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Abstract

The role of vitamin D in curtailing the development of obesity and comorbidities like the metabolic
syndrome (MetS) and type-2 diabetes has received much attention recently. However, clinical trials
have failed to conclusively demonstrate the benefits of vitamin D supplementation. In most studies,
serum 25-hydroxyvitamin D (25(OH)D) decreases with increasing BMI above normal weight.
These low 25(OH)D levels may also be a proxy for reduced exposure to sunlight-derived ultraviolet
radiation (UVR). Here we investigate whether UVR and/or vitamin D supplementation modifies the
development of obesity and type-2 diabetes in a murine model of obesity. Chronic sub-erythemal
and erythemal UVR significantly suppressed weight gain, glucose intolerance, insulin resistance,
non-alcoholic fatty-liver disease measures and serum levels of fasting insulin, glucose and
cholesterol in C57BI/6 male mice fed a high fat diet. However, many of the benefits of UVR were
not reproduced by vitamin D supplementation. In further mechanistic studies, skin induction of the
UVR-induced mediator, nitric oxide reproduced many of the effects of UVR. These studies suggest
that UVR (sunlight exposure) may be an effective means of suppressing the development of obesity
and MetS, through mechanisms that are independent of vitamin D but dependent on other UVR-

induced mediators like nitric oxide.



Introduction

Obesity has significant effects on our health and wellbeing: obese people have increased co-
morbidities resulting from cardiovascular disease, type-2 diabetes, breast and colon cancers,
dementia and depression. Vitamin D deficiency is recognized as a health problem affecting many
individuals worldwide (1) and may contribute toward the development of obesity. Insufficient levels
of vitamin D are associated with obesity, and obese people are more likely than others to be vitamin D
deficient (reviewed in (2; 3)). Vitamin D is synthesised from dermal 7-dehydrocholesterol after
cutaneous exposure to the ultraviolet radiation (UVR) of sunlight. Vitamin D is transported to the liver
bound to the vitamin D-binding protein for conversion into the storage form, 25-hydroxyvitamin D
(25(CH)D), before further conversion into the active form, 1,25-dihydroxyvitamin D (1,25(OH),D) in
the kidneys. Many cells in other tissues express the enzymatic machinery required to convert 25(OH)D

into active 1,25(0OH),D (2).

It is not known whether vitamin D deficiency is a causal pathway for the development of obesity and
the metabolic syndrome (MetS). Serum 25(OH)D levels generally decrease with increasing BMI
above normal weight (4) and results from a genetic association study suggest that higher BMI leads to
reduced circulating 25(OH)D levels (5). Furthermore, randomized controlled trials that test the
efficacy of vitamin D supplementation for weight loss (2) or curbing MetS-related diseases like type-2
diabetes and cardiovascular disease (3; 6; 7) have had little success. Even so, there is currently much
interest in vitamin D supplementation as a clinical means of controlling obesity and MetS, with

>100 clinical trials underway assessing vitamin D supplementation (ClinicalTrials.gov).

Increased storage of fat-soluble vitamin D in obese individuals may reduce circulating 25(OH)D
(8). Also, obese people exercise less and spend less time in the sun (9). Our increasingly ‘indoor’

lifestyles, coupled with concerns about rising skin cancer rates for light-skinned populations, have



resulted in concomitant decreases in sun exposure (10) and increased prevalence of vitamin D
deficiency (11) worldwide including countries like Australia, which experiences some of the
highest obesity rates in the world. Chronic sunlight exposure (particularly sub-erythemal UVR)
itself may be beneficial for obesity and MetS outcomes like type-2 diabetes (12) and non-alcoholic

fatty liver disease (NAFLD) (13).

In this paper, we present data further defining the role of sunlight-induced vitamin D in modulating
the development of obesity and aberrant metabolic outputs including glucose intolerance, insulin
resistance, and NAFLD. We directly compared the abilities of chronic UVR and/or dietary vitamin
D to alter the development of obesity using a physiologically relevant model induced by feeding
C57BI/6 male mice a high fat diet. Our previous studies have shown that chronic UVR does not
modify serum 25(OH)D in male mice (14), allowing us to investigate the ability of UVR to
modulate obesity and MetS independently of circulating 25(OH)D. Here, chronic UVR but not
dietary vitamin D suppressed weight gain and various measures of MetS (circulating cholesterol
levels, glucose intolerance, insulin resistance). Further, while vitamin D supplementation did
improve NAFLD, UVR suppressed its development even more effectively. Vitamin D
supplementation suppressed circulating TNFa levels, identifying a possible mechanism for control
of NAFLD. In further mechanistic studies, UVR-induced nitric oxide (NO) significantly suppressed
some measures of obesity and MetS development, including weight, white adipose tissue (WAT)
accumulation, fasting glucose, the development of insulin resistance and NAFLD. These studies
suggest that while vitamin D supplementation may be useful for preventing NAFLD development,
sunlight exposure may be more effective, and have the added benefits of suppressing obesity and

MetS through NO-dependent pathways.



