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Abstract

This thesis applies game theory to study optimal toehold bidding strategies

during takeover competition, the problem of optimal design of voting rules

and the design of package bidding mechanism to implement the core allo-

cations. It documents three different research questions that are all related

to auction theory.

Chapter 2 develops a two-stage takeover game to explain toehold puzzle

in the context of takeover. Potential bidders are allowed to acquire tar-

get shares in the open market, subject to some limitations. This pre-bid

ownership is known as a toehold. Purchasing a toehold prior to making

any takeover offer looks like a profitable strategy given substantial takeover

premiums. However actual toehold bidding has decreased since 1980s and

now is not common. Its time-series patter is centered on either zero or a

large value.

Chapter 2 develops a two-stage takeover game. In the first stage of this two-

stage game, each bidder simultaneously acquires a toehold. In the second

stage, bidders observe acquired toehold sizes, and process this information

to update their beliefs about rival’s private valuation. Then each bidder

competes to win the target under a sealed-bid second-price auction.

Different from previous toehold puzzle literature focusing on toehold bid-

ding costs in the form of target managerial entrenchment, this chapter devel-

ops a two-stage takeover game and points another possible toehold bidding

cost – the opportunity loss of a profitable resale.

Chapter 2 finds that, under some conditions, there exists a partial pool-

ing Bayesian equilibrium, in which low-value bidders optimally avoid any



toehold, while high-value bidders pool their decisions at one size. The equi-

librium toehold acquisition strategies coincide with the bimodal distribution

of the actual toehold purchasing behavior.

Chapter 3 studies the problem of optimal design of voting rules when each

agent faces binary choice. The designer is allowed to use any type of non-

transferable penalty on individuals in order to elicit agents’ private valua-

tions. And each agent’s private valuation is assumed to be independently

distributed.

Early work showed that the simple majority rule has good normative prop-

erties in the situation of binary choice. However, their results relay on the

assumption that agents’ preferences have equal intensities. Chapter 3 shows

that, under reasonable assumptions, the simple majority is the best voting

mechanism in terms of utilitarian efficiency, even if voters’ preferences are

comparable and may have varying intensities.

At equilibrium, the mechanism optimally assigns zero penalty to every

voter. In other words, the designer does not extract private information

from any agent in the society, because the expected penalty cost of eliciting

private information to select the better alternative is too high.

Chapter 4 presents a package bidding mechanism whose subgame perfect

equilibrium outcomes coincide with the core of an underlying strictly convex

transferable utility game. It adopts the concept of core as a competitive

standard, which enables the mechanism to avoid the well-known weaknesses

of VCG mechanism.

In this mechanism, only core allocations generate subgame perfect equilib-

rium payoffs, because non-core allocations provide arbitrage opportunities

for some players. By the strict convexity assumption, the implementation

of the core is achieved in terms of expectation.
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Chapter 1

Introduction

The thesis titled “Applied Game Theory and Optimal Mechanism Design” shows the

outcome of PhD research training process. It focuses on game theory, in terms of auction

theory, mechanism design and cooperative game theory. It includes three separate

papers, documented in Chapter 2, 3, and 4.

Chapter 2 develops a two-stage takeover game to explain toehold puzzle in the

context of takeover. Prior to making any takeover offer, potential bidders are allowed

to purchase target shares in the open market, subject to some limitations. This pre-

bid ownership is known as a toehold. It seems that toehold bidding is a profitable

strategy given substantial takeover premiums. A bidder with a toehold may benefit

by being a winner that only purchases remaining shares at the substantial takeover

premium, or being a loser that sells out his shareholdings at a higher price. However,

empirical literature has puzzling observation. They summarize that the actual toehold

acquisition behavior follows a bimodal distribution – centered either on zero or a large

size.

The two-stage takeover game has the following structure. In the first stage, each

bidder simultaneously acquires a toehold. The pre-bid share price is normalized to zero.

At the beginning of the second stage, bidders observe acquired toehold sizes, and they

process this information to update their beliefs about rival’s valuation. The second

stage is structured as a sealed-bid second-price auction. Two bidders compete to win

the target.

Three Bayesian equilibria – perfect separating Bayesian equilibrium, unrestricted

partial pooling Bayesian equilibrium and restricted partial pooling Bayesian equilibrium

1



1. INTRODUCTION

– are proposed and analyzed. At perfect separating Bayesian equilibrium, bidder’s

toehold acquisition strategy is strictly increasing or/and decreasing. At unrestricted

partial pooling Bayesian equilibrium, low-value bidders pool their toehold decisions

at θL, while high-value bidders pool at θH . The restricted partial pooling Bayesian

equilibrium means that the lower toehold size θL is restricted to be zero. That is,

low-value bidders acquire zero toehold, while high-value bidders acquire θH .

Among these equilibria, chapter 2 finds that, under some conditions, only the re-

stricted partial pooling Bayesian equilibrium exists. Signal jamming occurs in equilib-

rium. When bidders play strict toehold acquisition strategies (no signal jamming) in

the first stage of the game, they perfectly reveal their private information, and the sec-

ond stage is the one under complete information, resulting in their rival’s aggressively

bidding behavior that wipes out winner’s payoff. Then bidders attempt to keep their

rival in doubt about their private information by playing non-strict toehold acquisition

strategies at equilibrium.

Chapter 2 indicates that bidders, under this two-stage takeover game, may face a

toehold bidding cost –the opportunity loss of a profitable resale. For instance, suppose

bidder 1 is a low-value player. At equilibrium, bidder 1 chooses zero toehold, and

truthfully bids in the second stage. Let bidder 1 deviate by acquiring θH . When she

faces low-value rival, her deviation has no effect on rival’s bidding strategy. That is,

along the equilibrium path, her rival still processes truthfully bidding strategy. If she

wins the target, she pays the rest of shares at rival’s valuation. If she loses the target,

she resells her toehold at a relatively lower price (bidder 1’s valuation) and pays the

resale cost d. Under some conditions, the low-value bidder’s expected toehold cost is

higher than its benefit. In addition, a high-value bidder’s expected toehold benefit

overweighs its cost. As a result, high-values optimally prefer toehold bidding.

Chapter 3 studies the problem of optimal design of voting rules when each voter faces

binary choice. This chapter introduces a voting mechanism. The designer is allowed to

use any type of non-transferable penalty on individuals in order to elicit agents’ private

valuations. Each agent’s private valuation is assumed to be independently distributed.

Early studies indicate that the simple majority rule has good normative properties.

However their results rely on the assumption that agents’ preference has equal inten-

sities. This chapter shows that, under reasonable assumptions, the simple majority is

2



the best voting mechanism in terms of utilitarian efficiency, even if voters’ preferences

are comparable and may have varying intensities.

The mechanism, at equilibrium, works as follows. After all agents truthfully report

their valuations to the mechanism, it produces a social decision and recommends a

penalty scheme, in such a way that each agent has incentive to follow. At equilibrium,

the mechanism optimally assigns zero penalty to every agent. The mechanism does not

need actually to know all agents’ valuations, but simply selects the alternative, which

is preferred by the majority in the society. It may select a sub-efficient alternative, but

can achieve a higher welfare. The reason is simply because the expected penalty cost

is too high.

Chapter 4 introduces a package bidding mechanism. In many auction environments,

bidders are more interested in the packages of items they win. Under the package

auction, any bidder is allowed to bid directly for any non-trivial subset of items being

sold. It is partially important when items are complements.

This chapter adopts the concept of core as a competitive standard, which enables

the package bidding mechanism to avoid the well-known weakness (such as collusion,

shill bidding) of VCG mechanism.

The mechanism has three stages. In stage 1, a player i is randomly selected as

the first mover, and he or she proposes a payoff vector to the grand coalition. The

proposed payoff vector is interpreted as the amounts must be paid by the first mover to

remaining players for which they agree to cooperate with coalitional decision or action.

In stage 2, the rest of players move sequentially to accept or reject the proposed payoff

vector. In the final stage, trading with rejectors occurs.

The main result is that the subgame perfect equilibrium outcomes coincide with the

core of an underlying strictly convex transferable utility game. Under any subgame that

starts after player i has proposed a payoff π, the π is the subgame perfect equilibrium

outcome if and only if it is a core allocation (Lemma 4.4.1 and Lemma 4.4.2). By

the strict convexity assumption, the implementation of the core is achieved in terms of

expectation. In addition, the first mover with monopoly power receives the best payoff

in the core.

3
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Chapter 2

Toehold Puzzle and Two-stage

Takeover Game

Purchasing a toehold prior to making any takeover offer looks like a profitable strategy

given substantial takeover premiums. However, toehold bidding has decreased since

1980s and now is not common. Its time-series pattern is summarized as bimodal dis-

tribution, on average is centered on either zero or a large size. Chapter 2 develops a

two-stage takeover game, in which acquired toehold size is regarded as a signal partially

revealing each player’s private information. Different from previous toehold puzzle lit-

erature focusing on toehold bidding costs in form of target managerial entrenchment,

this Chapter points another possible toehold bidding cost – the opportunity loss of

a profitable resale. Under some conditions, there exists a restricted partial pooling

Bayesian equilibrium, in which low-values prefer zero toehold while high-values pool

their decisions at one size.

2.1 Introduction

2.1.1 Toehold Puzzle

Before launching any bid, the bidding firm is allowed to purchase target shares in the

open market, subject to some limitations. This pre-bid ownership is known as a toe-

hold. It seems that buying a toehold is a profitable strategy given costly takeover

premiums. Within a takeover battle, the bidding firm with a toehold may benefit by

being a winner that only purchases remaining shares at the full takeover premium, or

5



2. TOEHOLD PUZZLE AND TWO-STAGE TAKEOVER GAME

by being a loser that sells out his shareholdings at a higher price. There are substantial

theoretical studies support this view. Burkart (1995) and Singh (1998) demonstrates

that a bidder with a toehold bids aggressively at equilibrium. Walkling (1985), Betton

& Eckbo (1995), Bulow et al. (1999) show that a toehold increases a bidder’s prob-

ability of winning in a takeover battle. Under Bulow et al. (1999)’s common-value

model1, toehold bidders’ aggressively bidding behavior increases winner’s curse for a

non-toehold bidder causing him to bid conservatively. As a result, toehold bidders bid

more aggressively. They find that a toehold may reduce the price paid by the winner.

Moreover, they show that, given the initial bidder holding a toehold, a new entrant

attempts to purchase the similar amount. This result is consistent with the empirical

evidence from Betton & Eckbo (2000).

Despite theoretical studies indicating the benefits of toehold bidding, empirical

literature documents puzzling observations. Bradley et al. (1988) find that over half

the bidders in their sample did not acquire any pre-bid ownership. More specifically,

236 successful tender offers were reported, but 155 of them did not hold any toehold

over the period 1963 to 1986. Betton et al. (2009) document more than 10,000 initial

acquirers bidding for publicly traded U.S. targets during 1973 to 2002. They find

that the toehold bidding declined sharply since 1980s, and now is rare. Only 3%

of initial bidders purchased short-term toeholds 2. Once toehold bidding exists, the

acquired amount were very large – around 20%. So they summarize the actual toehold

acquisition behavior follows a bimodal distribution. That is, on average, bidders either

process non toehold bidding or purchase a large amount of toehold.

2.1.2 Costs of Toehold Bidding

Given bidders are rational, there must exist some costs of toehold bidding that prevent

many bidders from choosing it as their optimal strategy in the context of takeover

battle. One possible cost is due to the mandatory information disclosure laws. Since

1968s Williams Act, toehold purchases of 5% or more than is required to file 13d with

the Securities and Disclosure rules. It makes toeholds too costly since bidders have to

1In (almost) common value settings, Klemperer (1998) points the existence of the great effect of a

small asymmetry (e.g. toehold ) on the outcomes of standard auctions.
2The short-term toehold acquisition is occurred during the six months until the announcement of

initial offer. This six-month period is defined as the actual bidding strategy being formulated.

6



2.1 Introduction

reveal their intentions early in the takeover battle. However, Bulow et al. (1999) find

that toehold bidding was common in the early 1980s. The passage of disclosure laws in

the 1970s, therefore, cannot explain this time-series pattern of the entire sample period.

Another possible cost is the stock market illiquidity. Market illiquidity makes toe-

hold bidding too costly, because toeholds cannot be exchanged or sold easily. Bulow

et al. (1999) and Dasgupta & Tsui (2004), however, show that the declining in toehold

bidding occurs when there is a steady increasing in stock market liquidity.

The last possible cost of toehold bidding is due to target managerial entrenchment.

Goldman & Qian (2005) find out there exists a toehold bidding cost when entrenched

target management successfully rejects the takeover offer. In their model, the degree

of target entrenchment is an exogenous variable. Given successful resistance, there is a

negative correlation between target share price and the rejected bidder’s toehold size.

Bidders trade off expected toehold benefits (higher success probability) with expected

toehold cost (decreased share price). Thus, at equilibrium, some bidders optimally

play non toehold bidding strategy. However, the empirical evidence from Betton et al.

(2009) reject such negative correlation, and they regard target entrenchment degree as

an endogenous variable.

In Betton et al. (2009)’s two-stage takeover game, an initial bidder approaches the

target to negotiate a merger in which the initial bidder achieves a termination fee if

the target withdraws from the negotiated agreement. In the second stage, the initial

bidder competes with a public bidder without a toehold under a sealed-bid second-price

auction.

In their model, toehold costs arise endogenously in the form of costs of resistance

from entrenched management. Toehold bidding directly reduces management team’s

expected private payoff at equilibrium, causing the target to reject merger negotiations.

And it in turn dictates initial bidder’s equilibrium toehold acquisition strategy. Since

fiduciary requirement, the target must consider any public bid in the interim period

after concluding merger negotiations but before final shareholders’ approval. The fact of

this “fiduciary out” waiting period (the second stage in their model) contributes to the

inclusion of provisions for target termination fees in takeover agreement1. They focus

1Because of fiduciary out clause, the winner has to compete with any public bidder before share-

holders’ approval. Since mid-1980s, the agreement includes a termination item, in which the winner

will receive a breakup fee if target withdraws due to its fiduciary out clause, see Burch (2001), Officer

(2003), Boone & Mulherin (March 2007).

7



2. TOEHOLD PUZZLE AND TWO-STAGE TAKEOVER GAME

on a particular rejection cost – the opportunity loss of termination fee. At equilibrium,

some bidders optimally choose zero toehold to avoid this rejection cost, while some

bidders purchase a toehold greater than a threshold, at where the expected toehold

bidding benefit offsets expected rejection cost.

2.1.3 The General Takeover Process

Recall that in Betton et al. (2009), pre-public stage is modeled as a merger negotiation

between the target and a single bidder (the initial bidder). The question is how this

pre-public takeover process is actually carried out. Empirical evidence from Boone

& Mulherin (March 2007) point the existence of pre-public, private takeover process.

They find that it is a highly competitive market where half of the targets are auctioned

among multiple bidders, while the remainder negotiates with a single bidder.

Actual corporative takeover is a very complex process, but follows some general

characteristics described by Boone & Mulherin (2007), Boone & Mulherin (March

2007), Gorbenko & Malenko (2012) and Hansen (2001). It has two stages: private

and public takeover stage. The private stage starts when the firm (i.e.the Board) de-

cides to sell itself and contacts a group of potential bidders1. Those potential bidders

are asked to sign confidentiality/standstill agreements to assess target’s nonpublic in-

formation, and agree to stop trading any target shares. After learning that information,

some of the potential bidders submit several rounds of bids, and the process is similar

to an English auction. Then the winning bidder and the Board affirm and sign the

takeover agreement, followed by a public announcement. It should be mentioned here,

Betton et al. (2009) document the winner from private stage of takeover process as an

initial bidder. At the public takeover stage, any public bid should be considered and

the approval of previously announced takeover agreement also requires shareholders’

vote. 2.

2.1.4 A Brief Introduction to the Two-stage Takeover Game

This chapter develops a two-stage takeover game. It is different from the one in Betton

et al. (2009) in terms of the following points. First, this two-stage takeover game

1Firm Board analyzes a range of strategic alternatives, usually proposed by an investment bank,

to enhance shareholders’ value or provide greater liquidity for them.
2The final bid is formed when 126 trading days have passed without any other new bid.

8



2.1 Introduction

models the pre-public takeover stage as a sealed-bid second-price auction, instead of

the merger negotiation in Betton et al. (2009). Second, there is no target managerial

entrenchment. As the general takeover process described in section 2.1.3, private stage

is initiated by the target board. As a result, there is no target managerial entrenchment

among invited bidders in private takeover stage. Finally, the open auction in Betton

et al. (2009) disappears in this game. It is assumed that the target is the unique seller

in the game, and aims to sell itself to the bidder with highest valuation. There is no

principle-agent problem. Therefore, there is no any “fiduciary out” waiting period.

In the first stage of this two-stage game, each bidder simultaneously acquires a

toehold. Same as in Betton et al. (2009), the pre-bid share price is normalized to zero.

One may expect the target pre-bid share price appears in this model and expect this

price impact to be monotonic in the stakes acquired, which would provide a natural

deterrence to acquire a large toehold. However, there is the possibility that the number

of shares acquired by a bidder may depend on his or her private valuation. In order

to remove such pricing loop, this two-stage game assumes the pre-bid share price to be

zero. Thereby, it aims to study what is the cost of toehold bidding except the costs of

toehold purchasing and target managerial entrenchment.

In the second stage, bidders observe acquired toehold sizes, process this information

to update their beliefs about rival’s valuation. Then each bidder competes to win the

target under a sealed-bid second-price auction. If a bidder holding a toehold wins the

target, he has to pay the remaining shares at the second-highest bid price. While, if

the bidder loses the game, he sells out his toehold at that price. Meanwhile, the resale

generates a fixed cost d.

Chapter 2 finds, under some conditions, there exists a restricted partial pooling

Bayesian equilibrium, in which low-value bidders optimally avoid any toehold while

high-value bidders pool their decisions at one size. Signal jamming 1 occurs in the

equilibrium. If bidders play perfect separating strategies in the first stage, they com-

pletely reveal their private information, and the second stage of the game becomes the

one under complete information, resulting in fierce competition that reduces bidders’

payoffs. Therefore, at equilibrium, bidders have incentives to conceal their valuations

by playing partial pooling strategies.

1See Ding et al. (2010)
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2. TOEHOLD PUZZLE AND TWO-STAGE TAKEOVER GAME

This chapter finds that bidders may face a toehold bidding cost –the opportunity

loss of a profitable resale. Theorem 2.3.3 indicates if a low-value deviates by playing

toehold bidding strategy, he triggers high value rival’s aggressively bidding behavior

in the second stage. With uncertainty about high-value rival’s private valuation, if

he overbids, he may win the target, but has to pay the remaining shares at the price

much higher than his valuation, leading to a negative payoff. In this case, his best

response is to lower his bid to loss the target with certainty. As a result, he has to

sell his toehold at a relatively lower price and pays the resale cost d. Thus the low-

value bidder’s expected toehold bidding cost is higher than its benefit. At equilibrium,

low-value bidders optimally choose zero toehold.

2.1.5 Other Related Literature

Grossman & Hart (1980) point out each shareholder may attempt to free ride on the

raider’s improvement of the corporation. And, they suggest the takeover bid mechanism

to deal with such free-rider problem. Although an important paper, it deals with a

different problem. Chapter 2 aims to explain the takeover puzzle by building up a two-

stage model. And, it is interested in the private takeover stage introduced by Boone

& Mulherin (2007). That is, the target is auctioned among invited bidders. And the

process is not publicly announced until the takeover is agreed between two parties.

