HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk



http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

OPTOELECTRONICS RESEARCH CENTRE

A THESIS SUBMITTED IN PARTIAL FULFILMENT FOR
DoCTOR OF PHILISOPHY

Coherent Diffraction Imaging

using a High Harmonic Source
at 40 eV

Author: Supervisor:
Aaron PARSONS Dr. W.S BROCKLESBY

August 4, 2014






Abstract

This thesis presents the current status of coherent diffractive imaging and
ptychography using the high harmonic at the University of Southampton.
The full system used to generate the 40 eV radiation and collect the far-field
speckle patterns is outlined and critical criteria discussed. The algorithms
used to re-phase the data are outlined and some simple 1-dimensional exam-
ples are given. The question of how to appropriately state the resolution of
a coherent diffraction system is addressed and the concluding results are ap-
plied to the work in the experimental chapters, of which this thesis contains
two.

The first, is a published result which investigates the treatment of par-
tial temporal coherence through the coherent diffraction process. Partial
coherence for a high harmonic source is slightly more complex to treat than
standard broad-bandwidth sources since the spectrum is modulated by the
narrow-bandwidth harmonic comb underneath a broad-bandwidth envelope.
An experimental investigation is presented by illuminating the same am-
plitude mask under broad-band and narrow-band conditions using the same
imaging systems. The results are discussed and conclude that a much greater
than expected (20%) relative bandwidth can used for such an experiment and
still reproduce a reliable and fairly stable reconstruction. This construction
is not a solution to the phase problem however, and hence only provides an
improved support constraint for potential further processing.

The second experimental chapter presents novel and currently unpub-
lished work using the high harmonic source to obtain iterative ptychograms
of complex-valued extended samples. This represents the first documented
result of ptychography using a lab-based source of short-wavelength radia-
tion. Defects in the Molybdenum pinhole used to define the illumination
function are investigated and provide a thickness for the defect area of 6
nm + 1 nm with a pixel size of 90 nm. The sample under investigation for
this experiment was a substrate with fixed cultured hippocampal neurons.
An investigation of one of the neurite processes of this sample is made and
identification of the neurite as an axon is deduced via analysis of the samples
dielectric loss tangent.






Contents

Declaration of Authorship i
Acknowledgements iii
List of Figures v
List of Tables xviii
1 Background and Theory 1
1.1 Introduction . . . . . . . . .. .. 1
1.1.1  Microscopy with probe radiation. . . . . . . .. .. .. 2