Research Design and Methods

Mice. All experiments were performed according to the ethical guidelines of the National Health
and Medical Research Council of Australia and with approval from the Telethon Institute for Child
Health Research Animal Ethics Committee. C57BI/6 male mice were purchased from the Animal
Resources Centre, Western Australia. The temperature and lighting were controlled, with a normal
12-hour light/dark cycle to mimic day and night. Mice were housed under perspex-filtered
fluorescent lighting, which emitted no detectable ultraviolet (UV) B radiation as measured using a
UV radiometer (UVX Digital Radiometer, Ultraviolet Products Inc., Upland, CA, USA). Mice were

allowed access to food and acidified water ad libitum.

Diet. All diets were obtained from Specialty Feeds (Glen Forrest, Western Australia) and included
two semi-pure low fat diets (5% fat; canola oil), which were supplemented (LF-D") or not (LF-D")
with vitamin D3 (2280 or 0 1U vitamin Ds/kg) and two high fat diets (23%; lard (20.7%) and canola
oil (2.9%)) that were (HF-D") or were not (HF-D") supplemented with vitamin D3z (2280 or 0 IU
vitamin Ds/kg). Mice that started on a vitamin Ds-supplemented diet were continued on diets
supplemented with vitamin D3 throughout. The LF-D” and HF-D™ were also supplemented with 2%

calcium (vs 1% for the LF-D* and HF-D") to ensure normocalcemia.

UV radiation and topical skin treatments. A bank of six 40 W lamps (Philips TL UV-B, Eindhoven,
The Netherlands) emitting broadband UVR, 250-360 nm, with 65% of the output in the UVB range
(280-315 nm), was used to irradiate mice to deliver sub-erythemal (1 kd/m% (15)) or erythemal (4
or 8 kJ/m?) UVR onto clean-shaven 8 cm? dorsal skin as previously described (16). Alternatively,
skin was treated with 0.1 mmoles SNAP (S-nitroso-N-acetyl-D,L-penicillamine, Sigma, (17)), a
nitric oxide (NO) donor. In other treatments, a NO scavenger, cPTIO (Carboxy-PTIO potassium

salt, Sigma (18), 0.1 mmoles), or 1,25(0OH).D (1,25-dihydroxyvitamin D, Sigma (19), 11.4



pmoles/cm?) were applied immediately following delivery of sub-erythemal UVR (1 kJ/m?). This
dose of 1,25(0OH),D was previously reported to not induce hypercalcemia (19). All topical reagents
were diluted a vehicle consisting of ethanol, propylene glycol and water (2:1:1, (20)). All topical

treatments were performed in the morning.

Measuring weight gain. Mice were weighed weekly on the same day in the morning using a digital

scale (Ohaus Scout, >0.1g sensitivity). Percentage weight gain was calculated from 8 weeks of age.

Glucose and insulin tolerance tests. Mice were fasted for 5 hours and then intraperitoneally
challenged with either 1 g/kg glucose (Phebra, Lane Cove, NSW) (for glucose tolerance tests, GTT)
or 0.5-0.75 1U/kg insulin (Lilly, Indianapolis, IN) (for insulin tolerance tests, ITT). Glucose levels
were recorded at 0, 15, 30, 45, 60 and 90 minutes post-injection using the Accu-Chek Performa

glucometer (Roche).

Serum metabolites. Serum 25(OH)D levels were measured using IDS EIA kits (Immunodiagnostic
Systems Ltd, Fountain Hills, AZ) as described by the manufacturer (limit of detection=5-7 nmol/L,
CVv=0.08 for internal controls). For confirmation, 25(OH)D levels in selected samples were
measured using a liquid chromatography-tandem mass spectrometry method (21), which
significantly correlated with immunoassay 25(OH)D levels (n=8; r=0.99, p<0.0001). Serum
calcium, cholesterol, HDL-cholesterol, LDL-cholesterol and triglyceride were detected by standard
colormetric reactions using the Architect c16000 Analyser (Abbott Diagnostics, Abbott Park,
USA). Glucose, insulin, adiponectin and leptin were measured in serum after fasting mice for 5 h.
Fasting glucose was measured using the Accu-Chek Performa glucometer (Roche, Castle Hill,
NSW). Fasting insulin, adiponectin and leptin were measured using rat/mouse insulin, mouse
adiponectin and mouse leptin ELISA Kits, respectively, as described by the manufacturer (EMD

Millipore Corporation, Billerica MA). Serum IL-6, TNFa and IL-10 concentrations were measured



in serum using ELISA as previously described (15; 22) with antibody pairs supplied by BD
Biosciences (Franklin Lakes, NJ, USA). The levels of detection for the IL-6, TNFa and IL-10
assays were 12, 3 and 14 pg/ml, respectively. Serum nitrite and nitrate was measured as previously

described (23).

Histopathological assessment of liver pathology. The severity of NAFLD was assessed by grading
formalin-fixed and H&E-stained liver sections. Steatosis and hepatocellular ballooning were scored
using a scoring system based on the NASH (non-alcoholic steatohepatitis) scoring system (24). A
separate score was given for steatosis (0-3) and hepatocellular ballooning (0-3). These scores were

added together for an overall score (< 6).