While Grossman & Hart (1980)focus on public takeover stage – tender offer and study

the free-rider problem during public takeover process. In this two-stage takeover game,

a bidder may be able to sell out his or her toehold at a higher price. It seems like the

bidder “free-ride” on the improvement of the competition in the second stage of the

game. However, it is costly to resell a toehold. The model assumes that there exists a

fixed resale cost d for each losing bidder.

Another related strand of literature refers to resale auction. Hafalir & Krishna

(2008) study the effects of post-auction resale in a model with two private-value bidders.

In their basic model, the first stage is modeled as a first-price auction followed by a

resale via monopoly pricing. At equilibrium, the allocations in the first-price auction

are inefficient, thereby bidders have incentives to join in post-auction resale. They

find that a first-price auction with resale has a unique monotonic equilibrium, and the

expected revenue of a first-price with resale exceeds that of a second-price auction.

Garratt & Troger (2006) build up two-period interaction. In period 1, the good is
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2.2 Two-Stage Takeover Game

offered through a first-price or second-price auction. In period 2, the winner makes a

take-it-or-leave-it offer. They assume there is a speculator with zero valuation, which

is commonly known. And the speculator does not make any profits in the first-price

auctions. In Gupta & Lebrun (1999)’s two step model, one item is sold at a first price

auction, which is followed by a resale stage. They assume there is a second stage where

resale occurs in case of inefficient, and at the end of the auction, bidders’ valuations are

announced. Haile (2003) considers a two-stage, symmetric model in which an auction

in the first stage is followed by a resale mechanism. Since bidders have only noisy

information regarding their true valuations, the winner of the auction may receive the

highest signal. But he or she may not have the highest true valuation. This provides

the resale opportunities. Zhoucheng Zheng (2002) identifies a sufficient and necessary

condition under which the optimal allocation characterized by Myerson(1981) can be

achieved when resale is allowed.

Above resale auction literature studies the effects of post-auction resale when the

allocations from an auction are inefficient. In general, they consider a two-stage model

in which an auction in the first stage is followed by a resale. The resale is proceeded

either via monopoly pricing or a mechanism. This strand of literature is different from

chapter 2’s two-stage game in terms of motivation and model setting up. Chapter 2

does not aim to study the inefficiency after an auction. In particular, in this two-stage

takeover game, the appearance of the second-stage is not due to the inefficient outcome

from the first stage. In chapter 2, the two-stage game (an open market followed by a

second-price auction) is based on Boone & Mulherin (2007)’s private takeover process.

The rest of Chapter 2 is organized as follows. The next section introduces a two-

stage takeover game and related assumptions. Section 2.3 characterizes the equilibrium,

and finds that the signal jamming occurs at equilibrium. Section 2.4 concludes Chapter

2. Most of the proofs are relegated to Appendix A.

2.2 Two-Stage Takeover Game

There is a single object for sale – the target firm. There are two buyers, named 1 and

2, bidding for the target. Let two bidders be risk-neutral and symmetric, and they seek

to maximize their expected payoffs. Two bidders are assumed to have different purpose

11



2. TOEHOLD PUZZLE AND TWO-STAGE TAKEOVER GAME

and managing capability on the target. As a result, their valuations on the target are

independent (private-value environment).

Bidder i (i = 1, 2) assigns a value vi on the target, it is the maximum amount a

bidder willing to pay for the target. While another bidder j (j = 2, 1) perceives vi to be

uniformly, independently and identically distributed on some interval [0, 1] according to

the increasing distribution function F . It is assumed that F admits a continuous and

differentiable density function f and has full support. The distribution F is common

knowledge to all bidders.

It is assumed that two bidders have no budget and liquidity constraints. Each of

them is willing and able to pay up to his or her valuation.

The two-stage takeover game has the underlying structure. In the first stage (toe-

hold acquisition stage), each bidder simultaneously acquires a toehold, and the pre-bid

share price is normalized to zero. Acquired toehold size is measured by θi. Following

Betton et al. (2009), I assume that θi is within [0, 1
2 ] for i = 1, 2. That is, 1

2 is assumed

to be the upper limit of the fraction of the target that can be acquired at zero price in

the open market. If a bidder owns more than 50.1% outstanding shares, he or she can

enact changes (e.g. takeover decisions) at target firm. To make target firm independent

with bidders, it is assumed that no bidder is able to acquire over 50% ownership.

Let bidder i’s toehold acquisition strategy is defined as a function τ(vi),a mapping

from i’s private valuation to her acquired toehold size, that is

τ : [0, 1] −→ [0,
1

2
] where i = 1, 2 (2.1)

At the beginning of the second stage, a pair of acquired toehold sizes becomes pub-

licly observable. This assumption is consistent with takeover regulations that require

bidders no disclose their shares. According to the Bayes’ rule, two bidders update their

beliefs about each other’s private valuation on the target, conditional on the observed

(θ1, θ2).

The second stage (takeover bidding stage) is structured as a sealed-bid second-price

auction. A bidder with highest bid wins, and pays the second-highest bid. Let ε denote

a slight amount of bid. It is assumed that there is no feasible bid price between bi and

(bi + ε), for i = 1, 2. Bidder i’s bidding strategy is represented by a function βi
(
vi, θi

)
,

for i = 1, 2, so that

βi : [0, 1]× [0,
1

2
] −→ R+ (2.2)
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In the second stage of the game, each bidder submits a sealed bid of bi. If bidders

tie, the winner is selected by flipping a fair coin. If bi > bj , bidder i wins the target,

and purchases the rest of shares (1 − θi) at the second-highest bid price bj . While,

when bi < bj occurs, i loses the target and sells out his shareholdings θi at his bid bi.

At the same time, it is assumed that the resale of ownership generates a fixed cost d

for a losing bidder. The activities in private takeover process involve opportunity costs

in terms of time and money. In this two-stage takeover game, d can be understood as

the opportunity cost of resale a toehold, or being a “speculator”.

Given bidders’ bids, bidder i’s payoff is:

Πi =

{
vi − (1− θi)bj if bi > bj

θibi − d if bi < bj
where i, j = 1, 2, and i 6= j (2.3)

The next section analyzes bidders’ toehold acquisition behavior under this two-

stage takeover game. Three Bayesian equilibria – perfect separating Bayesian equilib-

rium, unrestricted partial pooling Bayesian equilibrium and restricted partial pooling

Bayesian equilibrium – are proposed and analyzed. Backward induction is adopted in

Section 2.3. Each subsection starts with a proposed equilibrium toehold acquisition

strategy. Propositions show bidders’ optimal bidding strategies given their updated

Bayesian believe at equilibrium. Section 2.3 finds that equilibrium toehold acquisition

behavior is consistent with the bimodal distribution. Moreover, there exists a restricted

partial pooling Bayesian equilibrium, in which toehold size is centered either on zero

or a large value.

2.3 Optimal toehold acquisition strategies

This section proposes three Bayesian equilibria: perfect separating Bayesian equilib-

rium, unrestricted partial pooling Bayesian equilibrium and restricted partial pooling

Bayesian equilibrium. At perfect separating Bayesian equilibrium, there exists a strictly

increasing or/and decreasing toehold acquisition strategy. Each bidder perfectly iden-

tifies his or her private valuation in the first stage. At unrestricted partial pooling

Bayesian equilibrium, some types of the bidder acquire a relatively lower and non-zero

toehold size θL , while some others acquire a higher toehold size θH . The restricted

partial pooling Bayesian equilibrium means the lower toehold size θL is restricted to be

zero. That is, low-value bidders pool at zero, while high-value ones pool at θH .
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2. TOEHOLD PUZZLE AND TWO-STAGE TAKEOVER GAME

2.3.1 Perfect Separating Bayesian Equilibrium

This section shows there can be no perfect separating Bayesian equilibrium. Suppose

there exists a strictly increasing or/and decreasing, continuous toehold acquisition strat-

egy τ in equilibrium.

At the beginning of the second stage, each bidder observes the signal (θ1, θ2), which

can perfectly identify bidders’ private valuations on the target through

τ−1(θi) = vi where i = 1, 2 (2.4)

After Bayesian updating, the second-stage becomes a complete information game. That

is, when bidder 2 sees the acquired toehold size of bidder 1, he will assign probability

1 to bidder 1’s true valuation v1.

Suppose bidder 1 is a high-value player. Under complete information environment

and given the allocation rule of second-price auction, bidder 1 is selected as a winner.

She optimally bids her true valuation v1 plus the fixed resale cost d at equilibrium.

Bidder 2, as a loser, prefers to push up his bid price to the highest. At the same time,

this bid price guarantees his losing position. So that bidder 2’s best response is to bid

just slightly less than (v1 + d). Two bidders’ equilibrium bidding strategies are shown

in Proposition 2.3.1.

Proposition 2.3.1. Given the strictly increasing or/and decreasing toehold acquisition

strategy and suppose bidder 1 has a higher private valuation, v1 > v2, bidder 1 wins the

target at the second-stage of the takeover game. Two bidders’ optimal bidding strategies

are: β1(v1, θ1) = v1 + d

β2(v2, θ2) = v1 + d− ε
(2.5)

Proof : See Appendix A.1

Since bidder 2’s beliefs are Bayesian by construction, and his bidding strategy at

the second-stage is a best response given those beliefs, that is equilibrium if and only if

bidder 1 has no incentive to deviate from this one-to-one toehold acquisition strategy

at the first stage. Bidder 1 prefers to truthfully reveal her private value as long as the

payoff it yields is at least as high as the one she gets if she deviates.

Let bidder 1 deviate and report r1, where r1 < v1, given bidder 2 along the equilib-

rium path. Bidder 2 believes, upon observing τ(r1), the true value of bidder 1 is r1 with
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2.3 Optimal toehold acquisition strategies

probability 1, then he follows the bidding strategy assigned in Proposition 2.3.1. Let

EΠ1 and EΠ1 be bidder 1’s out-of-equilibrium expected payoffs by reporting a lower

value r1 and a higher value r1, respectively.

Lemma 2.3.1. Given bidder 2 along the equilibrium path, if bidder 1 reports his value

as r1 (r1 < v1), her off-equilibrium expected payoff is the following:

EΠ1 =

∫ r1

0

[
v1 −

(
1− τ(r1)

)
(r1 + d− ε)

]
dv2 +

∫ v1

r1

[
v1 −

(
1− τ(r1)

)
(v2 + d)

]
dv2

+

∫ 1

v1

[
τ(r1)(v2 + d− ε)− d

]
dv2

(2.6)

Similarly, when bidder 1 reports r1, where r1 > v1, her off–equilibrium expected payoff

is:

EΠ1 =

∫ r1

0

[
τ(r1)(r1 + d− 2ε)− d

]
dv2 +

∫ 1

r1

[
τ(r1)(v2 + d− ε)− d

]
dv2 (2.7)

Proof : See Appendix A.2

Theorem 2.3.1 shows that deviation yields a higher payoff for bidder 1, given an-

other bidder along the equilibrium. The intuition is straightforward. Suppose toehold

acquisition strategy is strictly increasing and v1 < v2, bidder 1 has incentive to report

r1 (r1 > v2), instead of her true value v1. Given bidder 2’s belief along the equilibrium,

he regards r1 as 1’s true value. So that his best response is to bid (r1 + d − ε) at the

second-stage. Therefore, as a losing bidder, bidder 1 achieves a higher selling price for

her shareholdings than the one yielded at equilibrium. This argument can be extended

to show that there always exist some values of bidders optimally prefer to deviate from

the strictly increasing or/and decreasing toehold acquisition strategy.

Theorem 2.3.1. Under the two-stage takeover game and if all assumptions are satis-

fied, there is no perfect separating Bayesian equilibrium.

Proof : See Appendix A.3

If a perfect separating Bayesian equilibrium exists, each bidder with different value

chooses a different toehold size. Theorem 2.3.1 indicates toehold acquisition behavior is

not continuously distributed and the signal pair (θ1, θ2) cannot completely reveal each

bidder’s private valuation.
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2. TOEHOLD PUZZLE AND TWO-STAGE TAKEOVER GAME

2.3.2 Unrestricted Partial Pooling Bayesian Nash Equilibrium

This section starts to analyze the existence of an unrestricted partial pooling Bayesian

Equilibrium. Suppose there are only two non-zero toehold sizes available for two bidders

to choose at the first stage. Let θL be the relatively lower toehold size, and let θH be

the relatively higher one. That is

0 < θL < θH ≤
1

2
(2.8)

Let v̂ within the range (0, 1) be a valuation threshold. It classifies players into two

groups: low value bidders with valuations less than v̂ and high value bidders with

valuations more than v̂.

At equilibrium, high-values prefer θH , while low-values choose θL. If a bidder’s

valuation is v̂, he acquires either θL or θH . He is indifferent by choosing these two

toehold sizes in terms of expected payoff. For any i, Bidder i’s toehold acquisition

strategy is expressed as: 
τ(vi) = θL if vi ∈ [0, v̂)

τ(vi) = θL or θH if vi = v̂

τ(vi) = θH if vi ∈ (v̂, 1]

(2.9)

At the beginning of the second stage, two bidders may observe three possible pairs

of toehold size. In one situation, both of them acquire a smaller size θL. Another

opposite possibility is they all acquire a larger toehold size θH . The last situation is

one of them chooses θH and another bidder selects θL instead1. As a result of the

toehold acquisition strategy in (2.9), signal (θ1, θ2) only partially (imperfectly) reveals

each bidder’s private value– identifies the group of each bidder.

In the second stage, given the observed signal, each bidder optimally chooses bid-

ding strategy by maximizing his or her expected payoff. Proposition 2.3.2 shows two

bidders’ optimal bidding strategies associated with three possible pairs of toehold size.

A guessed linear bidding strategy is imposed, by inversing and substituting, to form a

transformed expected payoff function. Bidding strategies (2.10) and (2.11) are achieved

by maximizing the transformed expected payoff function with respect to bidder’s bid

price. In addition, under (θL, θH) situation, bidder 1 (2) is identified as a low value

1It is assumed two bidders are symmetric leading to two symmetric signals (θH , θL)and (θL, θH).

This section discuses one of them to avoid reduplicative analysis.
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(high value) player. So that bidder 2 wins the target and purchases the rest of shares

at 1’s bid price. Bidder 1 has incentive to increases her selling price as close as 2’s bid.

By knowing that, bidder 2’s best response is to pick up the lowest bid (v̂ + d), which

can still guarantee his winning position.

Proposition 2.3.2. At the second-stage of this takeover game, given bidder’s toehold

acquisition strategy in (2.9) and a pair of observed toehold size (θL, θL), bidder i’s

optimal bidding strategy is

β(vi, θL) =
vi

1 + θL
+

θLv̂

1 + θL
+ d where i = 1, 2 (2.10)

And if they observe (θH , θH), bidder i’s optimal bidding strategy is:

β(vi, θH) =
vi

1 + θH
+

θH
1 + θH

+ d where i = 1, 2 (2.11)

If they observe (θL, θH), bidder 2 wins the target and two bidders’ optimal bidding

strategies are the following: β1(v1, θL) = v̂ + d− ε

β2(v2, θH) = v̂ + d
(2.12)

Proof : See Appendix A.4

Given bidder 2’s Bayesian constructed beliefs and his optimal bidding strategies

based on those beliefs, that is an equilibrium if and only if neither low-value nor high-

value of bidder 1 has incentive to deviate from the toehold acquisition strategy described

in (2.9). At equilibrium, the valuation threshold v̂ classifies bidders into two groups. At

the same time, two groups of bidders optimally prefer to stick on the toehold acquisition

choices assigned by (2.9). However, Theorem 2.3.2 shows that a bidder with zero

valuation always has incentive to deviate by acquiring a higher toehold size θH .

Theorem 2.3.2. Under the two-stage takeover game and if all assumptions are sat-

isfied, there is no such unrestricted partial pooling Bayesian equilibrium, in which low

value bidders always select θL while high value bidders always choose θH .

Proof : See Appendix A.5

The intuition behind Theorem 2.3.2 is the following. Suppose two bidders are low-

value players. Given bidder 2 along the equilibrium path, bidder 1 has incentive to

pretend to be high-value bidder by purchasing θH . By observing θ1 = θH , along the
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equilibrium, bidder 2 will overbid – (v̂+d− ε). Then bidder 1 profitably prefers to lose

the game by selling her toehold at such high price – (v̂ + d − ε), even there exists the

resale cost d.

2.3.3 Restricted Partial Pooling Bayesian Equilibrium

This section proposes another partial pooling Bayesian equilibrium. Throughout this

chapter, to distinguish the previous one, it is named as restricted partial pooling

Bayesian equilibrium. Unlike the unrestricted partial pooling Bayesian equilibrium

discussed in section 2.3.2, this equilibrium restricts θL to be zero. At restricted partial

pooling Bayesian equilibrium, each bidder is able to choose either zero toehold or θH .

And, a bidder with valuation v̂, he or she is indifferent between zero toehold and θH .

At equilibrium, low-values prefer zero toehold, while high-values choose θH . Bidder i’s

equilibrium toehold acquisition strategy is the following:
τ(vi) = 0 if vi ∈ [0, v̂)

τ(vi) = 0 or θH if vi = v̂

τ(vi) = θH if vi ∈ (v̂, 1]

where i = 1, 2, and θH ∈ (0,
1

2
] (2.13)

At the beginning of the second-stage, each bidder may observe three possible pairs

of toehold size. On possibility is none of them acquire any toehold at the first stage.

As a result, in the second stage of the game, it is well-known that truthful bidding

is a weakly dominant strategy1. When two bidders observe (θH , θH), their optimal

bidding strategies are shown by (2.11) in Proposition 2.3.2. Another possible situation

is (0, θH). After Bayesian updating, bidder 1 (2) is identified as a low value (high value)

player. So that bidder 1 (2) loses (wins) the target at the second stage. For bidder 1

without any toehold, truthful bidding is still her weakly dominant strategy. Given 1’s

strategy, bidder 2 optimally submit a bid higher than v̂.

Proposition 2.3.3. At the second-stage of the takeover game, given bidder’s toehold

acquisition strategy in (2.13) and the pair of observed toehold size (0, θH), two bidders’

optimal bidding strategies areβ1(v1) = v1

β2(v2, θH) = b2 where b2 > v̂
(2.14)

1See Proposition 2.1 in Krishna (2009)
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Proof : See Appendix A.6

Similarly as previous equilibrium analysis, the restricted toehold acquisition strat-

egy (2.13) is stable if and only if both low value and high value bidders have no incentive

to deviate from it. Theorem 2.3.3 finds that if the resale cost d and valuation thresh-

old v̂ satisfies the underlying conditions, then the restricted partial pooling Bayesian

equilibrium exists.

Theorem 2.3.3. Under this two-stage takeover game, if the fixed resale cost d is no

more than
θ2H

1−θ2H
and the valuation threshold v̂ is within (0,

d+θH−
√

2d2+θ2H
θH

], there exist

a restricted partial pooling Bayesian equilibrium, in which low value bidders acquire nil

toehold while high value bidders pool their toehold acquisition decisions at θH .

Proof : See Appendix A.7

Signal jamming occurs in equilibrium. If bidders play strict toehold acquisition

strategies in the first stage of the game, they perfectly reveal their private information,

and the second stage is the one under complete information, resulting in their rival’s

aggressively bidding behavior that wipes out winner’s payoff. In the second-stage of

the game, under complete information environment, a losing bidder attempts to push

up his or her bid as close as the winner’s bid, to ensure he or she achieves the highest

resale price. The winner has to pay the highest price for the remaining shares of the

target. Thus bidders attempt to keep their rival in doubt about their valuations by

using non-strict toehold acquisition strategies at equilibrium.

This section points a possible toehold bidding cost –the opportunity loss of a prof-

itable resale. Instead of finding all possible equilibria, this chapter interests in a pooling

equilibrium, which is consistent with the actual toehold purchasing behavior (bimodal

distribution). By analyzing equilibrium toehold acquisition strategies, we are able to

find out the cost of toehold bidding.