1.1.2  Sources of short wavelength radiation . . . . . . . . .. 4

1.1.3 Possible sources . . . . . . .. ... ... ... 6

1.2 High Harmonic Generation . . . . . . .. ... ... ... ... 7
1.2.1 The Keldysh parameter . . . ... ... ... ... .. 7

1.2.2 The laser system . . . .. .. ... ... ... ..... 8

1.2.3 Semi-classical model for HHG . . . . .. ... ... .. 10

1.2.4 Phasematching . . . . ... ... ... ... ... ... 16

1.3 Diffractive imaging . . . . . . . ... 20
1.3.1 Diffraction . . . . . . ... oL 20

1.3.2  The Angular Spectrum Model . . . . . . .. ... ... 21

1.3.3 Some useful Fourier relations . . . ... ... ... .. 24

1.3.4 Extension to discrete Fourier Transform . . . . . . .. 26

1.4 Coherence . . . . . . . . . ... 28

1.5 Coherent Diffractive Imaging . . . . . . . ... ... ... ... 29
1.5.1 History. . . . . ... . 30

1.5.2  Sampling requirements . . . . . . . ... ... L. 32

1.5.3 The modulus constraint . . . ... ... ... ... .. 34

1.5.4  Gerchberg-Saxton and ER algorithms . . . . . . . . .. 34

1.5.,5  Hybrid Input/Output . . . . ... ... ... ... ... 37

1.5.6 Difference Maps . . . . . ... ... ... ... ... 40



1.5.7 Additions: Reducing the support . . . .. .. ... .. 44

1.6 Iterative Ptychography . . . . . . .. .. ... ... ... ... 44
1.6.1 Difference Map method . . . . . . . .. ... ... ... 46
1.6.2 Extended Ptychographic Iterative Engine . . . . . . . . 47
1.7 Fitness Parameters . . . . . . . . . ... ... L. 48
1.7.1 Real-space Error . . . . . ... ... ... 48
1.7.2  Fourier space error . . . . . . . . ... ... ... 49
1.8 Resolution . . . . .. ... ... 49
1.8.1 Transfer functions . . . . . . . ... ... ... ..., . 50
1.8.2 Resolution by comparison to figures of merit . . . . . . 52
1.9 Summary . . . . ... 54
2 Coherence in CDI 55
2.1 Background . . . .. .. .. 95
2.2 Theory . . . . . . 56
2.3 Experiment . . . .. . ... 58
2.4 Dataanalysis . . . . .. ... . 62
2.5 Comparison of phase retrieval results- Narrowband vs. Broad-
band Illumination . . . . . . . . . . ... ... ... .. .... 65
2.6 Summary . ... 70
3 Iterative Ptychography experiments 71
3.1 Ptychography at Diamond light source 113 beamline . . . . . . 71
3.1.1 Experiment . . . ... ... ... ... ... 72
3.1.2  First attempts applying the ePIE algorithm . . . . . . 75
3.1.3 Optimising the reconstruction . . . . .. ... .. ... 77
3.1.4 Summary . . ... 80
3.2 Iterative ptychography using a High Harmonic source . . . . . 81
3.2.1 Experiment . . . . . ... ... Lo 82
3.2.2 Raw data collection and analysis . . . . .. ... ... 90
3.2.3 Object wave-field reconstructions . . . . ... .. ... 104
3.2.4  Object field analysis from data-set 2 . . . . . .. ... 104
3.2.5 Object field analysis from data-set 1 . . . . . .. ... 115
3.3 Summary ... ... 116
4 Conclusions 121
4.1 Coherence in CDI, chapter 2 . . . . . ... ... .. ... ... 121
4.2 Tterative ptychography experiments, chapter 3 . . . . . . . .. 122

5 Future Work 124






Declaration of Authorship

I, Aaron Parsons declare that this thesis entitled ” Coherent Diffraction
Imaging using a High Harmonic Source at 40 eV” and the work presented
in it are my own and has been generated by me as the result of my own
original research.

I confirm that:

e This work was done wholly or mainly while in candidature for a
research degree at this University

e Where any part of this thesis has previously been submitted for a
degree or any other qualification at this University or any other
institution, this has been clearly stated

e Where I have consulted the published work of others, this is always
clearly attributed

e Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work;

e [ have acknowledged all main sources of help;

e Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself;

Signed:

Date:




i



Acknowledgements

The work shown in this thesis has only been possible due to the support I
have received, both academically and on a personal level by many people,
which I am very grateful for.

Bill Brocklesby, my supervisor, for getting me into lasers in the first place.
Thank you for your patience and guidance over the years. Your attention to
detail, and approach to problem solving is something that makes you the
great teacher and supervisor you are.

Jeremy Frey, for your infectious enthusiasm and seemingly infinite breadth
of knowledge that provided many interesting discussions and investigations.

John Chad, for all the advice on what is and isn’t possible with biological
specimens. Please forgive my ignorance and stupid questions. You taught
me a lot.

Thanks go to all the previous group members that provided the ground
work for the research detailed in this thesis. Especially Tom Butcher for
teaching me how to get the best out of our laser system, Richard Chapman
for his guidance on how to pick the simplest and best ideas for the
instrumentation, and Ben Mills for teaching me how to code like a real
person, not a student. Also, thanks to Rachel Card who prepared the
neuron samples used in this thesis, I thank you for your patience and for
explaining to me slowly and patiently exactly how the neurons work.

To the current students Patrick, Hannah, Pete, James for tea, sympathy
and asking the awkward questions. I learnt so much from you guys.

I would also like to thank my family. Mum and Dad, your guidance and
direction over the years have inspired me to always push myself further,
and given me confidence in myself to achieve my goals. To my not-so-little
sister Charlie, thanks for all the hugs and chats over the years, they have
really helped!

To Ilka, my long suffering partner for putting up with all the late nights
and for supporting me through everything. Your patience and kindness
make me a better person.

To my son, Sam: You bring so much happiness to everyone that meets you;
it makes me so proud. Although you probably didn’t realise it, your
cuddles and laughter provided some much needed relief during the writing
process. I hope I can provide you with as much support and love as your
grandparents gave me so that one day you might also realise your dreams.

il



v



List of Figures

1.1

1.2

1.3

The concept of the objective optic in a microscope system.
The scattered or emitted light is collected by an objective
optic. The resolution of the optic at a given wavelength is
determined by the collection half-angle. . . . . . . . .. .. ..
The Spectra Physics laser system. Inset: A block schematic of
the system showing the Millenia pumped Tsunami oscillator
coupling to the Evolution pumped Spitfire Pro regenerative
amplifier. Main: A more detailed schematic of the system.
The Tsunami Ti:Sapph gain crystal (GT1) is pumped by the
Millenia. The dispersion of the Tsunami cavity is then mod-
ified by the prisms (PTx) and the aperture (ATx) to obtain
stable, high bandwidth pulses. The transform limited pulses
then pass in the amplifier, whose Ti:Sapph gain crystal is
pumped by the Q-switched Evolution. After being temporally
stretched by a factor 10* by 4 passes of the stretcher grating,
pulses from the 82 MHz oscillator train are then gated at 1
kHz by the Q-switch (QS1), rotating the polarisation to allow
transmission by the thin film polariser (TPS1). The pulses are
kept inside the cavity for 10 round trips, via a combination of
a i waveplate and a second Q-switch (QS2). The aperture in
the cavity (AS3) allows optimisation of the mode. After the 10
round trips QS2 switches the polarisation of the pulse so that
it can exit the cavity. The beam divergence is set by a tele-
scope (TSx) and re-compressed via 4 passes of the compressor
grating. . . . . ...
A schematic of a high harmonic spectrum. The generation can
be separated into 3 main stages according to the energy of the
generated photons: perturbative, plateau and cut-off. . . . . .