Measurement of skin nitric oxide levels. Formation of NO in the skin was measured by a non-
invasive in vivo assay using the substrate DAF-2 (applied in the form of the membrane-permeable
precursor 4,5-Diaminofluorescein Diacetate, DAF-2DA; Millipore, is cleaved by intracellular
esterases to generate DAF-2; this then chemically reacts with NO to form the highly fluorescent
compound DAF-2T; (25)). DAF-2DA (1 pmole in an ethanol, propylene glycol and water (2:1:1,
vehicle, (20)) was applied to shaved dorsal skin for absorption for 1 h prior to skin treatment with
UVR and/or the topical reagent. Serial images of skin fluorescence (excitation at 488 nm, emission
at 515 nm) were taken every 5 min over 20 min using the IVIS Spectrum Bioimager (Perkin

Elmer).

Statistical analyses. Area under the curve (AUC) was calculated for GTT and ITT using GraphPad
Prism (v5) using 0 as the baseline. Student’s t-tests and Analysis of VVariance (ANOVA) were used
to compare treatments with Tukey post-hoc analyses. Due to a significantly greater variance in

weight gain among HFD mice, the effects of vitamin D intake and UV treatment (and their



interaction) on weight gain were analysed separately to the LFD mice using SPSS (v21.0.0). Results

were considered as statistically significant for p-values < 0.05.
Results

Tracking the effects of chronic UVR and dietary fat on serum 25(OH)D

To confirm our previous findings that UVR does not modify serum 25(OH)D in male mice (14),
vitamin D-deficient male or female C57BI/6 mice were exposed to a single erythemal dose (4 or 8
kJ/m?) of UVR, and serum 25(0OH)D levels tracked over 17 days. Serum 25(OH)D levels were
raised in a dose-related fashion by skin exposure to erythemal UVR in female but not male mice
(Supp. Fig. 1). To determine the relative roles of dietary vitamin D and/or UVR-induced vitamin D
in the regulation of obesity and related cardiometabolic disease outcomes, we performed the
following experiment using C57BI/6 mice (Fig. 1). Male mice were fed a vitamin D-supplemented
or non-supplemented (low fat) diet from 4 until 8 weeks of age to establish vitamin D-sufficiency or
-deficiency (Fig. 2A). From 8 weeks of age, mice were continued on the supplemented or non-
supplemented diets, but some were switched to a diet that was high in fat. Each of these four dietary
treatments were further divided into three, with the shaved skin of mice chronically irradiated with
no UVR, sub-erythemal UVR (1 kJ/m? biweekly) or erythemal UVR (4 kd/m® fortnightly) as
indicated in Fig. 1. Mice were treated from 8 until 20 weeks of age with these UVR and dietary
interventions. A high fat diet significantly increased serum 25(OH)D levels in mice fed diets not
specifically supplemented with vitamin D (HF-D", LF-D’; Fig. 2B). Mice fed either the diets further
supplemented with vitamin D (HF-D*, LF-D*) had significantly greater serum 25(OH)D than those
mice fed the diets not supplemented with vitamin D (Fig. 2B). There was no additive effect of a
high fat diet and vitamin D supplementation on serum 25(OH)D (Fig. 2B). Although not observed
in our preliminary (Supp. Fig. 1) and past investigations (14), chronic sub-erythemal (Fig. 2C) or

erythemal (Fig. 2D) UVR significantly (but transiently) enhanced serum 25(OH)D, when



administered to mice fed a LF-D" diet (but not HF-D*, LF-D", or HF-D"; see also Supp. Fig. 2). The
effects were more pronounced for mice administered the chronic erythemal UVR, but returned to

baseline levels after 6 weeks of UVR/dietary intervention (Fig. 2D; Supp. Fig. 2B).

Chronic UVR exposure suppressed weight gain in mice fed a vitamin D-non-supplemented diet

There was no effect of vitamin D supplementation on weight gain (Fig. 3A,B). Both chronic sub-
erythemal (1 kJ/m? biweekly) and erythemal UVR (4 ki/m? fortnightly) suppressed weight gain in
mice fed the HF-D" (Fig. 3A) by >40%. Chronic erythemal UVR also suppressed weight gain in
mice fed the LF-D" (Fig. 3B). The effects of chronic skin exposure to UVR were less effective for
mice fed the vitamin D-supplemented diet, where UVR suppressed weight gain in a transient
fashion in mice fed the HF-D™ (Suppl. Fig. 3A). At the end of the UVR/dietary intervention period
(12 weeks), gonadal fat pad weights were not affected by dietary vitamin D supplementation but

were significantly suppressed in mice irradiated with UVR and fed the HF-D" (Fig. 3D).

Chronic UVR exposure suppressed glucose intolerance and insulin resistance in mice fed a vitamin

D-non-supplemented diet

After 10 and 11 weeks of UVR/dietary intervention, GTTs and ITTs were performed (Table 1).
Mice fed the high fat diets developed glucose intolerance (Supp. Fig. 3B) and insulin resistance
(Supp. Fig. 3C), with no suppressive effect of vitamin D supplementation (Supp. Fig. 3B and 3C;
Table 1 for AUC). Both measures were suppressed in mice chronically irradiated with UVR (either
sub-erythemal or erythemal) fed the HF-D" (Table 1). Glucose intolerance was significantly
suppressed by chronic sub-erythemal UVR in mice fed the HF-D* only (Table 1). In addition,
fasting glucose and insulin levels were also reduced by either UVR treatment in mice fed the HF-D"

, with fasting leptin also suppressed in mice that were chronically irradiated with erythemal UVR

10



(Table 1). There were no effects of chronic UVR (or dietary vitamin D) on fasting adiponectin

levels (Table 1).

