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Abstract. The rapid increase in environmental observations which are
conducted by SMEs, communities and volunteers using affordable in situ
sensors at various scales, together with the more established observa-
tories set up by environmental and space agencies using airborne and
space-borne sensing technologies is generating serious amounts of BIG
data at ever increasing rates. Furthermore, the emergence of Future In-
ternet technologies and the urgent requirements for the deployment of
specific enablers for the delivery of processed environmental knowledge
in real-time with advanced situation awareness to citizens has reached
greater imminence. It is now highly critical to build and provide services
which automate the aggregation of data from various sources, while sur-
mounting the semantic gaps, conflicts and heterogeneity in data sources.
The early stages of aggregation of data enable the pre-processing of data
generated from multiple sources with the reconciliation between tem-
poral gaps in observation time series, and alignment of their respective
asynchronicities. As a result, multi-level processes of fusion need to be
implemented and made accessible to large communities of users using
future internet services.

This paper presents the process and the preliminary results using RBF
networks methods for the spatial fusion of water quality observations
and measurements from asynchronous space-borne, in situ and validated
models simulation data sources in the Irish Sea.

1 Introduction

In-situ meteorological sensor measurements are generally recorded by sensor
hardware at point locations, requiring some form of spatial interpolation if esti-
mates at other locations are needed. Many spatial interpolation methods exist,
both deterministic and geostatistical, with accuracies dependent on the nature
of the observed phenomena, spatial density of sensors, temporal frequency of
sampling and the consistency and accuracy of measurement.

Our case! starts considering the Sea Surface temperature in the Irish Sea
and, exploiting the phenomena independent algorithms we implement, it is able

! The work has been partially supported by the EC under the Envirofi Integrated
Project FP7-284898
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to move to different dimensions like salinity, chlorophyll and more in general
water pollution. These information is relevant for many different business actors
and players like fishing boats, touristic cruise organizers and oil companies. An-
other very important outcome of this applied research concerns the enablement
of organisations which are responsible for enforcing the European Water Frame-
work Directives in coastal water basins particularly. They are able to capture
levels of water quality parameters in their areas of administrative responsibility.
Data fusion and modelling enables the geospatial and temporal merger of frag-
mented complementary and/or overlapping data sources. For example, in situ
and remote sensing data can be set up for fusion and experiment successfully
using Radial Basis Function (RBF) networks [1]. The spatial fusion of water
quality measurements from satellite and in situ buoys in the Irish Sea have been
achieved in the ENVIROFI project 2. RBF networks are perfect for slow-evolving
dimension like sea temperature or salinity and scale well for the spatial data fu-
sion of multiple types of observation sources. They also provide a framework for
tuning space scales of advection and diffusion of environmental phenomena at
desired and validated levels. Furthermore, the RBF network method generalises
well with the increase of data source points since it is a mesh-less technique. The
fusion result leads into providing geospatial maps of water quality parameters
including areas where observations may be spatially, temporally, or both sparse.
Furthermore, uncertainty on these observations may be evaluated for improving
operation decision support.

This paper presents the followed approach and some preliminary results
achieved by applying it to a practical case in the Irish Sea for fusing sea sur-
face temperature. We outline in section 2 relevant related works, describe the
approach in section 4 where we also highlight some preliminary results, while
discussing the next steps and concluding in section 5.

2 Related Work

The RBF networks approach [1] is well known and their excellent approximation
capabilities have been studied in [6,7]. In the nineties, solutions of many prob-
lems have been based on RBF networks [2, 4, 8]. The recent growing availability
of sensor data from Big Data sensor sources has drawn new attention on the RBF
technique for spatial fusion where one of its main benefits include the adoption of
grid-less computations. These simply involve calculations of Euclidean distances
between distributed RBF centres of environmental observations and appropri-
ate RBF projections for spatial data propagation. The approach generalizes and
scale to any number of observation centres which do not require to be regu-
larly distributed. In this line, recent works has exploited RBF as a base for risk
management and decision support systems [5,10]. On the other hand merging
marine data as base for advanced reasoning has been widely proposed (e.g. see
here [11,3]). The goal of part of the ENVIROFI project and of the research
we are presenting in this paper is to provide original contribution merging this

2 ENVIROFTI Project: http://www.envirofi.eu/
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research lines in the context of the environment related standard (OGC, SWE,
SPS?)) and with a strong support for the business context and the future internet
applications.