1.4

1.5

1.6

1.7

1.8

1.9

1.10

The semi-classical method of HHG. a) The electron tunnels
through the atoms coulomb potential barrier. b) The free
electron is then accelerated in the laser electric field. ¢) The
electron is accelerated back to the parent atom, where it re-
combines. The interaction releases a photon of high energy
radiation. . . . .. ..o
The classical electron trajectories as a function of driving field
period. Between 0 and 0.25, and 1 and 1.25 periods, the restor-
ing force is not strong enough to bring the electron back to
the 0 position. For these trajectories, the electron is ejected
to infinity. For the other trajectories, the electron returns and
photons emitted. . . . . . ... ... oL
A plot of electron travel time vs. electron kinetic energy on
its return to = 0. It is shown that the maximum energy is
3.172U, where U, is the ponderamotive potential of the driving
fleld. . . . ..
The simple gas cell geometry used for HHG during this thesis.
Around 80 mbar of Argon flows in from the top of the cell and
escapes through the holes in the sides of the cell. The laser
beam is focussed through these holes into the gas, where the
HHG process takes place. . . . . . . . .. ... ... ... ...
The 3 main classes of interactions of light with an obstacle. a)
Reflection: The wave vector is reversed and the wave propa-
gates back down the path that it came from with perturbations
from the interaction with the obstacle boundary. b) Refrac-
tion: Light propagates through the obstacle, but its wavefront
is modified according to Snell’s law due to the difference in
refractive index at the boundary of the obstacle with the ex-
ternal medium.c) Diffraction: The obstacle occludes part of
the wavefront, and the light scatters on passing it due to the
perturbation. . . . ... ..o
A schematic showing the path differences involved in a far-field
interference experiment. Light of wavelength A is incident on
an aperture with edges defined by points P and P,. Waves

scattered from these points has the maximum path difference 7. 28

Comparison of crystal and aperiodic sample scattering. a)A
simulated crystal array of an acorn with b) Its Bragg scat-
ter pattern showing discrete well defined peaks.c) an isolated
acorn sample with d) its oversampled speckle pattern. Both
scatter patterns have logyy colour axes . . . . ... ... ...

vi



1.11

1.12

1.13

1.14

1.15

1.16

The 1-dimensional oversampling criterion. a) A simple object.
b) The autocorrelation of a) showing the minimum area we can
suppose a) will take up in realspace. ¢) The speckle pattern
(with amplitude on logyg scale. . . . . . ... ... ... ...
The convergence of the Gerchberg-Saxton/Error reduction al-
gorithms in the simple case of two complex-valued line func-
tions in the presence of one minima. Starting from a random
point, the algorithm projects on to each set in turn, minimis-
ing the distance between each point. The algorithm converges
at the crossing point since this is where the distance between
projections is minimised. The iteration at each step is plotted
here. . . . . .
The convergence of the Gerchberg-Saxton/Error reduction al-
gorithms in the simple case of two complex-valued line func-
tions in the presence of a local minimum and a separate,
global, minimum. Here, the algorithm has converged on the
local minimum, a pitfall of these types of algorithms. . . . . .
The convergence of the Hybrid Input/Output algorithm in
the simple case of two complex-valued line functions in the
presence of one minima. Starting from a random point, the
algorithm projects on to both sets simultaneously. The differ-
ence between both of these projections is then taken, scaled
according to a feedback constant, and added to current iter-
ate. The algorithm converges at the crossing point since this
is where the distance between projections is minimised, and
hence the feedback tends to zero. . . . . . ... .. ... ...
The convergence of the Hybrid Input/Output algorithm in the
case of two complex-valued line functions in the presence of
a local minima and seperate global minima. The algorithm
is actively repelled by the local minima, since the distance
between the two projections on to the sets at this point stays
constant, and does not decrease to zero. The iterate is then
attracted to the true global minima, where the difference tends
towards zero. . . . ...
Difference map convergence on the intersection of two simple
complex sets. It is seen that by changing either the value of
the 8 or the v coefficients, it is possible to change the size and
how compressed the search spaceis. . . . . . . ... ... ...

