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Abstract 

 

The role of vitamin D in curtailing the development of obesity and comorbidities like the metabolic 

syndrome (MetS) and type-2 diabetes has received much attention recently. However, clinical trials 

have failed to conclusively demonstrate the benefits of vitamin D supplementation. In most studies, 

serum 25-hydroxyvitamin D (25(OH)D) decreases with increasing BMI above normal weight. 

These low 25(OH)D levels may also be a proxy for reduced exposure to sunlight-derived ultraviolet 

radiation (UVR). Here we investigate whether UVR and/or vitamin D supplementation modifies the 

development of obesity and type-2 diabetes in a murine model of obesity. Chronic sub-erythemal 

and erythemal UVR significantly suppressed weight gain, glucose intolerance, insulin resistance, 

non-alcoholic fatty-liver disease measures and serum levels of fasting insulin, glucose and 

cholesterol in C57Bl/6 male mice fed a high fat diet. However, many of the benefits of UVR were 

not reproduced by vitamin D supplementation. In further mechanistic studies, skin induction of the 

UVR-induced mediator, nitric oxide reproduced many of the effects of UVR. These studies suggest 

that UVR (sunlight exposure) may be an effective means of suppressing the development of obesity 

and MetS, through mechanisms that are independent of vitamin D but dependent on other UVR-

induced mediators like nitric oxide. 
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Introduction 

 

Obesity has significant effects on our health and wellbeing: obese people have increased co-

morbidities resulting from cardiovascular disease, type-2 diabetes, breast and colon cancers, 

dementia and depression. Vitamin D deficiency is recognized as a health problem affecting many 

individuals worldwide (1) and may contribute toward the development of obesity. Insufficient levels 

of vitamin D are associated with obesity, and obese people are more likely than others to be vitamin D 

deficient (reviewed in (2; 3)). Vitamin D is synthesised from dermal 7-dehydrocholesterol after 

cutaneous exposure to the ultraviolet radiation (UVR) of sunlight. Vitamin D is transported to the liver 

bound to the vitamin D-binding protein for conversion into the storage form, 25-hydroxyvitamin D 

(25(OH)D), before further conversion into the active form, 1,25-dihydroxyvitamin D (1,25(OH)2D) in 

the kidneys. Many cells in other tissues express the enzymatic machinery required to convert 25(OH)D 

into active 1,25(OH)2D (2).  

 

It is not known whether vitamin D deficiency is a causal pathway for the development of obesity and 

the metabolic syndrome (MetS). Serum 25(OH)D levels generally decrease with increasing BMI 

above normal weight (4) and results from a genetic association study suggest that higher BMI leads to 

reduced circulating 25(OH)D levels (5). Furthermore, randomized controlled trials that test the 

efficacy of vitamin D supplementation for weight loss (2) or curbing MetS-related diseases like type-2 

diabetes and cardiovascular disease (3; 6; 7) have had little success. Even so, there is currently much 

interest in vitamin D supplementation as a clinical means of controlling obesity and MetS, with 

>100 clinical trials underway assessing vitamin D supplementation (ClinicalTrials.gov).  

 

Increased storage of fat-soluble vitamin D in obese individuals may reduce circulating 25(OH)D 

(8). Also, obese people exercise less and spend less time in the sun (9). Our increasingly ‘indoor’ 

lifestyles, coupled with concerns about rising skin cancer rates for light-skinned populations, have 
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resulted in concomitant decreases in sun exposure (10) and increased prevalence of vitamin D 

deficiency (11) worldwide including countries like Australia, which experiences some of the 

highest obesity rates in the world. Chronic sunlight exposure (particularly sub-erythemal UVR) 

itself may be beneficial for obesity and MetS outcomes like type-2 diabetes (12) and non-alcoholic 

fatty liver disease (NAFLD) (13).  

 

In this paper, we present data further defining the role of sunlight-induced vitamin D in modulating 

the development of obesity and aberrant metabolic outputs including glucose intolerance, insulin 

resistance, and NAFLD. We directly compared the abilities of chronic UVR and/or dietary vitamin 

D to alter the development of obesity using a physiologically relevant model induced by feeding 

C57Bl/6 male mice a high fat diet. Our previous studies have shown that chronic UVR does not 

modify serum 25(OH)D in male mice (14), allowing us to investigate the ability of UVR to 

modulate obesity and MetS independently of circulating 25(OH)D. Here, chronic UVR but not 

dietary vitamin D suppressed weight gain and various measures of MetS (circulating cholesterol 

levels, glucose intolerance, insulin resistance). Further, while vitamin D supplementation did 

improve NAFLD, UVR suppressed its development even more effectively. Vitamin D 

supplementation suppressed circulating TNFα levels, identifying a possible mechanism for control 

of NAFLD. In further mechanistic studies, UVR-induced nitric oxide (NO) significantly suppressed 

some measures of obesity and MetS development, including weight, white adipose tissue (WAT) 

accumulation, fasting glucose, the development of insulin resistance and NAFLD. These studies 

suggest that while vitamin D supplementation may be useful for preventing NAFLD development, 

sunlight exposure may be more effective, and have the added benefits of suppressing obesity and 

MetS through NO-dependent pathways. 
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Research Design and Methods 

 

Mice. All experiments were performed according to the ethical guidelines of the National Health 

and Medical Research Council of Australia and with approval from the Telethon Institute for Child 

Health Research Animal Ethics Committee. C57Bl/6 male mice were purchased from the Animal 

Resources Centre, Western Australia. The temperature and lighting were controlled, with a normal 

12-hour light/dark cycle to mimic day and night. Mice were housed under perspex-filtered 

fluorescent lighting, which emitted no detectable ultraviolet (UV) B radiation as measured using a 

UV radiometer (UVX Digital Radiometer, Ultraviolet Products Inc., Upland, CA, USA). Mice were 

allowed access to food and acidified water ad libitum.  