3 Fusing environmental data

Fig.1 shows the process we are implementing. From different sources covering
different spaces and with different sampling time, we build a unified reconciled
model upon which it is possible to provide forecast and extract knowledge.

All the architecture is built on the typical SOA concepts and each module
is a service as shown in 2. Support for scalability and plug in of new sources
is a key feature that is faced by the transcoding and download module. It is
devoted to transcode the data collected from specific data sources to a common
format that will be SWE in the future releases while is CSV in the current
implementation. If new data source become available, only a specific client for
retrieving it has to be built and associated with such module for getting the data
into the system. Following a logic flow, the next module is called database feeder.
It is in charge of extracting all the metadata (expressed using RDF#) that can be
directly associated or inferred from the data coming from the sources and storing
them in the triplestore. It can optionally store the data in a local database. This
is needed when the data sources are not available as continuous service (i.e.
the satellite in our case) or for the sake of performances. The use of a hybrid
solution (triplestore and classic dbms) for separately storing metadata and data
is followed for performance reasons as described in [9].

After the data collections the proper data fusion starts. It follows the JDL
methodology and is composed of a low level and high level part. The low level is
in charge of pre-processing and semantic reconciling the data in terms of time and
in charge of interpolating it. After this phase, a consistent gridless model based
on RBF is now available. Usually this part is completed with a data validation
procedure. The following step is to use this model for providing spatial and
temporal forecasting. A tuned RBF provides such information and it is up to
the end user to decide their best use. For help in this final use the framework
supports the cross matching of fused data against other data sources for feeding
reasoning or alert system (e.g. the additional source can be the scheduling of
fishing or guard costal boats).

4 The Marine example

The use case chosen for testing the fusion workflow was in the environmental
domain. We chose a region of interest (ROI) along the Irish Sea and initially con-
centrated on a single phenomenon that is Sea Surface Temperature. Although,

3 Open Geospatial Consortium: netp://ww. opengeospatial . org

SPS Sensor Planning Service: nstp://uw. opengeospatial .org/standards/sps

SWE Sensor Web Enablement: nttp://um.opengeospatial.org/projects/groups/sensorwebdug
4 Resource Description Framework: netp://uww.va.org/mor/
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the fusion modules we developed are phenomenon agnostic. The region is de-
fined considering the space covered by the three available data sources as dis-
cussed in the next paragraphs. The Irish Marine Institute had deployed various
in-situ sensors along the Galway bay. The EUMETSAT geostationary satellite
METEOSAT-9 also measured SST over that region. Further, there is a computa-
tion weather model deployed in the Marine Institute which predicted SST. This
was the ideal use case to perform data fusion from heterogeneous data sources.
The high level data fusion is yet under development so it is not presented in the
current section. It will address both the parameters forecasting and the knowl-
edge extraction supporting as much as possible scalability and reusability of such
module.

4.1 The Data Sources and The Data Sets

The data sources used for the fusion workflow were divided into 3 broad cate-
gories. Satellite data sources, in-situ sensor data and 3D computational model
data. The geographic area under consideration for the satellite was the coast of
Ireland and the surrounding oceanic region with the bounding box coordinates
(Upper left corner: 54.50, -12.50 and Lower right corner: 51.00,-6.00). The data
was recorded by the METEOSAT-9 geo stationery satellite and hourly record-
ings of Sea Surface Temperature (SST) values is taken for a period covering from
2011-12-31 to 2013-03-30. The data are available from the EUMETSAT website .
Unfortunately the EUMETSAT requires an offline only download process which
involved placing orders and the data is available after a few days after the order
details have been processed.