vil



1.17

1.18

1.19

1.20

2.1

2.2

2.3

Difference map convergence on the intersection of two simple
complex sets in the presence of both a local and global minima.
It is seen that by changing either the value of the § or the ~
coefficients, the convergence path is altered, but the iterate
is always pushed away from the local minima and attracted
towards the global minima. . . . . . .. . ... ... ... ...
The basic premise of iterative ptychography. An extended
object is scanned by apertured illumination at overlapping re-
gions in real-space and the respective speckle patterns recorded.
The phase is then solved for algorithmically. . . . . . . . . ..
The Rayleigh diffraction limit. When two 1D Bessel functions
are closer than 1.22 radians, they cannot be distinguished from
each other since the null of one functions is masked by the
maxima of the other. . . . . . . .. ... ... ..
The Sparrow diffraction limit. When two 1D Bessel functions
are close enough that the gradient of their incoherent sum is
0, they cannot be distinguished from each other. . . . . . . . .

An example of a buried sample that could not be imaged via
electron or optical imaging. Broadband X-ray CDI could re-
cover the structures of such buried objects. . . . . . . . . . ..
a) A simulated 20% bandwidth spectral envelope (green line)
and a modulated, harmonic, spectrum with the same band-
width (blue line). A simulated 1 pm separated Young's slits
experiment for the envelope b) and the harmonic c¢) spectra
in the same geometry as the experiments in this chapter. The
plots represent an incoherent sum of an analytic Young’s slits
scatter pattern . . . . .. ..o oL
The two experimental geometries used for this experiment.
The pump infrared is focused into a gas cell containing 80
mbar Argon to generate the high harmonics. The pump is then
filtered from the generated harmonics by free-standing Al foils.
a) The experiment for the broadband geometry. The light is
focussed off a single 50 cm spherical multilayer mirror. b) The
narrowband experiment. Before being condensed by the same
spherical mirror, the light is incident first on a flat multilayer
mirror. The reflectivity curves of these mirrors overlap so as
to isolate a single harmonic. . . . . . . . .. ... ... ...

viii



24

2.5

2.6

2.7

2.8

The two different spectra used to illuminate the sample.a)
Broadband: The beam filtered only by the condensing mul-
tilayer has a bandwidth of 20% but has a harmonic structure
to it. b) Narrowband: A single, dominant, harmonic is iso-
lated by also filtering using the flat multilayer. . . . . . . . . .
The sample used for these experiments. a) A SEM of the
sample. b) a schematic cross section through the red line in a)
showing the composition of the sample. The high attenuation
of the sample coating compared with the FIB milled hole gives
this sample binary transmission characteristics. . . . . . . ..
Comparison of the speckle pattern for a) the narrowband and
b) the broadband illuminations.a)Narrowband: The speckles
in the narrowband image are quite sharp and easily resolved.
This is particularly clear in the close up of the area inside the
dotted box, shown in the inset with a cross section though its
central region.b)Broadband: This image is of the same portion
of the speckle pattern as shown in a) but under broadband
illumination. One can see from the inset image of the area
enclosed within the dotted box that the speckles indeed have
lower visibility as expected. . . . . . .. ..o
A comparison of the two-dimensional autocorrelations of the
real-space magnitudes.a)A log,, plot of the autocorrelations
for broadband (left) and narrowband (right) data sets. The
white line separates the data sets. It can be seen that the
broadband set has a considerable amount of structure outside
the main density of its autocorrelation in comparison to the
narrowband autocorrelation.b) A vertical sum of a), empha-
sising the difference in densities outside the main body of the
autocorrelations between the narrow and broadband data.
The real-space a) and Fourier-space b) errors for the recon-
structions. Whilst the narrowband reconstruction was taken
at the end of the full number of iterations, the broadband re-
sult was taken where the Fourier-space error was minimised.
This occurred after 23 iterations of the routine for the error

X

64



2.9

2.10

3.1

3.2

3.3

3.4

3.5

The mean of the absolute value of the reconstructed exit wave
field from 50 runs of the phase retrieval routine with the same
parameters, but different starting phases for (a) broadband
and (c) narrowband data. (b) and (d) show their respective
mean normalized variances. e) A cross section along the white
dashed line of the mean averages in a) and c). It is clear
that the broadband data appears blurred compared to the
narrowband data. . . . . .. ... oL
The phase retrieval transfer functions for the reconstructed
data. The narrowband curve represents the PRTF for 50 sepa-
rate starting seeds run in the algorithm according to the stated
recipe for 1000 iterations. The broadband iterates were se-
lected when the Fourier error was minimised. The data were
set to have the same phase offset and centred by image regis-
tration before the PRTFs were calculated. . . . . .. .. ...