Chronic erythemal UVR exposure suppressed circulating cholesterol levels in mice fed a high fat

diet not supplemented with vitamin D

After 12 weeks of UVR/dietary intervention, circulating levels of triglycerides and cholesterol
(HDL, LDL and total) were measured (Table 2). Triglyceride levels were not modified by vitamin
D supplementation or chronic UVR (Table 2). HDL-, LDL- and total-cholesterol were suppressed

in mice fed the HF-D" also chronically irradiated with erythemal UVR (Table 2).

Chronic UVR exposure more effectively suppressed the development of non-alcoholic fatty-liver

disease than vitamin D supplementation

The development of markers of NAFLD was measured by analysing the degree of liver steatosis
and lobular ballooning after 12 weeks of UVR/dietary intervention (Fig. 4, Fig. 5A). Chronic skin
exposure to UVR substantially suppressed liver histopathology in mice fed the high fat diets (Fig.
4A-C HF-D*; Fig. 4G-1 HF-D'; Fig. 5A) to a greater degree than achieved by dietary vitamin D
supplementation alone (Fig. 4A HF-D*; Fig. 4G HF-D"; Fig. 5A). Vitamin D supplementation had
no effect on liver weight, while chronic erythemal UVR suppressed liver weight in mice fed the

HF-D’ (Fig. 5B).
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Vitamin D supplementation prevented the suppressive effects of UVR upon weight gain and markers

of MetS

The results presented above suggest that many of the effects of UVR were more prominent in mice
not further supplemented with vitamin D. We used a general linear model to assess whether there
may be interactions within the high fat diet treatments, such that dietary vitamin D may have
inhibited the suppressive ability of UVR. Significant interactions between dietary vitamin D and
chronic UVR exposure were detected for weight gain (Fig. 3C; p=0.05), gonadal fatpad weights
(Fig. 3D; p=0.03) and fasting glucose (Table 1, p=0.01), but not the other measures including liver

histopathology (Fig. 4, Fig. 5A, p>0.05).

Serum vitamin D or calcium were not related to weight loss or suppression of MetS in UVR-

irradiated mice

Chronic UVR exposure suppressed aspects of weight gain and measures of MetS, independently of
changes to circulating 25(OH)D levels (Fig. 2, Supp. Fig. 2). Therefore it is unlikely that the
mechanism through which UVR acted was dependent on vitamin D. As calcium levels can be
modified by vitamin D and have been associated with weight loss (26), we also assessed circulating
calcium levels after 12 weeks of UVR/dietary intervention, but observed no significant effects of
dietary vitamin D or chronic skin exposure to UVR in mice fed the high fat diets (Fig. 5C). Chronic

skin exposure to UVR reduced calcium levels in mice fed a low fat diet (Fig. 5C).
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Circulating TNFa was linked with improved markers of NAFLD in the absence of dietary vitamin D

supplementation but not skin exposure to UVR

The ability of phototherapy to suppress the development of NAFLD has been associated with
reduced expression of TNFa (13). However, chronic UVR did not modify serum TNFa levels after
12 weeks of UVR/dietary intervention in mice fed a high fat diet (Fig. 5D). Vitamin D
supplementation reduced circulating TNFa levels in mice fed a HF-D* when compared to those fed

a HF-D™ (Fig. 5D). Serum levels of 1L-6 and IL-10 were below the level of detection of the ELISA.

UV-induced nitric oxide suppresses the development of obesity and symptoms of MetS

A role for nitric oxide (NO), an alternate (non-vitamin D) mediator induced by UVR was examined.
Skin levels of NO increased from as early as 5 min post-UVR/SNAP (Fig. 6A, B) treatment as
determined using DAF-2. To examine a role for UVR-induced NO in modulating obesity and MetS
symptoms, four week-old C57BI/6 male mice were fed a LF-D" for four weeks. From eight weeks
of age, mice were either continued on this diet or switched to the HF-D’, with HF-D-fed mice
further divided into five treatments, where their dorsal skin was treated with (i) vehicle only, (ii)
sub-erythemal UVR (1 ki/m?) and then vehicle, (iii) SNAP, (iv) sub-erythemal UVR and then
cPTIO or (v) sub-erythemal UVR and then 1,25(0OH),D. This final treatment was selected to test
whether active 1,25(0OH),D could prevent the suppressive effects of UVR on obesity and MetS
development (like dietary vitamin D in Suppl. Fig. 3A) through inhibition of skin-induced NO.

Indeed, vitamin D may repair UV-induced DNA damage in skin by suppressing NO (27).