 

Diet. All diets were obtained from Specialty Feeds (Glen Forrest, Western Australia) and included 

two semi-pure low fat diets (5% fat; canola oil), which were supplemented (LF-D+) or not (LF-D-) 

with vitamin D3 (2280 or 0 IU vitamin D3/kg) and two high fat diets (23%; lard (20.7%) and canola 

oil (2.9%)) that were (HF-D+) or were not (HF-D-) supplemented with vitamin D3 (2280 or 0 IU 

vitamin D3/kg). Mice that started on a vitamin D3-supplemented diet were continued on diets 

supplemented with vitamin D3 throughout. The LF-D- and HF-D- were also supplemented with 2% 

calcium (vs 1% for the LF-D+ and HF-D+) to ensure normocalcemia. 

 

UV radiation and topical skin treatments. A bank of six 40 W lamps (Philips TL UV-B, Eindhoven, 

The Netherlands) emitting broadband UVR, 250–360 nm, with 65% of the output in the UVB range 

(280–315 nm), was used to irradiate mice to deliver sub-erythemal (1 kJ/m2; (15)) or erythemal (4 

or 8 kJ/m2) UVR onto clean-shaven 8 cm2 dorsal skin as previously described (16). Alternatively, 

skin was treated with 0.1 mmoles SNAP (S-nitroso-N-acetyl-D,L-penicillamine, Sigma, (17)), a 

nitric oxide (NO) donor. In other treatments, a NO scavenger, cPTIO (Carboxy-PTIO potassium 

salt, Sigma (18), 0.1 mmoles), or 1,25(OH)2D (1,25-dihydroxyvitamin D, Sigma (19), 11.4 
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pmoles/cm2) were applied immediately following delivery of sub-erythemal UVR (1 kJ/m2). This 

dose of 1,25(OH)2D was previously reported to not induce hypercalcemia (19). All topical reagents 

were diluted a vehicle consisting of ethanol, propylene glycol and water (2:1:1, (20)). All topical 

treatments were performed in the morning. 

 

Measuring weight gain. Mice were weighed weekly on the same day in the morning using a digital 

scale (Ohaus Scout, >0.1g sensitivity). Percentage weight gain was calculated from 8 weeks of age.  

 

Glucose and insulin tolerance tests. Mice were fasted for 5 hours and then intraperitoneally 

challenged with either 1 g/kg glucose (Phebra, Lane Cove, NSW) (for glucose tolerance tests, GTT) 

or 0.5-0.75 IU/kg insulin (Lilly, Indianapolis, IN) (for insulin tolerance tests, ITT). Glucose levels 

were recorded at 0, 15, 30, 45, 60 and 90 minutes post-injection using the Accu-Chek Performa 

glucometer (Roche). 

 

Serum metabolites. Serum 25(OH)D levels were measured using IDS EIA kits (Immunodiagnostic 

Systems Ltd, Fountain Hills, AZ) as described by the manufacturer (limit of detection=5-7 nmol/L, 

CV=0.08 for internal controls). For confirmation, 25(OH)D levels in selected samples were 

measured using a liquid chromatography-tandem mass spectrometry method (21), which 

significantly correlated with immunoassay 25(OH)D levels (n=8; r=0.99, p≤0.0001). Serum 

calcium, cholesterol, HDL-cholesterol, LDL-cholesterol and triglyceride were detected by standard 

colormetric reactions using the Architect c16000 Analyser (Abbott Diagnostics, Abbott Park, 

USA). Glucose, insulin, adiponectin and leptin were measured in serum after fasting mice for 5 h. 

Fasting glucose was measured using the Accu-Chek Performa glucometer (Roche, Castle Hill, 

NSW). Fasting insulin, adiponectin and leptin were measured using rat/mouse insulin, mouse 

adiponectin and mouse leptin ELISA kits, respectively, as described by the manufacturer (EMD 

Millipore Corporation, Billerica MA). Serum IL-6, TNFα and IL-10 concentrations were measured 
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in serum using ELISA as previously described (15; 22) with antibody pairs supplied by BD 

Biosciences (Franklin Lakes, NJ, USA). The levels of detection for the IL-6, TNFα and IL-10 

assays were 12, 3 and 14 pg/ml, respectively. Serum nitrite and nitrate was measured as previously 

described (23). 

 

Histopathological assessment of liver pathology. The severity of NAFLD was assessed by grading 

formalin-fixed and H&E-stained liver sections. Steatosis and hepatocellular ballooning were scored 

using a scoring system based on the NASH (non-alcoholic steatohepatitis) scoring system (24). A 

separate score was given for steatosis (0-3) and hepatocellular ballooning (0-3). These scores were 

added together for an overall score (≤ 6). 

