considered and
the approval of previously announced takeover agreement also requires shareholders’

vote. El

2.1.4 A Brief Introduction to the Two-stage Takeover Game

This chapter develops a two-stage takeover game. It is different from the one in [Betton

et al| (2009) in terms of the following points. First, this two-stage takeover game

'Firm Board analyzes a range of strategic alternatives, usually proposed by an investment bank,

to enhance shareholders’ value or provide greater liquidity for them.
2The final bid is formed when 126 trading days have passed without any other new bid.
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models the pre-public takeover stage as a sealed-bid second-price auction, instead of
the merger negotiation in Betton et al.| (2009). Second, there is no target managerial
entrenchment. As the general takeover process described in section 2.1.3, private stage
is initiated by the target board. As a result, there is no target managerial entrenchment
among invited bidders in private takeover stage. Finally, the open auction in Betton
et al.| (2009) disappears in this game. It is assumed that the target is the unique seller
in the game, and aims to sell itself to the bidder with highest valuation. There is no
principle-agent problem. Therefore, there is no any “fiduciary out” waiting period.

In the first stage of this two-stage game, each bidder simultaneously acquires a
toehold. Same as in |Betton et al.| (2009), the pre-bid share price is normalized to zero.
One may expect the target pre-bid share price appears in this model and expect this
price impact to be monotonic in the stakes acquired, which would provide a natural
deterrence to acquire a large toehold. However, there is the possibility that the number
of shares acquired by a bidder may depend on his or her private valuation. In order
to remove such pricing loop, this two-stage game assumes the pre-bid share price to be
zero. Thereby, it aims to study what is the cost of toehold bidding except the costs of
toehold purchasing and target managerial entrenchment.

In the second stage, bidders observe acquired toehold sizes, process this information
to update their beliefs about rival’s valuation. Then each bidder competes to win the
target under a sealed-bid second-price auction. If a bidder holding a toehold wins the
target, he has to pay the remaining shares at the second-highest bid price. While, if
the bidder loses the game, he sells out his toehold at that price. Meanwhile, the resale
generates a fixed cost d.

Chapter 2 finds, under some conditions, there exists a restricted partial pooling
Bayesian equilibrium, in which low-value bidders optimally avoid any toehold while
high-value bidders pool their decisions at one size. Signal jamming E| occurs in the
equilibrium. If bidders play perfect separating strategies in the first stage, they com-
pletely reveal their private information, and the second stage of the game becomes the
one under complete information, resulting in fierce competition that reduces bidders’
payoffs. Therefore, at equilibrium, bidders have incentives to conceal their valuations

by playing partial pooling strategies.

!See [Ding et al.| (2010)
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This chapter finds that bidders may face a toehold bidding cost —the opportunity
loss of a profitable resale. Theorem 2.3.3 indicates if a low-value deviates by playing
toehold bidding strategy, he triggers high value rival’s aggressively bidding behavior
in the second stage. With uncertainty about high-value rival’s private valuation, if
he overbids, he may win the target, but has to pay the remaining shares at the price
much higher than his valuation, leading to a negative payoff. In this case, his best
response is to lower his bid to loss the target with certainty. As a result, he has to
sell his toehold at a relatively lower price and pays the resale cost d. Thus the low-
value bidder’s expected toehold bidding cost is higher than its benefit. At equilibrium,

low-value bidders optimally choose zero toehold.

2.1.5 Other Related Literature

Grossman & Hart| (1980) point out each shareholder may attempt to free ride on the
raider’s improvement of the corporation. And, they suggest the takeover bid mechanism
to deal with such free-rider problem. Although an important paper, it deals with a
different problem. Chapter 2 aims to explain the takeover puzzle by building up a two-
stage model. And, it is interested in the private takeover stage introduced by [Boone
& Mulherin| (2007). That is, the target is auctioned among invited bidders. And the
process is not publicly announced until the takeover is agreed between two parties.
While |Grossman & Hart| (1980)focus on public takeover stage — tender offer and study
the free-rider problem during public takeover process. In this two-stage takeover game,
a bidder may be able to sell out his or her toehold at a higher price. It seems like the
bidder “free-ride” on the improvement of the competition in the second stage of the
game. However, it is costly to resell a toehold. The model assumes that there exists a
fixed resale cost d for each losing bidder.

Another related strand of literature refers to resale auction. [Hafalir & Krishna
(2008) study the effects of post-auction resale in a model with two private-value bidders.
In their basic model, the first stage is modeled as a first-price auction followed by a
resale via monopoly pricing. At equilibrium, the allocations in the first-price auction
are inefficient, thereby bidders have incentives to join in post-auction resale. They
find that a first-price auction with resale has a unique monotonic equilibrium, and the
expected revenue of a first-price with resale exceeds that of a second-price auction.

Garratt & Troger| (2006) build up two-period interaction. In period 1, the good is

10
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offered through a first-price or second-price auction. In period 2, the winner makes a
take-it-or-leave-it offer. They assume there is a speculator with zero valuation, which
is commonly known. And the speculator does not make any profits in the first-price
auctions. In|Gupta & Lebrun (1999)’s two step model, one item is sold at a first price
auction, which is followed by a resale stage. They assume there is a second stage where
resale occurs in case of inefficient, and at the end of the auction, bidders’ valuations are
announced. Haile (2003) considers a two-stage, symmetric model in which an auction
in the first stage is followed by a resale mechanism. Since bidders have only noisy
information regarding their true valuations, the winner of the auction may receive the
highest signal. But he or she may not have the highest true valuation. This provides
the resale opportunities. |Zhoucheng Zheng (2002)) identifies a sufficient and necessary
condition under which the optimal allocation characterized by Myerson(1981) can be
achieved when resale is allowed.

Above resale auction literature studies the effects of post-auction resale when the
allocations from an auction are inefficient. In general, they consider a two-stage model
in which an auction in the first stage is followed by a resale. The resale is proceeded
either via monopoly pricing or a mechanism. This strand of literature is different from
chapter 2’s two-stage game in terms of motivation and model setting up. Chapter 2
does not aim to study the inefficiency after an auction. In particular, in this two-stage
takeover game, the appearance of the second-stage is not due to the inefficient outcome
from the first stage. In chapter 2, the two-stage game (an open market followed by a
second-price auction) is based on |Boone & Mulherin (2007)’s private takeover process.

The rest of Chapter 2 is organized as follows. The next section introduces a two-
stage takeover game and related assumptions. Section 2.3 characterizes the equilibrium,
and finds that the signal jamming occurs at equilibrium. Section 2.4 concludes Chapter

2. Most of the proofs are relegated to Appendix A.

2.2 Two-Stage Takeover Game

There is a single object for sale — the target firm. There are two buyers, named 1 and
2, bidding for the target. Let two bidders be risk-neutral and symmetric, and they seek

to maximize their expected payoffs. Two bidders are assumed to have different purpose
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2. TOEHOLD PUZZLE AND TWO-STAGE TAKEOVER GAME

and managing capability on the target. As a result, their valuations on the target are
independent (private-value environment).

Bidder ¢ (i = 1,2) assigns a value v; on the target, it is the maximum amount a
bidder willing to pay for the target. While another bidder j (j = 2, 1) perceives v; to be
uniformly, independently and identically distributed on some interval [0, 1] according to
the increasing distribution function F'. It is assumed that F' admits a continuous and
differentiable density function f and has full support. The distribution F' is common
knowledge to all bidders.

It is assumed that two bidders have no budget and liquidity constraints. Each of
them is willing and able to pay up to his or her valuation.

The two-stage takeover game has the underlying structure. In the first stage (toe-
hold acquisition stage), each bidder simultaneously acquires a toehold, and the pre-bid
share price is normalized to zero. Acquired toehold size is measured by 6;. Following
Betton et al.[(2009), I assume that 6; is within [0, %} for i = 1,2. That is, % is assumed
to be the upper limit of the fraction of the target that can be acquired at zero price in
the open market. If a bidder owns more than 50.1% outstanding shares, he or she can
enact changes (e.g. takeover decisions) at target firm. To make target firm independent
with bidders, it is assumed that no bidder is able to acquire over 50% ownership.

Let bidder i’s toehold acquisition strategy is defined as a function 7(v;),a mapping

from ¢’s private valuation to her acquired toehold size, that is
1 .
7:[0,1] — [0, 5] where i = 1,2 (2.1)

At the beginning of the second stage, a pair of acquired toehold sizes becomes pub-
licly observable. This assumption is consistent with takeover regulations that require
bidders no disclose their shares. According to the Bayes’ rule, two bidders update their
beliefs about each other’s private valuation on the target, conditional on the observed
(01,62).

The second stage (takeover bidding stage) is structured as a sealed-bid second-price
auction. A bidder with highest bid wins, and pays the second-highest bid. Let € denote
a slight amount of bid. It is assumed that there is no feasible bid price between b; and
(bi + ¢€), for i = 1,2. Bidder i’s bidding strategy is represented by a function f; (Ui, Hi),
for ¢ = 1,2, so that

8+ [0,1] x [0, %] R, (2.2)
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2.3 Optimal toehold acquisition strategies

In the second stage of the game, each bidder submits a sealed bid of b;. If bidders
tie, the winner is selected by flipping a fair coin. If b; > b;, bidder ¢ wins the target,
and purchases the rest of shares (1 — 6;) at the second-highest bid price b;. While,
when b; < bj occurs, 7 loses the target and sells out his shareholdings 6; at his bid b;.
At the same time, it is assumed that the resale of ownership generates a fixed cost d
for a losing bidder. The activities in private takeover process involve opportunity costs
in terms of time and money. In this two-stage takeover game, d can be understood as
the opportunity cost of resale a toehold, or being a “speculator”.

Given bidders’ bids, bidder i’s payoff is:

HZ' _ {’Ui — (1 — 91)[)] if bz‘ > bj

here ¢,7 =1,2, and ¢ # j 2.3
0ib; — d ifh<b; g #5023

The next section analyzes bidders’ toehold acquisition behavior under this two-
stage takeover game. Three Bayesian equilibria — perfect separating Bayesian equilib-
rium, unrestricted partial pooling Bayesian equilibrium and restricted partial pooling
Bayesian equilibrium — are proposed and analyzed. Backward induction is adopted in
Section 2.3. Each subsection starts with a proposed equilibrium toehold acquisition
strategy. Propositions show bidders’ optimal bidding strategies given their updated
Bayesian believe at equilibrium. Section 2.3 finds that equilibrium toehold acquisition
behavior is consistent with the bimodal distribution. Moreover, there exists a restricted
partial pooling Bayesian equilibrium, in which toehold size is centered either on zero

or a large value.

2.3 Optimal toehold acquisition strategies

This section proposes three Bayesian equilibria: perfect separating Bayesian equilib-
rium, unrestricted partial pooling Bayesian equilibrium and restricted partial pooling
Bayesian equilibrium. At perfect separating Bayesian equilibrium, there exists a strictly
increasing or/and decreasing toehold acquisition strategy. Each bidder perfectly iden-
tifies his or her private valuation in the first stage. At unrestricted partial pooling
Bayesian equilibrium, some types of the bidder acquire a relatively lower and non-zero
toehold size 0, , while some others acquire a higher toehold size 8z. The restricted
partial pooling Bayesian equilibrium means the lower toehold size 0, is restricted to be

zero. That is, low-value bidders pool at zero, while high-value ones pool at 0.
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2. TOEHOLD PUZZLE AND TWO-STAGE TAKEOVER GAME

2.3.1 Perfect Separating Bayesian Equilibrium

This section shows there can be no perfect separating Bayesian equilibrium. Suppose
there exists a strictly increasing or/and decreasing, continuous toehold acquisition strat-
egy T in equilibrium.

At the beginning of the second stage, each bidder observes the signal (61, 62), which
can perfectly identify bidders’ private valuations on the target through

771(0;) =v; wherei=1,2 (2.4)

After Bayesian updating, the second-stage becomes a complete information game. That
is, when bidder 2 sees the acquired toehold size of bidder 1, he will assign probability
1 to bidder 1’s true valuation .

Suppose bidder 1 is a high-value player. Under complete information environment
and given the allocation rule of second-price auction, bidder 1 is selected as a winner.
She optimally bids her true valuation v; plus the fixed resale cost d at equilibrium.
Bidder 2, as a loser, prefers to push up his bid price to the highest. At the same time,
this bid price guarantees his losing position. So that bidder 2’s best response is to bid
just slightly less than (v; 4+ d). Two bidders’ equilibrium bidding strategies are shown

in Proposition 2.3.1.

Proposition 2.3.1. Given the strictly increasing or/and decreasing toehold acquisition
strategy and suppose bidder 1 has a higher private valuation, vi > va, bidder 1 wins the
target at the second-stage of the takeover game. Two bidders’ optimal bidding strategies

are:

Bi(v1, 1) =v1 +d

(2.5)
Ba(va, O2) =v1 +d—e

Proof: See Appendix A.1

Since bidder 2’s beliefs are Bayesian by construction, and his bidding strategy at
the second-stage is a best response given those beliefs, that is equilibrium if and only if
bidder 1 has no incentive to deviate from this one-to-one toehold acquisition strategy
at the first stage. Bidder 1 prefers to truthfully reveal her private value as long as the
payoff it yields is at least as high as the one she gets if she deviates.

Let bidder 1 deviate and report r;, where r; < vy, given bidder 2 along the equilib-

rium path. Bidder 2 believes, upon observing 7(r; ), the true value of bidder 1 is r; with
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2.3 Optimal toehold acquisition strategies

probability 1, then he follows the bidding strategy assigned in Proposition 2.3.1. Let
ETl, and ETI; be bidder 1’s out-of-equilibrium expected payoffs by reporting a lower

value r; and a higher value 71, respectively.

Lemma 2.3.1. Given bidder 2 along the equilibrium path, if bidder 1 reports his value
as ry (r; < vi), her off-equilibrium expected payoff is the following:

ETl, = /OT1 [vl —(1- T(ﬁ))(ﬁ-}- d— e)]dvg + /U1 [vl — (1 - T(ﬁ))(vz + d):|d’U2

T1

+/1 [7‘(7;1)(1)2 +d—e)— d} dvy
1 (2.6)

Similarly, when bidder 1 reports 71, where T1 > v1, her off-equilibrium expected payoff

18:

Ell; = " 7(F1)(F1 + d — 2¢) — d|dvy + 1 7(71)(v2 +d — €) — d|dvy (2.7)
0 a

T1

Proof: See Appendix A.2

Theorem 2.3.1 shows that deviation yields a higher payoff for bidder 1, given an-
other bidder along the equilibrium. The intuition is straightforward. Suppose toehold
acquisition strategy is strictly increasing and v; < wvg, bidder 1 has incentive to report
71 (T1 > v2), instead of her true value v;. Given bidder 2’s belief along the equilibrium,
he regards 7 as 1’s true value. So that his best response is to bid (71 + d — €) at the
second-stage. Therefore, as a losing bidder, bidder 1 achieves a higher selling price for
her shareholdings than the one yielded at equilibrium. This argument can be extended
to show that there always exist some values of bidders optimally prefer to deviate from

the strictly increasing or/and decreasing toehold acquisition strategy.

Theorem 2.3.1. Under the two-stage takeover game and if all assumptions are satis-

fied, there is no perfect separating Bayesian equilibrium.

Proof: See Appendix A.3

If a perfect separating Bayesian equilibrium exists, each bidder with different value
chooses a different toehold size. Theorem 2.3.1 indicates toehold acquisition behavior is
not continuously distributed and the signal pair (61, 603) cannot completely reveal each

bidder’s private valuation.
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2. TOEHOLD PUZZLE AND TWO-STAGE TAKEOVER GAME

2.3.2 Unrestricted Partial Pooling Bayesian Nash Equilibrium

This section starts to analyze the existence of an unrestricted partial pooling Bayesian
Equilibrium. Suppose there are only two non-zero toehold sizes available for two bidders
to choose at the first stage. Let 0, be the relatively lower toehold size, and let 8y be
the relatively higher one. That is

0< 0 <0y < (2.8)

DN |

Let v within the range (0,1) be a valuation threshold. It classifies players into two
groups: low value bidders with valuations less than v and high value bidders with
valuations more than o.