After 12 weeks of feeding mice the HF-D", skin NO levels were assessed 10 min following a final
treatment with one of the five topical treatments detailed above. Skin NO levels increased with

UVR or SNAP (Fig. 6C). The NO scavenger cPTIO reduced levels of NO in skin post-UVR
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treatment but unexpectedly, 1,25(0OH),D did not. Serum nitrite/nitrate concentrations, measured 20
min after the final skin treatment, were not altered by chronic low-dose UVR or SNAP (data not
shown). Chronic UVR suppressed weight gain and the accumulation of WAT after 12 weeks of the
HF-D" (Fig. 6D). Chronic SNAP treatment also effectively suppressed mouse weights (although not
weight gain) and WAT accumulation (Fig. 6D). However, neither the NO scavenger cPTIO, nor
1,25(0H),D reversed the suppressive effects of UVR on weight gain or WAT accumulation. Indeed
the UVR and 1,25(0OH),D treatment was more effective than UVR alone but this observation may
reflect the hypercalcemia observed early on with topical 1,25(OH),D (4 weeks post-UVR
(2.41£0.03) or -UVR+1,25(0OH),D (3.5+0.07); serum calcium, *p<0.001). In response to these
observations, we halved the dose of 1,25(0OH),D administered and mice were treated only once per
week from 4 weeks of intervention. Despite this change, 1,25(OH),D-treated mice were still
modestly hypercalcemic at the end of the experiment (12 weeks post-UVR (2.4+£0.03) or -

UVR+1,25(0H),D (2.7%0.07); serum calcium, *p<0.001).

As observed previously, chronic UVR suppressed fasting glucose, insulin and the development of
glucose intolerance and insulin resistance (Fig. 6E, F). Here, chronic SNAP also suppressed the
development of insulin resistance (Fig. 6F). Furthermore, cPTIO treatment following UVR reversed
the suppressive effects of UVR alone upon fasting glucose levels (Fig. 6E). Finally, both chronic
UVR and SNAP suppressed the development of NAFLD, while cPTIO reversed the effects of UVR
upon liver histopathology (Fig. 6G). Cumulatively, these data suggest that UVR-induced NO may
play an important role in modulating the development of obesity and MetS through effects on

weight, WAT accumulation, fasting glucose, the development of insulin resistance and NAFLD.

14



Discussion

Here we present evidence that chronic skin exposure to low (sub-erythemal) and high (erythemal)
dose UVR suppresses the development of obesity and measures of MetS in mice fed a high fat diet.
Vitamin D supplementation alone did not reproduce these effects. In addition, the suppressive
effects of UVR on obesity and MetS development were not observed to the same degree in mice
that were further supplemented with vitamin D (HF-D"). For mice fed a high fat diet, serum
25(0OH)D levels were not enhanced by chronic UVR exposure, suggesting that any effects induced
by UVR in these mice were independent of circulating 25(OH)D levels. The HF-D™ increased
circulating 25(0OH)D; it is likely that this diet contains vitamin D, perhaps within the lard-derived
fat fraction. Supplementation of this diet with vitamin D (i.e., the HF-D") further increased serum
25(0OH)D levels. Both UV irradiation and vitamin D supplementation reduced the severity of
NAFLD, suggesting that vitamin D can recapitulate the effects of UVR for the prevention of certain
obesity-related pathologies. We also showed that some of the effects of UVR may occur through
NO production. In particular, it is likely that UVR-induced NO may have profound effects on the
development of NAFLD, as topical SNAP suppressed liver pathology, and cPTIO antagonised the
effects of UVR. Various non-vitamin D immunomodulators induced by UVR, like NO (28), may be
important for regulation of immunity (29) and obesity/MetS development (30). Skin exposure to
UVR releases NO from skin (28) and could control obesity through NO-dependent effects on
mitochondria biogenesis within brown adipose tissue (31). We have recently shown that UVR-
induced NO reduces blood pressure in healthy human volunteers (28). NO may also be a crucial
modulator of insulin and glucose transport, and inhibition of NO may cause insulin resistance (32).
Combined with our results, these studies point to topically-induced NO as a potentially important

clinical means to suppress obesity and type-2 diabetes development.

The capacity of chronic UVR to suppress the development of obesity and metrics of MetS was less

effective in mice orally supplemented with vitamin D (but not topical 1,25(OH),D). This was an
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unexpected finding but could be explained by potential interactions of UVR-induced mediators and
dietary vitamin D, including NO (27). The different effects of dietary vitamin D and topical
1,25(0OH).D could be accounted for by the hypercalcemia induced by chronic topical 1,25(0OH),D.
In addition, after 12 weeks of treatment, serum 25(OH)D levels were significantly reduced by
topical 1,25(OH),D but not the other treatments (data not shown). Others have also observed that
vitamin D suppressed weight gain in vivo following intraperitoneal injections of 1,25(0OH),D (5
pg/kg every two days), although the effects on circulating calcium (and 25(OH)D) were not
reported (33). Others have shown that UVR may increase cortisol production in skin, which has
potential to impact the hypothalamic-pituitary-adrenal axis (34). While this might be hypothesised
to alter physical activity, no obvious behavioural effects were observed in this study. However, we
cannot exclude the possibility that UVR alters neuroendocrine signalling networks in the skin (35)

that might have systemic impact.