 

Measurement of skin nitric oxide levels. Formation of NO in the skin was measured by a non-

invasive in vivo assay using the substrate DAF-2 (applied in the form of the membrane-permeable 

precursor 4,5-Diaminofluorescein Diacetate, DAF-2DA; Millipore, is cleaved by intracellular 

esterases to generate DAF-2; this then chemically reacts with NO to form the highly fluorescent 

compound DAF-2T; (25)). DAF-2DA (1 µmole in an ethanol, propylene glycol and water (2:1:1, 

vehicle, (20)) was applied to shaved dorsal skin for absorption for 1 h prior to skin treatment with 

UVR and/or the topical reagent. Serial images of skin fluorescence (excitation at 488 nm, emission 

at 515 nm) were taken every 5 min over 20 min using the IVIS Spectrum Bioimager (Perkin 

Elmer).  

 

Statistical analyses. Area under the curve (AUC) was calculated for GTT and ITT using GraphPad 

Prism (v5) using 0 as the baseline. Student’s t-tests and Analysis of Variance (ANOVA) were used 

to compare treatments with Tukey post-hoc analyses. Due to a significantly greater variance in 

weight gain among HFD mice, the effects of vitamin D intake and UV treatment (and their 
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interaction) on weight gain were analysed separately to the LFD mice using SPSS (v21.0.0). Results 

were considered as statistically significant for p-values < 0.05. 

 
Results 
 

Tracking the effects of chronic UVR and dietary fat on serum 25(OH)D 

 

To confirm our previous findings that UVR does not modify serum 25(OH)D in male mice (14), 

vitamin D-deficient male or female C57Bl/6 mice were exposed to a single erythemal dose (4 or 8 

kJ/m2) of UVR, and serum 25(OH)D levels tracked over 17 days. Serum 25(OH)D levels were 

raised in a dose-related fashion by skin exposure to erythemal UVR in female but not male mice 

(Supp. Fig. 1). To determine the relative roles of dietary vitamin D and/or UVR-induced vitamin D 

in the regulation of obesity and related cardiometabolic disease outcomes, we performed the 

following experiment using C57Bl/6 mice (Fig. 1). Male mice were fed a vitamin D-supplemented 

or non-supplemented (low fat) diet from 4 until 8 weeks of age to establish vitamin D-sufficiency or 

-deficiency (Fig. 2A). From 8 weeks of age, mice were continued on the supplemented or non-

supplemented diets, but some were switched to a diet that was high in fat. Each of these four dietary 

treatments were further divided into three, with the shaved skin of mice chronically irradiated with 

no UVR, sub-erythemal UVR (1 kJ/m2, biweekly) or erythemal UVR (4 kJ/m2 fortnightly) as 

indicated in Fig. 1. Mice were treated from 8 until 20 weeks of age with these UVR and dietary 

interventions. A high fat diet significantly increased serum 25(OH)D levels in mice fed diets not 

specifically supplemented with vitamin D (HF-D-, LF-D-; Fig. 2B). Mice fed either the diets further 

supplemented with vitamin D (HF-D+, LF-D+) had significantly greater serum 25(OH)D than those 

mice fed the diets not supplemented with vitamin D (Fig. 2B). There was no additive effect of a 

high fat diet and vitamin D supplementation on serum 25(OH)D (Fig. 2B). Although not observed 

in our preliminary (Supp. Fig. 1) and past investigations (14), chronic sub-erythemal (Fig. 2C) or 

erythemal (Fig. 2D) UVR significantly (but transiently) enhanced serum 25(OH)D, when 
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administered to mice fed a LF-D+ diet (but not HF-D+, LF-D-, or HF-D-; see also Supp. Fig. 2). The 

effects were more pronounced for mice administered the chronic erythemal UVR, but returned to 

baseline levels after 6 weeks of UVR/dietary intervention (Fig. 2D; Supp. Fig. 2B). 

 

Chronic UVR exposure suppressed weight gain in mice fed a vitamin D-non-supplemented diet 

  

There was no effect of vitamin D supplementation on weight gain (Fig. 3A,B). Both chronic sub-

erythemal (1 kJ/m2 biweekly) and erythemal UVR (4 kJ/m2 fortnightly) suppressed weight gain in 

mice fed the HF-D- (Fig. 3A) by ≥40%. Chronic erythemal UVR also suppressed weight gain in 

mice fed the LF-D- (Fig. 3B). The effects of chronic skin exposure to UVR were less effective for 

mice fed the vitamin D-supplemented diet, where UVR suppressed weight gain in a transient 

fashion in mice fed the HF-D+ (Suppl. Fig. 3A). At the end of the UVR/dietary intervention period 

(12 weeks), gonadal fat pad weights were not affected by dietary vitamin D supplementation but 

were significantly suppressed in mice irradiated with UVR and fed the HF-D- (Fig. 3D). 

 

Chronic UVR exposure suppressed glucose intolerance and insulin resistance in mice fed a vitamin 

D-non-supplemented diet  

 

After 10 and 11 weeks of UVR/dietary intervention, GTTs and ITTs were performed (Table 1). 

Mice fed the high fat diets developed glucose intolerance (Supp. Fig. 3B) and insulin resistance 

(Supp. Fig. 3C), with no suppressive effect of vitamin D supplementation (Supp. Fig. 3B and 3C; 

Table 1 for AUC). Both measures were suppressed in mice chronically irradiated with UVR (either 

sub-erythemal or erythemal) fed the HF-D- (Table 1). Glucose intolerance was significantly 

suppressed by chronic sub-erythemal UVR in mice fed the HF-D+ only (Table 1). In addition, 

fasting glucose and insulin levels were also reduced by either UVR treatment in mice fed the HF-D-

, with fasting leptin also suppressed in mice that were chronically irradiated with erythemal UVR 
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(Table 1). There were no effects of chronic UVR (or dietary vitamin D) on fasting adiponectin 

levels (Table 1). 