At equilibrium, high-values prefer fp, while low-values choose ;. If a bidder’s
valuation is 0, he acquires either 6y or 6. He is indifferent by choosing these two
toehold sizes in terms of expected payoff. For any ¢, Bidder i’s toehold acquisition

strategy is expressed as:

T(vi) =0y if v; € [O,ﬁ)
T(’UZ‘) :9L or HH if (o =0 (2.9)
T(’l}i) = 9[{ if V; € (’0, 1]

At the beginning of the second stage, two bidders may observe three possible pairs
of toehold size. In one situation, both of them acquire a smaller size 1. Another
opposite possibility is they all acquire a larger toehold size 8. The last situation is
one of them chooses 0y and another bidder selects 6y, insteadﬂ As a result of the
toehold acquisition strategy in (2.9), signal (01, 62) only partially (imperfectly) reveals
each bidder’s private value— identifies the group of each bidder.

In the second stage, given the observed signal, each bidder optimally chooses bid-
ding strategy by maximizing his or her expected payoff. Proposition 2.3.2 shows two
bidders’ optimal bidding strategies associated with three possible pairs of toehold size.
A guessed linear bidding strategy is imposed, by inversing and substituting, to form a
transformed expected payoff function. Bidding strategies (2.10) and (2.11) are achieved
by maximizing the transformed expected payoff function with respect to bidder’s bid

price. In addition, under (6r,0f) situation, bidder 1 (2) is identified as a low value

Tt is assumed two bidders are symmetric leading to two symmetric signals (0,61 )and (A1, 0m).

This section discuses one of them to avoid reduplicative analysis.
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2.3 Optimal toehold acquisition strategies

(high value) player. So that bidder 2 wins the target and purchases the rest of shares
at 1’s bid price. Bidder 1 has incentive to increases her selling price as close as 2’s bid.
By knowing that, bidder 2’s best response is to pick up the lowest bid (¢ + d), which

can still guarantee his winning position.

Proposition 2.3.2. At the second-stage of this takeover game, given bidder’s toehold
acquisition strategy in (2.9) and a pair of observed toehold size (0r,0r), bidder i’s
optimal bidding strategy is

V; 9[,@ .
) = = 1,2 2.1
B(vi, 0r) 150, + 146, +d where i (2.10)

And if they observe (0, 0m), bidder i’s optimal bidding strategy is:

U; 4 ‘9H
1+60yg 1+0g

B(vi, Op) = +d where i = 1,2 (2.11)

If they observe (0r,05), bidder 2 wins the target and two bidders’ optimal bidding

strategies are the following:

B1(v1,0) =v+d—e¢
Pao(va, 0p) =0+ d

(2.12)

Proof: See Appendix A.4

Given bidder 2’s Bayesian constructed beliefs and his optimal bidding strategies
based on those beliefs, that is an equilibrium if and only if neither low-value nor high-
value of bidder 1 has incentive to deviate from the toehold acquisition strategy described
in (2.9). At equilibrium, the valuation threshold ¢ classifies bidders into two groups. At
the same time, two groups of bidders optimally prefer to stick on the toehold acquisition
choices assigned by (2.9). However, Theorem 2.3.2 shows that a bidder with zero

valuation always has incentive to deviate by acquiring a higher toehold size 0.

Theorem 2.3.2. Under the two-stage takeover game and if all assumptions are sat-
isfied, there is no such unrestricted partial pooling Bayesian equilibrium, in which low

value bidders always select 81, while high value bidders always choose 0.

Proof: See Appendix A.5
The intuition behind Theorem 2.3.2 is the following. Suppose two bidders are low-
value players. Given bidder 2 along the equilibrium path, bidder 1 has incentive to

pretend to be high-value bidder by purchasing fy. By observing 6, = 0y, along the
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2. TOEHOLD PUZZLE AND TWO-STAGE TAKEOVER GAME

equilibrium, bidder 2 will overbid — (0 + d — €). Then bidder 1 profitably prefers to lose
the game by selling her toehold at such high price — (0 + d — €), even there exists the

resale cost d.

2.3.3 Restricted Partial Pooling Bayesian Equilibrium

This section proposes another partial pooling Bayesian equilibrium. Throughout this
chapter, to distinguish the previous one, it is named as restricted partial pooling
Bayesian equilibrium. Unlike the unrestricted partial pooling Bayesian equilibrium
discussed in section 2.3.2, this equilibrium restricts 67, to be zero. At restricted partial
pooling Bayesian equilibrium, each bidder is able to choose either zero toehold or 0.
And, a bidder with valuation o, he or she is indifferent between zero toehold and 0p.
At equilibrium, low-values prefer zero toehold, while high-values choose 0. Bidder i’s

equilibrium toehold acquisition strategy is the following:

T(v;) =0 if v; € [0,0) )
7(v;) =0 or g ifv, =10 where ¢ = 1,2, and 6y € (0, 5] (2.13)
T(’l}i) =0y if v; € (’0,1]

At the beginning of the second-stage, each bidder may observe three possible pairs
of toehold size. On possibility is none of them acquire any toehold at the first stage.
As a result, in the second stage of the game, it is well-known that truthful bidding
is a weakly dominant strategyﬂ When two bidders observe (0, 60f), their optimal
bidding strategies are shown by (2.11) in Proposition 2.3.2. Another possible situation
is (0,0f). After Bayesian updating, bidder 1 (2) is identified as a low value (high value)
player. So that bidder 1 (2) loses (wins) the target at the second stage. For bidder 1
without any toehold, truthful bidding is still her weakly dominant strategy. Given 1’s
strategy, bidder 2 optimally submit a bid higher than ©.

Proposition 2.3.3. At the second-stage of the takeover game, given bidder’s toehold
acquisition strategy in (2.13) and the pair of observed toehold size (0,0p), two bidders’

optimal bidding strategies are

B1(v1) = v

(2.14)
Ba2(va,0p) = by where by > 0

!See Proposition 2.1 in [Krishnal (2009))
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Proof: See Appendix A.6

Similarly as previous equilibrium analysis, the restricted toehold acquisition strat-
egy (2.13) is stable if and only if both low value and high value bidders have no incentive
to deviate from it. Theorem 2.3.3 finds that if the resale cost d and valuation thresh-
old ¥ satisfies the underlying conditions, then the restricted partial pooling Bayesian

equilibrium exists.

Theorem 2.3.3. Under this two-stage takeover game, if the fixed resale cost d is no

d+0p —+/2d?+6%

and the valuation threshold v is within (0, T]’ there exist

1-6%
a restricted partial pooling Bayesian equilibrium, in which low value bidders acquire nil

more than

toehold while high value bidders pool their toehold acquisition decisions at 0.

Proof: See Appendix A.7

Signal jamming occurs in equilibrium. If bidders play strict toehold acquisition
strategies in the first stage of the game, they perfectly reveal their private information,
and the second stage is the one under complete information, resulting in their rival’s
aggressively bidding behavior that wipes out winner’s payoff. In the second-stage of
the game, under complete information environment, a losing bidder attempts to push
up his or her bid as close as the winner’s bid, to ensure he or she achieves the highest
resale price. The winner has to pay the highest price for the remaining shares of the
target. Thus bidders attempt to keep their rival in doubt about their valuations by
using non-strict toehold acquisition strategies at equilibrium.

This section points a possible toehold bidding cost —the opportunity loss of a prof-
itable resale. Instead of finding all possible equilibria, this chapter interests in a pooling
equilibrium, which is consistent with the actual toehold purchasing behavior (bimodal
distribution). By analyzing equilibrium toehold acquisition strategies, we are able to
find out the cost of toehold bidding.

The existence of the restricted partial pooling Bayesian equilibrium (Theorem 2.3.3)
shows that, for low-value bidders, deviation by acquiring a toehold 0y cannot generate
a relatively high toehold resale price. Let bidder 1 be the low-value player. At equi-
librium, given bidder 2 is low-value, two bidders select zero toehold (0,0), and they
will truthfully bid at the second stage. Suppose bidder 1 deviate by acquiring 0.
Along the equilibrium path, bidder 2’s best response is still v2. Recall the analysis on

unrestricted partial pooling Bayesian equilibrium, bidder 1’s deviation leads bidder 2
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to overbid, and then bidder 1 resells her toehold at this overbid price. However, in this
case, bidder 1’s toehold decision has no effect on bidder 2’s bidding strategy. If bidder
1 wins the game, she only has to pay the rest of shares at 2’s valuation. Her payoff
becomes v; — (1 — g )ve. While, when bidder 1 loses the game, she resells her toehold
at her private valuation, v, and has to pay the resale cost d. Her payoff in this case
is #yv1 — d. Let bidder 2 be the high-value, instead. To lose the game, bidder 1’s best
response is to bid a relatively lower price v and generate the resale cost d. Bidder 1’s
payoff becomes 00 —d. Theorem 2.3.3 indicates that, under some conditions, if a low-
value deviates, his or her expected toehold benefit (only need to pay remaining shares
at the full takeover premium) is lower than the expected toehold cost (unprofitable
resale the toehold).

Bidders trade off expected toehold bidding benefit with expected toehold bidding
cost. At equilibrium, a bidder with zero valuation obviously acquires zero toehold.
This does not imply that non toehold bidding can only comes from a bidder with
zero valuation. In this restricted partial pooling Bayesian equilibrium, a bidder with
valuation v < ¥ may also acquire zero toehold, because his toehold bidding cost is
higher than its benefit.

When the expected benefit of toehold bidding overweighs its expected cost, a bidder
(e.g. bidder 1) with valuation vy > 0 prefers to acquire a toehold at equilibrium. Given
bidder 2 is a high-value player, by acquiring a toehold, bidder 1 triggers 2’s aggressively
bidding behavior with certainty. When bidder 1 wins the game, and only has to pay
the remaining shares, (1 — 6 ), at full takeover premium (i.e. 2’s bid). While, if bidder
1 loses the the target, she benefits from the resale of her shareholdings at such high
price (2’s over bidding price), although it generates resale fixed cost d. Given bidder 2
is a low-value player, at equilibrium, truthfully bidding is 2’s weakly dominant strategy
in the second stage. In this case, bidder 1 wins the target and pays the rest of shares
at 2’s private valuation. Overall, bidder 1 benefits from toehold bidding in terms
of expectation. The existence of the restricted partial pooling Bayesian equilibrium
indicates that the opportunity loss of a profitable resale can be regarded as another
possible cost of toehold bidding to explain the toehold puzzle.

Theorem 2.3.3 assumes there is only one non-zero toehold size (the largest) available
for bidders to choose. To robust theorem 2.3.3, we assume there exist another non-zero

toehold size, 05, which is relatively smaller than 0.
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Let 65 be another feasible and positive toehold size 6, where 0 < 6 < 0. Before
the second stage, if bidders observe rival’s #, they process this information using Bayes’
rule to update their beliefs concerning their rival’s valuation. That is their rival’s
valuations are uniformly, independently and identically distribution on the interval
(0,1] according to the increasing distribution function F. And, it is assumed that its
density function f is continuous and differentiable.

At the beginning of the second stage, there are three more pairs of toehold sizes
might occur: (0s,6;), (0,65) and (0s,0r). When signal (6s,05) is observed, two bid-
ders’ optimal bidding strategies can be achieved by repeating the proof of (2.11) in
Proposition 2.3.2 and replacing 0 by 6. Thus their optimal bidding strategies can be

expressed as:

7 03 .
Yy +d  wherei=1,2 (2.15)

i798:
B(vi, 0s) 1+6, 140,

When signal (0,6) is observed, bidders’ optimal bidding strategies are same as in
Proposition 2.3.3. The last possibility is (0s,0), by repeating the proof of (2.11)
in Proposition 2.3.2 and using 6 instead of 0y, we have bidder 1’s optimal bidding
strategy. That is

U1 05

= d 2.1
1+6’s+1+05Jr (2.16)

Meanwhile, bidder 2’s optimal bidding strategy is the same as (2.11) in Proposition
2.3.2. So that

61 (U17 95)

() HH
— 2.1
Ba(v2, 0m) 50, + 56, +d (2.17)

Theorem 2.3.4. Suppose there exists a smaller positive toehold size 05 than 0. And
when O, is observed, the bidder believes his or her rival’s private valuation is an indepen-
dent uniform distribution F within the support (0,1]. Two bidders have no incentives

to deviate from the restricted partial pooling Bayesian equilibrium.

Proof: See Appendix A.8

Theorem 2.3.4 shows that low-values still optimally prefer non-toehold bidding while
high-values have no incentives to deviate a smaller toehold size 0. Low value bidders
choose non toehold bidding strategies at equilibrium, since their expected toehold bid-
ding cost overweighs the expected toehold benefit. To enlarge the benefits of toehold
bidding and to maximize their expected payoffs, high-values optimally pool their toe-

hold acquisition decisions at the largest size 6.
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The intuition is straightforward. Suppose bidder 1 is a high-value bidder. Given
his or her rival is a high-value bidder, by acquiring a toehold at the first stage, bidder 1
triggers rival’s aggressive bidding response in the second stage. One possibility is that
bidder 1 loses the target. By holding a toehold 8, bidder 1 is able to profitably sell
out the largest amount of toehold. Another possibility is that bidder 1 wins the target.

Then he only has to buy the smallest amount of shares at the full takeover premium.

2.4 Conclusion

It seems profitable to purchase a toehold prior to making any takeover bid given sub-
stantial control premium in corporate takeover. A bidder with a toehold can gain as
a winner that only pays the rest of shares at the substantial takeover premium, or as
a loser that sells out his shareholdings at such high price. Although some theoretical
studies support this argument, empirical literature documents puzzling observations.
They find that acquired toehold sizes are on average centered either on zero or a large
size — it is a bimodal distribution. Some literature argues that bidder toehold bene-
fits are not withstanding. Betton et al. (2009)’s two-stage takeover model finds some
bidders optimally choose non toehold bidding due to rejection cost — the opportunity
loss of a target termination agreement. They model actual takeover process as two
stages: private merger negotiation followed by a sealed-bid second-price auction. Pri-
vate merger negotiation happens between the target board and a single bidder, and
the board decides to accept or reject the proposed offer. The open auction is modeled
as a sealed-bid second-price auction. It takes account the fiduciary requirement, and
most importantly the initial bidder with merger agreement can achieve the target ter-
mination fees if a public offer is finally approved by shareholders. At their equilibrium,
toehold bidding reduces target board private expected profits, causing a rejection of
negotiation. It in turn results in the toehold costs. The target decision, hence dictates
an equilibrium toehold acquisition strategy for the initial bidder in their paper.

This chapter develops a two-stage takeover game, which is different from Betton
et al.| (2009))’s in terms of two major points. First, this takeover game models private
takeover stage as an auction, instead of a merger negotiation, since half of the targets
are auctioned among multiple bidders. Second, there is no managerial entrenchment at

the first stage of this game. The general takeover process usually starts when the target
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board contacts a group of potential bidders. The private takeover stage is initiated by
the target board. In other words, there is no threat of target managerial resistance
among invited potential bidders. Hence this game assumes there is an unique seller —
the target. There are no different interests between target board and target sharehold-
ers (principle-agent problem). The target aims to sell itself to a bidder with highest
valuation. And therefore the open auction in Betton et al.| (2009) disappears in this
game. These two differences help to extend the toehold puzzle story, and answer the
question what is toehold bidding cost when there is no target managerial resistance.

Chapter 2’s two-stage takeover game includes the toehold acquisition stage and
takeover bidding auction. In the first stage, each bidder is allowed to freely acquire a
toehold in the target. The observable toehold sizes are regarded as signals partially
revealing each bidder’s private information. The second stage is modeled as a sealed-
bid second-price auction. Two bidders compete to buy the target, and the winner pays
the loser’s bid.

It is shown that, under some conditions, there exists a restricted partial pooling
Bayesian equilibrium (Theorem 2.3.3), in which low-value bidders optimally choose
zero toehold while high-value bidders pool their decisions to one size. The equilibrium
toehold acquisition strategy is consistent with bimodal distribution of actual toehold
purchasing. Signal jamming occurs at the equilibrium. That is, bidders optimally play
partial pooling toehold acquisition strategy in the first stage to conceal their private
information. When bidders play perfect separating toehold acquisition strategy, they
completely reveal their private information, and the following auction becomes the one
under complete information, resulting fierce bidding competition (Proposition 2.3.1),
that reduces the bidder’s payoff.

This chapter points a possible toehold bidding cost — the opportunity loss of a
profitable resale. At equilibrium, a low-value bidder, whose valuation is less than a
threshold o, chooses non toehold bidding, since his or her expected toehold bidding
cost overweighs the expected toehold benefit. On the other hand, a high-value bidder
with valuation more than ¢ acquires a toehold. Since his toehold bidding benefit exceeds
the cost of toehold bidding in terms of expectation, he prefers to marks himself as high-
value bidder. To maximize the benefit brought from toehold bidding, a bidder optimally

reveals his valuation group (high-value group) by acquiring the highest toehold size.
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Chapter 3

Majority Rule and Mechanism
Design

This chapter studies the problem of optimal design of voting rules when each agent
faces binary choice. The designer is allowed to use any type of non-transferable penalty
on individuals in order to elicit agents’ private valuations. And each agent’s private
valuation is independently distributed. The main result is that under reasonable as-
sumptions, the society can do no better in terms of utilitarian efficiency, than to follow

a simple majority rule.