The existence of the restricted partial pooling Bayesian equilibrium (Theorem 2.3.3)

shows that, for low-value bidders, deviation by acquiring a toehold θH cannot generate

a relatively high toehold resale price. Let bidder 1 be the low-value player. At equi-

librium, given bidder 2 is low-value, two bidders select zero toehold (0, 0), and they

will truthfully bid at the second stage. Suppose bidder 1 deviate by acquiring θH .

Along the equilibrium path, bidder 2’s best response is still v2. Recall the analysis on

unrestricted partial pooling Bayesian equilibrium, bidder 1’s deviation leads bidder 2
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to overbid, and then bidder 1 resells her toehold at this overbid price. However, in this

case, bidder 1’s toehold decision has no effect on bidder 2’s bidding strategy. If bidder

1 wins the game, she only has to pay the rest of shares at 2’s valuation. Her payoff

becomes v1 − (1− θH)v2. While, when bidder 1 loses the game, she resells her toehold

at her private valuation, v1, and has to pay the resale cost d. Her payoff in this case

is θHv1 − d. Let bidder 2 be the high-value, instead. To lose the game, bidder 1’s best

response is to bid a relatively lower price v̂ and generate the resale cost d. Bidder 1’s

payoff becomes θH v̂−d. Theorem 2.3.3 indicates that, under some conditions, if a low-

value deviates, his or her expected toehold benefit (only need to pay remaining shares

at the full takeover premium) is lower than the expected toehold cost (unprofitable

resale the toehold).

Bidders trade off expected toehold bidding benefit with expected toehold bidding

cost. At equilibrium, a bidder with zero valuation obviously acquires zero toehold.

This does not imply that non toehold bidding can only comes from a bidder with

zero valuation. In this restricted partial pooling Bayesian equilibrium, a bidder with

valuation v < v̂ may also acquire zero toehold, because his toehold bidding cost is

higher than its benefit.

When the expected benefit of toehold bidding overweighs its expected cost, a bidder

(e.g. bidder 1) with valuation v1 > v̂ prefers to acquire a toehold at equilibrium. Given

bidder 2 is a high-value player, by acquiring a toehold, bidder 1 triggers 2’s aggressively

bidding behavior with certainty. When bidder 1 wins the game, and only has to pay

the remaining shares, (1− θH), at full takeover premium (i.e. 2’s bid). While, if bidder

1 loses the the target, she benefits from the resale of her shareholdings at such high

price (2’s over bidding price), although it generates resale fixed cost d. Given bidder 2

is a low-value player, at equilibrium, truthfully bidding is 2’s weakly dominant strategy

in the second stage. In this case, bidder 1 wins the target and pays the rest of shares

at 2’s private valuation. Overall, bidder 1 benefits from toehold bidding in terms

of expectation. The existence of the restricted partial pooling Bayesian equilibrium

indicates that the opportunity loss of a profitable resale can be regarded as another

possible cost of toehold bidding to explain the toehold puzzle.

Theorem 2.3.3 assumes there is only one non-zero toehold size (the largest) available

for bidders to choose. To robust theorem 2.3.3, we assume there exist another non-zero

toehold size, θs, which is relatively smaller than θH .
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Let θs be another feasible and positive toehold size θs, where 0 < θs < θH . Before

the second stage, if bidders observe rival’s θs, they process this information using Bayes’

rule to update their beliefs concerning their rival’s valuation. That is their rival’s

valuations are uniformly, independently and identically distribution on the interval

(v̂, 1] according to the increasing distribution function F . And, it is assumed that its

density function f is continuous and differentiable.

At the beginning of the second stage, there are three more pairs of toehold sizes

might occur: (θs, θs), (0, θs) and (θs, θH). When signal (θs, θs) is observed, two bid-

ders’ optimal bidding strategies can be achieved by repeating the proof of (2.11) in

Proposition 2.3.2 and replacing θH by θs. Thus their optimal bidding strategies can be

expressed as:

β(vi, θs) =
vi

1 + θs
+

θs
1 + θs

+ d where i = 1, 2 (2.15)

When signal (0, θs) is observed, bidders’ optimal bidding strategies are same as in

Proposition 2.3.3. The last possibility is (θs, θH), by repeating the proof of (2.11)

in Proposition 2.3.2 and using θs instead of θH , we have bidder 1’s optimal bidding

strategy. That is

β1(v1, θs) =
v1

1 + θs
+

θs
1 + θs

+ d (2.16)

Meanwhile, bidder 2’s optimal bidding strategy is the same as (2.11) in Proposition

2.3.2. So that

β2(v2, θH) =
v2

1 + θH
+

θH
1 + θH

+ d (2.17)

Theorem 2.3.4. Suppose there exists a smaller positive toehold size θs than θH . And

when θs is observed, the bidder believes his or her rival’s private valuation is an indepen-

dent uniform distribution F within the support (v̂, 1]. Two bidders have no incentives

to deviate from the restricted partial pooling Bayesian equilibrium.

Proof : See Appendix A.8

Theorem 2.3.4 shows that low-values still optimally prefer non-toehold bidding while

high-values have no incentives to deviate a smaller toehold size θs. Low value bidders

choose non toehold bidding strategies at equilibrium, since their expected toehold bid-

ding cost overweighs the expected toehold benefit. To enlarge the benefits of toehold

bidding and to maximize their expected payoffs, high-values optimally pool their toe-

hold acquisition decisions at the largest size θH .
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The intuition is straightforward. Suppose bidder 1 is a high-value bidder. Given

his or her rival is a high-value bidder, by acquiring a toehold at the first stage, bidder 1

triggers rival’s aggressive bidding response in the second stage. One possibility is that

bidder 1 loses the target. By holding a toehold θH , bidder 1 is able to profitably sell

out the largest amount of toehold. Another possibility is that bidder 1 wins the target.

Then he only has to buy the smallest amount of shares at the full takeover premium.

2.4 Conclusion

It seems profitable to purchase a toehold prior to making any takeover bid given sub-

stantial control premium in corporate takeover. A bidder with a toehold can gain as

a winner that only pays the rest of shares at the substantial takeover premium, or as

a loser that sells out his shareholdings at such high price. Although some theoretical

studies support this argument, empirical literature documents puzzling observations.

They find that acquired toehold sizes are on average centered either on zero or a large

size – it is a bimodal distribution. Some literature argues that bidder toehold bene-

fits are not withstanding. Betton et al. (2009)’s two-stage takeover model finds some

bidders optimally choose non toehold bidding due to rejection cost – the opportunity

loss of a target termination agreement. They model actual takeover process as two

stages: private merger negotiation followed by a sealed-bid second-price auction. Pri-

vate merger negotiation happens between the target board and a single bidder, and

the board decides to accept or reject the proposed offer. The open auction is modeled

as a sealed-bid second-price auction. It takes account the fiduciary requirement, and

most importantly the initial bidder with merger agreement can achieve the target ter-

mination fees if a public offer is finally approved by shareholders. At their equilibrium,

toehold bidding reduces target board private expected profits, causing a rejection of

negotiation. It in turn results in the toehold costs. The target decision, hence dictates

an equilibrium toehold acquisition strategy for the initial bidder in their paper.

This chapter develops a two-stage takeover game, which is different from Betton

et al. (2009)’s in terms of two major points. First, this takeover game models private

takeover stage as an auction, instead of a merger negotiation, since half of the targets

are auctioned among multiple bidders. Second, there is no managerial entrenchment at

the first stage of this game. The general takeover process usually starts when the target
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board contacts a group of potential bidders. The private takeover stage is initiated by

the target board. In other words, there is no threat of target managerial resistance

among invited potential bidders. Hence this game assumes there is an unique seller –

the target. There are no different interests between target board and target sharehold-

ers (principle-agent problem). The target aims to sell itself to a bidder with highest

valuation. And therefore the open auction in Betton et al. (2009) disappears in this

game. These two differences help to extend the toehold puzzle story, and answer the

question what is toehold bidding cost when there is no target managerial resistance.

Chapter 2’s two-stage takeover game includes the toehold acquisition stage and

takeover bidding auction. In the first stage, each bidder is allowed to freely acquire a

toehold in the target. The observable toehold sizes are regarded as signals partially

revealing each bidder’s private information. The second stage is modeled as a sealed-

bid second-price auction. Two bidders compete to buy the target, and the winner pays

the loser’s bid.

It is shown that, under some conditions, there exists a restricted partial pooling

Bayesian equilibrium (Theorem 2.3.3), in which low-value bidders optimally choose

zero toehold while high-value bidders pool their decisions to one size. The equilibrium

toehold acquisition strategy is consistent with bimodal distribution of actual toehold

purchasing. Signal jamming occurs at the equilibrium. That is, bidders optimally play

partial pooling toehold acquisition strategy in the first stage to conceal their private

information. When bidders play perfect separating toehold acquisition strategy, they

completely reveal their private information, and the following auction becomes the one

under complete information, resulting fierce bidding competition (Proposition 2.3.1),

that reduces the bidder’s payoff.

This chapter points a possible toehold bidding cost – the opportunity loss of a

profitable resale. At equilibrium, a low-value bidder, whose valuation is less than a

threshold v̂, chooses non toehold bidding, since his or her expected toehold bidding

cost overweighs the expected toehold benefit. On the other hand, a high-value bidder

with valuation more than v̂ acquires a toehold. Since his toehold bidding benefit exceeds

the cost of toehold bidding in terms of expectation, he prefers to marks himself as high-

value bidder. To maximize the benefit brought from toehold bidding, a bidder optimally

reveals his valuation group (high-value group) by acquiring the highest toehold size.
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Chapter 3

Majority Rule and Mechanism

Design

This chapter studies the problem of optimal design of voting rules when each agent

faces binary choice. The designer is allowed to use any type of non-transferable penalty

on individuals in order to elicit agents’ private valuations. And each agent’s private

valuation is independently distributed. The main result is that under reasonable as-

sumptions, the society can do no better in terms of utilitarian efficiency, than to follow

a simple majority rule.

3.1 Introduction

Arrow’s impossibility theorem attracted a vast literature on majority rule. The story

can trace back to Arrow (1951) who shows the impossibility of formulating a social

welfare function thoroughly satisfying desired general democratic. Arrow tried to build

up a consistent, fair voting system that would lead to transitive social preferences over

more than two outcomes. But he proved that this was impossible. Arrow expressed

a consistent and fair voting system in terms of transitivity, independence of irrelevant

alternatives, unanimity and no-dictators. Arrow’s impossibility theorem says that it is

impossible to create a voting system that satisfies these four conditions when choosing

among more than two outcomes. And the theorem states that, demanding the transitive

social preferences, the first three conditions imply a dictatorship. While in game-

theoretic terms, the equilibrium (known as the core) under majority rule is unlikely
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to exist. More specifically, the existence of cyclical majorities in a multi-person voting

situation often implies that any proposed resolution to the underlying choice problem

can be blocked by some coalition of voters, and hence the core of the voting game is

empty.

A large part of literature studies the conditions that ensure the existence of ma-

jority rule equilibrium. Early work by Plott (1967) shows that under very restricted

conditions, such as the preferences can be represented by smooth utility functions and

the choice space is Euclidean, there exists a majority rule equilibrium. Similar results

can be found from Rubinstein (1979) and Greenberg (1979). Rubinstein (1979) shows

that the set of continuous preference profile has a non-empty core in the Kannai topol-

ogy. Greenberg (1979) shows that when the alternative set is a convex and compact

subset of Euclidean space with low dimension, for convex and continuous preference,

there exists a majority rule equilibrium. May (1952) and Rae (1969) indicates that

the simple majority has good normative properties in the situation of binary choice.

However, their results relay on the assumption that agents’ preferences have equal in-

tensities. Chakravarty & Kaplan (2010) compare the surplus between two mechanisms:

majority voting and a contest (who shouts the loudest chooses the outcome). They

assume that agents have private valuations over the two alternatives, and it is costly to

the voter when shouting acts as a signal. They find that if the number of voters is large

and the value of each voter is bounded, the majority voting is optimal. And for any n,

the superior mechanism is depends on the order statistics of the distribution of values.

Kleiner & Drexl (2013) solve for the social choice function maximizing utilitarian wel-

fare. They assume that agents have private valuations following distribution function

F and have quasi-linear utilities. In their model, monetary transfers are feasible. Their

main result is that if F has monotone hazard rates, the optimal social choice function

is implementable by qualified majority voting1 and it is optimal to exclude monetary

transfers. Casella (2005) proposes a simple voting mechanism for players to meet re-

peatedly over time. It is assumed that players can store their votes and shift them

intertemporally. As a result, the players cast more votes when preferences are more

intense. It is found that the voting mechanism does not achieve full efficiency, but it

can lead to a higher ex ante welfare. This chapter shows that the simple majority is

1Qualified majority voting means any decision rule that requires more than a simple majority of

the votes to ratify a decision.
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the best voting mechanism in terms of utilitarian efficiency, even if voters’ preferences

are comparable and may have varying intensities.

To understand it, consider the following example. There are two alternatives A and

B, and three agents in the society. Agent 1 prefers A over B, and he values £10 on

alternative A. While both agent 2 and 3 prefers B with £2 and £1 valuations on B,

respectively. A should be selected, in terms of utilitarian efficiency, but B holds more

votes. Since the details of environment are not specified, it is not clear what choice

should be used. This chapter assumes that the strengths of voters’ preferences are inde-

pendently and identically distributed and privately known. In such an environment, the

designer faces two voting mechanisms. The first voting mechanism generates a costly

stand-off (e.g. individual cost of time, expert advice). It is possible to set up the penalty

scheme in such a way that the revelation of private information occurs. Therefore the

mechanism may select the better alternative more often. Since incentive compatibility

constraints are imposed, the voters would have to pay in terms of this penalty. The

second voting mechanism achieves the agreement early, but does not extract private

information from the voters. And therefore, it may not achieve the first best. The

first mechanism generates the expected penalty cost of eliciting private information

in order to select the better alternative. It turns out that – if private information is

independently and identically distributed from one of the common distributions – the

second mechanism is efficient. The configurations of preferences similar to the above

example can occur, and simple majority would indeed select sub-efficient B, because

the expected efficiency cost of eliciting information to select the better alternative – A

is too high.

In this chapter, a voting mechanism is introduced. Each agent’s private preference is

assumed to be independently distributed, in the situation of binary choice. The number

of agents in each group, in which all agents prefer the same alternative, is known by

the designer. After the agents have reported their valuations to the mechanism, the

designer decides a collective decision over two alternatives and the penalty scheme to

maximize ex-ante social expected payoff. The designer is allowed to use any type of

non-transferable penalty on individuals, in order to elicit agents’ private valuations.

It finds that simple majority rule is the best in terms of utilitarian efficiency. At

equilibrium, the mechanism optimally assigns zero penalty to every agent. In other

words, the designer does not extract private information from any agent in the society,
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because the expected penalty cost of eliciting private information to select the better

alternative is too high.

The mathematical technique used here builds on the algorithms in McAfee & McMil-

lan (1992). Their analysis explains two commonly observed forms of cartel organizations

during bidding process. One of them is defined as weak cartel, in which members are

not allowed to make any transfer payments among themselves. According to bidders’

reports, the mechanism assigns each bidder’s bid and decides the non-transferable pay-

ments to maximize total expected profits. Meanwhile, the seller’s action is passive.

That is, the seller announces a reserve price and sells at the highest bid. To solve the

maximization problem, they form a bound on profits, and then find out the implemen-

tation of the bound. They show that in weak cartels all bidders propose exactly the

same bid when their private valuations are more than announced reserve price. The

intuition behind it is, in the absence of transfers among bidders, incentive compatibil-

ity constraints require the item is awarded with equal probability to the bidders whose

valuations are larger than the minimum price.

The organization of the Chapter 3 is as follows. Section 3.2 introduces the voting

mechanism and related assumptions. Section 3.3 shows the main results. Section 4

summarizes this chapter. Most of the proofs are relegated to Appendix B.

3.2 The Voting Mechanism

Let Ω = {A,B} be a set of alternatives. There are n risk-neutral agents in the society,

numbered 1, 2, ..., n. Let N be this society, so that

N = {1, ..., n} (3.1)

The society N is defined as a set of agents that are willing to play this voting game.

That is, each agent within N chooses one of the alternatives, and assigns private value

on his or her preferred alternative. Throughout Chapter 3, i and j represents typical

agent in N .

Within the society N , all agents are categorized into two groups: NA and NB.

Group NA contains all agents preferring alternative A to B, and the number of agents

within this group is denoted as |NA|. Group NB contains all agents preferring B to A,
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and the number of agents within this group is denoted as |NB|. where NB = N \NA.

Let agent i and j present the agent in group NA and NB, respectively.

Chapter 3 models asymmetric information in the following structure. It is assumed

that the number of agents in each group is known by the designer. For any m ∈ M ,

agentm assigns his or her valuation vm on his or her preferred alternative, while all other

agents perceive vm to be independently distributed on some interval [0, v̄] according to

the cumulative distribution function F . It is assumed that F admits a continuous and

differentiable density function f and has full support, so that

F (vm) =

∫ v̄

0
f(vm)dvm (3.2)

Let v represent a vector of all agents’ valuations, v = (v1, v2, ..., vn). And let v−i be

a value vector of all agents except vi, v−i = (v1, ..., vi−1, vi+1, ..., vn). The joint density

function of v can be written as

f(v) =
∏
m∈N

f(vm) (3.3)

Suppose, for each group, agents are ordered according to their valuation – from

high to low. Let H(vm) be the difference between the valuation of agent m and the

next smaller valuation. By the property of order statistics, we know that

H(vm) =
[1− F (vm)]

f(vm)
(3.4)

McAfee & McMillan (1987) defines the expected H(v) as a winning bidder’s expected

payoff within a second-price sealed-bid auction. This chapter assumes that H ′(vm) has

the characteristic (3.5),which is satisfied by most common distributions.

H ′(vm) < 0 (3.5)

The voting mechanism works as follows. After the agents have reported their valu-

ations to the mechanism, one of the alternatives is selected to maximize ex-ante social

expected payoff. Meanwhile, the mechanism also recommends the optimal penalty

scheme. For all i ∈ NA, let PA(vi, v−i) be the probability that alternative A is se-

lected by the mechanism. And, for all j ∈ NB, let PB(vj , v−j) be the probability that

alternative B is selected. The sum of these two probabilities is one.
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For all agent m ∈ N , let tm be a penalty scheme. The penalty scheme associates a

real number tm(v) of agent m with each vector v. That is

tm : [0, v̄]|N | −→ R (3.6)

It is assumed that tm(v) is non-negative and non-transferable among agents. To un-

derstand it, tm could be individual waiting cost, or cost of negotiations, expert advice.

The utility function of each agent from two groups NA and NB is:

Um(km, vm) = kmvm − tm(v), ∀m ∈ N ; m = i, j; i 6= j (3.7)

where

ki =

{
1 if A is selected

0 otherwise
∀i ∈ NA (3.8)

and

kj =

{
1 if B is selected

0 otherwise
∀j ∈ NB (3.9)

Suppose agent i has value vi but reports v′i given others’ truthful reports, agent i’s

expected payoff is expressed as the following:

π̃i(vi, v
′
i) = Ev−i [viPA(v′i, v−i)− ti(v′i, v−i)] where i ∈ NA (3.10)

Ev−i is the expectation over the vector v−i, and ti(v
′
i, v−i) represents individual i’s

penalty when his valuation is vi but reports v′i. PA(v′i, v−i) is the probability that A is

eventually selected, and v−i represents the truthfully reported valuation vector of all

agents except agent i, for i ∈ NA.