 

Chronic erythemal UVR exposure suppressed circulating cholesterol levels in mice fed a high fat 

diet not supplemented with vitamin D 

 

After 12 weeks of UVR/dietary intervention, circulating levels of triglycerides and cholesterol 

(HDL, LDL and total) were measured (Table 2). Triglyceride levels were not modified by vitamin 

D supplementation or chronic UVR (Table 2). HDL-, LDL- and total-cholesterol were suppressed 

in mice fed the HF-D- also chronically irradiated with erythemal UVR (Table 2).  

 

Chronic UVR exposure more effectively suppressed the development of non-alcoholic fatty-liver 

disease than vitamin D supplementation 

 

The development of markers of NAFLD was measured by analysing the degree of liver steatosis 

and lobular ballooning after 12 weeks of UVR/dietary intervention (Fig. 4, Fig. 5A). Chronic skin 

exposure to UVR substantially suppressed liver histopathology in mice fed the high fat diets (Fig. 

4A-C HF-D+; Fig. 4G-I HF-D-; Fig. 5A) to a greater degree than achieved by dietary vitamin D 

supplementation alone (Fig. 4A HF-D+; Fig. 4G HF-D-; Fig. 5A). Vitamin D supplementation had 

no effect on liver weight, while chronic erythemal UVR suppressed liver weight in mice fed the 

HF-D- (Fig. 5B). 
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Vitamin D supplementation prevented the suppressive effects of UVR upon weight gain and markers 

of MetS 

 

The results presented above suggest that many of the effects of UVR were more prominent in mice 

not further supplemented with vitamin D. We used a general linear model to assess whether there 

may be interactions within the high fat diet treatments, such that dietary vitamin D may have 

inhibited the suppressive ability of UVR. Significant interactions between dietary vitamin D and 

chronic UVR exposure were detected for weight gain (Fig. 3C; p=0.05), gonadal fatpad weights 

(Fig. 3D; p=0.03) and fasting glucose (Table 1, p=0.01), but not the other measures including liver 

histopathology (Fig. 4, Fig. 5A, p>0.05). 

 

Serum vitamin D or calcium were not related to weight loss or suppression of MetS in UVR-

irradiated mice 

 

Chronic UVR exposure suppressed aspects of weight gain and measures of MetS, independently of 

changes to circulating 25(OH)D levels (Fig. 2, Supp. Fig. 2). Therefore it is unlikely that the 

mechanism through which UVR acted was dependent on vitamin D. As calcium levels can be 

modified by vitamin D and have been associated with weight loss (26), we also assessed circulating 

calcium levels after 12 weeks of UVR/dietary intervention, but observed no significant effects of 

dietary vitamin D or chronic skin exposure to UVR in mice fed the high fat diets (Fig. 5C). Chronic 

skin exposure to UVR reduced calcium levels in mice fed a low fat diet (Fig. 5C).   
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Circulating TNFα was linked with improved markers of NAFLD in the absence of dietary vitamin D 

supplementation but not skin exposure to UVR 

 

The ability of phototherapy to suppress the development of NAFLD has been associated with 

reduced expression of TNFα (13). However, chronic UVR did not modify serum TNFα levels after 

12 weeks of UVR/dietary intervention in mice fed a high fat diet (Fig. 5D). Vitamin D 

supplementation reduced circulating TNFα levels in mice fed a HF-D+ when compared to those fed 

a HF-D- (Fig. 5D). Serum levels of IL-6 and IL-10 were below the level of detection of the ELISA.  

 

UV-induced nitric oxide suppresses the development of obesity and symptoms of MetS   

 

A role for nitric oxide (NO), an alternate (non-vitamin D) mediator induced by UVR was examined. 

Skin levels of NO increased from as early as 5 min post-UVR/SNAP (Fig. 6A, B) treatment as 

determined using DAF-2. To examine a role for UVR-induced NO in modulating obesity and MetS 

symptoms, four week-old C57Bl/6 male mice were fed a LF-D- for four weeks. From eight weeks 

of age, mice were either continued on this diet or switched to the HF-D-, with HF-D--fed mice 

further divided into five treatments, where their dorsal skin was treated with (i) vehicle only, (ii) 

sub-erythemal UVR (1 kJ/m2) and then vehicle, (iii) SNAP, (iv) sub-erythemal UVR and then 

cPTIO or (v) sub-erythemal UVR and then 1,25(OH)2D. This final treatment was selected to test 

whether active 1,25(OH)2D could prevent the suppressive effects of UVR on obesity and MetS 

development (like dietary vitamin D in Suppl. Fig. 3A) through inhibition of skin-induced NO. 

Indeed, vitamin D may repair UV-induced DNA damage in skin by suppressing NO (27).  