3.1 Introduction

Arrow’s impossibility theorem attracted a vast literature on majority rule. The story
can trace back to |Arrow| (1951) who shows the impossibility of formulating a social
welfare function thoroughly satisfying desired general democratic. Arrow tried to build
up a consistent, fair voting system that would lead to transitive social preferences over
more than two outcomes. But he proved that this was impossible. Arrow expressed
a consistent and fair voting system in terms of transitivity, independence of irrelevant
alternatives, unanimity and no-dictators. Arrow’s impossibility theorem says that it is
impossible to create a voting system that satisfies these four conditions when choosing
among more than two outcomes. And the theorem states that, demanding the transitive
social preferences, the first three conditions imply a dictatorship. While in game-

theoretic terms, the equilibrium (known as the core) under majority rule is unlikely
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to exist. More specifically, the existence of cyclical majorities in a multi-person voting
situation often implies that any proposed resolution to the underlying choice problem
can be blocked by some coalition of voters, and hence the core of the voting game is
empty.

A large part of literature studies the conditions that ensure the existence of ma-
jority rule equilibrium. Early work by [Plott| (1967) shows that under very restricted
conditions, such as the preferences can be represented by smooth utility functions and
the choice space is Euclidean, there exists a majority rule equilibrium. Similar results
can be found from |[Rubinstein (1979) and (Greenberg (1979). Rubinstein| (1979) shows
that the set of continuous preference profile has a non-empty core in the Kannai topol-
ogy. |Greenbergl (1979) shows that when the alternative set is a convex and compact
subset of Euclidean space with low dimension, for convex and continuous preference,
there exists a majority rule equilibrium. |May| (1952) and [Rae (1969)) indicates that
the simple majority has good normative properties in the situation of binary choice.
However, their results relay on the assumption that agents’ preferences have equal in-
tensities. (Chakravarty & Kaplan| (2010) compare the surplus between two mechanisms:
majority voting and a contest (who shouts the loudest chooses the outcome). They
assume that agents have private valuations over the two alternatives, and it is costly to
the voter when shouting acts as a signal. They find that if the number of voters is large
and the value of each voter is bounded, the majority voting is optimal. And for any n,
the superior mechanism is depends on the order statistics of the distribution of values.
Kleiner & Drexl (2013]) solve for the social choice function maximizing utilitarian wel-
fare. They assume that agents have private valuations following distribution function
F and have quasi-linear utilities. In their model, monetary transfers are feasible. Their
main result is that if /' has monotone hazard rates, the optimal social choice function
is implementable by qualified majority votingﬂ and it is optimal to exclude monetary
transfers. (Casella; (2005) proposes a simple voting mechanism for players to meet re-
peatedly over time. It is assumed that players can store their votes and shift them
intertemporally. As a result, the players cast more votes when preferences are more
intense. It is found that the voting mechanism does not achieve full efficiency, but it

can lead to a higher ex ante welfare. This chapter shows that the simple majority is

!Qualified majority voting means any decision rule that requires more than a simple majority of

the votes to ratify a decision.
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the best voting mechanism in terms of utilitarian efficiency, even if voters’ preferences
are comparable and may have varying intensities.

To understand it, consider the following example. There are two alternatives A and
B, and three agents in the society. Agent 1 prefers A over B, and he values £10 on
alternative A. While both agent 2 and 3 prefers B with £2 and £1 valuations on B,
respectively. A should be selected, in terms of utilitarian efficiency, but B holds more
votes. Since the details of environment are not specified, it is not clear what choice
should be used. This chapter assumes that the strengths of voters’ preferences are inde-
pendently and identically distributed and privately known. In such an environment, the
designer faces two voting mechanisms. The first voting mechanism generates a costly
stand-off (e.g. individual cost of time, expert advice). It is possible to set up the penalty
scheme in such a way that the revelation of private information occurs. Therefore the
mechanism may select the better alternative more often. Since incentive compatibility
constraints are imposed, the voters would have to pay in terms of this penalty. The
second voting mechanism achieves the agreement early, but does not extract private
information from the voters. And therefore, it may not achieve the first best. The
first mechanism generates the expected penalty cost of eliciting private information
in order to select the better alternative. It turns out that — if private information is
independently and identically distributed from one of the common distributions — the
second mechanism is efficient. The configurations of preferences similar to the above
example can occur, and simple majority would indeed select sub-efficient B, because
the expected efficiency cost of eliciting information to select the better alternative — A
is too high.

In this chapter, a voting mechanism is introduced. Each agent’s private preference is
assumed to be independently distributed, in the situation of binary choice. The number
of agents in each group, in which all agents prefer the same alternative, is known by
the designer. After the agents have reported their valuations to the mechanism, the
designer decides a collective decision over two alternatives and the penalty scheme to
maximize ex-ante social expected payoff. The designer is allowed to use any type of
non-transferable penalty on individuals, in order to elicit agents’ private valuations.
It finds that simple majority rule is the best in terms of utilitarian efficiency. At
equilibrium, the mechanism optimally assigns zero penalty to every agent. In other

words, the designer does not extract private information from any agent in the society,
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because the expected penalty cost of eliciting private information to select the better
alternative is too high.

The mathematical technique used here builds on the algorithms in McAfee & McMil-
lan| (1992). Their analysis explains two commonly observed forms of cartel organizations
during bidding process. One of them is defined as weak cartel, in which members are
not allowed to make any transfer payments among themselves. According to bidders’
reports, the mechanism assigns each bidder’s bid and decides the non-transferable pay-
ments to maximize total expected profits. Meanwhile, the seller’s action is passive.
That is, the seller announces a reserve price and sells at the highest bid. To solve the
maximization problem, they form a bound on profits, and then find out the implemen-
tation of the bound. They show that in weak cartels all bidders propose exactly the
same bid when their private valuations are more than announced reserve price. The
intuition behind it is, in the absence of transfers among bidders, incentive compatibil-
ity constraints require the item is awarded with equal probability to the bidders whose
valuations are larger than the minimum price.

The organization of the Chapter 3 is as follows. Section 3.2 introduces the voting
mechanism and related assumptions. Section 3.3 shows the main results. Section 4

summarizes this chapter. Most of the proofs are relegated to Appendix B.

3.2 The Voting Mechanism

Let Q = {A, B} be a set of alternatives. There are n risk-neutral agents in the society,

numbered 1,2,....,n. Let N be this society, so that
N ={1,..,n} (3.1)

The society N is defined as a set of agents that are willing to play this voting game.
That is, each agent within IV chooses one of the alternatives, and assigns private value
on his or her preferred alternative. Throughout Chapter 3, ¢ and j represents typical
agent in N.

Within the society N, all agents are categorized into two groups: N4 and Np.
Group N4 contains all agents preferring alternative A to B, and the number of agents

within this group is denoted as |[N4|. Group Np contains all agents preferring B to A,
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and the number of agents within this group is denoted as |[Np|. where Ng = N \ N4.
Let agent ¢ and j present the agent in group N4 and Np, respectively.

Chapter 3 models asymmetric information in the following structure. It is assumed
that the number of agents in each group is known by the designer. For any m € M,
agent m assigns his or her valuation v,, on his or her preferred alternative, while all other
agents perceive vy, to be independently distributed on some interval [0, v] according to
the cumulative distribution function F. It is assumed that F' admits a continuous and

differentiable density function f and has full support, so that

F(vm) = /Ov f(vm)dvm, (3.2)

Let v represent a vector of all agents’ valuations, v = (v1,va, ..., v,). And let v_; be
a value vector of all agents except v;, v_; = (v1, ..., Vi—1, Vi1, ..., Up). The joint density

function of v can be written as
f@) = T] f(vm) (33)
meN

Suppose, for each group, agents are ordered according to their valuation — from
high to low. Let H(vy,,) be the difference between the valuation of agent m and the

next smaller valuation. By the property of order statistics, we know that

A

McAfee & McMillan| (1987) defines the expected H(v) as a winning bidder’s expected

(3.4)

payoff within a second-price sealed-bid auction. This chapter assumes that H'(v,,) has

the characteristic (3.5),which is satisfied by most common distributions.
H'(vy,) <0 (3.5)

The voting mechanism works as follows. After the agents have reported their valu-
ations to the mechanism, one of the alternatives is selected to maximize ex-ante social
expected payoff. Meanwhile, the mechanism also recommends the optimal penalty
scheme. For all i € Ny, let Ps(v;,v_;) be the probability that alternative A is se-
lected by the mechanism. And, for all j € Np, let Pg(vj,v_;) be the probability that

alternative B is selected. The sum of these two probabilities is one.
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For all agent m € N, let t,, be a penalty scheme. The penalty scheme associates a

real number t,,(v) of agent m with each vector v. That is
tm : 0,7 — R (3.6)

It is assumed that t,,(v) is non-negative and non-transferable among agents. To un-
derstand it, ¢, could be individual waiting cost, or cost of negotiations, expert advice.

The utility function of each agent from two groups N4 and Np is:

Ui (ki Vm) = kmvm — tm(v), VYmeN;,m=i,j;i#] (3.7)
where
1 if A is selected
ki = 1A I8 selecte Vie Ny (3.8)
0 otherwise
and
1 if B is selected )
j = . Vj € Np (3.9)
0 otherwise

Suppose agent i has value v; but reports v, given others’ truthful reports, agent i’s

expected payoff is expressed as the following:
7i(vi,v)) = By_ [v;Pa(v,v_;) — t;(vi,v_;)] wherei € Na (3.10)

E,_, is the expectation over the vector v_;, and ti(vg,v,i) represents individual ¢’s
penalty when his valuation is v; but reports v;. Pa(v},v_;) is the probability that A is
eventually selected, and v_; represents the truthfully reported valuation vector of all
agents except agent i, for i € N4.

And let agent j’s expected payoff be 7;(v;,v}), when he cheats his value but others
truthfully report. That is

7j(vj,vi) = Ey_;[0jPp(vi,v_j) — tj(vj,v_;)] where j € Np (3.11)

In addition, when all agents in the society N truthfully report their private valua-

tions, agent i’s expected payoff is
m(vi) = Eq,_i [UiPA(Ui,U_Z') — ti(vi,v_i)] where ¢ € NA (3.12)
and agent j’s truthful-revealing expected payoff is

7Tj(’Uj) = Ev,j [UjPB(Uj, U,j) - tj(?.lj,'Ufj)] where j € Np (3.13)
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Next section shows Bayesian incentive compatibility conditions under this voting
mechanism. It describes the maximization problem of the designer, subject to several
constraints. The main result is the optimal social decision follows simple majority with

zero penalties, under reasonable assumptions.

3.3 Simple Majority Rule with Zero Penalty

The revelation principle E| states that under weak conditions any mechanism can be
mimicked by a direct-revelation and incentive-compatible mechanism. In a direct and
incentive-compatible mechanism, all players simultaneously and confidentially report
their private valuations, and they have incentive to truthfully report. The revelation
principle tells us that, without loss of generality, we can restrict attention to a direct
and incentive compatible mechanism. Under this voting mechanism, each agent is asked
to report his or her valuation to the mechanism. Proposition 3.3.1 shows an alternative

form of expression of Bayesian incentive compatibility.

Proposition 3.3.1. The Bayesian incentive compatibility of the voting mechanism is

equivalent to:

(Z) divlﬂ-l(vl) = EvfiPA('Ui, U—i)

where i € Ny (3.14)
(i) 2By Pa(vi,v-) >0

(¥) %jwj (v5) = Eo_; Pp(vj, 0-5) where 5 € Np (3.15)
(i) g2 EoPp(vj,v-5) 20

Proof: See Appendix B.1

After each agent reporting his or her valuation, the mechanism then decides which
alternative and what sort of penalty scheme should be selected to maximize ex-ante
social expected payoff. The ex-ante social expected payoff is the sum of each group’s
total ex-ante expected payoffs. Lemma 3.3.1 shows the ex-ante expected payoffs of agent
i and j respectively. The incentive compatibility conditions (¢), (i') in Proposition 3.3.1

are imposed to achieve the results.

Lemma 3.3.1. Under the voting mechanism, agent i’s ex-ante expected payoff is:

Em; = E[H(v;) Pa(vi,v—)] +m(0) Vi€ Ny (3.16)

!See [Myerson| (1985)
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3. MAJORITY RULE AND MECHANISM DESIGN

and agent j’s ex-ante expected payoff is:
Emj = E[H(vj) Pg(vj,v—;)] + m;(0) Vj € Np (3.17)

Proof: See Appendix B.2

By Lemma 3.3.1, we know that the ex-ante social expected payoff is the following:

El= Y Em+ Y Em (3.18)
IS JENB
The voting mechanism aims to maximize (3.18) by choosing appropriate collective rule
and penalty scheme. The maximization problem is subject to five constraints. The
first two are incentive-compatible conditions (i¢) and (i) in Proposition 3.3.1. The
rest of constraints are standard characteristics of probability. Both P4 and Pp are
non-negative, and sum of them must be one.

To solve the maximization problem, three boundaries ((I), (II) and (III)) on the
ex-ante social expected payoff (3.18) are introduced sequentially (from low to high).
Bound (I) is formed by letting the expected payoff of any agent with zero valuation be
zero. By the assumption of decreasing function of H(v;) and Proposition 3.3.1, Bound
(IT) is formed. The last bound is developed by assuming there is a majority group,
say N4. The Theorem 3.3.1 claims that, to implement the Bound (III), the voting
mechanism uses zero penalty schemes for all agents in the society. Meanwhile, the

collective decision follows simple majority rule.

Theorem 3.3.1. Under the direct and incentive compatible voting mechanism, and if
all assumptions in section 3.2 are satisfied, the optimal social decision follows simple

majority rule, and there is no penalty on each agent.

Proof: See Appendix B.3

The mechanism in Theorem 3.3.1 works as follows. After all agents truthfully
report their valuations to mechanism, the mechanism produces a social decision and
recommends a penalty scheme, in such a way that each agent has incentive to follow.

The proof of Theorem 3.3.1 allows the penalty scheme ¢, to be a function of all
reported values of every agent in society N. However, Theorem 3.3.1 indicates that it

is not needed because the penalty on any agent is zerﬂ In other words, the mechanism

IChakravarty & Kaplan| (2013) prove that a lottery is optimal if the H’ is decreasing and the cost

function for revealing private valuation does on depend on agents’ valuations.
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does not need actually to know all agents’ valuations, but simply selects the alternative,
which is preferred by the majority in the society.

Two examples are listed below: case H'(v,,) < 0 and case H'(v,,) > 0. These two
examples aim to compare the net welfare of two mechanisms —a simple majority and an
alternative mechanism. An alternative mechanism is proposed with decision rule that
alternative A is selected if and only if > v; > 3 v;, where agent ¢ prefers A and agent
j prefers B. The alternative mechanism is allocation-efficient, but it does not necessary
to be net efficient. The working and calculation is processed through Matlab, and the
codes can be found in Appendix B.4.

Example 1: It is assumed that each agent’s private value follows Gamma distribution
with shape and scale being 5 and 1 respectively — G(5,1). In this case, the inverse
hazard rate H is decreasing (H'(vy,) < 0). There are 94 agents, which 49 of them
prefer alternative A and the remaining agents prefer Bﬂ Simple majority mechanism
selects alternative A, while the alternative mechanism selects B since > v; > >~ v;. The
net welfare of simple majority mechanism is |N4|E[H (v;)Pa(vi,v—;)] = 49 x 2.5574 =~
125.31. The net welfare of the alternative mechanism is |Ng|E[H (vj)Pg(vj,v_;)| =
45 x 1.0349 ~ 46.57. Thereby the simple majority mechanism is better than this
alternative mechanism in terms of net welfare.

Example 2: Now let us consider another Gamma distribution, G(0.1,1). Then the
inverse hazard rate H is increasing (H'(v,,) > 0). Again, simple majority and the
alternative mechanism selects alternative A and B, respectively. The net welfare of
simple majority mechanism is |N4|E[H (v;)Pa(vi,v_;)] = 49 x 0.0551 ~ 2.7. The net
welfare of this alternative mechanism is |Ng|E[H (v;)Pp(vj, v—;)] = 45 x 0.0997 ~ 4.5.

In this case, simple majority mechanism becomes inferior.