And let agent j’s expected payoff be π̃j(vj , v
′
j), when he cheats his value but others

truthfully report. That is

π̃j(vj , v
′
j) = Ev−j [vjPB(v′j , v−j)− tj(v′j , v−j)] where j ∈ NB (3.11)

In addition, when all agents in the society N truthfully report their private valua-

tions, agent i’s expected payoff is

πi(vi) = Ev−i [viPA(vi, v−i)− ti(vi, v−i)] where i ∈ NA (3.12)

and agent j’s truthful-revealing expected payoff is

πj(vj) = Ev−j [vjPB(vj , v−j)− tj(vj , v−j)] where j ∈ NB (3.13)

30



3.3 Simple Majority Rule with Zero Penalty

Next section shows Bayesian incentive compatibility conditions under this voting

mechanism. It describes the maximization problem of the designer, subject to several

constraints. The main result is the optimal social decision follows simple majority with

zero penalties, under reasonable assumptions.

3.3 Simple Majority Rule with Zero Penalty

The revelation principle 1 states that under weak conditions any mechanism can be

mimicked by a direct-revelation and incentive-compatible mechanism. In a direct and

incentive-compatible mechanism, all players simultaneously and confidentially report

their private valuations, and they have incentive to truthfully report. The revelation

principle tells us that, without loss of generality, we can restrict attention to a direct

and incentive compatible mechanism. Under this voting mechanism, each agent is asked

to report his or her valuation to the mechanism. Proposition 3.3.1 shows an alternative

form of expression of Bayesian incentive compatibility.

Proposition 3.3.1. The Bayesian incentive compatibility of the voting mechanism is

equivalent to: (i) d
dvi
πi(vi) = Ev−iPA(vi, v−i)

(ii) ∂
∂vi
Ev−iPA(vi, v−i) ≥ 0

where i ∈ NA (3.14)

(i′) d
dvj
πj(vj) = Ev−jPB(vj , v−j)

(ii′) ∂
∂vj
Ev−jPB(vj , v−j) ≥ 0

where j ∈ NB (3.15)

Proof : See Appendix B.1

After each agent reporting his or her valuation, the mechanism then decides which

alternative and what sort of penalty scheme should be selected to maximize ex-ante

social expected payoff. The ex-ante social expected payoff is the sum of each group’s

total ex-ante expected payoffs. Lemma 3.3.1 shows the ex-ante expected payoffs of agent

i and j respectively. The incentive compatibility conditions (i), (i′) in Proposition 3.3.1

are imposed to achieve the results.

Lemma 3.3.1. Under the voting mechanism, agent i’s ex-ante expected payoff is:

Eπi = E
[
H(vi) PA(vi, v−i)

]
+ πi(0) ∀i ∈ NA (3.16)

1See Myerson (1985)
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and agent j’s ex-ante expected payoff is:

Eπj = E
[
H(vj) PB(vj , v−j)

]
+ πj(0) ∀j ∈ NB (3.17)

Proof : See Appendix B.2

By Lemma 3.3.1, we know that the ex-ante social expected payoff is the following:

EΠ =
∑
i∈NA

Eπi +
∑
j∈NB

Eπj (3.18)

The voting mechanism aims to maximize (3.18) by choosing appropriate collective rule

and penalty scheme. The maximization problem is subject to five constraints. The

first two are incentive-compatible conditions (ii) and (ii′) in Proposition 3.3.1. The

rest of constraints are standard characteristics of probability. Both PA and PB are

non-negative, and sum of them must be one.

To solve the maximization problem, three boundaries ((I), (II) and (III)) on the

ex-ante social expected payoff (3.18) are introduced sequentially (from low to high).

Bound (I) is formed by letting the expected payoff of any agent with zero valuation be

zero. By the assumption of decreasing function of H(vi) and Proposition 3.3.1, Bound

(II) is formed. The last bound is developed by assuming there is a majority group,

say NA. The Theorem 3.3.1 claims that, to implement the Bound (III), the voting

mechanism uses zero penalty schemes for all agents in the society. Meanwhile, the

collective decision follows simple majority rule.

Theorem 3.3.1. Under the direct and incentive compatible voting mechanism, and if

all assumptions in section 3.2 are satisfied, the optimal social decision follows simple

majority rule, and there is no penalty on each agent.

Proof : See Appendix B.3

The mechanism in Theorem 3.3.1 works as follows. After all agents truthfully

report their valuations to mechanism, the mechanism produces a social decision and

recommends a penalty scheme, in such a way that each agent has incentive to follow.

The proof of Theorem 3.3.1 allows the penalty scheme tn to be a function of all

reported values of every agent in society N . However, Theorem 3.3.1 indicates that it

is not needed because the penalty on any agent is zero1. In other words, the mechanism

1Chakravarty & Kaplan (2013) prove that a lottery is optimal if the H ′ is decreasing and the cost

function for revealing private valuation does on depend on agents’ valuations.
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does not need actually to know all agents’ valuations, but simply selects the alternative,

which is preferred by the majority in the society.

Two examples are listed below: case H ′(vm) < 0 and case H ′(vm) > 0. These two

examples aim to compare the net welfare of two mechanisms –a simple majority and an

alternative mechanism. An alternative mechanism is proposed with decision rule that

alternative A is selected if and only if
∑
vi >

∑
vj , where agent i prefers A and agent

j prefers B. The alternative mechanism is allocation-efficient, but it does not necessary

to be net efficient. The working and calculation is processed through Matlab, and the

codes can be found in Appendix B.4.

Example 1: It is assumed that each agent’s private value follows Gamma distribution

with shape and scale being 5 and 1 respectively – G(5, 1). In this case, the inverse

hazard rate H is decreasing (H ′(vm) < 0). There are 94 agents, which 49 of them

prefer alternative A and the remaining agents prefer B1. Simple majority mechanism

selects alternative A, while the alternative mechanism selects B since
∑
vi >

∑
vj . The

net welfare of simple majority mechanism is |NA|E[H(vi)PA(vi, v−i)] = 49× 2.5574 ≈

125.31. The net welfare of the alternative mechanism is |NB|E[H(vj)PB(vj , v−j)] =

45 × 1.0349 ≈ 46.57. Thereby the simple majority mechanism is better than this

alternative mechanism in terms of net welfare.

Example 2: Now let us consider another Gamma distribution, G(0.1, 1). Then the

inverse hazard rate H is increasing (H ′(vm) > 0). Again, simple majority and the

alternative mechanism selects alternative A and B, respectively. The net welfare of

simple majority mechanism is |NA|E[H(vi)PA(vi, v−i)] = 49 × 0.0551 ≈ 2.7. The net

welfare of this alternative mechanism is |NB|E[H(vj)PB(vj , v−j)] = 45× 0.0997 ≈ 4.5.

In this case, simple majority mechanism becomes inferior.

3.4 Conclusion

This chapter studies the optimal design of voting rules when agents face binary choice.

The agents report their private valuations to the mechanism, then the designer selects

one of these alternatives and sets up the penalty scheme, in order to maximize ex-ante

1Agents’ valuations are randomly created through G(5, 1) via Matlab. Without loss of generality,

among these agents, no one is indifference between A and B – an agent with zero valuation /∈ N
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social expected payoff. Theorem 3.3.1 shows the society cannot do better in terms of

utilitarian efficiency, than to follow a simple majority rule with zero penalty scheme.

The designer may choose a voting mechanism which allows costly stand-off (such

as individual cost of time, or monetary or mental cost of negotiations) and then sets

up the penalty scheme in such a way that every agent has incentive to truthfully reveal

their private information. The mechanism elicits private information, and therefore the

better alternative may be selected more often. But, it generates the expected penalty

cost for eliciting such private information. Chapter 3’s voting mechanism achieves the

agreement early, but does not extract private information from agents. And therefore it

may not achieve the first best. Theorem 3.3.1 indicates the simply majority mechanism

without any penalty may select a sub-efficient alternative, but can achieve a higher

welfare. The reason is simply because the expected penalty cost is too high.

It should be mentioned here, some collective decision mechanisms require explicit

support of some super-majority. Instead of the immediacy of simply majority, these

mechanisms may generate individual waiting cost. Under some environments, these

alternative mechanisms are better. When waiting cost can be controlled or ignored,

then super-majority that selects a better alternative with higher probability, is better

than a simple majority.
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Chapter 4

A Package Bidding Mechanism to

Implement the Core

This chapter adopts the concept of core as a competitive standard, which enables the

package bidding mechanism to avoid the well-known weaknesses of VCG mechanism,

when gross substitutes condition fails. A more practical procedure – package bidding

is introduced to implement the core. It is proved that subgame perfect equilibrium

outcomes yielded from the package bidding mechanism coincide with the core of an

underlying strictly convex game.

4.1 Introduction

The cooperative game theory takes an abstract view of individual interaction. The

characteristic function form of a game expresses the set of payoffs to a coalition. Al-

though this approach has a clear advantage in terms of robustness 1, it lacks formal

investigation describing the process that strategic players finally agreed on the out-

comes.

Nash (1953) sets a new entire research agenda referred as Nash program for cooper-

ative games. The Nash program tries to link the cooperative and non-cooperative game

theory. It aims to develop non-cooperative procedures that yield cooperative solutions,

such as the core, as their equilibrium outcomes. The concept of core, pioneered by

1Solution concepts are independent of the unimportant details of different procedures that underlie

the same set of feasible payoffs
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Edgeworth (1881), is probably the most widely used cooperative solution concept. It

is the set of feasible payoff allocations that cannot be improved upon by any subset of

the players.

A large number of papers contributes to the Nash program that explores non-

cooperative outcomes related to the core. Banks & Duggan (2000) model the decision

making process as the form of coalitional bargaining. They show, in certain envi-

ronment, stationary equilibrium outcomes coincide with the core. Chatterjee et al.

(1993) build a model of n-person coalitional bargaining with discounting and transfer-

able utility (TU). They introduce a fixed protocol describing the order of proposers and

respondents, and they show that in strictly superadditive TU game, as the discount

factor tends to one, subgame perfect equilibrium outcomes converge to core outcomes.

Perry & Reny (1994) provide a non-cooperative implementation of the core, and they

consider a dynamic bargaining game in continuous time without a fixed order of moves.

They prove that every stationary equilibrium of their game leads to the payoffs in the

core. Benny & Eyal (1995) study non–transferable utility game without discounting,

and they prove an equivalence between the core and stationary order independent equi-

librium outcomes.

Serrano (1995) is closest to ours in spirit. Given a strictly convex TU coalitional

function, Serrano (1995) constructs a game that resembles an asset market. The core

is supported in subgame perfect equilibrium and obtained as those outcomes in which

every arbitrary opportunity has vanished from the market. Unlike the literature men-

tioned above, the rules of the game form do not require complete knowledge of the

coalitional function 1. Serrano (1995) describes an asset market with randomly se-

lected broker to centralize the trade. Each player initially owns one asset. In the first

stage, the broker proposes an asset price vector, at which he wants to buy the assets

from other players. In the second stage, the remaining players decide to either accept

or reject this deal sequentially. If a player accepts the deal, he sells his asset to the

broker at the proposed rate. While, when a player rejects it, he proposes a portfolio of

assets that he wants to purchase at broker’s proposed price. The broker’s payoff is the

worth of the final portfolio of assets he holds, plus the net monetary transfers that he

received. When the transferable utility (TU) game is strictly convex, Shapley (1971)

theorem can be used to prove that the implementation of the core is achieved in terms

1See Bergin & Duggan (1999)
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of expectation. The core allocation, in Serrano (1995), is viewed as a situation in which

a player has no arbitrage opportunities to buy underpriced assets from others.

This chapter contributes to the Nash program. It presents an extensive form, and

tends to show a connection between subgame equilibria and the core. Different from

Serrano (1995)’s design, it resembles a package bidding mechanism, in which the seller

initially owns all items and rest of players are bidders competing to win the item(s) that

they are interested in. The design works for substitute goods as well as complementary

goods. One of the players is assumed to be randomly selected as the first mover,

who invites others to form a grand coalition by proposing a payoff vector. By renting

other players to achieve the joint benefit, the proposed payoff vector is interpreted

as the amount that the first mover must pay to these players. In this mechanism,

only core allocations generate subgame perfect equilibrium payoffs, because non-core

allocations provide arbitrage opportunities for some players. In addition, the first

mover with monopoly power receives the maximum core payoff in the subgame. By

the strict convexity assumption, the implementation of the core is achieved in terms of

expectation.

This chapter also contributes to the design of package auction when the gross sub-

stitutes condition1 fails. In many auction environments bidders are more interested in

the packages of items they win. Under a package auction (also known as combinato-

rial auction), any bidder is allowed to bid directly for non-trivial subsets (package) of

items being sold. It is partially important when items are complements. Then bid-

ders can more fully express their preferences, resulting in improved economic efficiency

(allocating a package of items to the bidder who values it most) and greater auction

revenues. Vickrey (1961) provides a mechanism in which it is a dominant strategy for

bidders to report their values truthfully. The mechanism assigns item(s) efficiently and

the bidders pay the opportunity cost of the item(s) won. For multiple identical items,

in Vickrey’s original setting, each bidder is assumed to have the diminishing marginal

value of the item. Clarke (1971) and Groves (1973) extend Vickrey (1961)’s design.

Their auction design does not require nonincreasing marginal values for bidders. The

outcomes are still efficient and the bidders still pay the opportunity cost of the item(s)

1The gross substitutes condition requires that an increase in the price of an item (or a package of

items) causes an increase in demand for other items. Under the setting with multiple identical objects

and declining marginal values, this condition is obviously satisfied.
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won. The extended Vickrey mechanism, throughout this chapter, is called the Vickrey-

Clarke-Groves (VCG) mechanism.Ausubel & Milgrom (2002) prove that when gross

substitutes condition is satisfied, the VCG payoffs lie in the core.

When the gross substitutes condition fails, VCG mechanism suffers from several

practical drawbacks. Ausubel & Milgrom (2006) study the environment where items

are complementary, and they list the possible drawbacks of using VCG mechanism.

Under VCG pricing rule, the seller revenue can be very low (possibly even zero) and is

non-monotonicity in both the number of bidders and their values. Collusion becomes

feasible and easier among losing bidders. As a result, bidders may find shill bidding

profitable.

Ausubel & Milgrom (2006) adopt the concept of the core as a competitive standard

to ensure the outcomes of their package auction design do not have those practical

drawbacks. The promise of a core allocation is that collusion among losing bidders

becomes unprofitable. The basic idea behind in the core is similar as that behind a

Nash equilibrium, in which an allocation is stable if no player has incentive to deviate.

If an allocation is in the core, there is no tendency for a coalition to form and upset it.

In terms of auction theory, the non-core allocations are unstable, in that some bidders

are willing to pay more than the winner’s payment.

The organization of chapter 4 is as follows. The next section defines the core of

a strictly convex transferable utility game, and it introduces the definition of Davis

& Maschler (1965)’s (DM) reduced game. Section 4.3 develops the package bidding

mechanism and related assumptions. Section 4.4 presents and discusses the main results

Section 4.5 concludes this chapter. And all proofs are relegated to Appendix C.

4.2 Core, Strict Convexity, and DM Reduced Game

4.2.1 Core

Let a transferable utility (TU) game be a pair (N, v) where N is a coalition (grand

coalition) and v is the characteristic function of the game. A coalition S is defined to

be a subset of N , S ⊂ N . The characteristic function v associates a real number v(S)

with each subset S of N . For any S ∈ N , v(S) is called the worth of S. It is interpreted

as the maximum value of S can create as a group. The pair (N, v), where v assigns

v(S) to each coalition S is defined as a game in characteristic function. Suppose X is
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the set of feasible allocations. Let the set of players be L with player 0 being the seller.

In general, the characteristic function can be defined for coalition S as follows:

v(S) =


max
x∈X

∑
l∈S

vl(xl), 0 ∈ S

0, 0 /∈ S
(4.1)

It should be mentioned here, in this chapter, the rules of the game do not require that

the designer has complete knowledge of the characteristic function, such as (4.1).

It is always assumed that v(∅) = 0. Let RN (here R denotes the real numbers) be

the set of all payoff vectors of N . For any π ∈ RN and S ∈ N , it is denoted that

π(S) =
∑
i∈S

πi (4.2)

We now can state the following definition. Let (N, v) be a TU game. The core of

(N, v) is defined by:

C(N, v) =
{
π : v(N) = π(N), v(S) ≤ π(S) for all S ∈ N

}
(4.3)

The condition that v(N) = π(N) tells us that the vector π is feasible, and the

condition that v(S) ≤ π(S) tells us that there is no tendency for coalition S to form

and upset the π because coalition S cannot guarantee each of its members receive more

than they could gain from π. Thus the core of (N, v) is the set of feasible (for the whole

coalition) payoff allocations that cannot be improved upon by any subset.

4.2.2 Strict Convexity

A game (N, v) is a strictly convex game if for all coalitions S and T we have

v(S ∪ T ) > v(S) + v(T )− v(S ∩ T ) (4.4)

This condition arises when each player provides positive marginal contribution to

the worth of the coalition. It also arises when each player holds a unique object and the

objects are complementary (Topkis (1987)). It follows immediately that every strictly

convex game is strictly superadditive1. It should be mentioned here, since the game

is strictly superadditive, v(N) is the largest total value received by any disjoint set of

coalitions. Players have incentive to form the grand coalition for joint benefit.

1Superadditivity says that for all S, T ∈ 2N and S ∩ T = ∅, then v(S) + v(T ) ≤ v(S ∪ T ).
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Shapley (1971) shows that the core of a strictly convex game is nonempty, and the

extreme points (marginal contribution or “greedy value allocations”) can be computed

by the greedy algorithm. By listing the players in some order, player i’s marginal

contribution (or “greedy value allocations”) to the coalition N of preceding players is

the following:

v(N)− v(N \ {i}) (4.5)

Shapley’s theorem says that for any ordering of the players all greedy value allocations

are in the core.

Assumption 1: It is assumed that the TU game (N, v) is strictly convex in chapter

4.

4.2.3 DM Reduced Game

This chapter uses the definition of Davis & Maschler (1965)’s (DM) reduced game. For

any nonempty subset S and for any π ∈ RN , the DM reduced game (S, vπs) has the

following characteristics:

vπs = v
(
N
)
− π

(
N \ S

)
(4.6)

and

vπs
(
T
)

= max
Z⊆N\S

{v(T ∪ Z)− π(Z)} ∀T ⊂ S (4.7)

Serrano (1995) interprets this reduced game as follows. The broker (first mover)

proposes a price vector π. The reduced game (S, vπs) is formed by paying all players

in N \ S at price π. The new worth of the total coalition S is defined as the coalition

value after paying each member in N \ S at π. Let T be any non-empty subset of S.

The definition of vπs(T ) allows T to consider the best deal from any group of players

in N \ S.

One interpretation of vπs
(
T
)

is that T maximizes its return by renting group Z ⊂
N \ S to join it and together create the joint benefit (worth) v(T ∪ Z). Meanwhile, T

must pay all players in Z at price π.

To understand better the concept of core in a DM reduced game, consider the

following example explaining core allocations under DM reduced game: Suppose there

is a TU game (N, v), where N = {0, 1, 2}. The seller, labeled as 0, owns an indivisible

object. Two bidders, labeled as 1 and 2, compete to win the object. Let the worth of

total coalition be one, v(N) = 1. And, for any S consisting of a seller and one bidder,
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let the worth of any nonempty subset S be 0.6. If the seller is not included or if there

is only the seller included in the coalition, the worth is zero. The proposed price vector

π is the following

π = (0.4, 0.5, 0.1) (4.8)

The definition of core tells us that π is not a core allocation, because the seller and

player 2 can form a coalition S with v(S) > π(S). That is, there exists the coalition

S = {0, 2} that can improve upon π.