The in-situ sensors cover various points in the Region of Interest and mea-
sure sea surface temperature. The details of the sensors and their locations are
provided in Tablel.

The data are available from the Marine Institute’s ERDDAP data store as
service and the downloading and transcoding module hosts a client for getting
them. The third data source, which is also available from ERDDAP is the com-
putational model data for predicting sea surface temperature. The time range
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Sensor Name Location (lon/lat)| Freq. Time Range

M2 -4.52; 53.48 1 h. |2012-01-01 to 2013-03-30

M3 -10.55; 51.2166 1 h. |2012-06-01 to 2013-03-30

M4 -10; 55 1 h. |2012-01-01 to 2013-03-30

M5 -6.704; 51.69 1 h. |2012-01-01 to 2013-03-30

M6 -15,8813; 53.0748 | 1 h. |2012-01-01 to 2013-03-30

Galway Bay Wake Buoy  |-9.271; 53.277 30 min.|2012-01-01 to 2013-03-30
Belmullet Wave Buoy Berth A|-10.278;54,28 30 min.|2012-01-01 to 2013-03-30
Belmullet Wave Buoy Berth B|-10.146; 54.231 30 min.|2012-01-01 to 2013-03-30

Table 1. In-Situ Sensor Details

chosen for the CONN3D model data is from 2013-12-31 22:00:00 to 2013-03-30
07:00:00. The SST measurements were available at 1 hour intervals. The model
uses a ROMS model with a sigma vertical coordinate system which is terrain
following (i.e. thickness of levels vary with total water depth within the model
domain). In order to measure sea surface temperature a depth of 20 is chosen.

4.2 Low level Data Fusion

The low level data fusion illustrated in the next sections is realized through
aggregation and pre-processing and then spatial and temporal interpolation.

Aggregation and Pre-Processing Once the data from heterogeneous data
sources (satellite, in-situ and model) are collected, the first step towards achiev-
ing data fusion is to perform pre-processing of the datasets such that it is avail-
able in a form which could be aggregated into a common schema. Pre-processing
includes various sub-processes e.g. format conversion, database import and null
value and noise removal. The satellite data is available from GRIB format and
covers the entire earth (measuring SST). We had to use the WGRIB2 tool in
order to (1) create a sub grid for the region of interest we want to investigate
and (2) convert from GRIB2 format to CSV. Once this is done, the database
feeder module is used to load the metadata in the triplestore and the data from
into a MySQL database. Once the pre-processing step is complete, the data ag-
gregation process is invoked. This also involves various sub processes e.g. unit
conversion, date format conversion and schema mapping. The SST readings for
satellite data is provided in KELVIN unit while all other data are in Celsius.
The format used for recording the timestamp of the measurement is different for
satellite (ISO format) and ERDDAP data (UTC). Once the conversion is done,
we map the different concepts and terminology into a common schema (in this
case it is the Satellite because the most of data come from such source) whose
metadata are stored in the triplestore. There were no semantic conflicts found
between the various data models. However, mediation between measurement val-
ues (e.g unit conversion between temperature values) needed to be done during
the pre-processing stage. The size of the aggregated dataset is about 15GB. The
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process takes about 22 hours to complete using the database feeder and run in
an offline mode overnight.

Spatial-Temporal Interpolation As noted in Tablel, the measurement rate
for SST for different instruments (satellite, in-situ sensors and model) vary both
in time and space. In order to resolve the asynchronicity, both temporal and
spatial interpolation need to be performed.

The process of interpolating in-situ sensor and model data is pretty straight
forward and we take advantage of several Matlab libraries. We interpolate across
time for any given interval (15 min, 20 min etc). The only challenge faced here
is the quite big amount of missing values; many of the in-situ measurements had
gaps in the data during the considered period. In order to deal with this issue,
we use recursive interpolation: i.e. interpolate between the gaps in the data to
derive original time range measurements first. However, in the case of satellite
data, the resolution of the satellite measurement is very high. The process of
interpolating for every given point of the ROI would not be feasible as it would
take an enormous amount of time and the amount of data generated would be
very huge. In order to address this problem, the ROI is divided into equal grids
of a given size and density. The used library takes a vector of lat/long values and
a density to create grids covering the area. The more the density the resolution
of the grid will be higher.