Nakano et al showed that phototherapy suppressed NAFLD but failed to reduce obesity, steatosis
and blood glucose levels Zucker fa-fa rats (13). These results may differ from our own through
significant differences in the phototherapies delivered and the mouse model of obesity. Dietary
vitamin D has also previously been shown to suppress development of NAFLD in Sprague-Dawley
rats fed a ‘westernised’ (high fat/fructose) diet (36) and Lewis rats a choline-deficient and iron-
supplemented L-amino acid-defined (CDAA) diet (13). We also observed that dietary vitamin D
suppressed circulating TNFa levels in mice fed a high fat diet. UVR did not suppress serum TNFa,
suggesting that dietary vitamin D and UVR may suppress NAFLD through differing mechanisms.
For control of NAFLD, the role of other players within the vitamin D pathway is worthy of further
consideration. For example, circulating levels of the vitamin D binding protein (GC) inversely
correlate with liver steatosis, and may determine the ability of vitamin D to modulate the
development of NAFLD (37). In addition, 1,25(0OH),D may act through the VDR to improve

insulin sensitivity (38).
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Our observations suggest that not all of the effects of UVR on disease prevention can be achieved
through dietary vitamin D and that role of other UV-induced mediators like NO deserve further
consideration. Furthermore, by using a mouse modelling approach we were able to remove the
confounding effects of activity out-of-doors, which might explain the observed associations of
reduced obesity and increased serum 25(OH)D. A caveat is that while mice have conserved the
ability to synthesize vitamin D and NO in the skin and systemically post-UVR, as fur-covered
nocturnal animals they are not usually exposed to much sunlight. Further studies are required to
translate the findings of our murine studies for humans. However, our results support recent calls
for clinical trials that test the efficacy of skin exposure to sunlight or UVR for the control of chronic
diseases like multiple sclerosis (39) and depression (40) that, like obesity and MetS, may take years
to develop. In conclusion, our studies show that chronic low dose sunlight exposure may be an
effective means of suppressing obesity and MetS in mice fed a high fat diet, through pathways that

are independent of vitamin D and at least partially dependent on skin-derived NO.
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Table 1: Area under the curve values for glucose and insulin tolerance tests (GTT, ITT) and fasting

glucose, insulin, leptin and adiponectin levels measured 9-11 weeks post-UVR/dietary intervention.

Treatment | Diet UVR GTT ITT Fasting Fasting Fasting Fasting
(AUC, (AUC, glucose insulin leptin adiponectin
%basal %basal (mM) (ng/ml) (ng/ml) (ng/ml)
glucose) glucose)
1 HF-D* | 0 2190483 1200£63 9.8+0.5 8.2+3.5 36.7+3.0 | 10.4+0.3
2 HF-D* | 1kJ/m? | 1770+49** | 1060+46 8.8+0.4 7.1+0.4 29.8+5.7 | 11.9£18
3 HF-D* | 4kJ/m® | 1880+180 | 1370+34 10.240.4 | 3.6+1.1 19.7+47.3 | 15.8+3.9
4 LF-D* |0 1470467 800+38 7.940.3 1.0£0.4 1.5+0.6 12.9+2.8
5 LF-D* | 1kJ/m? | 1510465 760+37 8.0+0.4 49+2.8 2.6x1.1 8.8+2.5
6 LF-D* | 4kJ/m* | 1390456 770£79 7.8+0.4 1.8£1.0 2.2+0.7 11.9£1.0
7 HF-D" | O 2120+130 | 1230+15 9.8+0.3 111419 | 29.8+3.5 | 13.0+2.6
8 HF-D' | 1kJ/m* | 1760+65* | 1050+43* | 8.7+0.3* | 3.8+#1.1* | 32.6#5.6 | 11.3+0.9
9 HF-D' | 4k)J/m® | 1690+73* | 960+72* 8.1+0.4* | 3.9+2.8* | 14.04¢5.3* | 13.0¢1.1
10 LF-D | O 1260+51 680+48 6.3£0.2 3.4x1.6 5.9+2.5 16.6+6.2
11 LF-D° | 1kJ/m? | 1280+£102 | 600+27 6.0+0.2 1.6+£1.1 1.0£0.5 10.8+0.6
12 LF-D" | 4k)/m? | 1480436 760£60 7.7£0.4 4.3+1.8 1.9+0.2 11.7£1.9

(n=4-8 mice/treatment, *p<0.05 relative to no UVR HF-D"; **p<0.05 relative to no UVR HF-D*

with data representative of two experiments)
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Table 2: Circulating triglyceride and cholesterol levels at 12

intervention.

weeks post-dietary and UVR-

Treatment | Diet UVR Triglyceride | HDL- LDL- Total-
cholesterol cholesterol cholesterol
(mM) (mM) (mM) (mM)
1 HF-D* | 0 0.7+0.1 2.1+0.2 0.3+0.0 42+0.4
2 HF-D* | 1 kJ/m? 0.6+0.0 2.0+0.2 0.2+0.0 3.8+0.4
3 HF-D* | 4 kJ/m? 0.8+0.1 2.1+0.1 0.2+0.0 4.3+0.2
4 LF-D* |0 1.0+0.1 1.5+0.1 0.2+0.0 2.5+0.2
5 LF-D* | 1 kJ/m? 1.2+0.1 1.8+0.1 0.2+0.0 2.9+0.1
6 LF-D* | 4 kJ/m? 1.1+0.3 1.3+0.2 0.1+0.0 2.2+0.3
7 HF-D” |0 0.9+0.1 2.1+0.1 0.4+0.0 4.3+0.1
8 HF-D* | 1 kJ/m? 0.6+0.0 2.1+0.0 0.3+0.0 4.2+0.2
9 HF-D | 4 kJ/m? 0.9+0.1 1.5+0.2* 0.2+0.0* 2.6+0.3*
10 LF-D" |0 1.2+0.1 1.6+0.3 0.1+0.0 2.4+0.4
11 LF-D° | 1 kJ/m? 0.9+0.1 1.4+0.1 0.1+0.0 2.0+0.1
12 LF-D | 4 kJ/m? 1.1+0.1 1.5+0.1 0.1+0.0 2.3+0.1