Alternatively, let the core of reduced game (S, vπs) be C(S, vπs), let the projection

of π be πs. Peleg (1986) proved that, for balanced games, the core is the only solution

that satisfies non-emptiness, rationality, superadditivity, and consistency. A solution

is consistent if it is “independent” to the number of players. For instance, there is a

game with n players and let (S, vπs) be its reduced game. The solution of this game

is consistent, if the projection of the original solution is still a solution in the reduced

game (S, vπs). The Peleg (1986)’s theorem tells us that if there exists a reduced game

(S, vπs) and its core allocation does not include πs, then π is not a core allocation of

game (N, v). In the example, there is a reduced game (S, vπs), where S = (0, 1) with

the following characteristics:

vπs = v(N)− π(N \ S) = 1− 0.1 = 0.9 (4.9)

and

vπs
(
{0}
)

= max{v({0, 2})− π2, 0} = max{0.6− 0.1, 0} = 0.5 (4.10)

The corresponding projection of the given π is πs = (π0, π1), where πs = (0.4, 0.5).

Since vπs{0} > π0, the seller has arbitrage opportunities. The seller has opportunity to

rent an “underpriced” player 2. By the definition of core allocations, πs is not in the

C(S, vπs). By Peleg (1986)’s theorem, we know that π /∈ C(N, v).

By using the definition of DM reduced game and Peleg’s theorem, we can inter-

pret that core allocations are those where the players have no opportunities to rent

“underpriced” agent(s). That is, for some i and for some S, i ∈ S, we have

vπs({i}) ≤ πi (4.11)

As the final part of this section, interpret the strictly convex TU game (N, v) as

the following package bidding mechanism. Let n ≥ 2 denote the number of players in
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the game, numbered from 1 to n, and let N be a finite set of players N = (1, ..., n).

There is only one seller within N , the rest of players are bidders. The seller owns some

indivisible items. Bidders holding no items compete to win their preferred “baskets”.

And each player owns an amount of a perfectly divisible composite commodity called

money. The worth of coalition S is the value that S can create. If the seller is not

included in the coalition, the worth is zero.

4.3 Package Bidding Mechanism

This section introduces a package bidding mechanism in which one of the players is

randomly selected as the first mover. Let player i be selected as the first mover with

probability pi. And let a vector p = (p1, ..., pn) be the probability that every player is

selected as the first mover. The worth of any coalition of the TU game (N, v) indicates

the joint value of cooperation. The subgame where player i is the first mover has three

stages.

The rules of this mechanism do not depend on the characteristic function. Oth-

erwise, there exists some possibilities that a non-cooperative game whose equilibrium

payoffs can be achieved by the trivial mechanism. 1

In stage 1, player i proposes a payoff vector π = (π1, π2, ..., πn), where π(N) = v(N).

If the grand coalition is formed, each player in N receives a payoff at the rate of π,

with the understand that player j receives πj . By renting the players in N \{i} to form

a coalition and create the joint benefit, the proposed π is interpreted as the amounts

must be paid by player i to each player in N \{i}. In addition, the mechanism requires

the proposed payoff vector π to be individually rational. That is, for all j ∈ N

πj ≥ v({j}) (4.12)

And each element of the proposed π is non-negative. That is, for all j ∈ N , we have

πj ≥ 0 (4.13)

Player i can be either the seller or one of the bidders. Meanwhile, Bidders are able

to bid any item or items they are interested in. In other words, the mechanism works

when items are complementary and/or substitutes.

1See Bergin & Duggan (1999) Proposition 1
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In stage 2, players in N \ {i} move sequentially according to a fixed and arbitrary

protocol P . The fix protocol P describes the order of the first movers and respondents.

They decide to accept or reject the deal at π. If any player j ∈ N \ {i} rejects π,

then j proposes a new coalition T ⊂ N at π, where i /∈ T . The action space of player

j ∈ N \ {i} is (αj , bj). If player j accepts π, αj displays “1”. Then bj is the set of

item(s) that j wants to buy from player i at π. For instance, player j’s the action space

(1, ∅) indicates j accepts π and j is the seller. If player j rejects π, αj displays “0”.

Then bj is a set of players T ∈ N \{i}, with whom j prefers to trade at π. If any player

j accepts π, he is guaranteed to receive πj at the end of trading. Player j receives πj

not because there is a trade between the first mover i and him, but because he agrees

to join and contribute to the joint return at the proposed π.

In the final stage, trading with rejectors occurs. Let M ∈ N \ {i} be the set of

rejectors. Let player g be a rejector, where g ∈ M . Recall above definition of action

space, g’s action space is (0, T ), where g ∈ T and i /∈ T . T is a coalition that g proposes

and prefers to trade with. The mechanism requires that these invited players T \ {g}
must agree to join. And player g must pay them at the rate of π. When the item(s)

demanded by g is available in T , the trading takes place; otherwise there is no trading.

Assumption 21: In chapter 4, it is assumed that any player in N \ {i} is willing

to accept the π when he or she is indifferent between acceptance and rejection.

The following section introduces player i’s payoff function in the subgame where

player i is selected as the first mover. Let Ωi be player i’s payoff function. If player i

is the seller, his payoff function Ωi is the following:

Ωi =

{
v
(
N
)
− π(N \ {i}) if all players in N \ {i} accept π

v(N \M)− π(N \ {M ∪ {i}}) if a set M of players reject π
(4.14)

If player i is not the seller, his payoff function Ωi is the following:

Ωi =


v(N)− π(N \ {i}) if all N \ {i} accept π

v(N \M)− π(N \ {M ∪ {i}}) if the seller /∈M
−π(N \ {M ∪ {i}}) if the seller ∈M

(4.15)

In any subgame where player i is the first mover, i invites the rest of players to

form a grand coalition by proposing a return vector π. If all players in N \ {i} accept

1Same as Serrano (1995), all players take participant cost and the cost of time/waiting into account.

A player will be willing to trade at rate of current π, when both decisions bring her same payoff.

43



4. A PACKAGE BIDDING MECHANISM TO IMPLEMENT THE
CORE

the deal, player i must pay them at the rate of π. Then player i’s payoff is the total

value that the grand coalition N can create minus the promised payment to N \ {i}.
Suppose there exist a set of rejectors M at the end of stage 2, and the seller is not

included in M . Player i achieves the worth of coalition N \M by paying all players in

N \{M ∪{i}} at π. When the seller is one of the rejectors in M , the worth of coalition

v(N \M) is zero. But player i still has to pay all members in N \ {M ∪ {i}} at π.

4.4 Results: Subgame Perfect Equilibrium and Core Al-

locations

This section focuses on the connection between subgame perfect equilibrium (SPE)

payoffs of the package bidding mechanism and core allocations of the strictly convex

TU game (N, v). Let player i be selected as the first mover. Consider any subgame that

starts immediately after player i has proposed a payoff vector π. By the interpretation

of core allocation (shown in 4.11), we know that if the proposed payoff vector π is a

point in the C(N, v), then any player in N has no opportunity to rent “underpriced”

players to join in a coalition at π (no arbitrage opportunities). Therefore, all players

have no incentive to reject π. In addition, if π is not a core allocation, Lemma 4.4.1

indicates that there exists at least one player in N \ {i} who could profitably reject π

and propose a new coalition.

Lemma 4.4.1. Consider any subgame that starts after player i has proposed a payoff

vector π. Suppose all assumptions mentioned above are satisfied, then the proposed π

is a core allocation if and only if all players within N \ {i} accept the π.

Proof : See Appendix C.1

Consider any subgame which starts after player i has proposed a vector π with

πi ≥ v({i}). Let Qi be the set of core allocations where player i can gain his maximum

payoff. That is

Qi =
{
π ∈ C(N, v), such that ∀x ∈ C(N, v), πi ≥ xi

}
(4.16)

By Assumption 1 (strictly convex game) and Shapley (1971)’s theorem, we get Qi 6= ∅
and

πi = v(N)− v(N \ {i}), for π ∈ Qi (4.17)
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By moving firstly, player i has incentive to propose the vector π, where i can receive

his or her maximum payoff πi, shown in (4.17). Lemma 4.4.2 indicates that, for player

i, to receive his or her maximum payoff, the proposed payoff vector π must be accepted

by all players in N \ {i}.

Lemma 4.4.2. Consider any subgame that starts after player i has proposed a payoff

vector π and all assumptions mentioned above are satisfied. If π is rejected by at

least one players in N \ {i}, player i’s payoff Ωi from proposing π is strictly less than

v(N)− v(N \ {i}).

Proof : See Appendix C.2

Lemma 4.4.2 indicates the first mover i has incentive to propose a payoff vector,

which is accepted by all remaining players. Meanwhile, first mover i achieves his or her

maximum payoff πi. Lemma 4.4.1 and 4.4.2 implies that, in any subgame where player

i is the first mover, π is a SPE payoff if and only if π ∈ Qi.

Let SPEp be the subgame perfect equilibrium of the package bidding mechanism

with a fixed p (recall the definition of p in section 4.3: the probability that every player

is selected as the first mover). According the strict convexity assumption (Assumption

1), the implementation of the core is achieved in terms of expectation.

Theorem 4.4.1. Let the underlying TU game (N, v) be strictly convex, and let p be

the probability each player is selected as the firs mover. Then under Assumption 2,

π ∈ C(N, v) if and only if π is the subgame perfect equilibrium outcome for any p.

Proof : See Appendix C.3

This result is related to Serrano (1995), whose mechanism resembles an asset market

with a broker. Each player owns an indivisible asset. One of the players is randomly

selected as the first mover, denoted as a broker to centralize trade. The subgame starts

immediately after a broker has proposed an asset price vector. In Serrano (1995), it is

shown that any subgame perfect equilibrium outcomes coincide with the core allocation

of the TU convex game.

The broker has monopoly power since he firstly proposes his most preferred prices,

while other players have to compete to win the assets they are interested in. As a

result, the monopoly power of a broker enables him to gain his top-ranked payoff in the

core. At equilibrium, the broker has incentive to propose the π, where the all remaining
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players accept (no arbitrage opportunities). Again, by the strict convexity assumption,

the implementation of the core is achieved in terms of expectation.

At equilibrium, the mechanism works in the following way. Suppose there is one

seller, denoted as S; three bidders, denoted as B1, B2, B3. The seller S has four items

(I1, I2, I3, I4), others hold nothing but compete to bid their preferred item(s).

Example 1: Given P = (S,B1, B2, B3), in the first stage, the seller S proposes

a payoff vector π(4) = v(4),where π(4) = (πs, πB1 , πB2 , πB3). And, the proposed π

satisfies condition (4.12) and (4.13). In the second stage, at equilibrium, all bidders

accept the π. Their action spaces, for example, are the following: B1 :
(
1, (I1)

)
,

B2 :
(
1, (I1, I2)

)
, B3 :

(
1, (I3, I4)

)
. The trading with accepters happens in this stage

according to the order of P . The resulting package allocations and payoffs are: S

receives πs with zero items; B1 gets item I1 and payoff πB1 ; B2 only wins item I2 but

receives compensation πB2 ; B3 wins the package (I3, I4) and payoff πB3 .

Example 2: Given P = (B3, S,B1, B2), in the first stage, the bidder B3 proposes

a payoff vector π(4) = v(4),where π(4) = (πB3 , πs, πB1 , πB2). And, the proposed π

satisfies condition (4.12) and (4.13). In the second stage, at equilibrium, all players

accept the offer. Again, their action spaces, for instance, can be the following: S : (1, 0),

B1 :
(
1, (I1)

)
, B2 :

(
1, (I1, I2)

)
. The trading with accepters happens in this stage

according to the order of P . The resulting package allocations and payoffs are: B3

receives package (I3, I4) and payoff πB3 ; S still holds items I1, I2 and earns payoff πs;

B1 and B2 both wins nothing but gets compensation πB1 and πB2 , respectively.

Chapter 4 presents a mechanism to resemble a package auction. The seller owns all

items and bidders compete to win the item(s) they are interested in. One of the players

is randomly selected as the first mover to propose a payoff vector π. The first mover

(either a bidder or the seller) has incentive to invite the rest of players to form the grand

coalition N , because each player has positive marginal contribution to a coalition. At

the same time, the first mover must make a payment to each player in N \ {i} at the

proposed rate π. Similar in Serrano (1995), Theorem 4.4.1 indicates that the first mover

has monopoly power to achieve his or her best core payoff, v(N)− v(N \ {i}).
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4.5 Conclusion

This chapter presents a package bidding mechanism to implement the core. The package

bidding process has three stages, and the anonymity of the procedure stems from the

random selection of first moving player. In the first stage, a randomly selected player

announces a payoff vector. In the second stage, remaining players decide to accept or

reject this deal sequentially. Finally, trading with rejectors takes place. The rules of the

mechanism are independent of the characteristic function. The key assumption here is

the strictly convexity of the TU game (N, v). As a result, Shapley (1971)’ theorem can

be applied to prove the main results. That is, the implementation of the core can then

be achieved in terms of expectation

With the promise of core allocations, this package bidding mechanism avoids the

practical drawbacks (such as collusion, shill bidding) of VCG mechanism when items

are complementary. It is shown the subgame perfect equilibrium outcomes of this

mechanism coincide with the core of a strictly convex transferable utility game. The

monopoly power of the first mover enables him to achieve his top-ranked payoff in the

core.
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Chapter 5

Conclusion

The thesis applies game theory to analyze optimal toehold bidding strategies in the

context of takeover bidding competition (chapter 2), to study optimal design of voting

rules (chapter 3), and to develop a package bidding mechanism (chapter 4).

Chapter 2 introduces a two-stage takeover game and points a possible toehold bid-

ding cost. It looks like profitable to purchase a toehold prior to making any takeover

bid, given substantial control premiums. However the actual purchased toehold sizes

follow a bimodal distribution. Some literature argues that toehold benefits are not

withstanding. They find that there exists a toehold cost generated by target manage-

rial entrenchment – the opportunity loss of a target termination agreement. Toehold

bidding, in equilibrium, reduces toehold board expected private profits, result in a re-

jection of negotiation. Chapter 2’s two-stage takeover game models private takeover

stage as a sealed-bid second-price auction. Moreover, there is no managerial entrench-

ment at the first stage. Since, according to the general takeover process, the private

takeover stage is initiated by the target board. In other words, there is no threat of

target managerial resistance among invited potential bidders. At the beginning of the

second stage of this game, acquired toehold sizes become publicly known, and therefore

they are regarded as signals partially revealing each bidder’s willingness to bid.

The main result in chapter 2 is that, under some conditions, there exists a restricted

partial pooling Bayesian equilibrium, in which low-value bidders choose zero toehold

while high-value bidders pool their toehold acquisition decisions at one size. Signal

jamming occurs in equilibrium. At equilibrium, bidders play non-strict toehold acqui-

sition strategies, pretending to be other bidders with some probability, in order to avoid
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fierce competition in the second stage. It is shown that, under this two-stage takeover

model, bidders may face a toehold bidding cost – the opportunity loss of a profitable

resale. As a low-value bidder, by acquiring a toehold (deviate from equilibrium), his

toehold decision has no effect on low-value rival’s bidding strategy. That is, along the

equilibrium path, the low-value rival still bids her valuation. The low-value bidder with

some probabilities loses the target. He sells out his toehold at a relatively low price

and has to pay the resale cost. In terms of expectation, low-value’s toehold bidding

cost is higher than its benefit. As a result, at equilibrium, low-values optimally prefer

zero toehold.

Chapter 3 studies the optimal design of voting rules when each agent faces binary

choice. Each agent’s preference is assumed to be independently distributed. The de-

signer is able to use any non-transferable penalty on agents. After the agents report

their private valuations to the mechanism, the designer selects one alternative and a

penalty scheme to maximize ex-ante expected social payoff.

On one hand, the designer can choose a mechanism that allows costly stand-off,

including individual cost of time, any monetary or mental cost of negotiations, etc.

And then he sets up the penalty scheme to ensure each agent has incentive to truth-

fully report his or her private valuation. In this case, the mechanism elicits private

information, and a better alternative would be selected more often. The mechanism

also generates the expected penalty cost of eliciting private information. On the other

hand, the designer can choose a mechanism that achieves the agreement early, but does

not extract private information from agents. Therefore, it may not select the first best

more often. And the mechanism does not generate the expected penalty cost.

Chapter 3 finds that, under reasonable assumptions, the society cannot do better in

terms of utilitarian efficiency, than to follow a simple majority rule with zero penalty

on each voter. In this case, the simple majority may select a sub-efficient alternative,

but can achieve a higher welfare. The reason is simply because the expected penalty

cost is too high.

Chapter 4 presents a package bidding mechanism whose subgame perfect equilib-

rium outcomes coincide with the core of an underlying strictly convex transferable

utility (TU) game. This chapter adopts the concept of the core as a competitive stan-

dard to ensure the outcomes of the mechanism do not have the well-known practical

drawbacks of VCG mechanism. Lemma 4.4.1 and 4.4.2 implies that, for any subgame
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that starts after player i has proposed a payoff vector π, the proposed π is the out-

come of subgame perfect equilibrium if and only if it is a core allocation. Since the

strict convexity assumption, the implementation of the core can be achieved in terms of

expectation. Moreover, the first mover with monopoly power achieves the top-ranked

payoff in the core.
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5. CONCLUSION

52



Appendix A

Proofs in Chapter 2

A.1 Proof of Proposition 2.3.1

Let Πi (i = 1, 2) denote bidder i’s equilibrium payoff, and let v1 > v2. At equilibrium,

bidder 1 wins the target and she pays v1 + d− ε. So that

Π1 = v1 − (1− θ1)(v1 + d− ε) (A.1)

Meanwhile, bidder 2 loses the target and sells out his shareholdings at his bid price.

Then his equilibrium payoff can be expressed as:

Π2 = θ2(v1 + d− ε)− d (A.2)

Let bidder 1 deviate by bidding higher than (v1 + d), given bidder 2 along the

equilibrium path. That is

b̄1 > v1 + d (A.3)

Bidder 1 still wins the target at price v1 + d − ε. Let Π̄1 be bidder 1’s off-equilibrium

payoff when she deviates by increasing her bid. Then

Π̄1 = v1 − (1− θ1)(v1 + d− ε) (A.4)

(A.1) and (A.4) tells us that

Π1 = Π̄1 (A.5)

Let bidder 1 deviate by bidding lower than (v1 + d − ε), given bidder 2 along the

equilibrium path. That is

b1 < v1 + d− ε (A.6)
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Then bidder 1 loses the target and sells out her shareholdings at her bid price. Let Π1

be bidder 1’s off-equilibrium payoff when she deviates by reducing her bid. So that

Π1 = θ1b1 − d (A.7)

Then

Π1 −Π1 = v1 − (1− θ1)(v1 + d− ε)− θ1b1 + d (A.8)

That is

Π1 −Π1 = θ1

(
v1 + d− ε− b1

)
+ ε (A.9)

Since (A.6), we have

Π1 −Π1 > 0 (A.10)

Let bidder 2 deviate by bidding lower than (v1 + d − ε), given bidder 1 along the

equilibrium path. That is

b2 < v1 + d− ε (A.11)

Bidder 2 loses the target and sells out his shareholdings at his bid price. Let Π2 be

bidder 2’s off-equilibrium payoff when he deviates by reducing bid price. So that

Π2 = θ2b2 − d (A.12)

Then

Π2 −Π2 = θ2(v1 + d− ε)− d− θ2b2 + d (A.13)

That is

Π2 −Π2 = θ2(v1 + d− ε− b2) (A.14)

By (A.11), we have

Π2 −Π2 > 0 (A.15)

Let bidder 2 deviate by bidding higher than (v1 + d), given bidder 1 along the

equilibrium path. That is

b̄2 > v1 + d (A.16)

Bidder 2 wins the target at the price (v1 + d). Let Π̄2 be bidder 2’s off-equilibrium

payoff when he deviates by increasing his bid. So that

Π̄2 = v2 − (1− θ2)(v1 + d) (A.17)
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A.2 Proof of Lemma 2.3.1

Then

Π2 − Π̄2 = θ2(v1 + d− ε)− d− v2 + (1− θ2)(v1 + d) (A.18)

By the definition of ε, let ε be zero. We have

Π2 − Π̄2 = v1 − v2 (A.19)

Since v1 > v2, it follows that

Π2 − Π̄2 > 0 (A.20)

Therefore, we have shown that two bidders have no incentives to deviated from the

equilibrium bidding strategies shown in Proposition 2.3.1.