3.4 Conclusion

This chapter studies the optimal design of voting rules when agents face binary choice.
The agents report their private valuations to the mechanism, then the designer selects

one of these alternatives and sets up the penalty scheme, in order to maximize ex-ante

! Agents’ valuations are randomly created through G(5,1) via Matlab. Without loss of generality,

among these agents, no one is indifference between A and B — an agent with zero valuation ¢ N

33



3. MAJORITY RULE AND MECHANISM DESIGN

social expected payoff. Theorem 3.3.1 shows the society cannot do better in terms of
utilitarian efficiency, than to follow a simple majority rule with zero penalty scheme.

The designer may choose a voting mechanism which allows costly stand-off (such
as individual cost of time, or monetary or mental cost of negotiations) and then sets
up the penalty scheme in such a way that every agent has incentive to truthfully reveal
their private information. The mechanism elicits private information, and therefore the
better alternative may be selected more often. But, it generates the expected penalty
cost for eliciting such private information. Chapter 3’s voting mechanism achieves the
agreement early, but does not extract private information from agents. And therefore it
may not achieve the first best. Theorem 3.3.1 indicates the simply majority mechanism
without any penalty may select a sub-efficient alternative, but can achieve a higher
welfare. The reason is simply because the expected penalty cost is too high.

It should be mentioned here, some collective decision mechanisms require explicit
support of some super-majority. Instead of the immediacy of simply majority, these
mechanisms may generate individual waiting cost. Under some environments, these
alternative mechanisms are better. When waiting cost can be controlled or ignored,
then super-majority that selects a better alternative with higher probability, is better

than a simple majority.
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Chapter 4

A Package Bidding Mechanism to

Implement the Core

This chapter adopts the concept of core as a competitive standard, which enables the
package bidding mechanism to avoid the well-known weaknesses of VCG mechanism,
when gross substitutes condition fails. A more practical procedure — package bidding
is introduced to implement the core. It is proved that subgame perfect equilibrium
outcomes yielded from the package bidding mechanism coincide with the core of an

underlying strictly convex game.

4.1 Introduction

The cooperative game theory takes an abstract view of individual interaction. The
characteristic function form of a game expresses the set of payoffs to a coalition. Al-
though this approach has a clear advantage in terms of robustness F_l it lacks formal
investigation describing the process that strategic players finally agreed on the out-
comes.

Nash| (1953) sets a new entire research agenda referred as Nash program for cooper-
ative games. The Nash program tries to link the cooperative and non-cooperative game
theory. It aims to develop non-cooperative procedures that yield cooperative solutions,

such as the core, as their equilibrium outcomes. The concept of core, pioneered by

!Solution concepts are independent of the unimportant details of different procedures that underlie

the same set of feasible payoffs

35



4. A PACKAGE BIDDING MECHANISM TO IMPLEMENT THE
CORE

Edgeworth| (1881)), is probably the most widely used cooperative solution concept. It
is the set of feasible payoff allocations that cannot be improved upon by any subset of
the players.

A large number of papers contributes to the Nash program that explores non-
cooperative outcomes related to the core. Banks & Duggan| (2000) model the decision
making process as the form of coalitional bargaining. They show, in certain envi-
ronment, stationary equilibrium outcomes coincide with the core. |Chatterjee et al.
(1993) build a model of n-person coalitional bargaining with discounting and transfer-
able utility (TU). They introduce a fixed protocol describing the order of proposers and
respondents, and they show that in strictly superadditive TU game, as the discount
factor tends to one, subgame perfect equilibrium outcomes converge to core outcomes.
Perry & Reny| (1994) provide a non-cooperative implementation of the core, and they
consider a dynamic bargaining game in continuous time without a fixed order of moves.
They prove that every stationary equilibrium of their game leads to the payoffs in the
core. Benny & Eyal (1995) study non-transferable utility game without discounting,
and they prove an equivalence between the core and stationary order independent equi-
librium outcomes.

Serrano| (1995) is closest to ours in spirit. Given a strictly convex TU coalitional
function, |Serrano (1995) constructs a game that resembles an asset market. The core
is supported in subgame perfect equilibrium and obtained as those outcomes in which
every arbitrary opportunity has vanished from the market. Unlike the literature men-
tioned above, the rules of the game form do not require complete knowledge of the
coalitional function H Serrano| (1995)) describes an asset market with randomly se-
lected broker to centralize the trade. Each player initially owns one asset. In the first
stage, the broker proposes an asset price vector, at which he wants to buy the assets
from other players. In the second stage, the remaining players decide to either accept
or reject this deal sequentially. If a player accepts the deal, he sells his asset to the
broker at the proposed rate. While, when a player rejects it, he proposes a portfolio of
assets that he wants to purchase at broker’s proposed price. The broker’s payoff is the
worth of the final portfolio of assets he holds, plus the net monetary transfers that he
received. When the transferable utility (TU) game is strictly convex, Shapley| (1971)

theorem can be used to prove that the implementation of the core is achieved in terms

!See [Bergin & Duggan! (1999)
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of expectation. The core allocation, in Serrano| (1995), is viewed as a situation in which
a player has no arbitrage opportunities to buy underpriced assets from others.

This chapter contributes to the Nash program. It presents an extensive form, and
tends to show a connection between subgame equilibria and the core. Different from
Serrano (1995)’s design, it resembles a package bidding mechanism, in which the seller
initially owns all items and rest of players are bidders competing to win the item(s) that
they are interested in. The design works for substitute goods as well as complementary
goods. One of the players is assumed to be randomly selected as the first mover,
who invites others to form a grand coalition by proposing a payoff vector. By renting
other players to achieve the joint benefit, the proposed payoff vector is interpreted
as the amount that the first mover must pay to these players. In this mechanism,
only core allocations generate subgame perfect equilibrium payoffs, because non-core
allocations provide arbitrage opportunities for some players. In addition, the first
mover with monopoly power receives the maximum core payoff in the subgame. By
the strict convexity assumption, the implementation of the core is achieved in terms of
expectation.

This chapter also contributes to the design of package auction when the gross sub-
stitutes conditiorﬂ fails. In many auction environments bidders are more interested in
the packages of items they win. Under a package auction (also known as combinato-
rial auction), any bidder is allowed to bid directly for non-trivial subsets (package) of
items being sold. It is partially important when items are complements. Then bid-
ders can more fully express their preferences, resulting in improved economic efficiency
(allocating a package of items to the bidder who values it most) and greater auction
revenues. Vickrey| (1961) provides a mechanism in which it is a dominant strategy for
bidders to report their values truthfully. The mechanism assigns item(s) efficiently and
the bidders pay the opportunity cost of the item(s) won. For multiple identical items,
in Vickrey’s original setting, each bidder is assumed to have the diminishing marginal
value of the item. |Clarke (1971) and Groves (1973)) extend |Vickrey (1961)’s design.
Their auction design does not require nonincreasing marginal values for bidders. The

outcomes are still efficient and the bidders still pay the opportunity cost of the item(s)

IThe gross substitutes condition requires that an increase in the price of an item (or a package of
items) causes an increase in demand for other items. Under the setting with multiple identical objects

and declining marginal values, this condition is obviously satisfied.
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won. The extended Vickrey mechanism, throughout this chapter, is called the Vickrey-
Clarke-Groves (VCG) mechanism|Ausubel & Milgrom| (2002) prove that when gross
substitutes condition is satisfied, the VCG payoffs lie in the core.

When the gross substitutes condition fails, VCG mechanism suffers from several
practical drawbacks. |Ausubel & Milgrom| (2006) study the environment where items
are complementary, and they list the possible drawbacks of using VCG mechanism.
Under VCG pricing rule, the seller revenue can be very low (possibly even zero) and is
non-monotonicity in both the number of bidders and their values. Collusion becomes
feasible and easier among losing bidders. As a result, bidders may find shill bidding
profitable.

Ausubel & Milgrom| (2006) adopt the concept of the core as a competitive standard
to ensure the outcomes of their package auction design do not have those practical
drawbacks. The promise of a core allocation is that collusion among losing bidders
becomes unprofitable. The basic idea behind in the core is similar as that behind a
Nash equilibrium, in which an allocation is stable if no player has incentive to deviate.
If an allocation is in the core, there is no tendency for a coalition to form and upset it.
In terms of auction theory, the non-core allocations are unstable, in that some bidders
are willing to pay more than the winner’s payment.

The organization of chapter 4 is as follows. The next section defines the core of
a strictly convex transferable utility game, and it introduces the definition of [Davis
& Maschler| (1965)’s (DM) reduced game. Section 4.3 develops the package bidding
mechanism and related assumptions. Section 4.4 presents and discusses the main results

Section 4.5 concludes this chapter. And all proofs are relegated to Appendix C.

4.2 Core, Strict Convexity, and DM Reduced Game

4.2.1 Core

Let a transferable utility (TU) game be a pair (N,v) where N is a coalition (grand
coalition) and v is the characteristic function of the game. A coalition S is defined to
be a subset of N, S C N. The characteristic function v associates a real number v(.S)
with each subset S of N. For any S € N, v(5) is called the worth of S. It is interpreted
as the maximum value of S can create as a group. The pair (N,v), where v assigns

v(S) to each coalition S is defined as a game in characteristic function. Suppose X is
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the set of feasible allocations. Let the set of players be L with player 0 being the seller.

In general, the characteristic function can be defined for coalition S as follows:

maXZvl(aEl), 0esS

zeX
v(S) = les (4.1)

0, 0¢s

It should be mentioned here, in this chapter, the rules of the game do not require that
the designer has complete knowledge of the characteristic function, such as (4.1).

It is always assumed that v(()) = 0. Let RY (here R denotes the real numbers) be
the set of all payoff vectors of N. For any 7 € RY and S € N, it is denoted that

~(5)= Y (42)
i€S
We now can state the following definition. Let (N,v) be a TU game. The core of
(N,v) is defined by:

C(N,v) = {7r L 0(N) = 7(N),v(8) < 7(8) for all S e N} (4.3)

The condition that v(N) = () tells us that the vector 7 is feasible, and the
condition that v(S) < w(S) tells us that there is no tendency for coalition S to form
and upset the m because coalition S cannot guarantee each of its members receive more
than they could gain from 7. Thus the core of (N, v) is the set of feasible (for the whole

coalition) payoff allocations that cannot be improved upon by any subset.

4.2.2 Strict Convexity

A game (N, v) is a strictly convex game if for all coalitions S and T" we have
v(SUT) >v(S)+v(T)—v(SNT) (4.4)

This condition arises when each player provides positive marginal contribution to
the worth of the coalition. It also arises when each player holds a unique object and the
objects are complementary (Topkis| (1987)). It follows immediately that every strictly
convex game is strictly Superadditiveﬂ It should be mentioned here, since the game
is strictly superadditive, v(IN) is the largest total value received by any disjoint set of

coalitions. Players have incentive to form the grand coalition for joint benefit.

!Superadditivity says that for all S, T' € 2% and SNT = ®, then v(S) + v(T) < v(SUT).

39



4. A PACKAGE BIDDING MECHANISM TO IMPLEMENT THE
CORE

Shapley| (1971) shows that the core of a strictly convex game is nonempty, and the
extreme points (marginal contribution or “greedy value allocations”) can be computed
by the greedy algorithm. By listing the players in some order, player i’s marginal
contribution (or “greedy value allocations”) to the coalition N of preceding players is

the following:
v(N) = o(N\{i}) (4.5)

Shapley’s theorem says that for any ordering of the players all greedy value allocations
are in the core.

Assumption 1: It is assumed that the TU game (N, v) is strictly convex in chapter

4.2.3 DM Reduced Game

This chapter uses the definition of Davis & Maschler| (1965)’s (DM) reduced game. For
any nonempty subset S and for any 7 € RV, the DM reduced game (S, v,,) has the

following characteristics:

Urs =v(N) = 7(N\ 5) (4.6)
and
Uns (T) = Zrél]e\xﬁ\(s{v(T uz)—n(Z)} YT cCS (4.7)

Serrano| (1995) interprets this reduced game as follows. The broker (first mover)
proposes a price vector . The reduced game (S, vrs) is formed by paying all players
in N\ S at price 7. The new worth of the total coalition S is defined as the coalition
value after paying each member in N \ S at w. Let T' be any non-empty subset of S.
The definition of v,4(7") allows T to consider the best deal from any group of players
in N\S.

One interpretation of v, (T) is that T" maximizes its return by renting group Z C
N\ S to join it and together create the joint benefit (worth) v(7'U Z). Meanwhile, T
must pay all players in Z at price .

To understand better the concept of core in a DM reduced game, consider the
following example explaining core allocations under DM reduced game: Suppose there
is a TU game (N,v), where N = {0,1,2}. The seller, labeled as 0, owns an indivisible
object. Two bidders, labeled as 1 and 2, compete to win the object. Let the worth of

total coalition be one, v(N) = 1. And, for any S consisting of a seller and one bidder,
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4.2 Core, Strict Convexity, and DM Reduced Game

let the worth of any nonempty subset S be 0.6. If the seller is not included or if there
is only the seller included in the coalition, the worth is zero. The proposed price vector
m is the following

m = (04, 0.5, 0.1) (4.8)

The definition of core tells us that 7 is not a core allocation, because the seller and
player 2 can form a coalition S with v(S) > w(S). That is, there exists the coalition
S = {0,2} that can improve upon 7.

Alternatively, let the core of reduced game (S, v.s) be C(S,vrs), let the projection
of m be 7°. |Peleg| (1986) proved that, for balanced games, the core is the only solution
that satisfies non-emptiness, rationality, superadditivity, and consistency. A solution
is consistent if it is “independent” to the number of players. For instance, there is a
game with n players and let (S, v,s) be its reduced game. The solution of this game
is consistent, if the projection of the original solution is still a solution in the reduced
game (S, vrs). The [Peleg (1986)’s theorem tells us that if there exists a reduced game
(S,vrs) and its core allocation does not include 7*, then 7 is not a core allocation of
game (N,v). In the example, there is a reduced game (5, vxs), where S = (0,1) with

the following characteristics:
Vs =0(N)—m(N\S)=1-0.1=0.9 (4.9)

and

vrs ({0}) = max{v({0,2}) — 72,0} = max{0.6 — 0.1,0} = 0.5 (4.10)

The corresponding projection of the given 7 is 7 = (mg, 71), where 7% = (0.4, 0.5).
Since v5{0} > mp, the seller has arbitrage opportunities. The seller has opportunity to
rent an “underpriced” player 2. By the definition of core allocations, 7* is not in the
C(S,vrs). By Peleg (1986)’s theorem, we know that = ¢ C(N,v).

By using the definition of DM reduced game and Peleg’s theorem, we can inter-
pret that core allocations are those where the players have no opportunities to rent

“underpriced” agent(s). That is, for some i and for some S, i € S, we have

vrs({i}) < m; (4.11)

As the final part of this section, interpret the strictly convex TU game (N,v) as

the following package bidding mechanism. Let n > 2 denote the number of players in
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the game, numbered from 1 to n, and let NV be a finite set of players N = (1,...,n).
There is only one seller within IV, the rest of players are bidders. The seller owns some
indivisible items. Bidders holding no items compete to win their preferred “baskets”.
And each player owns an amount of a perfectly divisible composite commodity called
money. The worth of coalition S is the value that S can create. If the seller is not

included in the coalition, the worth is zero.

4.3 Package Bidding Mechanism

This section introduces a package bidding mechanism in which one of the players is
randomly selected as the first mover. Let player ¢ be selected as the first mover with
probability p;. And let a vector p = (p1, ..., pn) be the probability that every player is
selected as the first mover. The worth of any coalition of the TU game (N, v) indicates
the joint value of cooperation. The subgame where player ¢ is the first mover has three
stages.

The rules of this mechanism do not depend on the characteristic function. Oth-
erwise, there exists some possibilities that a non-cooperative game whose equilibrium
payoffs can be achieved by the trivial mechanism. E]

In stage 1, player i proposes a payoff vector 7 = (71, 7o, ..., ), where m(N) = v(N).
If the grand coalition is formed, each player in IV receives a payoff at the rate of =,
with the understand that player j receives ;. By renting the players in N\ {i} to form
a coalition and create the joint benefit, the proposed m is interpreted as the amounts
must be paid by player i to each player in N\ {i}. In addition, the mechanism requires
the proposed payoff vector 7 to be individually rational. That is, for all j € N

mj 2 v({j}) (4.12)
And each element of the proposed 7 is non-negative. That is, for all j € N, we have

™ >0 (4.13)

Player i can be either the seller or one of the bidders. Meanwhile, Bidders are able
to bid any item or items they are interested in. In other words, the mechanism works

when items are complementary and/or substitutes.