(n=4 mice/treatment, *p<0.05 relative to no UVR HF-D" with data a representative of two

experiments)
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Figure legends

Supplementary Figure 1: Erythemal UVR increased serum 25(OH)D levels in initially vitamin D-
deficient female but not male mice. Four week-old C57BI/6 mice were fed a low fat diet not
supplemented with vitamin D for four weeks to reduce serum 25(OH)D levels to less than 20
nmol.L™ (dotted line). Serum 25(OH)D levels were measured following the exposure of the shaved
dorsal skin of the initially vitamin D-deficient mice to 4 or 8 ki/m? UVR. Data is shown as mean +

SEM (n=4-8 mice/treatment/time point, *p<0.05 relative to initial serum 25(0OH)D levels).

Figure 1: The experimental approach. Four week-old C57BI/6 male mice were fed a low fat diet
supplemented with vitamin D (LF-D") or not (LF-D") for four weeks. At eight weeks of age, mice
were either continued on these diets or switched to a diet that was high in fat and supplemented
(HF-D") or not (HF-D") with vitamin D. At the same time, each dietary group was further divided
into three treatments of mice that were chronically irradiated with sub-erythemal UVR (biweekly, 1
kJ/m?), erythemal UVR (fortnightly, 4 kJ/m?) or no UVR. Mice were fed these diets and irradiated
with these UVR regimens for a further 12 weeks until mice were twenty weeks of age. There were a

total of 12 treatments, with 18 mice per treatment. The experiment was performed two times.

Figure 2: The effects of chronic skin exposure to UVR, dietary vitamin D and a high fat diet on
serum 25(OH)D. In (A), four week-old C57BI/6 male mice were fed a low fat diet supplemented
with vitamin D (LF-D") or not (LF-D") for four weeks. At eight weeks of age (week 0 for Fig. 2B —
D), mice were either continued on these diets or switched to a diet that was high in fat and
supplemented (HF-D¥) or not (HF-D) with vitamin D. At the same time, each dietary group was
further divided into three treatments of mice that were chronically irradiated with (B) no UVR, (C)
sub-erythemal UVR (biweekly, 1 kJ/m?), or (D) erythemal UVR (fortnightly, 4 kJ/m?) for a further

12 weeks. In (B) — (D), serum 25(OH)D levels are depicted for mice that underwent these

24



UVR/dietary interventions for 12 weeks. Data are shown as mean + SEM for n=4-9 mice at each

time, pooled from two independent experiments (*p<0.05).

Supplementary Figure 2: The effects of chronic skin exposure to UVR, dietary vitamin D and a high
fat diet on serum 25(OH)D. Data from Figure 2 are shown in an alternate fashion, comparing the
effects of no UVR, or, chronic skin exposure to sub-erythemal UVR (biweekly, 1 kJ/m?) or
erythemal UVR (fortnightly, 4 ki/m?) on serum levels of 25(OH)D for mice fed a (A) high (HF-D*)
or (B) low fat (LF-D") diet supplemented with vitamin D, or, (C) high (HF-D") or (D) low fat (LF-
D’) diet not supplemented with vitamin D. Data are shown as mean + SEM for n=4-9 mice at each

time, pooled from two independent experiments (*p<0.05).

Figure 3: Chronic UVR suppressed weight gain in mice fed high or low fat diets not supplemented
with vitamin D. Four week-old C57BI/6 male mice were fed a low fat diet supplemented with
vitamin D (LF-D") or not (LF-D") with vitamin D for four weeks. At eight weeks of age (week 0 for
Fig. 3A — B), mice were either continued on these diets or switched to a diet that was high in fat and
supplemented (HF-D*) or not (HF-D) with vitamin D. At the same time, each dietary group was
further divided into three treatments of mice that were chronically irradiated with no UVR, sub-
erythemal UVR (biweekly, 1 ki/m?), or erythemal UVR (fortnightly, 4 kJ/m?). In (A) - (B),
percentage weight gain is shown for mice that underwent these UVR/dietary interventions for 12
weeks (until 20 weeks of age) for mice fed a (A) high fat or (B) low fat diet. Data are shown as
mean + SEM for n=18 mice/treatment from a representative of two independent experiments. In (C)
total weight gain after 12 weeks of these UVR/dietary interventions (at 20 weeks of age) is shown
for all treatments (mean + SEM). In (D), after 12 weeks of these UVR/dietary interventions (at 20
weeks of age) gonadal fatpad (n=18/treatment) weights were measured. Data are representative of