A.2 Proof of Lemma 2.3.1

Bidder 1’s true private valuation is v1. Let r1 and r1 be bidder 1’s announcement on

her valuation. That is

r1 < v1 (A.21)

and

r̄1 > v1 (A.22)

Let EΠ1 and EΠ1 denote bidder 1’s off-equilibrium expected payoffs when he announces

r1 and r1 respectively.

Given bidder 2 along the equilibrium path, three scenarios are considered to com-

pute EΠ1 by reporting r1.

(i) v2 ∈ [0, r1]: Bidder 2’ equilibrium bid is (r1 + d − ε). Bidder 1 wins the target at

price (r1 + d− ε). Under this scenario, bidder 1’s expected payoff is the following:∫ r1

0

[
v1 −

(
1− τ(r1)

)
(r1 + d− ε)

]
f(v2)dv2 (A.23)

(ii) v2 ∈ [r1, v1]: Bidder 2’s equilibrium bid is (v2 + d). Bidder 1 has incentive to win

the target at (v2 + d). Then bidder 1’s expected payoff is:∫ v1

r1

[
v1 −

(
1− τ(r1)

)
(v2 + d)

]
f(v2)dv2 (A.24)
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(iii) v2 ∈ [v1, 1]: Bidder 2’s equilibrium bid is (v2 + d). Bidder 1 has incentive to lose

the target at his bid price (v2 + d− ε). Then bidder 1’s expected payoff is:∫ 1

v1

[
τ(r1)(v2 + d− ε)− d

]
f(v2)dv2 (A.25)

By the uniform distribution of v2, we have

EΠ1 =

∫ r1

0

[
v1 −

(
1− τ(r1)

)
(r1 + d− ε)

]
dv2 +

∫ v1

r1

[
v1 −

(
1− τ(r1)

)
(v2 + d)

]
dv2

+

∫ 1

v1

[
τ(r1)(v2 + d− ε)− d

]
dv2

(A.26)

Given bidder 2 along the equilibrium path, three scenarios are considered to com-

pute EΠ1 by reporting r̄1.

(i) v2 ∈ [0, v1]: Bidder 2’s equilibrium bid price is (r1 + d− ε). Bidder 1 has incentive

to lose the target by bidding (r̄1 + d− 2ε). Then her expected payoff is∫ v1

0

[
τ(r1)(r1 + d− 2ε)− d

]
f(v2)dv2 (A.27)

(ii) v2 ∈ [v1, r1]: Bidder 2’s equilibrium bid price is (r1 + d− ε). Bidder 1 has incentive

to lose the target by bidding (r̄1 + d− 2ε). Then her expected payoff is:∫ r1

v1

[
τ(r1)(r1 + d− 2ε)− d

]
f(v2)dv2 (A.28)

(iii) v2 ∈ [r1, 1]: Bidder 2’s equilibrium bid is (v2 + d). Bidder 1’s best response is to

lose with her bid price (v2 + d− ε). Then her expected payoff is:∫ 1

r1

[
τ(r1)(v2 + d− ε)− d

]
f(v2)dv2 (A.29)

By the uniform distribution of v2, we have

EΠ1 =

∫ r1

0

[
τ(r1)(r1 + d− 2ε)− d

]
dv2 +

∫ 1

r1

[
τ(r1)(v2 + d− ε)− d

]
dv2 (A.30)
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A.3 Proof of Theorem 2.3.1

A.3 Proof of Theorem 2.3.1

By the definition of ε and Lemma 2.3.1, we have

EΠ1 =

∫ r1

0

[
τ(r1)(r1 + d)− d

]
dv2 +

∫ 1

r1

[
τ(r1)(v2 + d)− d

]
dv2 (A.31)

Then

EΠ1 =
[
τ(r1)(r1 + d)− d

]
r1 +

∫ 1

r1

τ(r1)v2dv2 +

∫ 1

r1

[
τ(r1)d− d

]
dv2 (A.32)

That is

EΠ1 = τ(r1)(r1 + d)r1 − dr1 +
1

2
τ(r1)(1− r2

1) +
[
τ(r1)d− d

]
(1− r1) (A.33)

Then

EΠ1 = τ(r1)r2
1 + τ(r1)r1d− dr1 +

1

2
τ(r1)− 1

2
τ(r1)r2

1 + τ(r1)d

−τ(r1)r1d− d+ dr1 (A.34)

That is

EΠ1 =
1

2
τ(r1) +

1

2
τ(r1)r2

1 + τ(r1)d− d (A.35)

By finding the partial derivative of the function EΠ1 with respect to r1, we have

∂EΠ1

∂r1
= τ(r1)r1 +

1

2
τ ′(r1) +

1

2
τ ′(r1)r2

1 + τ ′(r1)d (A.36)

By evaluating ∂EΠ1
∂r1

at v1, we have

∂EΠ1

∂r1

∣∣∣∣∣
r1=v1

= τ(v1)v1 +
1

2
τ ′(v1) +

1

2
τ ′(v1)v2

1 + τ ′(v1)d (A.37)

By the definition of ε and Lemma 2.3.1, we have

EΠ1 =

∫ r1

0

[
v1 −

(
1− τ(r1)

)
(r1 + d)

]
dv2 +

∫ v1

r1

[
v1 −

(
1− τ(r1)

)
(v2 + d)

]
dv2

+

∫ 1

v1

[
τ(r1)(v2 + d)− d

]
dv2

(A.38)
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Then

EΠ1 = v1r1 −
[
1− τ(r1)

]
(r1

2 + dr1) +

∫ v1

r1

[
v1 −

(
1− τ(r1)

)
(v2 + d)

]
dv2

+

∫ 1

v1

[
τ(r1)(v2 + d)− d

]
dv2 (A.39)

That is

EΠ1 = v1r1 − r1
2 − dr1 + dr1τ(r1) + τ(r1)r1

2 +

∫ v1

r1

[
v1 −

(
1− τ(r1)

)
(v2 + d)

]
dv2

+

∫ 1

v1

[
τ(r1)(v2 + d)− d

]
dv2

(A.40)

By finding the partial derivative of the function EΠ1 with respect to r1, we have

∂EΠ1

∂r1
= v1 + τ ′(r1)r2

1 + 2τ(r1)r1 + τ ′(r1)r1d+ τ(r1)d− 2r1 − d

−
[
v1 −

(
1− τ(r1)

)
(r1 + d)

]
+

∫ v1

r1

∂v1 − (v2 + d) + (v2 + d)τ(r1)

∂r1

dv2

+

∫ 1

v1

∂(v2 + d)τ(r1)− d
∂r1

dv2 (A.41)

Then

∂EΠ1

∂r1
= v1 + τ ′(r1)r2

1 + 2τ(r1)r1 + τ ′(r1)r1d+ τ(r1)d− 2r1 − d− v1 + r1

+d− τ(r1)r1 − τ(r1)d+
1

2
τ ′(r1)v2

1 −
1

2
τ ′(r1)r2

1 + d(v1 − r1)τ ′(r1) +
1

2
τ ′(r1)

−1

2
τ ′(r1)v2

1 + dτ ′(r1)(1− v1) (A.42)

Then

∂EΠ1

∂r1
=

1

2
τ ′(r1)r2

1 + τ ′(r1)r1d+ r1

(
τ(r1)− 1

)
+

1

2
τ ′(r1) + dτ ′(r1)(1− r1) (A.43)

By evaluating
∂EΠ1
∂r1

at v1, we have

∂EΠ1

∂r1

∣∣∣∣∣
r1=v1

=
1

2
τ ′(v1)v2

1 +τ ′(v1)v1d+v1

(
τ(v1)−1

)
+

1

2
τ ′(v1)+dτ ′(v1)(1−v1) (A.44)

If either ∂EΠ1
∂r1

∣∣∣
r1=v1

> 0 or
∂EΠ1
∂r1

∣∣∣
r1=v1

< 0 is found, bidder 1 has incentive to deviate

from the perfect separating Bayesian equilibrium.
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A.4 Proof of Proposition 2.3.2

When τ ′(v1) > 0, bidder 1 has incentive to deviate from the perfect separating Bayesian

equilibrium (PSBE), since

∂EΠ1

∂r1

∣∣∣
r1=v1

> 0 (A.45)

When τ ′(v1) < 0, bidder 1 has incentive to deviate from the PSBE, since

∂EΠ1

∂r1

∣∣∣
r1=v1

< 0 (A.46)

Therefore we have shown that bidder 1 has incentive to deviate from the perfect sepa-

rating Bayesian equilibrium (PSBE), given bidder 2 along the equilibrium path.

A.4 Proof of Proposition 2.3.2

Suppose there is a symmetric, increasing and differentiable equilibrium bidding strategy.

That is

β(vi, θi) = bi where i = 1, 2 (A.47)

Then

β−1(bi, θi) = vi where i = 1, 2 (A.48)

A guessed function (linear with two unknown parameters z and w) of equilibrium

bidding strategy β(·) is set up, that is:

β(vi, θi) = zvi + w (A.49)

This section proves bidder’s equilibrium bidding strategies under three pairs of

(θ1, θ2). At the beginning of the second stage of the game, bidders observe a pair of

(θ1, θ2) with three possibilities: (I) (θL, θL), (II) (θH , θH), (III) (θL, θH).

(I) (θL, θL): After Bayesian updating, it is known that v2 ∈ [0, v̂). By the uniform

distribution of v2, bidder 1’s expected payoff is the following:

EΠ1 =

∫ v1

0

[
v1 −

(
1− θL

)
β(v2, θL)

]
dv2 +

∫ v̂

v1

[
θLb1 − d

]
dv2 (A.50)

By imposing equation (A.48), we have

EΠ1 =

∫ β−1(b1,θL)

0

[
v1 −

(
1− θL

)
β(v2, θL)

]
dv2 +

∫ v̂

β−1(b1,θL)

[
θLb1 − d

]
dv2 (A.51)
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That is

EΠ1 =

∫ β−1(b1,θL)

0

[
v1 −

(
1− θL

)
β(v2, θL)

]
dv2 + (θLb1 − d)

[
v̂ − β−1(b1, θL)

]
(A.52)

Then

EΠ1 =

∫ β−1(b1,θL)

0

[
v1 −

(
1− θL

)
β(v2, θL)

]
dv2 + θLb1v̂

−θLb1β−1(b1, θL)− v̂d+ β−1(b1, θL)d (A.53)

Thus the first order condition is[
v1 − (1− θL)β

(
β−1(b1, θL), θL

)] 1

β′
(
β−1(b1, θL)

) + θLv̂

−
[
θLv1 + θLb1

1

β′
(
β−1(b1, θL)

)]+ d
1

β′
(
β−1(b1, θL)

) = 0 (A.54)

That is[
v1 − (1− θL)β(v1, θL)

] 1

β′(v1)
+ θLv̂ −

[
θLv1 + θLb1

1

β′(v1)

]
+ d

1

β′(v1)
= 0 (A.55)

The (A.49) tells us that

β′(v1) = z (A.56)

Thus the first order condition becomes[
v1 − (1− θL)β(v1, θL)

]1

z
+ θLv̂ −

[
θLv1 + θLb1

1

z

]
+ d

1

z
= 0 (A.57)

Then

b1 = (1− zθL)v1 + zθLv̂ + d (A.58)

By (A.49), we have

z = 1− zθL (A.59)

Hence

z =
1

1 + θL
(A.60)

By (A.49) and (A.59), we get

w = zθLv̂ + d (A.61)

Since (A.60), it follows that

w =
θLv̂

1 + θL
+ d (A.62)
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Thus bidder 1’s optimal bidding strategy is the following:

β(v1, θL) =
1

1 + θL
v1 +

θLv̂

1 + θL
+ d (A.63)

By repeating this process, we can get bidder 2’s optimal bidding strategy. That is

β(v2, θL) =
1

1 + θL
v2 +

θLv̂

1 + θL
+ d (A.64)

(II) (θH , θH): After Bayesian updating, it is known that v2 ∈ (v̂, 1]. By the uniform

distribution of v2, bidder 1’s expected payoff is the following:

EΠ1 =

∫ v1

v̂

[
v1 −

(
1− θH

)
β(v2, θH)

]
dv2 +

∫ 1

v1

[
θHb1 − d

]
dv2 (A.65)

By imposing inverse function (A.48), we have

EΠ1 =

∫ β−1(b1,θH)

v̂

[
v1 −

(
1− θH

)
β(v2, θH)

]
dv2 +

∫ 1

β−1(b1,θH)

[
θHb1 − d

]
dv2 (A.66)

That is

EΠ1 =

∫ β−1(b1,θH)

v̂

[
v1 −

(
1− θH

)
β(v2, θH)

]
dv2 + (θHb1 − d)

[
1− β−1(b1, θH)

]
(A.67)

Then

EΠ1 =

∫ β−1(b1,θH)

v̂

[
v1 −

(
1− θH

)
β(v2, θH)

]
dv2 + θHb1 − θHb1β−1(b1, θH)

−d+ dβ−1(b1, θH) (A.68)

Then the first order condition is the following:[
v1 − (1− θH)β

(
β−1(b1, θH), θH

)] 1

β′
(
β−1(b1, θH)

) + θH − θHβ−1(b1, θH)

−θHb1
1

β′
(
β−1(b1, θH)

) + d
1

β′
(
β−1(b1, θH)

) = 0 (A.69)

That is[
v1 − (1− θH)β(v1, θH)

] 1

β′(v1)
+ θH − θHβ−1(b1, θH)− θHb1

1

β′(v1)
+ d

1

β′(v1)
= 0

(A.70)
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By applying (A.48) and (A.49), we have[
v1 − (1− θH)b1

]1

z
+ θH(1− v1)− θHb1

1

z
+ d

1

z
= 0 (A.71)

Then

b1 = (1− zθH)v1 + zθH + d (A.72)

By (A.49), we have

z = 1− zθH (A.73)

Then

z =
1

1 + θH
(A.74)

And by (A.49), we have

w = zθH + d (A.75)

Since (A.74), it follows that

w =
θH

1 + θH
+ d (A.76)

Therefore, bidder 1’s optimal bidding strategy is:

β(v1, θH) =
1

1 + θH
v1 +

θH
1 + θH

+ d (A.77)

By repeating this process, we can get bidder 2’s optimal bidding strategy. That is

β(v2, θH) =
1

1 + θH
v2 +

θH
1 + θH

+ d (A.78)

(III) (θL, θH): Let Πi (i = 1, 2) denote each bidder’s equilibrium payoff. At equi-

librium, bidder 1 loses the target and sells out her shareholdings at her bid (v̂+ d− ε).
Meanwhile, bidder 2 wins the target at (v̂ + d− ε) per share. So that{

Π1 = θL(v̂ + d− ε)− d
Π2 = v2 − (1− θH)(v̂ + d− ε)

(A.79)

Let bidder 2 deviate by bidding higher than (v̂ + d), given bidder 1 along the

equilibrium path. That is

b2 > v̂ + d (A.80)

Bidder 2 is still the winner. Thus his off-equilibrium payoff is the following

Π2 = v2 − (1− θH)(v̂ + d− ε) (A.81)
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Then (A.79), (A.81) tells us that

Π2 = Π2 (A.82)

Let bidder 2 deviate by reducing his bid, given bidder 1 along the equilibrium path.

That is

b2 < v̂ + d− ε (A.83)

Bidder 2 loses the target and then sells out his shareholdings at b2. Thus his off-

equilibrium payoff is

Π2 = θHb2 − d (A.84)

Then, we have

Π2 −Π2 = v2 + (θH − 1)(v̂ + d− ε)− θHb2 + d (A.85)

That is

Π2 −Π2 = (v2 − v̂) + θH(v̂ + d− ε− b2) + ε (A.86)

Since v2 > v̂ and (A.83), we get

Π2 −Π2 > 0 (A.87)

Let bidder 1 deviate by reducing her bid, given bidder 2 along the equilibrium path.

That is

b1 < v̂ + d− ε (A.88)

Bidder 1 is still the loser. Thus his off-equilibrium payoff is

Π1 = θLb1 − d (A.89)

Then

Π1 −Π1 = θL(v̂ + d− ε)− d− θLb1 + d (A.90)

That is

Π1 −Π1 = θL(v̂ + d− ε− b1) (A.91)

Since (A.88), we have

Π1 −Π1 > 0 (A.92)

Let bidder 1 deviate by increasing her bid, given bidder 2 along the equilibrium

path. That is

b1 > v̂ + d (A.93)
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Bidder 1 becomes the winner. Then her off-equilibrium payoff is

Π1 = v1 − (1− θL)(v̂ + d) (A.94)

By the definition of ε, we have

Π1 −Π1 = θL(v̂ + d)− d− v1 + (1− θL)(v̂ + d) (A.95)

That is

Π1 −Π1 = v̂ − v1 (A.96)

Since v1 < v̂, we have

Π1 −Π1 > 0 (A.97)

Therefore we have shown that each bidder’s optimal bidding strategies are expressed

in Proposition 2.3.2.

A.5 Proof of Theorem 2.3.2

Let EΠtruth
1 and EΠcheat

1 denote bidder 1’s expected payoffs when she truthfully and

fraudulently claims her value, respectively.

Given bidder 2 along the equilibrium path and suppose v1 ∈ [0, v̂), by the opti-

mal bidding strategies in Proposition 2.3.2 and uniform distribution of v2, bidder 1’s

expected payoff at equilibrium is the following:

EΠtruth
1 =

∫ v1

0

[
v1 −

(
1− θL

)( v2

1 + θL
+

θLv̂

1 + θL
+ d
)]
dv2

+

∫ v̂

v1

[
θL
( v1

1 + θL
+

θLv̂

1 + θL
+ d
)
− d
]
dv2 +

∫ 1

v̂

[
θL(v̂ + d− ε)− d

]
dv2 (A.98)

By the definition of ε, let ε be zero. Then by simplifying (A.98), we have

EΠtruth
1 =

[
v1 −

θL(1− θL)

1 + θL
v̂ − (1− θL)d

]
v1 +

1− θL
2(1 + θL)

v2
1 +

[ θL
1 + θL

v1

+
θ2
L

1 + θL
v̂ + θLd

]
(v̂ − v1)− d(v̂ − v1) + (θLv̂ + θLd)(1− v̂)− d(1− v̂) (A.99)
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Then

EΠtruth
1 =

[
1− 1− θL

2(1 + θL)
− θL

1 + θL

]
v2

1 +
[
− θL(1− θL)

1 + θL
+

θL
1 + θL

−
θ2
L

1 + θL

]
v̂v1

+
[
− v1(1− θL) + θL(v̂ − v1)− (v̂ − v1) + θL(1− v̂)− (1− v̂)

]
d+ θLv̂

(A.100)

Thus

EΠtruth
1 =

1

2
v2

1 +
[ −θL

1 + θL
v̂2 + θLv̂ + (θL − 1)d

]
(A.101)

Let bidder 1 fraudulently claim his private value through θ1 = θH , given bidder 2

along the equilibrium path. After Bayesian updating, bidder 2 believes that v1 ∈ (v̂, 1].