 

After 12 weeks of feeding mice the HF-D-, skin NO levels were assessed 10 min following a final 

treatment with one of the five topical treatments detailed above. Skin NO levels increased with 

UVR or SNAP (Fig. 6C). The NO scavenger cPTIO reduced levels of NO in skin post-UVR 
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treatment but unexpectedly, 1,25(OH)2D did not. Serum nitrite/nitrate concentrations, measured 20 

min after the final skin treatment, were not altered by chronic low-dose UVR or SNAP (data not 

shown). Chronic UVR suppressed weight gain and the accumulation of WAT after 12 weeks of the 

HF-D- (Fig. 6D). Chronic SNAP treatment also effectively suppressed mouse weights (although not 

weight gain) and WAT accumulation (Fig. 6D). However, neither the NO scavenger cPTIO, nor 

1,25(OH)2D reversed the suppressive effects of UVR on weight gain or WAT accumulation. Indeed 

the UVR and 1,25(OH)2D treatment was more effective than UVR alone but this observation may 

reflect the hypercalcemia observed early on with topical 1,25(OH)2D (4 weeks post-UVR 

(2.4±0.03) or -UVR+1,25(OH)2D (3.5±0.07); serum calcium, *p<0.001). In response to these 

observations, we halved the dose of 1,25(OH)2D administered and mice were treated only once per 

week from 4 weeks of intervention. Despite this change, 1,25(OH)2D-treated mice were still 

modestly hypercalcemic at the end of the experiment (12 weeks post-UVR (2.4±0.03) or -

UVR+1,25(OH)2D (2.7±0.07); serum calcium, *p<0.001). 

 

As observed previously, chronic UVR suppressed fasting glucose, insulin and the development of 

glucose intolerance and insulin resistance (Fig. 6E, F). Here, chronic SNAP also suppressed the 

development of insulin resistance (Fig. 6F). Furthermore, cPTIO treatment following UVR reversed 

the suppressive effects of UVR alone upon fasting glucose levels (Fig. 6E). Finally, both chronic 

UVR and SNAP suppressed the development of NAFLD, while cPTIO reversed the effects of UVR 

upon liver histopathology (Fig. 6G). Cumulatively, these data suggest that UVR-induced NO may 

play an important role in modulating the development of obesity and MetS through effects on 

weight, WAT accumulation, fasting glucose, the development of insulin resistance and NAFLD.  
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Discussion 
 

Here we present evidence that chronic skin exposure to low (sub-erythemal) and high (erythemal) 

dose UVR suppresses the development of obesity and measures of MetS in mice fed a high fat diet. 

Vitamin D supplementation alone did not reproduce these effects. In addition, the suppressive 

effects of UVR on obesity and MetS development were not observed to the same degree in mice 

that were further supplemented with vitamin D (HF-D+). For mice fed a high fat diet, serum 

25(OH)D levels were not enhanced by chronic UVR exposure, suggesting that any effects induced 

by UVR in these mice were independent of circulating 25(OH)D levels. The HF-D- increased 

circulating 25(OH)D; it is likely that this diet contains vitamin D, perhaps within the lard-derived 

fat fraction. Supplementation of this diet with vitamin D (i.e., the HF-D+) further increased serum 

25(OH)D levels. Both UV irradiation and vitamin D supplementation reduced the severity of 

NAFLD, suggesting that vitamin D can recapitulate the effects of UVR for the prevention of certain 

obesity-related pathologies. We also showed that some of the effects of UVR may occur through 

NO production. In particular, it is likely that UVR-induced NO may have profound effects on the 

development of NAFLD, as topical SNAP suppressed liver pathology, and cPTIO antagonised the 

effects of UVR. Various non-vitamin D immunomodulators induced by UVR, like NO (28), may be 

important for regulation of immunity (29) and obesity/MetS development (30). Skin exposure to 

UVR releases NO from skin (28) and could control obesity through NO-dependent effects on 

mitochondria biogenesis within brown adipose tissue (31). We have recently shown that UVR-

induced NO reduces blood pressure in healthy human volunteers (28). NO may also be a crucial 

modulator of insulin and glucose transport, and inhibition of NO may cause insulin resistance (32). 

Combined with our results, these studies point to topically-induced NO as a potentially important 

clinical means to suppress obesity and type-2 diabetes development. 

 

The capacity of chronic UVR to suppress the development of obesity and metrics of MetS was less 

effective in mice orally supplemented with vitamin D (but not topical 1,25(OH)2D). This was an 
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unexpected finding but could be explained by potential interactions of UVR-induced mediators and 

dietary vitamin D, including NO (27). The different effects of dietary vitamin D and topical 

1,25(OH)2D could be accounted for by the hypercalcemia induced by chronic topical 1,25(OH)2D. 

In addition, after 12 weeks of treatment, serum 25(OH)D levels were significantly reduced by 

topical 1,25(OH)2D but not the other treatments (data not shown). Others have also observed that 

vitamin D suppressed weight gain in vivo following intraperitoneal injections of 1,25(OH)2D (5 

µg/kg every two days), although the effects on circulating calcium (and 25(OH)D) were not 

reported (33). Others have shown that UVR may increase cortisol production in skin, which has 

potential to impact the hypothalamic-pituitary-adrenal axis (34). While this might be hypothesised 

to alter physical activity, no obvious behavioural effects were observed in this study.  However, we 

cannot exclude the possibility that UVR alters neuroendocrine signalling networks in the skin (35) 

that might have systemic impact. 

 

Nakano et al showed that phototherapy suppressed NAFLD but failed to reduce obesity, steatosis 

and blood glucose levels Zucker fa-fa rats (13). These results may differ from our own through 

significant differences in the phototherapies delivered and the mouse model of obesity. Dietary 

vitamin D has also previously been shown to suppress development of NAFLD in Sprague-Dawley 

rats fed a ‘westernised’ (high fat/fructose) diet (36) and Lewis rats a choline-deficient and iron-

supplemented L-amino acid-defined (CDAA) diet (13). We also observed that dietary vitamin D 

suppressed circulating TNFα levels in mice fed a high fat diet. UVR did not suppress serum TNFα, 

suggesting that dietary vitamin D and UVR may suppress NAFLD through differing mechanisms. 