two independent experiments (mean + SEM) *p<0.05).
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Supplementary Figure 3: Dietary vitamin D did not affect weight gain or the development of
glucose tolerance or insulin resistance for mice fed a high or low fat diet. Four week-old C57BI/6
male mice were fed a low fat diet supplemented with vitamin D (LF-D") or not (LF-D") for four
weeks. At eight weeks of age (week 0 for Suppl. Fig. 3A), mice were either continued on these diets
or switched to a diet that was high in fat and supplemented (HF-D™) or not (HF-D") with vitamin D.
At the same time, each dietary group was further divided into three treatments of mice that were
chronically irradiated with no UVR, sub-erythemal UVR (biweekly, 1 kJ/m?), or erythemal UVR
(fortnightly, 4 kJ/m?) for 12 weeks until 20 weeks of age. In (A), percentage weight gain is shown
(n=18 mice/treatment) for mice fed the HF-D* or LF-D*. In (B), a glucose tolerance test was
performed after 10 weeks of the UVR/dietary interventions (at 18 weeks of age, n=8
mice/treatment), with data shown for non-irradiated mice. In (C), an insulin tolerance test was
performed after 11 weeks of the UVR/dietary interventions (at 19 weeks of age, n=8
mice/treatment) with data shown for non-irradiated mice. Data are shown as mean £ SEM from a

representative of two independent experiments (*p<0.05).

Figure 4: Chronic UVR significantly reduced the extent of liver steatosis and lobular ballooning in
mice fed a high fat diet. Four week-old C57BI/6 male mice were fed a low fat diet supplemented
with vitamin D (LF-D") or not (LF-D") for four weeks. At eight weeks of age, mice were either
continued on these diets or switched to a diet that was high in fat and supplemented (HF-D") or not
(HF-D) with vitamin D. At the same time, each dietary group was further divided into three
treatments of mice that were chronically irradiated with no UVR (A, D, G, J), sub-erythemal UVR
(biweekly, 1 kd/m?%; B, E, H, K), or erythemal UVR (fortnightly, 4 kJ/m% C, F, I, L). After 12 weeks
of these UVR/dietary interventions (at 20 weeks of age), the extent of liver histopathology was
measured in liver specimens (n=10/treatment for data pooled from two independent experiments).

Shown in A-L are representative H&E-stained sections of liver for each treatment
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(20xmagnification with the scales in B and C equivalent to 150 pum). Examples of liver steatosis

(blue arrow) and lobular ballooning (red arrow) are shown in section (G).

Figure 5: Chronic UVR significantly reduced the extent of liver histopathology in mice fed a high
fat diet. Four week-old C57BI/6 male mice were fed a low fat diet supplemented with vitamin D
(LF-D") or not (LF-D") for four weeks. At eight weeks of age, mice were either continued on these
diets or switched to a diet that was high in fat and supplemented (HF-D*) or not (HF-D") with
vitamin D. At the same time, each dietary group was further divided into three treatments of mice
that were chronically irradiated with no UVR, sub-erythemal UVR (biweekly, 1 kJ/m?), or
erythemal UVR (fortnightly, 4 ki/m?). After 12 weeks of these UVR/dietary interventions (at 20
weeks of age), the (A) extent of liver histopathology (n=10/treatment for data pooled from two
independent experiments), (B) liver weights (n=18/treatment for data from a representative
experiment) and serum levels serum levels of (C) calcium (n=4-8/treatment for data pooled from
two independent experiments) and (D) TNFa (n=12-18/treatment for data pooled from two

independent experiments) are shown. Data are shown as mean + SEM (*p<0.05).

Figure 6: The UVR-induced mediator, nitric oxide may regulate body weight, WAT accumulation,
glucose metabolism and the development of NAFLD in mice fed a high fat diet. In (A) and (B),
using the DAF-2DA substrate, skin nitric oxide levels are shown for adult C57BI/6 male mice fed a
low fat diet not supplemented with vitamin D (LF-D7), 5 min following skin treatment with vehicle,
1 kJ/m? UVR or the nitric oxide donor, SNAP; with a quantitative measure (photons/sec) shown in
(A) and representative skin fluorescence shown in (B). Four week-old C57BI/6 male mice were fed
a LF-D" for four weeks. At eight weeks of age, mice were either continued on these diets or
switched to a diet that was high in fat, not supplemented with vitamin D (HF-D"). Within the HF-D"
treatments, mice were further divided into five treatments. The shaved dorsal skin of these mice

were; (i) treated with vehicle only, (ii) chronically irradiated with sub-erythemal UVR (biweekly, 1
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kJ/m?) and then vehicle, (iii) topically treated with SNAP, (iv) chronically irradiated with sub-
erythemal UVR and then cPTIO or (v) chronically irradiated with sub-erythemal UVR and then
1,25(0H),D. Mice were treated for 12 weeks with these skin/dietary interventions until 20 weeks of
age. In (C), skin NO levels, 10 min post-skin treatment (n=8 mice/treatment); in (D), mouse
weights, weight gain and WAT (WAT) weights (n=18 mice/treatment); in (E), fasting glucose and
GTT AUC (area under the curve, n=8 mice/treatment); in (F), fasting insulin and ITT AUC (n=8
mice/treatment; and in (G), liver histopathology scores (n=8 mice/treatment). Data are shown as

mean + SEM from one experiment (*p<0.05).
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