Next, the mean SST temperature for each grid is calculated and this reading
is taken as the input for temporal interpolation rather than considering every
single point in the ROT (the assumption here is that given a grid of appropriate
size; the SST for a small region does not vary much as SST is a phenomenon
which does not vary hugely). The mean SST for a grid would thus provide an
accurate picture of the SST values and the process of interpolation would be
less time consuming (23 hours, rather than 15 days) and the amount of data
produced due to the interpolation process would be manageable (23 GB for a
30 min interval interpolation). Once the process of temporal interpolation is
completed, the temporally interpolated dataset for all sources acted as the input
to the spatial interpolation process as described in the next section. The time
consuming issue lead us to choose a batch approach.

As in the typical use, our RBF has three layers: an input layer, a hidden
layer with a non linear RBF activation function and a linear output layer. The
temporal interpolation function is what we want to use as activation function.
We tried to use a poly-harmonic spline, and then we understood that the clas-
sical Gaussian function provides the best results. The use of Matlab libraries
provides support in implementing this step in the framework. The interpolation
is run on demand and is controllable via the SPS interface. A typical execution
lasts less than 1 minute. The following step requires analysing data trend for
given sources, evaluating if the trend is regular and make sense and eliminating
or studying possible spikes or not justified behaviour. The cleaning process is
based on trend visualization tools that help the modeller in evaluating the mod-
els. From a practical point, the tuning process requires to "hide” some sources
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coming from a known and trusted source, calculating the same from the built
model and process and then validating them against the original trusted source.
This is a semiautomatic process that ends when the values are enough close one
to each other.

Adding a new data source The Fusion architecture is generic and is inde-
pendent of the data source being used as input into the fusion workflow. The
process of adding a new data source is straight forward. Once the data has been
acquired from a new source, a configuration file describing the source data e.g.
fields like the phenomenon measured, time and data information, location co-
ordinate information etc. need to be specified. The database feeder reads the
configuration file and automatically creates the necessary table structures for
persistent storage. The metadata information is stored in a semantic triple store
and the actual data itself is stored in a relational database. The pre-processing
module uses this function of the database feeder to store the data. All the pro-
cesses henceforth (i.e. aggregation, temporal and spatial interpolation) use the
metadata from the triple store to automatically structure their table schemas.

4.3 Preliminary Results

As discussed above the current version uses 3 different data sources and imple-
ments the framework up to the low-level data fusion module. Any module is
available as service and all the framework is accessible via a standard SPS in-
terface where the end user can specify the desired time and space slice. For any
run, a corresponding KML files covering the requested slice is produced. Fig.3
shows an example of the map where the different temperatures are highlighted.
The end user can specify his parameter for such process via the SPS interface.

Fig. 3. Spatial Fusion Example over Ireland

5 Conclusion and Future Work

In this paper we have presented an approach for fusing data from various obser-
vation sources deployed in the Irish Sea. RBF networks are used in context of the
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multi-level JDL data fusion methodology. All the process from the raw data to
the knowledge extraction has been structured. The resulting data fusion compo-
nents provide via a standard SPS interface access to kml files representing spatial
fusion of sea surface temperature. Future research work, which exploits the RBF
networks scalability, shall involve multiple environmental water quality param-
eters (e.g. salinity, chlorophyll, dissolved oxygen etc.). With a stable and well
performing RBF networks, high level fusion modules such as those specialising
in forecast of water quality parameters with dynamic uncertainty shall be imple-
mented. Critical knowledge extraction for decision support becomes possible as
a result, particularly for the management of aquaculture and fishing operations
in the Irish Sea and beyond. From the environmental regulations point of view
as well as compliance with OGC standards, this research work supports the en-
forcement of the EU Water Framework Directives (Directive 2000/60/EC) and
information sharing across European environmental Agencies.
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