For control of NAFLD, the role of other players within the vitamin D pathway is worthy of further 

consideration. For example, circulating levels of the vitamin D binding protein (GC) inversely 

correlate with liver steatosis, and may determine the ability of vitamin D to modulate the 

development of NAFLD (37). In addition, 1,25(OH)2D may act through the VDR to improve 

insulin sensitivity (38).  
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Our observations suggest that not all of the effects of UVR on disease prevention can be achieved 

through dietary vitamin D and that role of other UV-induced mediators like NO deserve further 

consideration. Furthermore, by using a mouse modelling approach we were able to remove the 

confounding effects of activity out-of-doors, which might explain the observed associations of 

reduced obesity and increased serum 25(OH)D. A caveat is that while mice have conserved the 

ability to synthesize vitamin D and NO in the skin and systemically post-UVR, as fur-covered 

nocturnal animals they are not usually exposed to much sunlight. Further studies are required to 

translate the findings of our murine studies for humans. However, our results support recent calls 

for clinical trials that test the efficacy of skin exposure to sunlight or UVR for the control of chronic 

diseases like multiple sclerosis (39) and depression (40) that, like obesity and MetS, may take years 

to develop. In conclusion, our studies show that chronic low dose sunlight exposure may be an 

effective means of suppressing obesity and MetS in mice fed a high fat diet, through pathways that 

are independent of vitamin D and at least partially dependent on skin-derived NO. 
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Table 1: Area under the curve values for glucose and insulin tolerance tests (GTT, ITT) and fasting 

glucose, insulin, leptin and adiponectin levels measured 9-11 weeks post-UVR/dietary intervention. 

  
Treatment Diet UVR GTT  

(AUC, 
%basal 
glucose) 

ITT  
(AUC, 
%basal 
glucose) 
 

Fasting 
glucose 
(mM) 

Fasting 
insulin 
(ng/ml) 

Fasting 
leptin 
(ng/ml) 

Fasting 
adiponectin 
(ng/ml) 

1 HF-D+ 0 2190±83 1200±63 9.8±0.5 8.2±3.5 36.7±3.0 10.4±0.3 
2 HF-D+ 1 kJ/m2  1770±49** 1060±46 8.8±0.4 7.1±0.4 29.8±5.7 11.9±1.8 
3 HF-D+ 4 kJ/m2 1880±180 1370±34 10.2±0.4 3.6±1.1 19.7±7.3 15.8±3.9 
4 LF-D+ 0 1470±67 800±38 7.9±0.3 1.0±0.4 1.5±0.6 12.9±2.8 
5 LF-D+ 1 kJ/m2  1510±65 760±37 8.0±0.4 4.9±2.8 2.6±1.1 8.8±2.5 
6 LF-D+ 4 kJ/m2 1390±56 770±79 7.8±0.4 1.8±1.0 2.2±0.7 11.9±1.0 
7 HF-D- 0 2120±130 1230±15 9.8±0.3 11.1±1.9 29.8±3.5 13.0±2.6 
8 HF-D- 1 kJ/m2  1760±65* 1050±43* 8.7±0.3* 3.8±1.1* 32.6±5.6 11.3±0.9 
9 HF-D- 4 kJ/m2 1690±73* 960±72* 8.1±0.4* 3.9±2.8* 14.0±5.3* 13.0±1.1 
10 LF-D- 0 1260±51 680±48 6.3±0.2 3.4±1.6 5.9±2.5 16.6±6.2 
11 LF-D- 1 kJ/m2  1280±102 600±27 6.0±0.2 1.6±1.1 1.0±0.5 10.8±0.6 
12 LF-D- 4 kJ/m2 1480±36 760±60 7.7±0.4 4.3±1.8 1.9±0.2 11.7±1.9 
(n=4-8 mice/treatment, *p<0.05 relative to no UVR HF-D-; **p<0.05 relative to no UVR HF-D+ 
with data representative of two experiments) 
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Table 2: Circulating triglyceride and cholesterol levels at 12 weeks post-dietary and UVR-

intervention. 

 
Treatment Diet UVR Triglyceride 

 
(mM) 

HDL-
cholesterol 
(mM) 

LDL-
cholesterol 
(mM) 

Total-
cholesterol 
(mM) 

1 HF-D+ 0 0.7±0.1 2.1±0.2 0.3±0.0 4.2±0.4 
2 HF-D+ 1 kJ/m2  0.6±0.0 2.0±0.2 0.2±0.0 3.8±0.4 
3 HF-D+ 4 kJ/m2 0.8±0.1 2.1±0.1 0.2±0.0 4.3±0.2 
4 LF-D+ 0 1.0±0.1 1.5±0.1 0.2±0.0 2.5±0.2 
5 LF-D+ 1 kJ/m2  1.2±0.1 1.8±0.1 0.2±0.0 2.9±0.1 
6 LF-D+ 4 kJ/m2 1.1±0.3 1.3±0.2 0.1±0.0 2.2±0.3 
7 HF-D- 0 0.9±0.1 2.1±0.1 0.4±0.0 4.3±0.1 
8 HF-D- 1 kJ/m2  0.6±0.0 2.1±0.0 0.3±0.0 4.2±0.2 
9 HF-D- 4 kJ/m2 0.9±0.1 1.5±0.2* 0.2±0.0* 2.6±0.3* 
10 LF-D- 0 1.2±0.1 1.6±0.3 0.1±0.0 2.4±0.4 
11 LF-D- 1 kJ/m2  0.9±0.1 1.4±0.1 0.1±0.0 2.0±0.1 
12 LF-D- 4 kJ/m2 1.1±0.1 1.5±0.1 0.1±0.0 2.3±0.1 
(n=4 mice/treatment, *p<0.05 relative to no UVR HF-D- with data a representative of two 
experiments)  
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Figure legends 