A schematic of the experimental layout at 113 for this exper-
iment. The beam comes in from the left and is incident on
the detector on the right after passing through the chain of
components . . ... L0 oL
Top: An SEM of the resolution test sample designed by the
UCL group. Bottom: A schematic of the sample cross section
through line AB. The sample is SiN coated with Tungsten.
The Tungsten is then removed via e-beam lithography to re-
veal the structures . . . . . .. ..o
a)The round ROI scan position map which was input directly
to the piezo motors to perform the ptychographic scan. b) A
sample data-set from a single view taken whilst the Siemens
star was aligned to the probe . . . . . .. ... ... ... ..
A plot of —2— for each pixel across all recorded views. Areas
which have a high value (an example of which is inside the
black circle) are those which change between views and can be
associated with the object wave-field. Low values (red circle)
are independent of the view and so correspond to the probe
wave-field . . . ...
The initial results using unmodified ePIE on the collected
data. Some structures are visible in the object wave-field a)
but further processing is required.b) The reconstructed probe
wave-field showing that it has moved out to the edges of the
array. c¢) The Fourier error of the reconstruction as function
of iteration, showing that it is not smooth or stable. . . . . . .




3.6

3.7

3.8

3.9

3.10

3.11

3.12

The improved ePIE reconstruction using a probe support.a)
and b) are the reconstructed wave-fields for both data-sets
showing a much sharper and clearer definition which corre-
sponds nicely to the SEM. ¢) and d) are the reconstructed
probe wave-fields corresponding to these object reconstruc-
tions. The probe looks very similar in amplitude and phase
between the two reconstructions suggesting that an reasonable
solution has been found. e) The Fourier error as a function
of iteration for both reconstructions. The error comes down
smoothly as the algorithm progresses until it reaches a plateau,
indicating that the reconstruction has reached a stable solution 78
The Fourier ring correlation between the two reconstructed
probes. The curve shows a strong agreement between the two
functions and suggests that the cut-off for reproduceable so-
lutions should be around 350 nm, where the signal meets the

A schematic of the ptychography experiment set-up at Southamp-
ton. The beam enters from the left and reaches the detector
on the right after passing through the apparatus. The exper-
iment is nearly identical to that used in chapter 2, with the

exception of a modified sample mounting scheme. . . . . . . . 83
A schematic of the hippocampus in a human brain. The hip-
pocampus is responsible for memory and motor function. . . . 84
A schematic of a neuron. The key parts of interest for this
study are the dendrites and axon. . . . . . . . ... ... ... 85

a) An EUV shadowgram of the sample to be imaged. The sam-
ple was placed away from focus and illuminated with a plane
wave. The image is normalised to show the transmission val-
ues. b) A light microscopy image of a cultured cortical neuron
sample. c¢) a schematic cross section through the sample to
reveal the preparation method. . . . . .. ... ... ... .. 86
Optical bright field a) and dark field ¢) images of an example
neuron structure using a 40x, 0.6NA objective. b) An SEM of
the same sample scaled to the same field of view. d) An image
processed version of b) showing better contrast. All images
exhibit the same criss-crossed pattern of dendrites. . . . . . . 88

x1



3.13

3.14

3.15

3.16

3.17

A schematic of the sample.a) The pinhole mounting system.
This was attached to the stationary outside frame of the piezo
stage mount, while c¢) shows the sample mount itself, which
was mounted to the moveable part of the piezo stage so it
could be scanned behind the pinhole.b) shows how the parts
were assembled. . . ...
a)The sample-pinhole alignment technique. The pinhole was
both back and front illuminated so that it could be seen at the
same time as the sample. Since the sample is optically trans-
parent, the pinhole could be brought down using a calibrated
travelling microscope technique until it sat > 10 microns away
from the sample. The pinhole was then translated by hand to
align to the sample until it was in range of the piezo-stage
travel. b) The finished alignment with the pinhole aligned to
a neurite on the substrate. . . . . . ... ..o
The far-field movement of the beam through the 5 ym pinhole
vs. time. a)A log,, plot of vertical slices through the centre
of the far-field speckle pattern of the pinhole aligned over an
empty region of the sample are shown vs. time over an hour.
It is apparent that over this time there is a slight (80 pm) drift
to the right hand side of this plot, demonstrating the beam
moving down on the detector. To minimise the impact of this
on the ptychography experiment, the experimental duration
was kept to 20 minutes.b) A comparison of the speckle patterns
after 5 and 20 minute intervals showing minimal change in
their structure. . . . . . . ... oL
The two dimensional mean normalised variance of data-set 1
a) and data-set 2 b). Since their are a lot more view dependent
speckles than independent ones, we can deduce that the probe
may be poorly constrained in the reconstruction. . . . . . . ..
Probe reconstructions from data-set 1 using a top hat model
probe to start with a) The average and b) the mean normalised
variance of the probe wave-field magnitudes ¢) The average
and d) the mean normalised variance of the probe wave-field
phases. It is clear from the lack of structure in the variance of
the phase that this probe guess has not helped the algorithm
to converge to a solution. . . . . . . ... ..o