!See [Bergin & Duggan| (1999) Proposition 1
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4.3 Package Bidding Mechanism

In stage 2, players in N \ {i} move sequentially according to a fixed and arbitrary
protocol P. The fix protocol P describes the order of the first movers and respondents.
They decide to accept or reject the deal at . If any player j € N \ {i} rejects m,
then j proposes a new coalition 7' C N at m, where ¢ ¢ T. The action space of player
Jj € N\ {i} is (aj,b;). If player j accepts m, «; displays “1”. Then b; is the set of
item(s) that j wants to buy from player i at 7. For instance, player j’s the action space
(1,0) indicates j accepts m and j is the seller. If player j rejects m, a; displays “0”.
Then b; is a set of players T' € N\ {4}, with whom j prefers to trade at m. If any player
J accepts m, he is guaranteed to receive m; at the end of trading. Player j receives m;
not because there is a trade between the first mover ¢ and him, but because he agrees
to join and contribute to the joint return at the proposed .

In the final stage, trading with rejectors occurs. Let M € N \ {i} be the set of
rejectors. Let player g be a rejector, where g € M. Recall above definition of action
space, g’s action space is (0,7"), where g € T'and ¢ ¢ T'. T is a coalition that g proposes
and prefers to trade with. The mechanism requires that these invited players T\ {g}
must agree to join. And player g must pay them at the rate of 7. When the item(s)
demanded by g is available in T', the trading takes place; otherwise there is no trading.

Assumption ﬂ In chapter 4, it is assumed that any player in N \ {i} is willing
to accept the m when he or she is indifferent between acceptance and rejection.

The following section introduces player i’s payoff function in the subgame where
player ¢ is selected as the first mover. Let §2; be player ¢’s payoff function. If player ¢

is the seller, his payoff function €2; is the following:

o v(N) —m(N\ {i}) if all players in N \ {i} accept = (4.14)
Tl o(N\ M) —a(N\{MU{i}}) ifaset M of players reject m '
If player 7 is not the seller, his payoff function §2; is the following:
v(N) — (N \ {i}) if all N\ {i} accept 7
Q=S v(N\M)—n(N\{MU{i}}) if the seller ¢ M (4.15)
—m(N\{MU{i}}) if the seller € M

In any subgame where player ¢ is the first mover, ¢ invites the rest of players to

form a grand coalition by proposing a return vector 7. If all players in N \ {i} accept

!Same as|Serrano| (1995)), all players take participant cost and the cost of time/waiting into account.

A player will be willing to trade at rate of current 7, when both decisions bring her same payoff.
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the deal, player ¢ must pay them at the rate of w. Then player i’s payoff is the total
value that the grand coalition N can create minus the promised payment to N \ {i}.
Suppose there exist a set of rejectors M at the end of stage 2, and the seller is not
included in M. Player i achieves the worth of coalition N \ M by paying all players in
N\{MU{i}} at 7. When the seller is one of the rejectors in M, the worth of coalition
v(N \ M) is zero. But player i still has to pay all members in N \ {M U {i}} at =.

4.4 Results: Subgame Perfect Equilibrium and Core Al-

locations

This section focuses on the connection between subgame perfect equilibrium (SPE)
payoffs of the package bidding mechanism and core allocations of the strictly convex
TU game (N, v). Let player i be selected as the first mover. Consider any subgame that
starts immediately after player ¢ has proposed a payoff vector w. By the interpretation
of core allocation (shown in 4.11), we know that if the proposed payoff vector 7 is a
point in the C(N,v), then any player in N has no opportunity to rent “underpriced”
players to join in a coalition at 7 (no arbitrage opportunities). Therefore, all players
have no incentive to reject 7. In addition, if 7 is not a core allocation, Lemma 4.4.1
indicates that there exists at least one player in N \ {i} who could profitably reject =

and propose a new coalition.

Lemma 4.4.1. Consider any subgame that starts after player i has proposed a payoff
vector w. Suppose all assumptions mentioned above are satisfied, then the proposed w

is a core allocation if and only if all players within N \ {i} accept the 7.

Proof: See Appendix C.1
Consider any subgame which starts after player ¢ has proposed a vector m with
m; > v({i}). Let Q; be the set of core allocations where player i can gain his maximum

payoff. That is
Qi = {7 € C(N,v),such that Vo € C(N,v),m > z;} (4.16)

By Assumption 1 (strictly convex game) and [Shapley| (1971)’s theorem, we get Q; # 0
and

m =v(N)—v(N\{i}), for me€Q; (4.17)
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By moving firstly, player ¢ has incentive to propose the vector m, where ¢ can receive
his or her maximum payoff 7;, shown in (4.17). Lemma 4.4.2 indicates that, for player
1, to receive his or her maximum payoff, the proposed payoff vector m must be accepted

by all players in N \ {i}.

Lemma 4.4.2. Consider any subgame that starts after player i has proposed a payoff
vector m and all assumptions mentioned above are satisfied. If w is rejected by at
least one players in N \ {i}, player i’s payoff Q; from proposing 7 is strictly less than

o(N) = v(N A {i}).

Proof: See Appendix C.2

Lemma 4.4.2 indicates the first mover ¢ has incentive to propose a payoff vector,
which is accepted by all remaining players. Meanwhile, first mover ¢ achieves his or her
maximum payoff m;. Lemma 4.4.1 and 4.4.2 implies that, in any subgame where player
1 is the first mover, 7 is a SPE payoff if and only if 7 € @Q);.

Let SPE, be the subgame perfect equilibrium of the package bidding mechanism
with a fixed p (recall the definition of p in section 4.3: the probability that every player
is selected as the first mover). According the strict convexity assumption (Assumption

1), the implementation of the core is achieved in terms of expectation.

Theorem 4.4.1. Let the underlying TU game (N,v) be strictly convex, and let p be
the probability each player is selected as the firs mover. Then under Assumption 2,

m € C(N,v) if and only if 7 is the subgame perfect equilibrium outcome for any p.

Proof: See Appendix C.3

This result is related to Serrano) (1995), whose mechanism resembles an asset market
with a broker. Each player owns an indivisible asset. One of the players is randomly
selected as the first mover, denoted as a broker to centralize trade. The subgame starts
immediately after a broker has proposed an asset price vector. In Serrano| (1995), it is
shown that any subgame perfect equilibrium outcomes coincide with the core allocation
of the TU convex game.

The broker has monopoly power since he firstly proposes his most preferred prices,
while other players have to compete to win the assets they are interested in. As a
result, the monopoly power of a broker enables him to gain his top-ranked payoff in the

core. At equilibrium, the broker has incentive to propose the 7, where the all remaining

45



4. A PACKAGE BIDDING MECHANISM TO IMPLEMENT THE
CORE

players accept (no arbitrage opportunities). Again, by the strict convexity assumption,

the implementation of the core is achieved in terms of expectation.

At equilibrium, the mechanism works in the following way. Suppose there is one
seller, denoted as S; three bidders, denoted as Bj, By, Bs. The seller S has four items
(I1, I3, I3, 1), others hold nothing but compete to bid their preferred item(s).

Example 1: Given P = (S, By, By, Bs), in the first stage, the seller S proposes
a payoff vector m(4) = v(4),where m(4) = (75, 7B, 7By, T™B;). And, the proposed 7
satisfies condition (4.12) and (4.13). In the second stage, at equilibrium, all bidders
accept the m. Their action spaces, for example, are the following: Bi : (1, (Il)) )
B : (1, (11,12)), Bs : (1, (13,14)). The trading with accepters happens in this stage
according to the order of P. The resulting package allocations and payoffs are: S
receives Ty with zero items; B; gets item I; and payoff mp,; B2 only wins item Is but
receives compensation 7p,; Bs wins the package (I3, I4) and payoff wp,.

Example 2: Given P = (Bs, S, B1, B2), in the first stage, the bidder Bs proposes
a payoff vector 7(4) = v(4),where n(4) = (7p,,7s,7B,,7TB,). And, the proposed =
satisfies condition (4.12) and (4.13). In the second stage, at equilibrium, all players
accept the offer. Again, their action spaces, for instance, can be the following: S : (1,0),
By (1,([1)), B, : (1,([1,.72)). The trading with accepters happens in this stage
according to the order of P. The resulting package allocations and payoffs are: Bg
receives package (I3, I4) and payoff wp,; S still holds items I, I and earns payoff ms;

B and By both wins nothing but gets compensation np, and 7p,, respectively.

Chapter 4 presents a mechanism to resemble a package auction. The seller owns all
items and bidders compete to win the item(s) they are interested in. One of the players
is randomly selected as the first mover to propose a payoff vector m. The first mover
(either a bidder or the seller) has incentive to invite the rest of players to form the grand
coalition IV, because each player has positive marginal contribution to a coalition. At
the same time, the first mover must make a payment to each player in N \ {i} at the
proposed rate 7. Similar in Serrano| (1995)), Theorem 4.4.1 indicates that the first mover

has monopoly power to achieve his or her best core payoff, v(N) — v(N \ {i}).
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4.5 Conclusion

4.5 Conclusion

This chapter presents a package bidding mechanism to implement the core. The package
bidding process has three stages, and the anonymity of the procedure stems from the
random selection of first moving player. In the first stage, a randomly selected player
announces a payoff vector. In the second stage, remaining players decide to accept or
reject this deal sequentially. Finally, trading with rejectors takes place. The rules of the
mechanism are independent of the characteristic function. The key assumption here is
the strictly convexity of the TU game (N, v). As a result, Shapley| (1971)’ theorem can
be applied to prove the main results. That is, the implementation of the core can then
be achieved in terms of expectation

With the promise of core allocations, this package bidding mechanism avoids the
practical drawbacks (such as collusion, shill bidding) of VCG mechanism when items
are complementary. It is shown the subgame perfect equilibrium outcomes of this
mechanism coincide with the core of a strictly convex transferable utility game. The
monopoly power of the first mover enables him to achieve his top-ranked payoff in the

core.
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Chapter 5

Conclusion

The thesis applies game theory to analyze optimal toehold bidding strategies in the
context of takeover bidding competition (chapter 2), to study optimal design of voting
rules (chapter 3), and to develop a package bidding mechanism (chapter 4).

Chapter 2 introduces a two-stage takeover game and points a possible toehold bid-
ding cost. It looks like profitable to purchase a toehold prior to making any takeover
bid, given substantial control premiums. However the actual purchased toehold sizes
follow a bimodal distribution. Some literature argues that toehold benefits are not
withstanding. They find that there exists a toehold cost generated by target manage-
rial entrenchment — the opportunity loss of a target termination agreement. Toehold
bidding, in equilibrium, reduces toehold board expected private profits, result in a re-
jection of negotiation. Chapter 2’s two-stage takeover game models private takeover
stage as a sealed-bid second-price auction. Moreover, there is no managerial entrench-
ment at the first stage. Since, according to the general takeover process, the private
takeover stage is initiated by the target board. In other words, there is no threat of
target managerial resistance among invited potential bidders. At the beginning of the
second stage of this game, acquired toehold sizes become publicly known, and therefore
they are regarded as signals partially revealing each bidder’s willingness to bid.

The main result in chapter 2 is that, under some conditions, there exists a restricted
partial pooling Bayesian equilibrium, in which low-value bidders choose zero toehold
while high-value bidders pool their toehold acquisition decisions at one size. Signal
jamming occurs in equilibrium. At equilibrium, bidders play non-strict toehold acqui-

sition strategies, pretending to be other bidders with some probability, in order to avoid
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fierce competition in the second stage. It is shown that, under this two-stage takeover
model, bidders may face a toehold bidding cost — the opportunity loss of a profitable
resale. As a low-value bidder, by acquiring a toehold (deviate from equilibrium), his
toehold decision has no effect on low-value rival’s bidding strategy. That is, along the
equilibrium path, the low-value rival still bids her valuation. The low-value bidder with
some probabilities loses the target. He sells out his toehold at a relatively low price
and has to pay the resale cost. In terms of expectation, low-value’s toehold bidding
cost is higher than its benefit. As a result, at equilibrium, low-values optimally prefer
zero toehold.

Chapter 3 studies the optimal design of voting rules when each agent faces binary
choice. Each agent’s preference is assumed to be independently distributed. The de-
signer is able to use any non-transferable penalty on agents. After the agents report
their private valuations to the mechanism, the designer selects one alternative and a
penalty scheme to maximize ex-ante expected social payoff.

On one hand, the designer can choose a mechanism that allows costly stand-off,
including individual cost of time, any monetary or mental cost of negotiations, etc.
And then he sets up the penalty scheme to ensure each agent has incentive to truth-
fully report his or her private valuation. In this case, the mechanism elicits private
information, and a better alternative would be selected more often. The mechanism
also generates the expected penalty cost of eliciting private information. On the other
hand, the designer can choose a mechanism that achieves the agreement early, but does
not extract private information from agents. Therefore, it may not select the first best
more often. And the mechanism does not generate the expected penalty cost.

Chapter 3 finds that, under reasonable assumptions, the society cannot do better in
terms of utilitarian efficiency, than to follow a simple majority rule with zero penalty
on each voter. In this case, the simple majority may select a sub-efficient alternative,
but can achieve a higher welfare. The reason is simply because the expected penalty
cost is too high.

Chapter 4 presents a package bidding mechanism whose subgame perfect equilib-
rium outcomes coincide with the core of an underlying strictly convex transferable
utility (TU) game. This chapter adopts the concept of the core as a competitive stan-
dard to ensure the outcomes of the mechanism do not have the well-known practical

drawbacks of VCG mechanism. Lemma 4.4.1 and 4.4.2 implies that, for any subgame
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that starts after player ¢ has proposed a payoff vector m, the proposed m is the out-
come of subgame perfect equilibrium if and only if it is a core allocation. Since the
strict convexity assumption, the implementation of the core can be achieved in terms of
expectation. Moreover, the first mover with monopoly power achieves the top-ranked

payoff in the core.
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Appendix A

Proofs in Chapter 2

A.1 Proof of Proposition 2.3.1

Let II; (i = 1,2) denote bidder i’s equilibrium payoff, and let v; > va. At equilibrium,
bidder 1 wins the target and she pays v1 +d — €. So that

H1 :vl—(l—Gl)(v1+d—e) (Al)

Meanwhile, bidder 2 loses the target and sells out his shareholdings at his bid price.

Then his equilibrium payoff can be expressed as:
I, :02(U1+d—6) —d (A2)

Let bidder 1 deviate by bidding higher than (vq + d), given bidder 2 along the
equilibrium path. That is
61 >uv +d (A3)

Bidder 1 still wins the target at price v; + d — €. Let II; be bidder 1’s off-equilibrium
payoff when she deviates by increasing her bid. Then

1:[1 =V — (1 — 91)(’01 +d— 6) (A4)

(A.1) and (A.4) tells us that

I, = II, (A.5)

Let bidder 1 deviate by bidding lower than (v; + d — €), given bidder 2 along the
equilibrium path. That is
by <vi+d—e (A.6)
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Then bidder 1 loses the target and sells out her shareholdings at her bid price. Let II;
be bidder 1’s off-equilibrium payoff when she deviates by reducing her bid. So that

Then
Hl—ﬂl:Ul—(1—91)(1)1+d—6)—01b1+d (A8)
That is
Hl—ﬂlzel(vl+d—6—bl)+€ (A9)
Since (A.6), we have

Let bidder 2 deviate by bidding lower than (v; + d — €), given bidder 1 along the
equilibrium path. That is
by <vi+d—e (A.11)

Bidder 2 loses the target and sells out his shareholdings at his bid price. Let II, be
bidder 2’s off-equilibrium payoff when he deviates by reducing bid price. So that

Then
HQ—HQ:02(’01—1—d—6)—d—92b2+d (A.13)
That is
II, — HQ = 02(111 +d—¢€— QQ) (A.14)
By (A.11), we have
I, — HQ >0 (A15)

Let bidder 2 deviate by bidding higher than (v; + d), given bidder 1 along the
equilibrium path. That is
52 >uv +d (A.16)

Bidder 2 wins the target at the price (v; + d). Let Il be bidder 2’s off-equilibrium
payoff when he deviates by increasing his bid. So that

ﬁz = Vg — (1 — 92)(’01 + d) (A17)
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Then
1__[2—].:[2:92(U1+d—6)—d—U2+(1—92)(1)1+d) (A18)

By the definition of €, let € be zero. We have
H2 - 1:[2 = V1 — V2 (Alg)

Since vy > wo, it follows that

[y — Iy > 0 (A.20)

Therefore, we have shown that two bidders have no incentives to deviated from the

equilibrium bidding strategies shown in Proposition 2.3.1.