If v2 ∈ [0, v̂), bidder 2’s optimal bid is (v̂+d−ε). By foreseeing this, bidder 1 prefers to

lose the target at (v̂+ d− 2ε). If v2 ∈ (v̂, 1], bidder 2’s optimal bid is v2
1+θH

+ θH
1+θH

+ d,

which is higher than (v̂ + d). For foreseeing this, bidder 1 prefers to lose the target at

(v̂ + d). Then, by the uniform distribution of v2, bidder 1’s off-equilibrium expected

payoff denoted by EΠcheat
1 can be expressed as:

EΠcheat
1 =

∫ v̂

0

[
θH(v̂ + d− 2ε)− d

]
dv2 +

∫ 1

v̂

[
θH(v̂ + d)− d

]
dv2 (A.102)

By the definition of ε, we have

EΠcheat
1 = θH v̂ + d(θH − 1) (A.103)

Then

EΠtruth
1 −EΠcheat

1 =
1

2
v2

1 +
[ −θL

1 + θL
v̂2 + θLv̂ + (θL − 1)d

]
− θH v̂ − d(θH − 1) (A.104)

That is

EΠtruth
1 − EΠcheat

1 =
1

2
v2

1 +
[ −θL

1 + θL
v̂2 − (θH − θL)v̂ + (θL − θH)d

]
(A.105)

When v1 = 0, let y be EΠtruth
1 − EΠcheat

1 . Then the quadratic function y can be

expressed as the following:

y =
−θL

1 + θL
v̂2 − (θH − θL)v̂ + (θL − θH)d (A.106)

The axis of symmetry of y, hence, is:

−(θH − θL)

−2 −θL1+θL

< 0 (A.107)
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When the discriminant of quadratic function y is positive, together with (A.107),

quadratic polynomial y has two negative roots, since

θL − θH
−θH
1+θL

> 0 (A.108)

According to above analysis on y’s graph, it is obvious that, for v1 = 0, we have

EΠtruth
1 − EΠcheat

1 < 0 (A.109)

When the discriminant of quadratic function y is non-positive, for v1 = 0, we have

EΠtruth
1 − EΠcheat

1 < 0 (A.110)

Therefore, bidder 1 with zero valuation always has incentive to deviate from this partial

pooling equilibrium.

A.6 Proof of Proposition 2.3.3

Let Πi (i = 1, 2) denote bidder i’s equilibrium payoff. Let b2 be bidder 2’s bid price,

where b2 < b2. Let Π2 be bidder 2’s off-equilibrium payoff. For bidder 1 without any

toehold, it is known that truthful bidding is weakly dominate strategy. By observing

(0, θH), bidder 1 loses the target. So that

Π1 = 0 (A.111)

Given bidder 1 along the equilibrium path, bidder 2 is the winner at bid price v1. So

that

Π2 = v2 + (1− θH)v1 (A.112)

Suppose bidder 2 deviate by reducing his bid, given bidder 1 along the equilibrium

path. That is

b2 < b2 (A.113)

By the range of b2, we know that

b2 < v̂ (A.114)

If b2 < v1, bidder 2 loses the target and his payoff becomes

Π2 = θHb2 (A.115)
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Then

Π2 −Π2 = v2 − (1− θH)v1 − θHb2 (A.116)

That is

Π2 −Π2 = (v2 − v1) + θH(v1 − b2) (A.117)

So that

Π2 −Π2 > 0 (A.118)

If b2 > v1, bidder 2 is still the winner and his payoff is

Π2 = v2 + (1− θH)v1 (A.119)

So that

Π2 = Π2 (A.120)

Then, by reducing bid price, bidder 2 reduces his payoff with some probabilities. There-

fore, bidder 2 has no incentive to deviate from the equilibrium bidding strategy.

A.7 Proof of Theorem 2.3.3

Let EΠtruth
1 and EΠcheat

1 denote bidder 1’s expected payoffs when she truthfully and

fraudulently claims her value, respectively. This section has two parts indexed as (i)

and (ii) . Part (i) proves that, given bidder 2 along the equilibrium path and v1 ∈ (v̂, 1],

there is no incentive for bidder 1 to deviate from the equilibrium. Part (ii) proves that,

given bidder 2 along the equilibrium path and v1 ∈ [0, v̂), bidder 1 has no incentive to

deviate.

(i): Given bidder 2 along the equilibrium path and suppose v1 ∈ (v̂, 1], by the

uniform distribution of v2, bidder 1’s expected payoff at equilibrium is the following:

EΠtruth
1 =

∫ v̂

0

[
v1 − (1− θH)v2

]
dv2 +

∫ v1

v̂

[
v1 − (1− θH)

( v2

1 + θH
+

θH
1 + θH

+ d
)]
dv2

+

∫ 1

v1

[
θH
( v1

1 + θH
+

θH
1 + θH

+ d
)
− d
]
dv2

(A.121)

Then

EΠtruth
1 = v̂v1 − (

1− θH
2

)v̂2 +
[
v1 −

θH(1− θH)

1 + θH
− (1− θH)d

]
(v1 − v̂)

−(
1− θH

2(1 + θH)
)(v2

1 − v̂2) +
[ θH

1 + θH
v1 +

θ2
H

1 + θH
+ θHd

]
(1− v1)− d(1− v1) (A.122)
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That is

EΠtruth
1 =

[
1− 1− θH

2(1 + θH)
− θH

1 + θH

]
v2

1 +
[
− 1− θH

2
+

1− θH
2(1 + θH)

]
v̂2 +

[
− θH(1− θH)

1 + θH

+
θH

1 + θH
−

θ2
H

1 + θH

]
v1 +

[
− (1− θH)(v1 − v̂) + θH(1− v1)− (1− v1)

]
d

+
θ2
H

1 + θH
+
θH(1− θH)

1 + θH
v̂

(A.123)

Then

EΠtruth
1 =

1

2
v2

1 +
[ θ2

H − θH
2(1 + θH)

]
v̂2 +

[θH(1− θH)

1 + θH
+ (1− θH)d

]
v̂

+
[ θ2

H

1 + θH
+ d(θH − 1)

]
(A.124)

Let bidder 1 fraudulently claim her private value through θ1 = 0, given bidder 2

along the equilibrium path. After Bayesian updating, bidder 2 believes that v1 ∈ [0, v̂).

If v2 ∈ [0, v̂), bidder 2’s optimal bid is v2. By foreseeing this, bidder 1 prefers to win

the target at v2. If v2 ∈ (v̂, 1], by simplifying calculation, Proposition 2.3.3 tells us that

bidder 1’s best response can be v2. Then by the uniform distribution of v2, bidder 1’s

off-equilibrium expected payoff denoted by EΠcheat
1 can be expressed as:

EΠcheat
1 =

∫ v̂

0

[
v1 − v2

]
dv2 +

∫ v1

v̂

[
v1 − v2

]
dv2 (A.125)

Then

EΠcheat
1 =

1

2
v2

1 (A.126)

Let y be EΠtruth
1 − EΠcheat

1 . So that

y =
[ θ2

H − θH
2(1 + θH)

]
v̂2 +

[θH(1− θH)

1 + θH
+ (1− θH)d

]
v̂ +

[ θ2
H

1 + θH
+ d(θH − 1)

]
(A.127)

Let

d ≤
θ2
H

1− θ2
H

(A.128)

That is

θ2
H ≥ d(1− θ2

H) (A.129)

Then, we have

θ2
H ≥ d(1 + θH)(1− θH) (A.130)
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Then
θ2
H

1 + θH
+ d(θH − 1) ≥ 0 (A.131)

Thus discriminant of quadratic function y is positive, since

∆ =
[θH(1− θH)

1 + θH
+ (1− θH)d

]2
+

2(θH − θ2
H)

1 + θH

[ θ2
H

1 + θH
+ d(θH − 1)

]
> 0 (A.132)

The axis of symmetry of function y is

−
θH(1−θH)

1+θH
+ (1− θH)d

2
θ2H−θH
2(1+θH)

> 0 (A.133)

In addition, the quadratic polynomial y has two real roots – one positive and one

negative, since
θ2H

1+θH
+ d(θH − 1)

θ2H−θH
2(1+θH)

< 0 (A.134)

Based on above analysis on quadratic function y’s graph, it is obvious that (EΠtruth
1 −

EΠcheat
1 ) is positive, given the condition (A.128).

(ii): Given bidder 2 along the equilibrium path and suppose v1 ∈ [0, v̂), by the

uniform distribution of v2, bidder 1’s equilibrium expected payoff is the following:

EΠtruth
1 =

∫ v1

0
(v1 − v2)dv2 (A.135)

That is

EΠtruth
1 =

1

2
v2

1 (A.136)

Let bidder 1 fraudulently claim her private value through θ1 = θH , given bidder 2

along the equilibrium path. After Bayesian updating, bidder 2 believes that v1 ∈ (v̂, 1].

If v2 ∈ [0, v1], bidder 2’s optimal bid is v2. By foreseeing this, bidder 1 prefers to win

the target at price v2. If v2 ∈ [v1, v̂), bidder 2’s optimal bid is still v2. But bidder 1

has incentive to lose the target by bidding at v1. If v2 ∈ (v̂, 1], bidder 2’s optimal bid is
v2

1+θH
+ θH

1+θH
+ d, which is higher than v̂. By foreseeing this, bidder 1 has no incentive

to win the target. That is, bidder 1 bids at v̂ to lose the game with certainty. Thus,

by the uniform distribution of v2, bidder 1’s off-equilibrium expected payoff denoted

by EΠcheat
1 can be expressed as:

EΠcheat
1 =

∫ v1

0

[
v1 − (1− θH)v2

]
dv2 +

∫ v̂

v1

[
θHv1 − d

]
dv2 +

∫ 1

v̂

[
θH v̂ − d

]
dv2

(A.137)
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Then

EΠcheat
1 = v2

1 −
1− θH

2
v2

1 + θHv1v̂ − θHv2
1 − d(v̂ − v1) + θH v̂ − θH v̂2 − d(1− v̂)

(A.138)

That is

EΠcheat
1 =

(1− θH
2

)
v2

1 +
(
θH v̂ + d

)
v1 − θH v̂2 + θH v̂ − d (A.139)

Let y be EΠtruth
1 − EΠcheat

1 . Then we have

y =
θH
2
v2

1 − (θH v̂ + d)v1 +
(
θH v̂

2 − θH v̂ + d
)

(A.140)

The axis of symmetry of quadratic function y is positive, since

−−(θH v̂ + d)

θH
> 0 (A.141)

Then, for any v1 ∈ [0, 1], if y(v1) is positive, its discriminant ∆ must be non-positive.

That is

∆ = (θH v̂ + d)2 − 2θH(θH v̂
2 − θH v̂ + d) ≤ 0 (A.142)

Then

∆ = −θ2
H v̂

2 +
(
2θHd+ 2θ2

H

)
v̂ + d2 − 2θHd ≤ 0 (A.143)

Let D be the discriminant of function ∆. That is

D = (2θHd+ 2θ2
H)21 + 4θ2

H(d2 − 2θHd) (A.144)

Then

D = 4θ2
H(2d2 + θ2

H) (A.145)

In addition, we claim that the smaller root v̂s of ∆ is less than 1. The proof of this

claim is the following. It is obvious that

d2 + θ2
H > 0 (A.146)

That is

2d2 + θ2
H > d2 (A.147)

Then √
2d+ θ2

H > d (A.148)
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Then

d+ θH −
√

2d+ θ2
H < θH (A.149)

That is

d+ θH −
√

2d+ θ2
H

θH
< 1 (A.150)

Thus, we have

2θH(d+ θH)− 2θH
√

2d2 + θH
2θ2
H

< 1 (A.151)

Then

−2θH(d+ θH) + 2θH
√

2d2 + θH
−2θ2

H

< 1 (A.152)

By quadratic formula, we have

v̂s < 1 (A.153)

Thus, if v̂ satisfies the following condition, then the output of D is always negative.

v̂ ≤ v̂s (A.154)

That is

v̂ ≤
d+ θH −

√
2d2 + θ2

H

θH
(A.155)

Then, when condition (A.155) is satisfied, (EΠtruth
1 − EΠcheat

1 ) is positive. Since two

bidders are symmetric, then we have shown that, under conditions (A.128) and (A.155),

bidders have no incentive to deviate from this partial pooling Bayesian equilibrium.

A.8 Proof of Theorem 2.3.4

Let EΠθs
1 denote bidder 1’s off-equilibrium expected payoff by purchasing θs, where

θs < θH . This section has two parts: (i) and (ii). Part (i) shows that bidder 1 with

valuation v1 within the range (v̂, 1] has no incentive to acquire θs, given bidder 2 along

the equilibrium path. Part (ii) shows that bidder 1 with valuation v1 within the range

[0, v̂) has no incentive to acquire θs, given bidder 2 along the equilibrium path.
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(i) Let bidder 1 with v1 ∈ (v̂, 1] deviate from the equilibrium by acquiring θs. Bidder

1’s off-equilibrium expected payoff is expressed as:

EΠθs
1 =

∫ v̂

0

[
v1 − (1− θs)v2

]
dv2 +

∫ v1

v̂

[
v1 − (1− θs)

( 1

1 + θH
v2 +

θH
1 + θH

+ d
)]
dv2

+

∫ 1

v1

[
θs
( 1

1 + θH
v1 +

θH
1 + θH

+ d
)
− d
]
dv2

(A.156)

Recall bidder 1’s equilibrium expected payoff when her valuation v1 within (v̂, 1], we

have

EΠtruth
1 =

∫ v̂

0

[
v1 − (1− θH)v2

]
dv2 +

∫ v1

v̂

[
v1 − (1− θH)

( v2

1 + θH
+

θH
1 + θH

+ d
)]
dv2

+

∫ 1

v1

[
θH
( v1

1 + θH
+

θH
1 + θH

+ d
)
− d
]
dv2

(A.157)

By comparing with the integrals of EΠθs
1 and EΠtruth

1 , it is obvious that

EΠtruth
1 > EΠθs

1 (A.158)

Then bidder 1 has no incentive to acquire θs, given bidder 2 along the equilibrium path.

(ii) Let bidder 1 with v1 ∈ [0, v̂) deviate from the equilibrium by acquiring θs.

Bidder 1’s off-equilibrium expected payoff is expressed as:

EΠθs
1 =

∫ v1

0

[
v1 − (1− θs)v2

]
dv2 +

∫ v̂

v1

[
θsv1 − d

]
dv2 +

∫ 1

v̂

[
θsv̂ − d

]
dv2 (A.159)

Recall bidder 1’s off-equilibrium expected payoff when her valuation v1 within [0, v̂),

we have

EΠcheat
1 =

∫ v1

0

[
v1 − (1− θH)v2

]
dv2 +

∫ v̂

v1

[
θHv1 − d

]
dv2 +

∫ 1

v̂

[
θH v̂ − d

]
dv2

(A.160)

By comparing with integrals of EΠθs
1 and EΠcheat

1 , it is obvious that

EΠθs
1 < EΠcheat

1 (A.161)

Theorem 2.3.3 tells us that, for v1 ∈ [0, v̂), if condition (A.155) satisfied, EΠtruth
1 is

strictly higher than EΠcheat
1 . Thus, we have

EΠθs
1 < EΠcheat

1 < EΠtruth
1 (A.162)
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Therefore, we have shown that bidder 1 has no incentive to deviate from the equilibrium

by acquiring θs, given bidder 2 along the equilibrium path. Because two bidders are

symmetric, two bidders have no incentives to deviate from the equilibrium.
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Appendix B

Proofs in Chapter 3

B.1 Proof of Proposition 3.3.1

This section shows the voting mechanism is Bayesian incentive compatible if and only if

condition (3.14) and (3.15) are satisfied. The proof has two parts: (I) and (II). (I) shows

that if the voting mechanism is Bayesian incentive compatible, then condition (3.14)

and (3.15) are satisfied. (II) shows that if condition (3.14) and (3.15) are satisfied, then

the voting mechanism is Bayesian incentive compatible.

(I) Recall the definition expected payoffs of agent i ∈ NA: πi(vi) and π̃i(vi, v
′
i).

That is

πi(vi) = Ev−i [viPA(vi, v−i)− ti(vi, v−i)] (B.1)

π̃i(vi, v
′
i) = Ev−i [viPA(v′i, v−i)− ti(v′i, v−i)] (B.2)

Let πi(v
′
i) be i’s expected payoff when he truthfully reports his valuation v′i, given

remaining players’ truthful announcements. That is

πi(v
′
i) = Ev−i [v

′
iPA(v′i, v−i)− ti(v′i, v−i)] (B.3)

And let π̃i(v
′
i, vi) be i’s expected payoff when he cheats his valuation by reporting vi,

given remaining players’ truthful announcements.

π̃i(v
′
i, vi) = Ev−i [v

′
iPA(vi, v−i)− ti(vi, v−i)] (B.4)
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We can change the express of π̃i(vi, v
′
i) by adding and subtracting item Ev−iv

′
iPA(v′i, v−i).

That is

π̃i(vi, v
′
i) = Ev−i [v

′
iPA(v′i, v−i)− ti(v′i, v−i) + viPA(v′i, v−i)− v′iPA(v′i, v−i)] (B.5)

Then

π̃i(vi, v
′
i) = πi(v

′
i) + (vi − v′i)Ev−iPA(v′i, v−i) (B.6)

Similarly, we can change the express of π̃i(v
′
i, vi) by adding and subtracting item

Ev−iviPA(vi, v−i). Then we get

π̃i(v
′
i, vi) = πi(vi) + (vi − v′i)Ev−iPA(vi, v−i) (B.7)

By Bayesian incentive compatibility, we have

πi(vi) ≥ π̃i(vi, v′i) (B.8)

and

πi(v
′
i) ≥ π̃i(v′i, vi) (B.9)

(B.6) and (B.8) imply that

πi(vi) ≥ πi(v′i) + (vi − v′i)Ev−iPA(v′i, v−i) (B.10)

Then

Ev−iPA(v′i, v−i) ≥
πi(v

′
i)− πi(vi)
v′i − vi

(B.11)

(B.7) and (B.9) imply that

πi(v
′
i) ≥ πi(vi) + (vi − v′i)Ev−iPA(vi, v−i) (B.12)

Then
πi(v

′
i)− πi(vi)
v′i − vi

≥ Ev−iPA(vi, v−i) (B.13)

Then (B.11) and (B.13) together implies that

Ev−iPA(v′i, v−i) ≥
πi(v

′
i)− πi(vi)
v′i − vi

≥ Ev−iPA(vi, v−i) (B.14)

Suppose v′i > vi. Then (B.14) indicates Ev−iPA(v, v−i) is a nondecreasing function.

That is
∂

∂vi
Ev−iPA(vi, v−i) ≥ 0 (B.15)
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In addition, letting v′i → vi, (B.14) also implies that

d

dvi
πi(vi) = Ev−iPA(vi, v−i) (B.16)

Therefore, we have shown that the Bayesian incentive compatibility implies (3.14). We

can duplicate above proof for agent j in group NB.