Supplementary Figure 1: Erythemal UVR increased serum 25(OH)D levels in initially vitamin D-

deficient female but not male mice. Four week-old C57Bl/6 mice were fed a low fat diet not 

supplemented with vitamin D for four weeks to reduce serum 25(OH)D levels to less than 20 

nmol.L-1 (dotted line). Serum 25(OH)D levels were measured following the exposure of the shaved 

dorsal skin of the initially vitamin D-deficient mice to 4 or 8 kJ/m2 UVR. Data is shown as mean ± 

SEM (n=4-8 mice/treatment/time point, *p<0.05 relative to initial serum 25(OH)D levels). 

 

Figure 1: The experimental approach. Four week-old C57Bl/6 male mice were fed a low fat diet 

supplemented with vitamin D (LF-D+) or not (LF-D-) for four weeks. At eight weeks of age, mice 

were either continued on these diets or switched to a diet that was high in fat and supplemented 

(HF-D+) or not (HF-D-) with vitamin D. At the same time, each dietary group was further divided 

into three treatments of mice that were chronically irradiated with sub-erythemal UVR (biweekly, 1 

kJ/m2), erythemal UVR (fortnightly, 4 kJ/m2) or no UVR. Mice were fed these diets and irradiated 

with these UVR regimens for a further 12 weeks until mice were twenty weeks of age. There were a 

total of 12 treatments, with 18 mice per treatment. The experiment was performed two times. 

 

Figure 2: The effects of chronic skin exposure to UVR, dietary vitamin D and a high fat diet on 

serum 25(OH)D. In (A), four week-old C57Bl/6 male mice were fed a low fat diet supplemented 

with vitamin D (LF-D+) or not (LF-D-) for four weeks. At eight weeks of age (week 0 for Fig. 2B – 

D), mice were either continued on these diets or switched to a diet that was high in fat and 

supplemented (HF-D+) or not (HF-D-) with vitamin D. At the same time, each dietary group was 

further divided into three treatments of mice that were chronically irradiated with (B) no UVR, (C) 

sub-erythemal UVR (biweekly, 1 kJ/m2), or (D) erythemal UVR (fortnightly, 4 kJ/m2) for a further 

12 weeks. In (B) – (D), serum 25(OH)D levels are depicted for mice that underwent these 
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UVR/dietary interventions for 12 weeks. Data are shown as mean ± SEM for n=4-9 mice at each 

time, pooled from two independent experiments (*p<0.05). 

 

Supplementary Figure 2: The effects of chronic skin exposure to UVR, dietary vitamin D and a high 

fat diet on serum 25(OH)D. Data from Figure 2 are shown in an alternate fashion, comparing the 

effects of no UVR, or, chronic skin exposure to sub-erythemal UVR (biweekly, 1 kJ/m2) or 

erythemal UVR (fortnightly, 4 kJ/m2) on serum levels of 25(OH)D for mice fed a (A) high (HF-D+) 

or (B) low fat (LF-D+) diet supplemented with vitamin D, or, (C) high (HF-D-) or (D) low fat (LF-

D-) diet not supplemented with vitamin D. Data are shown as mean ± SEM for n=4-9 mice at each 

time, pooled from two independent experiments (*p<0.05). 

 

Figure 3: Chronic UVR suppressed weight gain in mice fed high or low fat diets not supplemented 

with vitamin D. Four week-old C57Bl/6 male mice were fed a low fat diet supplemented with 

vitamin D (LF-D+) or not (LF-D-) with vitamin D for four weeks. At eight weeks of age (week 0 for 

Fig. 3A – B), mice were either continued on these diets or switched to a diet that was high in fat and 

supplemented (HF-D+) or not (HF-D-) with vitamin D. At the same time, each dietary group was 

further divided into three treatments of mice that were chronically irradiated with no UVR, sub-

erythemal UVR (biweekly, 1 kJ/m2), or erythemal UVR (fortnightly, 4 kJ/m2). In (A) – (B), 

percentage weight gain is shown for mice that underwent these UVR/dietary interventions for 12 

weeks (until 20 weeks of age) for mice fed a (A) high fat or (B) low fat diet. Data are shown as 

mean ± SEM for n=18 mice/treatment from a representative of two independent experiments. In (C) 

total weight gain after 12 weeks of these UVR/dietary interventions (at 20 weeks of age) is shown 

for all treatments (mean + SEM). In (D), after 12 weeks of these UVR/dietary interventions (at 20 

weeks of age) gonadal fatpad (n=18/treatment) weights were measured. Data are representative of 

two independent experiments (mean + SEM) *p<0.05). 
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Supplementary Figure 3: Dietary vitamin D did not affect weight gain or the development of 

glucose tolerance or insulin resistance for mice fed a high or low fat diet. Four week-old C57Bl/6 

male mice were fed a low fat diet supplemented with vitamin D (LF-D+) or not (LF-D-) for four 

weeks. At eight weeks of age (week 0 for Suppl. Fig. 3A), mice were either continued on these diets 

or switched to a diet that was high in fat and supplemented (HF-D+) or not (HF-D-) with vitamin D. 