A.2 Proof of Lemma 2.3.1

Bidder 1’s true private valuation is v1. Let r1 and 71 be bidder 1’s announcement on

her valuation. That is

r<u (A.21)

and

T > 01 (A.22)

Let EII, and ETI; denote bidder 1’s off-equilibrium expected payoffs when he announces
r1 and T respectively.

Given bidder 2 along the equilibrium path, three scenarios are considered to com-
pute E1I; by reporting ry.
(i) v2 € [0,71]: Bidder 2’ equilibrium bid is (r; + d — €). Bidder 1 wins the target at
price (r1 +d — €). Under this scenario, bidder 1’s expected payoff is the following:

/On {m - (1 - T(Ll)) (ri+d— 6)]f(1)2)dv2 (A.23)

(i) vy € [r1,v1]: Bidder 2’s equilibrium bid is (v2 + d). Bidder 1 has incentive to win

the target at (v2 + d). Then bidder 1’s expected payoft is:

/Ul o1 = (1= 7(r0)) (02 + )] fw2)de (A.24)

Lt
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(iii) vg € [v1,1]: Bidder 2’s equilibrium bid is (v2 + d). Bidder 1 has incentive to lose
the target at his bid price (va + d — €). Then bidder 1’s expected payoff is:

1
/ [T(Q)(vg +d—¢€) — d} f(v2)dvs (A.25)

U1

By the uniform distribution of vy, we have
T1

ETL, = /0 [vl — (1 — T(ﬁ))(ﬁ—i— d— e)] dvy + /U1 [vl — (1 — T(ﬁ))(vg + d)} dvo

T1

—i—/l [T(Ll)(vg +d—e)— d} dvy
h (A.26)
O
Given bidder 2 along the equilibrium path, three scenarios are considered to com-
pute EII; by reporting 7.
(i) v2 € [0,v1]: Bidder 2’s equilibrium bid price is (71 + d — €). Bidder 1 has incentive
to lose the target by bidding (71 + d — 2¢). Then her expected payoff is

/0 b (7)1 + d — 26) — d] Fwa)dvs (A.27)

(ii) vg € [v1,71]: Bidder 2’s equilibrium bid price is (71 +d — €). Bidder 1 has incentive
to lose the target by bidding (71 + d — 2¢). Then her expected payoff is:

/ " (7)1 -+ d — 26) — d] F(wa)dvs (A.28)

v1

(iii) vy € [F1,1]: Bidder 2’s equilibrium bid is (v2 + d). Bidder 1’s best response is to
lose with her bid price (vy + d — €). Then her expected payoff is:

1
/ [T(?l)(W +d—e) - d] f(v2)dvs (A.29)

T1

By the uniform distribution of v, we have

EII, = /0” [T(a)(ﬂ d—2¢) — d} dvy + /1 [T(m)(w td—e) - d} dvs  (A.30)

T1
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A.3 Proof of Theorem 2.3.1

A.3 Proof of Theorem 2.3.1

By the definition of € and Lemma 2.3.1, we have
_ T1 1

F, = / (7)1 + d) — d]dos + / (77 (02 + d) — d] vy (A.31)
0 T1

Then
ET, = [T(ﬁ)(ﬂ +d) - d]?l + /1 (71 Jvadva + /1 [T(m)d - d} dvs  (A.32)

T1 T1

That is

E, = 7(71)(F1 + d)T1 — dF1 + %T(Fl)(l —71) + [T(Fl)d - d} (1-7) (A.33)

Then
ETL = 7(71)7} + 7(F1)71d — dry + %r(ﬂ) — %r(ﬂ)?f +7(r1)d
—7(71)71d — d + dry (A.34)
That is
ETl, = %T(ﬂ) + %T(Fl)F% +7(F1)d —d (A.35)

By finding the partial derivative of the function ETI; with respect to 71, we have

OFTI,
071

1 1
= T(F)rL 4 57 (1) + 57 (FOTE + 7 (F1)d (A.36)

By evaluating 8537;31 at v, we have

OETl,

1 1
= 7(v1)v1 + =7 (v1) + =7 (v1)v? + 7' (v1)d (A.37)
ory

2 2

T1=v1
By the definition of € and Lemma 2.3.1, we have

£t = [ o= (= re)) ot e [ [or = (12 700) 02+ )] o

Lt

—i—/l [T(Ll)(vg +d) — d} dvy
" (A.38)
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Then

Bl = oy = (1= )]+ ) + [ for = (170 02 + )]

T1

N /1 [T(ﬁ)(vz +d)_d}dv2 (A.39)

U1

That is

U1
EI, = viry — 1% — dry + drym(ry) + 7(r1)r? —I—/ [m - (1 - T(ﬁ)) (v2 + d)]dw

1

+ /1 [T(ﬁ)(w v d)— d] dvs
h (A.40)

By finding the partial derivative of the function EII; with respect to ri, we have

ET1
651 = v+ 7' (ry)rf +27(ey)ry + 7 () d + 7(ry)d - 20y — d
1
Y Ovy — (v2 +d) + (v2 +d)T(r
_|:Ul - (1 _T(ﬁl))(ﬁ +d)] +/ 1= (v )87' (v2 + d) (’1)dv2
r 1
1 —_—
+/ Qvatdrlr) =d (g a1)
V1 aﬁl
Then
JN
aarl = o1+ 7 (ry)rf + 27(ry)ry + 7' (ry)ryd + 7(ry)d = 20y —d — o1+ 1y
1

1 1 1
+d—7(r)ry — 7(r)d + 57’(&)1}% - y’(&)ﬁ +d(vr = 1)7 (1) + 57 (1)

o7 )R+ T )1 - ) (A42)

Then
o B e+ n(r(e) 1) + 7)) ) (A4
By evaluating 8%1 at vy, we have
affl = %T/(UI)U%“‘T,(UI)Uld‘i‘Ul (T(v1)—1) +%T’(v1)+d7'(v1)(1—v1) (A.44)
— lIry=n
If either ‘%E—?I}l ?1:v1> 0 or %E—Tzl < 0 is found, bidder 1 has incentive to deviate

ri=un
from the perfect separating Bayesian equilibrium.
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When 7/(v1) > 0, bidder 1 has incentive to deviate from the perfect separating Bayesian

equilibrium (PSBE), since
OETL
o7
When 7/(v1) < 0, bidder 1 has incentive to deviate from the PSBE, since

>0 (A.45)

T1=v1

OEI,
Iry

<0 (A.46)

=

Therefore we have shown that bidder 1 has incentive to deviate from the perfect sepa-

rating Bayesian equilibrium (PSBE), given bidder 2 along the equilibrium path.

A.4 Proof of Proposition 2.3.2

Suppose there is a symmetric, increasing and differentiable equilibrium bidding strategy.
That is
B(vi,0;) =b;  where i=1,2 (A.47)

Then
B~ b, 0;) =v;  where i=1,2 (A.48)

A guessed function (linear with two unknown parameters z and w) of equilibrium

bidding strategy (3(-) is set up, that is:
B(vi, 0;) = zv; +w (A.49)

This section proves bidder’s equilibrium bidding strategies under three pairs of
(01,02). At the beginning of the second stage of the game, bidders observe a pair of
(01,02) with three possibilities: (I) (0r,0r), (IT) (6x,0x), (IIT1) (01, 05).

(I) (0,0r): After Bayesian updating, it is known that ve € [0,9). By the uniform
distribution of ve, bidder 1’s expected payoff is the following:

V1 3}
EH1 = / |:?)1 — (1 — HL)B(’UQ, HL)} dUQ + / |:0Lb1 — d} dvg (A50)
0 v1
By imposing equation (A.48), we have

B1(b1,0L) g
Ell = / {m —(1- 9L)6(0279L)} dvz +/,3 0o — d} dvy  (A.51)
0

—1(b1,01)
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That is

B~ (b1,01)
o, = [ 01— (1= 61) B(va, 01) | dva + (6101 — d) [0 = 57 (b1.01)] (A.52)

Then

/Bil(blveL)
ElL — / (o1 = (1= 00) B(v3, 00) | dvs + 0110
0

—0rb187 (b1, 01) — 0d + (b, 01)d

Thus the first order condition is

[vl — (1—9L)ﬁ(ﬁ‘1(b1,9L),9L)] 0.0

1
B'(61(b1,01r))

+d ! =0
B (50w, 0n)

1
_ [QLvl +0rb1 6/(5—1(171, QL))]

That is

1
B'(v1)

]+dﬁ’(11)1) —0

vy — (1 —=0L)B(v1, 9L)] ﬂ’(lvl) + 00 — [9Lv1 +0rby

The (A.49) tells us that
B'(v1) = 2

Thus the first order condition becomes
1 R 1 1
[vl (1 01)B(v1, eL)} S 00— [em + 9Lb17] td-=0
z z z

Then
by = (1 — ZHL)’Ul + 2050 +d

By (A.49), we have

z=1-— 20y
Hence
1
z =
1+6L
By (A.49) and (A.59), we get
w= 2050 +d
Since (A.60), it follows that
= g
= 1+ GL
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A.4 Proof of Proposition 2.3.2

Thus bidder 1’s optimal bidding strategy is the following:

1 010

Blvr,01) = 1+0," T 110,

+d (A.63)

By repeating this process, we can get bidder 2’s optimal bidding strategy. That is

1 010

9 pu—
5(1}27 L) 1+9LU2+ 1+0L

+d (A.64)

O
(IT) (Ogr, 0 ): After Bayesian updating, it is known that vy € (v, 1]. By the uniform
distribution of v, bidder 1’s expected payoff is the following:

Bl = /: (o1 = (1= 0m) Blva, 1) | s + /vl (01t — d]dv, (A.65)

By imposing inverse function (A.48), we have

1

B~ (b1,0m)
et = [ (01— (1= 0n) B2, 011) | vz + /ﬁ Oy —d]dvz (A.66)

—1(b1,0m)

That is

— /51<b1,eH> [0 = (1= 011) 803, 0m1) | dvs + (0b1 — ) [1 = B~ (b1,0m1)] (A.67)

Then

B71(b1,0m) 1
ETl; = / [01 — (1—0g)B(v2, QH)}CZUZ +0pbr — 0gb18~ (b1, 01)
—d+dB " (b1,0n) (A.68)

Then the first order condition is the following:

+ 0 — 0B (b1,0m)

v —(1— (gH)g(ﬁ_l(bhﬁH),@H)} ﬁ/(ﬁl(lbl 1))

1 1

—Ob d = A.
G o) B ) A
That is
vy — (1 —0g)B(v 9)L+9 —0u B (b1, 0n) — Opb I
1 H 1,VH 5,(1)1) H H 1,VH H 16/(1’1) B/(Ul) -
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By applying (A.48) and (A.49), we have

1 1 1
vy — (1 —0g)by ;—G—QH(l—Ul)—QHbl;—i-d; =0 (A.71)
Then
by = (1 —z20g)v1 + 20 +d (A.72)
By (A.49), we have
z=1-—20g (A.73)
Then
1
= A.74
S + 0 ( )
And by (A.49), we have
w=z20g+d (A.75)
Since (A.74), it follows that
O
= d A.
W= o + (A.76)
Therefore, bidder 1’s optimal bidding strategy is:

1 Om

0 p—
B(v1,0mH) 1+9HU1+ 50,

+d (A.77)

By repeating this process, we can get bidder 2’s optimal bidding strategy. That is

1 0

Blv2,On) = Tgv2 + g0

+d (A.78)

O

(IT1) (6r,0p): Let II; (i = 1,2) denote each bidder’s equilibrium payoff. At equi-

librium, bidder 1 loses the target and sells out her shareholdings at her bid (0 4+ d — €).
Meanwhile, bidder 2 wins the target at (0 + d — €) per share. So that

{m =0 (b+d—¢) —d (A79)

ngvg—(l—eH)(@—f—d—E)

Let bidder 2 deviate by bidding higher than (v + d), given bidder 1 along the
equilibrium path. That is
by >0 +d (A.80)

Bidder 2 is still the winner. Thus his off-equilibrium payoff is the following

ﬁ2:v2—(1—9H)('[)+d—€) (A.81)
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Then (A.79), (A.81) tells us that
I, =11, (A.82)

Let bidder 2 deviate by reducing his bid, given bidder 1 along the equilibrium path.
That is

by <tv+d—e (A.83)

Bidder 2 loses the target and then sells out his shareholdings at b,. Thus his off-

equilibrium payoff is

I, = 0pby —d (A.84)
Then, we have
Iy — Iy, =ve+ (g —1)(0+d—¢€) —O0gby, + d (A.85)
That is
I —1IIy = (v2—0) + 0p(d+d—e—by) +¢€ (A.86)
Since vy > v and (A.83), we get
[y —1II, >0 (A.87)

Let bidder 1 deviate by reducing her bid, given bidder 2 along the equilibrium path.
That is
by <Vv+d—ce¢ (A.88)

Bidder 1 is still the loser. Thus his off-equilibrium payoff is

I, = 0,0, — d (A.89)
Then
I -, =0p(v+d—¢€)—d—0rb; +d (A.90)
That is
Hl—ﬂl :QL(@—l-d—é—Ql) (Agl)
Since (A.88), we have
I, -1, >0 (A.92)

Let bidder 1 deviate by increasing her bid, given bidder 2 along the equilibrium
path. That is
61 >04+d (A.93)
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Bidder 1 becomes the winner. Then her off-equilibrium payoff is
T =v; — (1 —05) (5 +d)
By the definition of ¢, we have
I~ =0,(0+d) —d—vy + (1 —0L) (0 +d)

That is
H1 *ﬁl =0 — U1

Since v1 < 0, we have

Hl—ﬁ1>0

(A.94)

(A.95)

(A.96)

(A.97)

O

Therefore we have shown that each bidder’s optimal bidding strategies are expressed

in Proposition 2.3.2.

A.5 Proof of Theorem 2.3.2

Let Eﬂﬁr“th and E’H%he“t denote bidder 1’s expected payoffs when she truthfully and

fraudulently claims her value, respectively.

Given bidder 2 along the equilibrium path and suppose v; € [0,0), by the opti-

mal bidding strategies in Proposition 2.3.2 and uniform distribution of vy, bidder 1’s

expected payoff at equilibrium is the following:

truth _ v B B v2 fr0
It _/0 [or - (@ eL)(1+0L+1+eL+d)}dv2

g vy 00 ! )
+/111 [GL(lJreLJr1+9L+d)—d]dv2+/13 [HL(U—Fd—e)—d}dvg

By the definition of €, let € be zero. Then by simplifying (A.98), we have

0L -6y

EHtT‘uth — |:
1 vl 1+ GL

1—0)d|vy + Tk o

( L) }211+2(1+(9L)Ul |:1+0L111
92

4L 17+«9Ld](@—v1)—d(@—vl)+(9Lﬁ+9Ld)(1—®)—d(l—@)
146y
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Then

+

_ 1*9L _ GL }UQ |:_9L(1*9L) 9L _ 9%
214+6r) 1461 ! 1+460; 14+6;, 146y
+[—U1(1—9L)+9L(17—Ul)—(@—01)4-91:(1—@)—(1—6)}d~|—0]j;

(A.100)

EITtruth — [1 ]@vl

Thus
1 —0
truth __ —, 2 L .2 N _
EIy™™ = 501 + [1 n HLU +0r0+ (0L 1)d} (A.101)

Let bidder 1 fraudulently claim his private value through 6, = 6y, given bidder 2

along the equilibrium path. After Bayesian updating, bidder 2 believes that v, € (0, 1].
If vg € [0,0), bidder 2’s optimal bid is (0 +d —€). By foreseeing this, bidder 1 prefers to
lose the target at (0 +d — 2¢). If va € (0, 1], bidder 2’s optimal bid is 15— + 1-?7}9111 +d,
which is higher than (0 4 d). For foreseeing this, bidder 1 prefers to lose the target at
(0 4+ d). Then, by the uniform distribution of ve, bidder 1’s off-equilibrium expected

payoff denoted by EHfhe“t can be expressed as:

) 1
FITcheat — / (0110 +d — 2¢) — d]dvy + / (0310 + ) — d| v (A.102)
0 3

By the definition of €, we have

ETIS™% = 050 + d(0g — 1) (A.103)
Then
1 —
ETTeth — progheat — —¢2 4 [ oL g2 + 004 (0 — 1)d| — 050 —d(0y — 1) (A.104)
2 1406y
That is
1 —6
BT — BTt = v 4 [ t® = (03 — 0,)0 + (61, — 011 )d (A.105)
2 1+ 6r

When v; = 0, let y be ETI{™%" — ETI{"¢at. Then the quadratic function y can be

expressed as the following:

0, . A
=1 gL 02 — (0 — 0)0 + (0L, — Op7)d (A.106)

The axis of symmetry of y, hence, is:

—(0y —01)

_o9=0L
2 1401,

<0 (A.107)
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When the discriminant of quadratic function y is positive, together with (A.107),

quadratic polynomial y has two negative roots, since

0 =0 (A.108)

—0g
10,

According to above analysis on y’s graph, it is obvious that, for v; = 0, we have
EITiruth _ priheat < g (A.109)

When the discriminant of quadratic function y is non-positive, for v; = 0, we have
ETIreth — prisheat < o (A.110)

Therefore, bidder 1 with zero valuation always has incentive to deviate from this partial

pooling equilibrium.