(II) Let agent i’s true valuation be vi, but he announces v′i. Suppose vi > v′i. It is

obvious that

πi(vi) = πi(0) + πi(s)
∣∣∣vi
0

(B.17)

and

πi(v
′
i) = πi(0) + πi(s)

∣∣∣v′i
0

(B.18)

That is

πi(vi) = πi(0) +

∫ vi

0

d

ds
πi(s)ds (B.19)

and

πi(v
′
i) = πi(0) +

∫ v′i

0

d

ds
πi(s)ds (B.20)

In (3.14), (i) implies that

πi(vi) = πi(0) +

∫ vi

0
Ev−iPA(s, v−i)ds (B.21)

and

πi(v
′
i) = πi(0) +

∫ v′i

0
Ev−iPA(s, v−i) ds (B.22)

Given vi > v′i, therefore, we have

πi(vi)− πi(v′i) =

∫ vi

v′i

Ev−iPA(s, v−i)ds (B.23)

Since Ev−iPA(v, v−i) is a nondecreasing function (shown by (ii) in 3.14)

πi(vi)− πi(v′i) ≥
∫ vi

v′i

Ev−iPA(v′i, v−i)ds (B.24)

That is

πi(vi)− πi(v′i) ≥ Ev−iPA(v′i, v−i)

∫ vi

v′i

1ds (B.25)

Then

πi(vi)− πi(v′i) ≥ (vi − v′i)Ev−iPA(v′i, v−i) (B.26)

77



B. PROOFS IN CHAPTER 3

Thus

πi(vi) ≥ πi(v′i) + (vi − v′i)Ev−iPA(v′i, v−i) (B.27)

By the definition of π̃i(vi, v
′
i) in (B.6), we have

πi(v
′
i) = π̃i(vi, v

′
i)− (vi − v′i)Ev−iPA(v′i, v−i) (B.28)

By substituting (B.28) into (B.27),

πi(vi) ≥ π̃i(vi, v′i) (B.29)

Then (B.29) implies the Bayesian incentive compatibility. We can duplicate the proof

in (II) for agent j in group NB.

Therefore we have shown that the voting mechanism is Bayesian incentive compat-

ible if and only if for (3.14) and (3.15) are satisfied for i ∈ NA and j ∈ NB.

B.2 Proof of Lemma 3.3.1

Let Evi be the expectation over the distribution of vi. For all i ∈ NA, agent i’s ex-ante

expected payoff is:

Eviπi =

∫ v̄

0
πi(vi)f(vi) dvi (B.30)

Then

Eviπi = −
∫ v̄

0
πi(vi)

(
− f(vi)

)
dvi (B.31)

By integration by parts, we have

Eviπi = −πi(vi)[1− F (vi)]

∣∣∣∣v̄
0

+

∫ v̄

0

dπi(vi)

dvi
[1− F (vi)] dvi (B.32)

That is

Eviπi = πi(0) +

∫ v̄

0

dπi(vi)

dvi
[1− F (vi)] dvi (B.33)

The Bayesian incentive compatibility condition (i) in Proposition 3.3.1 tells us that

Eviπi =

∫ v̄

0
[1− F (vi)]Ev−iPA(vi, v−i)dvi + πi(0) (B.34)

Then

Eviπi =

∫ v̄

0

[1− F (vi)]

f(vi)
Ev−iPA(vi, v−i)f(vi)dvi + πi(0) (B.35)
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By the definition of H(vi), we get

Eviπi =

∫ v̄

0
H(vi)Ev−iPA(vi, v−i)f(vi) dvi + πi(0) (B.36)

Let E be the expectation over the distribution of v Then

Eπi =

∫ v̄

0
...

∫ v̄

0︸ ︷︷ ︸
n

H(vi)PA(vi, v−i)f(v) dv + πi(0) (B.37)

where dv = dv1 · · · dvn. Thus

Eπi = E[H(vi)PA(vi, v−i)] + πi(0) (B.38)

By duplicating above proof for agent j ∈ NB, we have

Eπj = E[H(vj)PB(vj , v−j)] + πj(0) (B.39)

Therefore, we have shown equations (3.16) and (3.17) in Lemma 3.4.1

B.3 Proof of Theorem 3.3.1

This section solves the maximization problem in chapter 3. By the definition of social

ex-ante expected payoff, for all i ∈ NA and all j ∈ NB, we know that

EΠ =
∑
i∈NA

E[H(vi)PA(vi, v−i)] +
∑
j∈NB

E[H(vj)PB(vj , v−j)] +
∑
m∈N

πm(0) (B.40)

subject to:
∂

∂vi
Ev−iPA(vi, v−i) ≥ 0 (B.41)

∂

∂vj
Ev−jPB(vj , v−j) ≥ 0 (B.42)

PA(vi, v−i) ≥ 0 (B.43)

PB(vj , v−j) ≥ 0 (B.44)

PA(vi, v−i) + PB(vj , v−j) = 1 (B.45)
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By Lemma 3.3.1, we have

EΠ =
∑
i∈NA

∫ v̄

0
H(vi)Ev−iPA(vi, v−i)f(vi)dvi +

∑
j∈NB

∫ v̄

0
H(vj)Ev−jPB(vj , v−j)f(vj) dvj

+
∑
m∈N

πm(0)

(B.46)

For all m ∈ N , πm(0) is non-positive, since

πm(0) = −Ev−mtm(0, v−m) (B.47)

Now suppose πm(0) is zero. That is, for all m ∈ N

tm(0, v−m) = 0 (B.48)

Then we have the bound on EΠ, indexed by bound (I). So that

EΠ ≤
∑
i∈NA

∫ v̄

0
H(vi)Ev−iPA(vi, v−i)f(vi)dvi +

∑
j∈NB

∫ v̄

0
H(vj)Ev−jPB(vj , v−j)f(vj)dvj

(B.49)

Since function H(vi) is a decreasing and Ev−iPA(vi, v−i) is a nondecreasing, then the

expected value of the product is no more than the product of the expected values. Thus

we get the second bound on EΠ, indexed as bound (II), where I ≤ II. Then

EΠ ≤
∑
i∈NA

∫ v̄

0

1− F (vi)

f(vi)
f(vi) dvi

∫ v̄

0
Ev−iPA(vi, v−i)f(vi)dvi

+
∑
j∈NB

∫ v̄

0

1− F (vj)

f(vj)
f(vj)dvj

∫ v̄

0
Ev−jPB(vj , v−j)dvj (B.50)

Thus

EΠ ≤
∑
i∈NA

∫ v̄

0
[1− F (vi)]dvi

∫ v̄

0
Ev−iPA(vi, v−i)f(vi)dvi

+
∑
j∈NB

∫ v̄

0
[1− F (vj)]dvj

∫ v̄

0
Ev−jPB(vj , v−j)dvj (B.51)

That is

EΠ ≤
∫ v̄

0
[1− F (v)]dv

( ∑
i∈NA

∫ v̄

0
Ev−iPA(vi, v−i)f(vi)dvi +

∑
j∈NB

∫ v̄

0
Ev−jPB(vj , v−j)dvj

)
(B.52)
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Alternatively, we have

EΠ ≤
∫ v̄

0
[1− F (v)]dv

(
E
∑
i∈NA

PA(vi, v−i) + E
∑
j∈NB

PB(vj , v−j)
)

(B.53)

By the definition of PA(vi, v−i) and PB(vj , v−j), we have

EΠ ≤
∫ v̄

0
[1− F (v)]dv

(
|NA|EPA(vi, v−i) + (|N | − |NA|)EPB(vj , v−j)

)
(B.54)

Then

EΠ ≤
∫ v̄

0
[1−F (v)]dv

(
|NA|E

[
PA(vi, v−i)+PB(vj , v−j)

]
+(|N |−2|NA|)E

[
PB(vj , v−j)

])
(B.55)

By equation (B.45), we get

EΠ ≤
∫ v̄

0
[1− F (v)]dv

(
|NA|+ (|N | − 2|NA|)E

[
PB(vj , v−j)

])
(B.56)

Suppose NA is the majority group, that is, |NA| > |N |
2 , then

|N | − 2|NA| < 0 (B.57)

GivenNA is the majority group, by (B.44), we know that the term [|N |−2|NA|]EPB(vj , v−j)

is negative. By letting PB(vj , v−j) be zero (or PA(vi, v−i) = 1), we have the third bound

on EΠ, indexed as bound III, where II ≤ III. That is

EΠ ≤ |NA|
∫ v̄

0
[1− F (v)]dv (B.58)

We claim that, to implement the bound III of EΠ, the voting mechanism should

use zero penalty scheme for any agent m ∈ N . That is, for all m ∈ N ,

tm(vm) = 0 (B.59)

Meanwhile, the collective decision must base on simple majority rule.

Given |NA| ≥ |N |
2 , by using simple majority rule, the voting mechanism assigns

PA(vi, v−i) and PB(vi, v−i) to one and zero, respectively. Moreover, the penalty on

each agent is zero. Then, for all i ∈ NA and j ∈ NB, we know that ki = 1 and kj = 0.

Thus, for all i ∈ NA, agent i’s ex-ante expected payoff is the following

Eviπi =

∫ v̄

o
vif(vi)dvi (B.60)
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The zero penalty scheme implies each individual’s expected payoff is zero in group NB.

Therefore the ex-ante social expected payoff becomes

EΠ =
∑
i∈NA

∫ v̄

0
vif(vi)dvi (B.61)

That is

EΠ =
∑
i∈NA

−
∫ v̄

0
vi[−f(vi)]dvi (B.62)

By using integration by parts, we have

EΠ =
∑
i∈NA

(
− vi[1− F (vi)]

∣∣∣∣v̄
0

+

∫ v̄

0
[1− F (vi)]dvi

)
(B.63)

Thus, we social ex-ante expected payoff reaches the bound III. That is

EΠ = |NA|
(∫ v̄

0
[1− F (v)]dv

)
(B.64)

Therefore we have shown that, under this direct and incentive compatible voting mech-

anism, the optimal social decision follows majority rule and there is no penalty on any

individual.

B.4 Matlab Codes

(1) distrib.m sets up the function, which takes a vector of random variables ux uniformly

distributed on [−1, 1], where negative value indicates an agent preferring A and positive

one indicates an agent preferring B. It returns x from a Gamma distribution and the

inverse hazard rate H evaluated at x.

Codes:

function [x,H] = distrib(ux)

global shape scale N

x = zeros(N, 1);H = x;

for

i1 = 1 : length(ux)

p = (ux(i1) + 1)/2;

si = sign(ux(i1));

xx = gaminv(p, shape, scale);
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F = gamcdf(xx, shape, scale);

f = gampdf(xx, shape, scale);

x(i1) = si ∗ xx;

H(i1) = si ∗ (1− F )/f ;

end

(2) Net Wel.m calculates the “net welfare” for these two mechanism. In it, the net

welfare nw sm1 and nw V CG from simple majority and the alternative mechanism is

calculated based on Lemma 3.3.1.

Codes:

function [nw sm1, nw V CG] = Net Wel(ux)

global N

z = zeros(N, 1);

[x,H] = distrib(ux);

x = x(isfinite(x));

x = x(x = 0);

H = H(isfinite(H));

H = H(H = 0);

sig x = sign(x);

ind x = sign(sum(sig x));

a sm = (ind x+ 1)/2

sum x = sum(x);

a V CG = (sign(sum x) + 1)/2

HA = min(H, z);

HB = max(H, z);

NetWelfareA= −sum(HA)/N ;

NetWelfareB= sum(HB)/N ;

xA = min(x, z);

xB = max(x, z);

AllocWelfareA= −sum(xA)/N ;

AllocWelfareB= sum(xB)/N ;

nw sm1 = (1− a sm) ∗AllocWelfareA+ asm ∗AllocWelfareB;

nw V CG = (1− aV CG) ∗NetWelfareA+ aV CG ∗NetWelfareB;
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(3) Mean Net Wel.m calculates the mean of “net welfare”, which approximates

the expectation in Lemma 3.3.1.

Codes:

function [mean nw sm1,mean nw V CG] = Mean Net Wel

global N r

tic

for

r1 = 1 : r x = rand(N, 1) ∗ 2− 1;

[nw sm1(r1), nw V CG(r1)] = Net Wel(x);

end

toc

mean nw sm1 = mean(nw sm1);

mean nw V CG = mean(nw V CG);

(4)shape is five majority better.m can be run directly. It should be mentioned

here, this file sets up the parameters of the model for Example 1. N is the number of

agents in the society; r is the number of repetitions to get the mean. And the shape

and scale are parameters of Gamma distribution G(5, 1).

Codes:

clear all

global N r shape scale

N = 94;

r = 10000;

shape = 5

scale = 1

[x,H] = distrib(−1 : .02 : 0.9)

plot(x,H)

H = H(H = 0);

x = x(x = 0);

x = x(isfinite(x));

H = H(isfinite(H));

[nw sm1, nw V CG] = Net Wel(−1 : .02 : 0.9)

[mean nw sm1,mean nw V CG] = Mean Net Wel
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(5) shape lessthanone V CG better.magain can be run directly. However, it sets up

shape and scale of Gamma distribution to be 0.1 and 1, respectively.

Codes:

clear all

global N r shape scale

N = 94;

r = 10000;

shape = 0.1

scale = 1

[x,H] = distrib(−1 : .02 : 0.9)

plot(x,H)

H = H(H = 0);

x = x(x = 0);

x = x(isfinite(x));

H = H(isfinite(H));

[nw sm1, nw V CG] = Net Wel(−1 : .02 : 0.9)

[mean nw sm1,mean nw V CG] = Mean Net Wel
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Appendix C

Proofs in Chapter 4

C.1 Proof of Lemma 4.4.1

Let player i be the first mover. Consider any subgame which starts after player i has

proposed a vector π with πi ≥ v({i}). Recall that Qi is the set of core allocations where

player i can gain his maximum payoff. That is

Qi =
{
π ∈ C(N, v), such that ∀x ∈ C(N, v), πi ≥ xi

}
(C.1)

By Assumption 1 (strictly convex game) and Shapley (1971)’s theorem, we get Qi 6= ∅
and

πi = v(N)− v(N \ {i}), for π ∈ Qi (C.2)

The proof of Lemma 4.3.1 has two parts. Part (I) shows that, if π is a core allocation,

then all players within N \{i} accept it. Part (II) shows that, if all players within N \{i}
accept π, then π is a core allocation.

Part (I): Suppose π is a core allocation. By Peleg’s theorem,

πj ≥ vπs({j}) for S ⊆ N , j ∈ N and j ∈ S (C.3)

Then the Assumption 2 tells us that

πj > vπs({j}) for S ⊆ N , j ∈ N and j ∈ S (C.4)

In words, for all j ∈ N , there are no opportunities to rent “underpriced ” players at π.

Then all players within N \ {i} have no incentive to reject π.
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Part (II): Suppose all players within N \ {i} accept π. If π is not a core allocation,

the argument uses contradiction. Let T be the last blocking coalition, and j be the last

member (according to P ) in T . Peleg (1986)’s theorem tells us that πs is not in the

core of DM reduced game (S, vπs). That is, for j and for some S, where S ∩ T = j, we

have

vπs({j}) > πj (C.5)

Then the definition of DM reduced game tells us that

vπs({j}) = max
Z⊆N\S

[
v({j} ∪ Z)− π(Z)

]
(C.6)

Since j ∈ T , S ∩ T = j, it follows that

T \ {j} ⊆ N \ S (C.7)

Thus

vπs({j}) ≥ v
(
{j} ∪ T \ {j}

)
− π(T \ {j}) (C.8)

That is

vπs({j}) ≥ v(T )− π(T \ {j}) (C.9)

Since T is the last blocking coalition, we have

v(T ) > π(T ) (C.10)

That is

v(T ) > π(T \ {j}) + πj (C.11)

Then

v(T )− π(T \ {j}) > πj (C.12)

Thus player j has incentive to reject the π and propose a coalition T and pay all players

in T \ {j} at π. In other words, if π is not a core allocation, at least one player must

reject π. Therefore we have proved that if all players within N \ {i} accept π, then π

is a core allocation.

Based on the proofs in part (I) and (II), we can conclude that, π is a core allocation

(π ∈ C(N, v)) if and only if all players within N \ {i} accept π.
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C.2 Proof of Lemma 4.4.2

Again let player i be the first mover. Recall the definition of Qi in (4.16). Player i

proposes π, where π ∈ Qi and πi = v(N)− v(N \ {i}). Consider any subgame where i

is the first mover.

Firstly, suppose player i is the seller. Let M be the set of rejectors, (i /∈M). Player

i’s payoff when π is rejected by at least one player in N \ {i} is

Ωi = v(N \M)− π(N \ {M ∪ {i}}) (C.13)

Since for all elements of π are non-negative, then

π(N \ {M ∪ {i}}) ≥ 0 (C.14)

By adding v(N) on both sides, we have

π(N \ {M ∪ {i}}) + v(N) ≥ v(N) (C.15)

If the seller is not included in a coalition, the value of the coalition is zero. Since i /∈M ,

then v(M) = 0. By subtracting v(M) from (C.13), we have

π(N \ {M ∪ {i}}) + v(N) ≥ v(N)− v(M) (C.16)

By Assumption 1(strictly convex game) 1, we have

v(N)− v(M) > v(N \M) (C.17)

Then

π(N \ {M ∪ {i}}) + v(N) > v(N \M) (C.18)

That is

v(N)−
[
v(N \M)− π(N \ {M ∪ {i}})

]
> 0 (C.19)

Since v(N \ {i}) = 0, we have

v(N)− v(N \ {i})−
[
v(N \M)− π(N \ {M ∪ {i}})

]
> 0 (C.20)

Therefore we have

Ωi < v(N)− v(N \ {i}) (C.21)

1superadditivity
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Secondly, suppose the player i is not the seller, and the seller is not included in M

(recall above definition of M : the set of rejectors in the subgame where i is the first

mover). We note that

v(N \ {M ∪ {i}})− π(N \ {M ∪ {i}}) ≤ 0 (C.22)

Otherwise, for any player j ∈ N\M has incentive to change his decision from acceptance

to rejection. And then j proposes a new coalition N \ {M ∪ {i}} with payment to all

players in N \ {M ∪ {i, j}}.
Since (C. 22), it follows that

−v(N \ {M ∪ {i}}) ≥ −π(N \ {M ∪ {i}}) (C.23)

By adding v(N \M) on both sides, we get

v(N \M)− v(N \ {M ∪ {i}}) ≥ v(N \M)− π(N \ {M ∪ {i}}) (C.24)

By Assumption 1 (strictly convex game), we have

v(N)− v(N \ {i}) > v(N \M)− v(N \ {M ∪ {i}}) (C.25)

Then

v(N)− v(N \ {i}) > v(N \M)− π(N \ {M ∪ {i}}) (C.26)

That is

v(N)− v(N \ {i}) > Ωi (C.27)

Finally, consider the player i is not the seller, and the seller is included in M . Then

player i’s payoff is the following:

Ωi = −π(N \ {M ∪ {i}}) (C.28)

Since all elements in π are non-negative, we have

Ωi ≤ 0 (C.29)

The strict strictly convexity of a game (Assumption 1) tells us that each player has

positive marginal contribution to the worth of the coalition. It implies that

v(N)− v(N \ {i}) > 0 (C.30)

Therefore, we have

v(N)− v(N \ {i}) > Ωi (C.31)
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C.3 Proof of Theorem 4.4.1

Let the package bidding mechanism with a fixed p (recall the definition of p in section

4.3: the vector that every player is selected as the first mover) be Mp. Let SEPp be

the subgame game perfect equilibrium of Mp.

Under the subgame where player i is the first mover, Lemma 4.4.1 and 4.4.2 imply

that, in any subgame where player i is the first mover, π is a SPE payoff if and only if

π ∈ Qi.
Since p is fixed in Mp and C(N, v) is a strictly convex set, then any outcome

x ∈ SPEp, must be in the core. That is

x ∈ C(N, v) (C.32)

By Shapley (1971)’s theorem, if (N, v) is convex, C(N, v) is the convex hull of all x

for any p. Then, given x ∈ C(N, v), there exists a p such that x ∈ SPEp.
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