xil



3.18

3.19

3.20

3.21

3.22

3.23

Probe reconstructions from data-set 2 using a top hat model
probe to start with a) The average and b) the mean normalised
variance of the probe wave-field magnitudes ¢) The average
and d) the mean normalised variance of the probe wave-field
phases. It is clear from the lack of structure in the variance of
the phase that this probe guess has not helped the algorithm
to converge to a solution. . . . . . . ... ...
The magnitude and phase of the crude probe autocorrelation
obtained from the low variance data in both data sets. This
was entered into the algorithm as an improved starting guess
for the probe. . . . . ...
The processing chain that was followed to improve the recon-
structions. The process was iterated 5 times before a good
convergence was found. . . . ... ... L.
Improved reconstructions from data-set 1 using an improved
probe guess a) The average and b) the mean normalised vari-
ance of the probe wave-field magnitudes c¢) The average and d)
the mean normalised variance of the probe wave-field phases.
The low variance and well defined probe suggest that the algo-
rithm has converged.e) The Fourier error of the reconstruction.
The smoothly decreasing nature of this further hints that the
algorithm has found a good solution. The initial 10 iterations
show the error increasing since the probe was held fixed over
a free-space guess of the object. . . . . . ... ... ... ...
Improved reconstructions from data-set 2 using an improved
probe guess a) The average and b) the mean normalised vari-
ance of the probe wave-field magnitudes c¢) The average and d)
the mean normalised variance of the probe wave-field phases.
The low variance and well defined probe suggest that the algo-
rithm has converged.e) The Fourier error of the reconstruction.
The smoothly decreasing nature of this further hints that the
algorithm has found a good solution. The initial 10 iterations
show the error increasing since the probe was held fixed over
a free-space guess of the object. . . . . . .. . ... ... ...
The average full field probe reconstructions for a)data-set 1
and b) data-set 2 over 50 independent reconstructions; )c) the
SEM of the pinhole on the same grid size as the reconstructions
and rotated to match the orientation of the reconstructions.

xiil

. 100



3.24

3.25

3.26

3.27

3.28

The Fourier ring correlations between the probe wave-fields
(blue line) and the object wave-fields (green line) from each
independent data-sets. The lack of correlation between the
object fields shows that the data-sets are indeed independent,
while the strong correlation between the probe fields shows
that the probe solution is consistent across both data-sets.

The red line shows the cut-off where the signal meets the noise.101

The magnitude of the thickness functions for the average probe
reconstruction for data-set 1 a) and data-set 2 b). ¢) the differ-
ence between the two thickness functions providing the error
in measurement of this thickness. The colormap in all these
plots is indicative of thickness, with the units in m. . . . . . .
The reconstructed object for data-set 2. a) The mean aver-
age object exit wave field over 50 independent pseudo-random
starting seeds. b) A binary mask of the reconstructed field
of view formed by addition of the reconstructed probe magni-
tudes at the 4 scan positions. The resultant magnitudes were
then thresholded at 10%. c¢) The reconstructed field shown in
a) multiplied by the mask in b). d) The field of view in c)
interpolated twice by padding in Fourier space to increase the
sampling rate. No extra information is added in this process. .
A schematic of the pinhole and sample layout showing which
order the elements interact with the EUV radiation. The light
is incident upon the pinhole first. After this, it progresses
onto some of the larger neuron cells, which will be closest to
the pinhole. This is then followed by the thinner dendritic
structures and then the Poly-L-Lysine coated SiN . . . . . . .
Complex cross-sections of the propagation of the object field
reconstructed from data-set 2 a) Identifying some cross sec-
tions across the object field.b) the ASM propagated field for
cross-sections A-F respectively. The white arrows point to
some of the perturbing obstacles in the light path. These are
identified by tracing rays back to their point of origin. . . . . .
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3.29