A.6 Proof of Proposition 2.3.3

Let II; (¢ = 1,2) denote bidder i’s equilibrium payoff. Let by be bidder 2’s bid price,
where b, < ba. Let II, be bidder 2’s off-equilibrium payoff. For bidder 1 without any
toehold, it is known that truthful bidding is weakly dominate strategy. By observing
(0,05), bidder 1 loses the target. So that

I, =0 (A.111)

Given bidder 1 along the equilibrium path, bidder 2 is the winner at bid price v;. So
that
Il = vy + (1 — QH)Ul (A.112)

Suppose bidder 2 deviate by reducing his bid, given bidder 1 along the equilibrium
path. That is
by < by (A.113)

By the range of bs, we know that
by <0 (A.114)

If by < v1, bidder 2 loses the target and his payoff becomes

I, = Oby (A.115)
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Then
Iy —IIy = vy — (1 — O )v1r — Ombe (A.116)
That is
Iy —II, = (v2 — v1) + O (v1 — ba) (A.117)
So that
I, — I, > 0 (A.118)

If by > v, bidder 2 is still the winner and his payoff is
I, = vy + (1 - QH)’Ul (A.119)

So that
I, =11, (A.120)

Then, by reducing bid price, bidder 2 reduces his payoff with some probabilities. There-

fore, bidder 2 has no incentive to deviate from the equilibrium bidding strategy.

A.7 Proof of Theorem 2.3.3

Let Eﬂﬁmth and EH‘fhe“t denote bidder 1’s expected payoffs when she truthfully and
fraudulently claims her value, respectively. This section has two parts indexed as (i)
and (ii) . Part (i) proves that, given bidder 2 along the equilibrium path and v; € (0, 1],
there is no incentive for bidder 1 to deviate from the equilibrium. Part (ii) proves that,
given bidder 2 along the equilibrium path and v; € [0,0), bidder 1 has no incentive to
deviate.

(i): Given bidder 2 along the equilibrium path and suppose v; € (9,1], by the
uniform distribution of vo, bidder 1’s expected payoff at equilibrium is the following:

EITtruth — /Oﬁ ['Ul —(1— 6H)U2:| dva + /vl [m — (1= 0m)(

V9 n Oy
14+0n 1+0y

1
(% 9H

+/Ul [HH(1+9H+ 1+9H+d)—d]dv2

(A.121)

+ d)] dvg

2 1+ 6y
1=0m 2 o On 0%,
(2(1+9H))( i—07) [1+9Hv1+1+9H+9Hd}(1 v1) —d(1—v) (A.122)
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That is
10y Orr 1- 0y  1-0y 1. O (1 — 0r)
EHtT‘uth: 1— _ 2 _ 2 _ 7
! [ (1 + 0r) 1+0H}”l+[ 2 +2(1+9H)] [ 1+ 01
O 62 R
g T T | ) = 0) (=) — (L)

02 O(1—0g)

T+6g " 1+60n ©

(A.123)
Then
1 02, — 0 Op(1—0g)
truth __ — 2 H H | .2 H H . N
Bt — Zo? 4 [2(1 +9H)}v + [71 Ta, G 011)d] 0
0%
+ [1 o d(On 1)} (A.124)

Let bidder 1 fraudulently claim her private value through 6; = 0, given bidder 2
along the equilibrium path. After Bayesian updating, bidder 2 believes that v; € [0, ).
If vy € [0,0), bidder 2’s optimal bid is ve. By foreseeing this, bidder 1 prefers to win
the target at vy. If vy € (0, 1], by simplifying calculation, Proposition 2.3.3 tells us that
bidder 1’s best response can be vo. Then by the uniform distribution of vy, bidder 1’s

off-equilibrium expected payoftf denoted by Eﬂﬁhmt can be expressed as:

ETISheat — /0 ’ [vl . Ug}dvg + / b [vl - uQ]dvg (A.125)

Then
1
Ell'ihe“t = 721)% (A.126)

Let y be ETI{“th — ETI$Mat, So that

0h —Ou 7.0 [0(1—0u) . 0%
~ 12014 05) 1. TUu- —1)| (A.12
[2(1+9H)}U +[ 1ro, T QH)d}”JF[lJr@HJFd(@H )| (A127)
Let
a< U (A.128)
T 1-06% -
That is
0% > d(1 - 6%) (A.129)
Then, we have
0% > d(1+0m)(1 - 0n) (A.130)
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Then
2

GH
-1)> A.131
e d(0 = 1) 2 0 (A131)

Thus discriminant of quadratic function y is positive, since

O (1 —0pr) 2 20g—0%)1 0%
A= [ZHETOH) g
110y + (1= 0n)d 1+0n Ll1+6g

The axis of symmetry of function y is

+d(0g —1)| >0 (A.132)

O (1—0p)
0a(=0m) | (1 - 6y)d
1405
_ ; o >0 (A.133)
2(1+0x)

In addition, the quadratic polynomial y has two real roots — one positive and one

negative, since

0%
+ d(@H — 1)
1+9H
7 on <0 (A.134)
2(1+0x)

Based on above analysis on quadratic function y’s graph, it is obvious that (ETI{ " —
ETI§heat) is positive, given the condition (A.128).
(ii): Given bidder 2 along the equilibrium path and suppose v; € [0,9), by the

uniform distribution of vy, bidder 1’s equilibrium expected payoff is the following:

v1
EITiruth — / (v1 — va)dvy (A.135)
0
That is
1
EITjruth — 51}% (A.136)

Let bidder 1 fraudulently claim her private value through 6#; = 0y, given bidder 2
along the equilibrium path. After Bayesian updating, bidder 2 believes that v; € (0, 1].
If vy € [0,v1], bidder 2’s optimal bid is vy. By foreseeing this, bidder 1 prefers to win
the target at price vy. If vy € [v1,0), bidder 2’s optimal bid is still va. But bidder 1
has incentive to lose the target by bidding at vy. If vy € (9, 1], bidder 2’s optimal bid is
1_1’75}{ + 1_?_7"9’1{ + d, which is higher than ©. By foreseeing this, bidder 1 has no incentive
to win the target. That is, bidder 1 bids at ¢ to lose the game with certainty. Thus,
by the uniform distribution of wve, bidder 1’s off-equilibrium expected payoff denoted
by ETI§" can be expressed as:

vy ) 1
ETISheat — / {vl —(1- eH)U2:| dvy + / [9}17}1 - d} dvg +/ [QH@ - d] dvy

0 U1 0
(A.137)
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Then
1-40
ETIShet = 2 — 02 4 0010 — 00 — d(D — v1) + 0gd — 0 0° — d(1 — 9)
(A.138)
That is
1-46
Enshet = (Y02 4 (0o + d)vy — Od? + 0o — d (A.139)
Let y be ETI{#h — ETI§"¢at. Then we have
6
y = 7%% — (0pd + d)vy + (00 — 00 + d) (A.140)
The axis of symmetry of quadratic function y is positive, since
_=Onotd) (A.141)
On

Then, for any v; € [0, 1], if y(v1) is positive, its discriminant A must be non-positive.
That is
A= 0yt +d)?* — 205 (050% — 0o+ d) <0 (A.142)

Then
A= —039% + (20pd + 20%)0 + d* — 205d < 0 (A.143)

Let D be the discriminant of function A. That is
D = (20d + 26%)1 + 46%(d* — 20d) (A.144)

Then
D = 46%(2d* + 6%) (A.145)

In addition, we claim that the smaller root 05 of A is less than 1. The proof of this

claim is the following. It is obvious that
d?+6% >0 (A.146)

That is
2d? + 0% > d? (A.147)

\/2d + 0% > d (A.148)

Then
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Then

d+0p —/2d+ 0% < 0 (A.149)
d+ 0y — \/2d + 62
" (A.150)

O

That is

Thus, we have

201 (d + 0p7) — 2057+/2d% + 0
(d+ On) madl 0y (A.151)
262,
Then
—205(d + 0p) + 205/2d% + 0
(d+ H);ez 1 oy (A.152)
—4YH

By quadratic formula, we have

by < 1 (A.153)

Thus, if v satisfies the following condition, then the output of D is always negative.
0 < g (A.154)

That is

d+ 0 — \/2d2 + 62
o< a (A.155)

O
Then, when condition (A.155) is satisfied, (ETI{"“h — ETI{heat) is positive. Since two
bidders are symmetric, then we have shown that, under conditions (A.128) and (A.155),

bidders have no incentive to deviate from this partial pooling Bayesian equilibrium.

A.8 Proof of Theorem 2.3.4

Let EH?S denote bidder 1’s off-equilibrium expected payoff by purchasing 6, where
0s < 0. This section has two parts: (i) and (i7). Part (i) shows that bidder 1 with
valuation v; within the range (9, 1] has no incentive to acquire 4, given bidder 2 along
the equilibrium path. Part (i) shows that bidder 1 with valuation v; within the range

[0,0) has no incentive to acquire 65, given bidder 2 along the equilibrium path.
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(7) Let bidder 1 with v; € (0, 1] deviate from the equilibrium by acquiring 6. Bidder
1’s off-equilibrium expected payoff is expressed as:

= [ - - ol +
| v

v1

O
140

o1 = (1= 0) (=52 + +d)]dva

1+ 0

10 1 %1 o _dla
+/Ul[s(1+0HU1+1+9H+)—}02

(A.156)
Recall bidder 1’s equilibrium expected payoff when her valuation v; within (0, 1], we
have
EHtruth — /ﬁ |:1)1 — (1 — 9H)U2:| dvg + /vl [7)1 — (1 — QH)( 2 + 0H + d)]dvg
1 0 I} 1 + 9[—[ 1 + eH

1
V1 9H

+/vl [QH(1+9H+ 1+0H+d)—d]dvg

(A.157)

truth
Hl

By comparing with the integrals of EH?S and E , it is obvious that

ETIreth > prids (A.158)

Then bidder 1 has no incentive to acquire 65, given bidder 2 along the equilibrium path.
(17) Let bidder 1 with v; € [0,9) deviate from the equilibrium by acquiring 0.
Bidder 1’s off-equilibrium expected payoff is expressed as:
vl ) 1
Bl = /0 [Ul (- es)w}dvz n / [931)1 - d} dvs + / [956 - d} dvs  (A.159)
1 )

Recall bidder 1’s off-equilibrium expected payoff when her valuation vy within [0, ),

we have
V1 ) 1
EH(I:heat — / |:’U1 _ (1 _ OH)UZ] dvy + / |:9H’U1 — d:| dvy + / [GH@ — d] dvg
0 U1 0]
(A.160)
By comparing with integrals of EH?S and EHfheat, it is obvious that
ETYs < EIIgheat (A.161)

Theorem 2.3.3 tells us that, for v; € [0,9), if condition (A.155) satisfied, ETI{"% is
strictly higher than ETI{"*%. Thus, we have

ETIY: < ETIheat < EIIYuth (A.162)
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A.8 Proof of Theorem 2.3.4

Therefore, we have shown that bidder 1 has no incentive to deviate from the equilibrium
by acquiring 6, given bidder 2 along the equilibrium path. Because two bidders are

symmetric, two bidders have no incentives to deviate from the equilibrium.
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Appendix B

Proofs in Chapter 3

B.1 Proof of Proposition 3.3.1

This section shows the voting mechanism is Bayesian incentive compatible if and only if
condition (3.14) and (3.15) are satisfied. The proof has two parts: (I) and (II). (I) shows
that if the voting mechanism is Bayesian incentive compatible, then condition (3.14)
and (3.15) are satisfied. (II) shows that if condition (3.14) and (3.15) are satisfied, then
the voting mechanism is Bayesian incentive compatible.
(I) Recall the definition expected payoffs of agent i € Na: m;(v;) and 7;(v;, v)).
That is
7i(vi) = Eo_; [viPa(vi, v) — ti(vi, v—3)] (B.1)

7i(vi,vl) = Ev,i[UiPA(UZ/-, v_g) — t;(vi,v_;)] (B.2)

Let 7;(v}) be #’s expected payoff when he truthfully reports his valuation v}, given

remaining players’ truthful announcements. That is

mi(v;) = Ey_,[viPa(vj,v_i) — ti(vj,v_4)] (B.3)

(2

And let 7;(v},v;) be i’s expected payoff when he cheats his valuation by reporting v;,

given remaining players’ truthful announcements.

Ti(v;,v5) = Ey_, [0;Pa(vi, v_;) — ti(vi, v_;)] (B.4)
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We can change the express of 7;(v;, v}) by adding and subtracting item E,,_,v;Pa(v},v_;).
That is

7i(vi, ) = Ey_, [ViPa (v, v—;) — ti(vl,v_;) + v;Pa(v],v_;) — viPa(v},v_;)] (B.5)

Then
i(vi, v;) = mi(v) + (vi — V) By, Pa(vj, v—;) (B.6)
Similarly, we can change the express of 7;(v},v;) by adding and subtracting item

E, ,viP4(vi,v_;). Then we get
7i(vl,v) = mi(v) + (v — v)) By, Pa(vi, v—;) (B.7)

By Bayesian incentive compatibility, we have

mi(vi) > 7i(vi, V) (B.8)
and
mi(v;) > 7i(vf, vi) (B.9)
(B.6) and (B.8) imply that
mi(vi) > mi(v)) + (vi — v}) By_, Pa(v,v_s) (B.10)
Then )
o Pa(vlyv_y) > M0 Zmilvi) (B.11)
vl — v
(B.7) and (B.9) imply that
Fi(Ug) > m(vi) + (Ui — U;)Ev_iPA(Ui,U_i) (B.12)

Then
mi(v;) — mi(vq)
vl — v

Then (B.11) and (B.13) together implies that

Z EU_iPA(U’Z7 v—i) (B13)

mi(v;) — mi(vi)

Ev,iPA(U@/'gv—i) 2 v U/ — Z Ev,iPA(UuU—i) (B14)
i i

Suppose v, > v;. Then (B.14) indicates E, ,P4(v,v_;) is a nondecreasing function.

That is

aaviEviPA(Ui, ’U,Z') Z 0 (B15)
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In addition, letting v, — v;, (B.14) also implies that

dim(vi) = E,_, Pa(vi,v_;) (B.16)
Therefore, we have shown that the Bayesian incentive compatibility implies (3.14). We
can duplicate above proof for agent j in group Np.

(IT) Let agent 4’s true valuation be v;, but he announces v,. Suppose v; > v}. It is

obvious that
v;

mi(vi) = m;(0) + mi(s) o (B.17)
and /
mo(v)) = mi(0) + mi(s)| (B.18)
That is
Vs d
R ——" / 4 (s)ds (B.19)
0 ds
and .
v
(W) = 75(0) + / 4 (s)ds (B.20)
0 ds
In (3.14), (i) implies that
mi(v;) = m;(0) + E, ,Pa(s,v_;)ds (B.21)
0
and ,
mi(v]) = mi(0) + / "B, Pa(s,v_;) ds (B.22)
0
Given v; > v}, therefore, we have
mi(v;) — mi(v)) = / Z E, ,Pa(s,v_;)ds (B.23)
Since E,_,Pa(v,v_;) is a nondecreasing function (shown by (ii) in 3.14)
mi(vi) — m(vl) > / By Pa(vlv_i)ds (B.24)
That is |
mi(v;) — mi(vg) > EviPA(vg,vi)/ 1ds (B.25)
Then
mi(vi) — mi(vi) > (vi = vj) Ey_, Pa(vi, v;) (B.26)
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Thus
mi(vi) > mi(v;) + (vi — vi) Ey_, Pa(v}, v_;) (B.27)

By the definition of 7;(v;,v}) in (B.6), we have

/

i (V) = i (vi, v)) — (v — V) Ey_, Pa(v},v—;) (B.28)
By substituting (B.28) into (B.27),

7Ti(’l)7;) Z ﬁi(vi,vl) (B.29)

)

Then (B.29) implies the Bayesian incentive compatibility. We can duplicate the proof
in (II) for agent j in group Np.
Therefore we have shown that the voting mechanism is Bayesian incentive compat-

ible if and only if for (3.14) and (3.15) are satisfied for i € N4 and j € Np.