At the same time, each dietary group was further divided into three treatments of mice that were 

chronically irradiated with no UVR, sub-erythemal UVR (biweekly, 1 kJ/m2), or erythemal UVR 

(fortnightly, 4 kJ/m2) for 12 weeks until 20 weeks of age. In (A), percentage weight gain is shown 

(n=18 mice/treatment) for mice fed the HF-D+ or LF-D+. In (B), a glucose tolerance test was 

performed after 10 weeks of the UVR/dietary interventions (at 18 weeks of age, n=8 

mice/treatment), with data shown for non-irradiated mice. In (C), an insulin tolerance test was 

performed after 11 weeks of the UVR/dietary interventions (at 19 weeks of age, n=8 

mice/treatment) with data shown for non-irradiated mice. Data are shown as mean ± SEM from a 

representative of two independent experiments (*p<0.05). 

 

Figure 4: Chronic UVR significantly reduced the extent of liver steatosis and lobular ballooning in 

mice fed a high fat diet. Four week-old C57Bl/6 male mice were fed a low fat diet supplemented 

with vitamin D (LF-D+) or not (LF-D-) for four weeks. At eight weeks of age, mice were either 

continued on these diets or switched to a diet that was high in fat and supplemented (HF-D+) or not 

(HF-D-) with vitamin D. At the same time, each dietary group was further divided into three 

treatments of mice that were chronically irradiated with no UVR (A, D, G, J), sub-erythemal UVR 

(biweekly, 1 kJ/m2; B, E, H, K), or erythemal UVR (fortnightly, 4 kJ/m2; C, F, I, L). After 12 weeks 

of these UVR/dietary interventions (at 20 weeks of age), the extent of liver histopathology was 

measured in liver specimens (n=10/treatment for data pooled from two independent experiments). 

Shown in A-L are representative H&E-stained sections of liver for each treatment 
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(20xmagnification with the scales in B and C equivalent to 150 µm). Examples of liver steatosis  

(blue arrow) and lobular ballooning (red arrow) are shown in section (G). 

 

Figure 5: Chronic UVR significantly reduced the extent of liver histopathology in mice fed a high 

fat diet. Four week-old C57Bl/6 male mice were fed a low fat diet supplemented with vitamin D 

(LF-D+) or not (LF-D-) for four weeks. At eight weeks of age, mice were either continued on these 

diets or switched to a diet that was high in fat and supplemented (HF-D+) or not (HF-D-) with 

vitamin D. At the same time, each dietary group was further divided into three treatments of mice 

that were chronically irradiated with no UVR, sub-erythemal UVR (biweekly, 1 kJ/m2), or 

erythemal UVR (fortnightly, 4 kJ/m2). After 12 weeks of these UVR/dietary interventions (at 20 

weeks of age), the (A) extent of liver histopathology (n=10/treatment for data pooled from two 

independent experiments), (B) liver weights (n=18/treatment for data from a representative 

experiment) and serum levels serum levels of (C) calcium (n=4-8/treatment for data pooled from 

two independent experiments) and (D) TNFα (n=12-18/treatment for data pooled from two 

independent experiments) are shown. Data are shown as mean + SEM (*p<0.05). 

 

Figure 6: The UVR-induced mediator, nitric oxide may regulate body weight, WAT accumulation, 

glucose metabolism and the development of NAFLD in mice fed a high fat diet. In (A) and (B), 

using the DAF-2DA substrate, skin nitric oxide levels are shown for adult C57Bl/6 male mice fed a 

low fat diet not supplemented with vitamin D (LF-D-), 5 min following skin treatment with vehicle, 

1 kJ/m2 UVR or the nitric oxide donor, SNAP; with a quantitative measure (photons/sec) shown in 

(A) and representative skin fluorescence shown in (B). Four week-old C57Bl/6 male mice were fed 

a LF-D- for four weeks. At eight weeks of age, mice were either continued on these diets or 

switched to a diet that was high in fat, not supplemented with vitamin D (HF-D-). Within the HF-D- 

treatments, mice were further divided into five treatments. The shaved dorsal skin of these mice 

were; (i) treated with vehicle only, (ii) chronically irradiated with sub-erythemal UVR (biweekly, 1 
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kJ/m2) and then vehicle, (iii) topically treated with SNAP, (iv) chronically irradiated with sub-

erythemal UVR and then cPTIO or (v) chronically irradiated with sub-erythemal UVR and then 

1,25(OH)2D. Mice were treated for 12 weeks with these skin/dietary interventions until 20 weeks of 

age. In (C), skin NO levels, 10 min post-skin treatment (n=8 mice/treatment); in (D), mouse 

weights, weight gain and WAT (WAT) weights (n=18 mice/treatment); in (E), fasting glucose and 

GTT AUC (area under the curve, n=8 mice/treatment); in (F), fasting insulin and ITT AUC (n=8 

mice/treatment; and in (G), liver histopathology scores (n=8 mice/treatment). Data are shown as 

mean + SEM from one experiment (*p<0.05).  
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