3.30

3.31

A more detailed look at a focal point around 1.5-2 microns. a)
The ASM propagation of this cross section as previously shown
in 3.28¢). Cross sections of the two dimensional complex
field corresponding to the white lines in a) are shown in b)
at their positions along the travel direction. It is possible
to see features that are not visible in the 0.5 micron image
coming into focus in the 1.5 micron images and 2.5 micron
suggesting that the field has been propagated to the region of
the disturbance. ¢) a zoomed in version of b) showing detail
corresponding to a dendritic structure in the sample. . . . . .
Comparison of the reconstructed EWF with other microscopy
techniques. a) An image of the full field ptychogram zoomed
in at 2.5 micron propagation length, with the in focus region
shown (white circle). b)inset: The light microscope image us-
ing a 20x 0.4 NA objective previously shown in figure 3.11b),
Main: The area inside the white dashed box in the inset image
zoomed and enhanced using ImageJ software. The colormap
has been inverted to better show the neurite region. ¢) A cross
section of the region marked by the red line in b) showing the
feature with is around 200nm. This measurement is limited by
the pixel size of the detector on the microscope.d)Inset: The
enhanced SEM shown in figure 3.12. The square marks a
position that is zoomed in on the main image, Main image: a
zoomed in region of the enhanced SEM showing neurite com-
plex. The SEM is from a different sample to the one studied
since the original broke on removal from the ptychography sys-
tem. The arrows mark the similarity between the features in
the two different images . . . . . . . ... ... ...
A comparison of the dielectric loss tangent to the reconstructed
EWF across a cross section of the neurite. a) The recon-
structed EWF propagated to the region with the neurite in
focus. ¢) a cross section in amplitude and phase across the re-
gion depicted by the sold black line in a). b)A 2- dimensional
plot of the loss tangent calculated from the field shown in a)
depicting areas of different composition. d) A cross section
across the black line shown in b) showing a region with higher
phase shift per unit attenuation than the surrounding areas.
The reason for the asymmetry about this feature may be the
low resolution of the image. . . . . . .. ... ... ... ...
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3.32

3.33

3.34

3.3

3.36

A comparison of the dielectric loss tangent to the reconstructed
EWF along the length of the neurite. a) The reconstructed
EWF propagated to the region with the neurite in focus. ¢) a
cross section along the region depicted by the sold black line in
a). b)A 2- dimensional plot of the loss tangent calculated from
the field shown in a) depicting areas of different composition.
d) A cross section along the black line shown in b) There is
a steady decrease in the loss tangent as we move to the left
of the plot, indicating a polarity to the neurite composition.
There is also a plateau region present where the composition
must remain the same. This is indicative of the feature being
AN AXOIL. .« . o v v e e e e e
The reconstructed object for data-set 1. a) The mean aver-
age object exit wave field over 50 independent pseudo-random
starting seeds. b) A binary mask of the reconstructed field
of view formed by addition of the reconstructed probe magni-
tudes at the 4 scan positions. The resultant magnitudes were
then thresholded at 10%. c¢) The reconstructed field shown in
a) multiplied by the mask in b). d) The field of view in c)
interpolated twice by padding in Fourier space to increase the
sampling rate. No extra information is added in this process. .
Complex cross-sections of the propagation of the object field
reconstructed from data-set 1 a) Identifying some cross sec-
tions across the object field.b) the ASM propagated field for
cross-sections A-F respectively. Compared to figure 3.28 these
images show that the object imaged here has much less con-
trast and hence is much less strongly scattering than dataset
2. The white arrow in d) points to a region that is in focus. .
A more detailed look at a focal point around 1.5-2.5 miorons
in dataset 1. a) The ASM propagation of this cross section as
previously shown in 3.28e). Cross sections of the two dimen-
sional complex field corresponding to the white lines in a) are
shown in b) at their positions along the travel direction. c¢)
shows a finer scan in the travel direction of a zoomed in sec-
tion of b). It is still very hard to discern a region that becomes
sharp with this propagation. . . . . . . . ... ... ... ...
The object field at 3 microns propagation distance. The fea-
tures that are in focus are circled, however they still seem
blurred. This may be due to their low contrast, and their
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Chapter 1

Background and Theory

1.1 Introduction

In Feynman’s landmark “There’s plenty of room at the bottom” paper [1] he
outlines why characterising and understanding the world on the microscopic
(>400nm) and nanoscopic (<400nm) scale is essential for the progress of sci-
ence and the general population of the world. Whether it be understanding
the nature of processes or structures within biological systems for developing
medical treatments, or the inspection of lithographic masks for use in fab-
ricating the ever decreasing scale of micro-electronic/optic devices to keep
up with Moores” Law [2], most people rely daily, indirectly, on developing
fabrication and characterisation techniques smaller than the unaided eye can
observe.

Whilst it is possible to infer some structures indirectly from models built
from the spectral response or chemical interactions of materials, these pro-
cesses are not applicable to general objects, particularly those which consist
of large ensembles of atoms of different elements where the interactions soon
get very complex. In such cases, it is preferable to observe the object directly
via microscopic/nanoscopic profiling of their spatial extent via a variety of
complementary techniques.