B.2 Proof of Lemma 3.3.1

Let E,, be the expectation over the distribution of v;. For all i € N4, agent ¢’s ex-ante

expected payoff is:

Eviﬂ'i :/ Wl(vz)f(vl) dvi (B30)
0
Then B
Eviﬂ'i = —/ ﬂ'i(vi) (— f(vl))dvz (B31)
0
By integration by parts, we have
v adm(vi)
Eviﬂ'i = —Wi(vi)[l — F(UZ)] + [1 — F(Uz)] dvi (B32)
0 0 dvi
That is B
Ydmi(v;
By = mi(0) + / ”d(”) [1— F(v;)] dv; (B.33)
0 Vi

The Bayesian incentive compatibility condition (i) in Proposition 3.3.1 tells us that

By — /O 1= Fo)| By Pa(vs,vs)dvs + 74(0) (B.34)
Then 7[ (w0
Y11 — F(v;
By — /0 BB Pt - () + 7,0) (B.35)
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By the definition of H(v;), we get

Eviﬂ'i = /EH(Ui)EUZ.PA(UZ‘,Ui)f(Ui) dv; + 7TZ'(0) (B.36)
0

Let E be the expectation over the distribution of v Then

Fmi — /0 /0 H(03)Pa(vi,v_) £ (v) dv + 7:(0) (B.37)
—_—

where dv = dvy - - - dv,,. Thus

Em; = E[H (v;)Pa(vi,v—;)] + m(0) (B.38)
By duplicating above proof for agent j € N, we have

Ernj = E[H (vj)Pp(vj,v—;)] + 7;(0) (B.39)

Therefore, we have shown equations (3.16) and (3.17) in Lemma 3.4.1

B.3 Proof of Theorem 3.3.1

This section solves the maximization problem in chapter 3. By the definition of social

ex-ante expected payoff, for all : € N4 and all j € N, we know that

BTl =Y E[H(v)Pa(vi,v-)| + Y E[H(vj)P(vj,v_;)] + Y mm(0)  (B.40)

iEN4 jENB meN
subject to:
0
aiviEviiPA(’Ui,’Ufi) Z 0 (B41)
0
ail)quJ_jPB(Uj,U,j) > 0 (B42)
PA(’UZ',U_Z') > 0 (B.43)
PB(U]',U_]') > 0 (B44)
Py(vi,v—;) + Pp(vj,v_j) =1 (B.45)
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By Lemma 3.3.1, we have

Ell = Z /H vi))Ey_, Pa(vi,v_;) f(vi)dv; + Z /H vj)Ey_; Pp(vj,v_j) f(v;) dvj

’LENA ]EN
+ > mm(0)
meN
(B.46)
For all m € N, 7,,(0) is non-positive, since
Tm(0) = —Ey_ tm(0,v_p,) (B.47)
Now suppose 7,,(0) is zero. That is, for all m € N
tm(0,v_) =0 (B.48)

Then we have the bound on FETI, indexed by bound (I). So that

EI< Y /H Vi) By_, Pa(vi,v_i) f(vi)dvi + Y /H v;)Ey_, Pp(vj,v—;) f(v)dv;

i€N4 JENB
(B.49)

Since function H(v;) is a decreasing and E,_, P4(v;,v_;) is a nondecreasing, then the
expected value of the product is no more than the product of the expected values. Thus

we get the second bound on FETI, indexed as bound (II), where I < II. Then

EIl < Z/ f F(vi) fv) dvz/ E, ,Pa(vi,v—;) f(vi)dv;
Uz

IEN A
+ Z/ ”ﬂ f(v; dvj/ By, Pp(vj,v_;)dv; (B.50)
JENB
Thus
EII < E/ [1— F(v; dvz/ E,_,Pa(vi,v—_;) f(v;)dv;
1EN A
+ Z/ 1-F vj)]dvj/ E,_,Pp(vj,v_;)dv; (B.51)
jENg
That is
EHS/ 11— dv Z/E” s Pa(vi,v_;) f(vi)dv; + Z/E” i Pe(vj,v _])dv])
0 IEN A JENgE

(B.52)
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Alternatively, we have

EII < /Ov[l —F(v)}dv(E 3 Pa(viv-i) +E Y PB(uj,v,j)) (B.53)

€N JENB

By the definition of Py(v;, v—;) and Pg(vj,v—;), we have

EII < /Uu _ F(v)]dv(|NA|EPA(vi,v,i) +(IN| - |NA|)EPB(UJ-,U,]-)) (B.54)
0
Then

ETl < /Ov[l—F(v)]deNAIE[PA(w, v_i)+Pp(vj,v_j)] +(IN|=2|Na|) E[Pp(v;, U—j)})

(B.55)
By equation (B.45), we get
EII < /0 T — F()]dv(INa| + (N| = 2INaDE[Pa(v;,v-5)] ) (B.56)
Suppose N4 is the majority group, that is, |[N4| > @, then
IN| —2|Na|l <0 (B.57)

Given N4 is the majority group, by (B.44), we know that the term [|N|—2|N4||EPg(v;,v—;)
is negative. By letting Pg(vj,v_;) be zero (or P4 (v;,v—;) = 1), we have the third bound
on ETI, indexed as bound III, where 11 < III. That is

EIL < [N /0 6[1 — F(v)]dv (B.58)

We claim that, to implement the bound III of ETI, the voting mechanism should

use zero penalty scheme for any agent m € N . That is, for all m € N,

Meanwhile, the collective decision must base on simple majority rule.

Given |Ny4| > @, by using simple majority rule, the voting mechanism assigns
Ps(vi,v_;) and Pp(v;,v—_;) to one and zero, respectively. Moreover, the penalty on
each agent is zero. Then, for all i € N4 and j € Np, we know that k; = 1 and k; = 0.

Thus, for all ¢ € N4, agent i’s ex-ante expected payoff is the following

E’Uiﬂ-i = /v Uif(vi)dvi (B60)
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The zero penalty scheme implies each individual’s expected payoff is zero in group Np.

Therefore the ex-ante social expected payoff becomes

El= Y /Ovvif(vi)dvi (B.61)

1EN 4
That is _
v
=3 - / wil— f(v3)]dvs (B.62)
1€ENA 0
By using integration by parts, we have

v

En=Y" (—vi[l—F(vi)]

1EN 4

. /Ov[l - F(vi)]dvi> (B.63)

0

Thus, we social ex-ante expected payoff reaches the bound III. That is

Bl = [N ( /Ovu - F(v)]dv) (B.64)

Therefore we have shown that, under this direct and incentive compatible voting mech-
anism, the optimal social decision follows majority rule and there is no penalty on any

individual.

B.4 Matlab Codes

(1) distrib.m sets up the function, which takes a vector of random variables ux uniformly
distributed on [—1, 1], where negative value indicates an agent preferring A and positive
one indicates an agent preferring B. It returns x from a Gamma distribution and the
inverse hazard rate H evaluated at z.

Codes:

function [z, H] = distrib(uz)

global shape scale N

x = zeros(N,1); H = z;

for

il =1:length(ux)

p = (ua(il) +1)/2

si = sign(uz(il));

xx = gaminv(p, shape, scale);
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F = gamcdf (zz, shape, scale);

f = gampdf (xx, shape, scale);

x(il) = si x zx;

H(il) = si* (1= F)/f;

end

(2) Net_Wel.m calculates the “net welfare” for these two mechanism. In it, the net
welfare nw_sm1 and nw_V CG from simple majority and the alternative mechanism is
calculated based on Lemma 3.3.1.

Codes:

function [nw_sm1,nw_VCG| = Net_Wel(ux)

global N

z = zeros(N, 1);

[ac H| = distrib(ux);

x(zsfzmte( ));

H(zsfzmte( ));
H(H = 0);

sig-x = sign(z);

ind_x = sign(sum(sig-x));

a_sm = (ind_x +1)/2

sum-x = sum(z);

a-VCG = (sign(sum_z)+1)/2

HA =min(H, z);

HB =mazx(H,z);

NetWelfareA= —sum(HA)/N;

NetWelfareB= sum(HB)/N;

xA = min(x, 2);

xB = maz(z, 2);

AllocWelfareA= —sum(zA)/N;

AllocWelfareB= sum(zB)/N;

nw_sml = (1 —a_sm) * AllocWel fareA + asm x AllocWel fareB;
nw VCG = (1 — ayCQG) * NetWelfareA + ayCG « NetWel fareB;
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(3) Mean_Net_Wel.m calculates the mean of “net welfare”, which approximates

the expectation in Lemma 3.3.1.

Codes:

function [mean_nw_sml, mean_nw_ VCG| = Mean_Net_Wel
global N r

tic

for

rl=1:rxz=rand(N,1)*2—1;

[nw_sml(rl),nw-VCG(rl)] = Net_Wel(x);

end

toc

mean_nw_sml = mean(nw_sm1l);

mean_nw_VCG = mean(nw_VCG);

(4)shape_is_five_majority_better.m can be run directly. It should be mentioned
here, this file sets up the parameters of the model for Example 1. N is the number of
agents in the society; r is the number of repetitions to get the mean. And the shape
and scale are parameters of Gamma distribution G(5,1).

Codes:

clear all

global N r shape scale

N = 94;

r = 10000;

shape =5

scale =1

[x, H] = distrib(—1: .02 :0.9)

plot(x, H)

H=H(H =0);

x=z(x =0);

x = x(isfinite(x));

H = H(isfinite(H));

[nw_sml,nw_VCG] = Net_-Wel(—1:.02:0.9)

[mean_nw_sm1,mean_nw_VCG| = Mean_Net_Wel
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(5) shape_lessthanone V CG _better.magain can be run directly. However, it sets up
shape and scale of Gamma distribution to be 0.1 and 1, respectively.

Codes:

clear all

global N r shape scale

N = 94;

r = 10000;

shape = 0.1

scale =1

[z, H] = distrib(—1: .02 :0.9)

plot(x, H)

H=H(H =0);

rz=z(x =0);

x = z(isfinite(x));

H = H(isfinite(H));

[nw_sml,nw VCG] = Net_ Wel(—1:.02:0.9)

[mean_nw_sm1, mean_nw_VCG] = Mean_Net_-Wel
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Appendix C

Proofs in Chapter 4

C.1 Proof of Lemma 4.4.1

Let player 7 be the first mover. Consider any subgame which starts after player ¢ has
proposed a vector m with m; > v({i}). Recall that Q; is the set of core allocations where

player ¢ can gain his maximum payoff. That is
Qi = {7 € C(N,v),such that Vo € C(N,v),m > z;} (C.1)

By Assumption 1 (strictly convex game) and [Shapley| (1971)’s theorem, we get Q; # 0
and

m =v(N)—v(N\{i}), for me@Q; (C.2)

The proof of Lemma 4.3.1 has two parts. Part (I) shows that, if 7 is a core allocation,
then all players within N\ {:} accept it. Part (IT) shows that, if all players within N\ {i}
accept 7, then 7 is a core allocation.

Part (I): Suppose 7 is a core allocation. By Peleg’s theorem,
;> vrs({j}) for SCN,jeNandjeS (C.3)
Then the Assumption 2 tells us that
;> vrs({j}) for SCN,jeNandjeS (C.4)

In words, for all j € N, there are no opportunities to rent “underpriced ” players at 7.

Then all players within N \ {i} have no incentive to reject m.
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Part (II): Suppose all players within N \ {i} accept 7. If 7 is not a core allocation,

the argument uses contradiction. Let T be the last blocking coalition, and j be the last

member (according to P) in 7. [Peleg (1986)’s theorem tells us that 7% is not in the

core of DM reduced game (S, vrs). That is, for j and for some S, where SNT = j, we

have
vrs({7}) > Ty

Then the definition of DM reduced game tells us that

vrs({5}) = Jnax v({j}u Z) —=(2)]

Since j € T, SNT = j, it follows that
T\{j}SN\S

Thus
vrs({5}) 2 0({7UT\ {j}) = (T \ {j})
That is
vrs({7}) = o(T) — =(T\ {j})

Since T is the last blocking coalition, we have
u(T) > n(T)
That is
o(T) > (T \{j}) + 7,

Then
o(T) = (T \{j}) > m;

(C.5)

(C.10)

(C.11)

(C.12)

Thus player 7 has incentive to reject the m and propose a coalition T" and pay all players

in T\ {j} at m. In other words, if 7 is not a core allocation, at least one player must

reject . Therefore we have proved that if all players within N \ {i} accept =, then 7

is a core allocation.

Based on the proofs in part (I) and (II), we can conclude that, 7 is a core allocation

(m € C(N,v)) if and only if all players within N \ {i} accept =.
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C.2 Proof of Lemma 4.4.2

Again let player i be the first mover. Recall the definition of @; in (4.16). Player i
proposes m, where 7 € @; and m; = v(N) — v(N \ {i}). Consider any subgame where i
is the first mover.

Firstly, suppose player i is the seller. Let M be the set of rejectors, (i ¢ M). Player
’s payoff when 7 is rejected by at least one player in N \ {i} is

O = o(N\ M) — =(N \ {M U {i}}) (C.13)
Since for all elements of 7 are non-negative, then
TN\ {M U{i}}) > 0 (C.14)
By adding v(N) on both sides, we have
T(N\{M U {i}}) +v(N) = v(N) (C.15)

If the seller is not included in a coalition, the value of the coalition is zero. Since i ¢ M,

then v(M) = 0. By subtracting v(M) from (C.13), we have
TN\ M U{i}}) + o(N) = o(N) — (M) (C.16)

By Assumption 1(strictly convex game) |I|, we have

v(N) —v(M) >v(N\ M) (C.17)
Then
T(N\{M U{i}})+v(N) >v(N\M) (C.18)
That is
o(N) — [o(N \ M) — w(N\ {M U {i}})] >0 (C.19)

Since v(N \ {i}) = 0, we have
v(N) = o(N\{i}) = [p(N\ M) = (N \ {M U{i}})] >0 (C.20)

Therefore we have
Q; <v(N) —v(N\{i}) (C.21)

'superadditivity
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Secondly, suppose the player ¢ is not the seller, and the seller is not included in M
(recall above definition of M: the set of rejectors in the subgame where i is the first

mover). We note that
o(NA{M U {i}}) = (N \{M U {i}}) <0 (C.22)

Otherwise, for any player j € N\ M has incentive to change his decision from acceptance
to rejection. And then j proposes a new coalition N \ {M U {i}} with payment to all
players in N\ {M U {i,j}}.

Since (C. 22), it follows that

—o(NA\{M U{i}}) > —m(N\{M U {i}}) (C.23)
By adding v(N \ M) on both sides, we get
v(NAM) —o(N\{M U{i}}) > o(N\ M) —x(N\ {M U{i}}) (C.24)

By Assumption 1 (strictly convex game), we have

v(N) —o(N\{i}) > o(N\ M) —v(N\{M U{i}}) (C.25)
Then
v(N) —o(N\{i}) > o(N\ M) — (N \{M U{i}}) (C.26)
That is
o(N) —o(N\ {i}) > Q (C.27)

Finally, consider the player i is not the seller, and the seller is included in M. Then

player i’s payoff is the following;:
Qi = —m(N\{M U {i}}) (C.28)
Since all elements in 7w are non-negative, we have
Q; <0 (C.29)

The strict strictly convexity of a game (Assumption 1) tells us that each player has

positive marginal contribution to the worth of the coalition. It implies that
v(N) —v(N\{i}) >0 (C.30)

Therefore, we have
v(N) —ov(N\{i}) > (C.31)
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C.3 Proof of Theorem 4.4.1

Let the package bidding mechanism with a fixed p (recall the definition of p in section
4.3: the vector that every player is selected as the first mover) be M,. Let SEP, be
the subgame game perfect equilibrium of M,,.

Under the subgame where player i is the first mover, Lemma 4.4.1 and 4.4.2 imply
that, in any subgame where player ¢ is the first mover, 7 is a SPE payoff if and only if
T E Q.

Since p is fixed in M, and C(N,v) is a strictly convex set, then any outcome

x € SPE,, must be in the core. That is
xz € C(N,v) (C.32)

By |Shapley| (1971)’s theorem, if (N, v) is convex, C (N, v) is the convex hull of all
for any p. Then, given € C(N,v), there exists a p such that x € SPE,,.
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