Microscopy and nanoscopy can be split into techniques that involve probe
radiation, and those which do not. Physical probe techniques such atomic
force microscopy (AFM) [3, pages 113-155] and scanning tunnelling mi-
croscopy (STM) [3, pages 52-112] are typically limited to the surface inter-
action of the probe with the bound electron wavefunction and hence cannot
delve further into the structure than the wavelength of the electron for the
material under investigation [4, page 3|, although the information they pro-
vide about the surface is comprehensive. Instead, for most applications it is
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Figure 1.1: The concept of the objective optic in a microscope system. The
scattered or emitted light is collected by an objective optic. The resolution
of the optic at a given wavelength is determined by the collection half-angle.

preferable to probe the structure with radiation and observe the effects of
the interaction.

1.1.1 Microscopy with probe radiation

The probe radiation used for microscopy can be composed of either photons
of wavelength A or, equivalently by the de Broglie relation A = % [5] particles
of momentum p, where h is Planck’s constant. This radiation can either be
provided in the form of an illumination of the sample, or by stimulating
the sample to emit via some reductive process. After this interaction the
light is then collected by an optic as shown in figure 1.1. This optic can
take many forms including simple refractive lenses, diffractive optics such as
Fresnel zone plates (FZPs, [6]), or, for charged particles electro/magneto-
static lenses (EMS, [7]).

In 1874, Ernst Abbe [8] and Herman Helmholtz [9] derived empirically
and theoretically respectively the adaptation of Lord Rayleigh’s [10] rela-
tion to estimating the best resolution of a spectrograph. This ‘diffraction
limit’ can take many forms (discussed in detail in section 1.8), however the
simplest form of calculation to find the minimum resolvable feature, dd, in-
vestigated at wavelength A can be expressed as in equation 1.1, where the



NA (Numerical Aperture) is defined as the maximum acceptance cone of an
optic with acceptance half-angle # as shown in figure 1.1.

A
od > m (1'1)

For the one dimensional representation given in figure 1.1, the NA can
be expressed as nsinf, where n is the refractive index of the transmissive
medium. This key result states that the resolution of a microscope can be
exceeded only by decreasing the wavelength of the probe radiation or by
increasing the acceptance half angle of the objective optic.

There are a variety of techniques that involve pushing the validity of this
second criterion, the most basic of which is to increase the refractive index of
the propagation medium between the optic and the sample to enable light to
be refracted into a conventional lens more readily, increasing the acceptance
angle of the optic.

It is also possible to gain a higher resolution than this diffraction limit,
by decreasing the size of the area of the sample under investigation at a given
point. Since the diffraction limit also applies reciprocally to limit the size
of the focus for a given wavelength and NA of lens, usually this is achieved
by using techniques to gate the emission of light from sub-diffraction-limited
size parts of the sample itself.

A popular scanning microscopy technique where this is used to provide
an impressive increase in resolution is that of stimulated emission depletion
(STED) microscopy. In the simplest version of this technique, molecules
attached to the sample of interest are promoted to a higher energy state
using one laser colour. A doughnut beam (Laguerre-Gaussian mode, [11,
page 586]) is then used to de-excite the majority of these states back down
by stimulated emission. The fluorescent signal then corresponds to the signal
from molecules that were not de-excited. This is a very accurate technique
and can regularly achieve 20 nm positional accuracy (state of the art of 2.5
nm resolution [12] ) of such molecules in a range of samples, however they
are inherently limited by the absorption depth of the light used as well as
the size of the feature that is being used to gate the interaction.

Photo-activated localisation microscopy (PALM) and stochastic optical
reconstruction microscopy (STORM) [13], and their many variants, are scan-
ning techniques that can also track the position of objects of interest to much
better than the diffraction limit ( 20nm) [13]. These techniques involve
attaching switchable photo-activated fluorophores, of size smaller than the
diffraction limit, to the objects. By switching the fluorophores at the appro-
priate time, the centre-of-mass can be calculated from the recorded signal
and hence the position extrapolated beyond the diffraction limit via averag-



ing of the point spread function over many images. This does not provide
higher than diffraction-limited resolution of the objects themselves though
and usually require the samples to be treated or stained before they are
investigated.

It is also possible to decrease the spot size of a probe beam interact-
ing with the sample, a practice exploited in non-linear scanning microscopy
(NSM)techniques where either two overlapping beams or a single spatially
shaped beam triggers a non-linear process (typically second or third har-
monic photon emission). The non-linear process is only able to happen when
a threshold intensity is exceeded meaning that the effective spot size is the
size of the beam above this threshold. Such techniques regularly reach below
the diffraction limit, but are limited to sample types, knowledge of the non-
linear properties of the material, which will be different from the material
bulk properties. Their is also a hard limit that depends on the damage to
the sample as the pump laser power is increased.

Naturally, the scanning nature of these techniques increase the time for
each image to be formed and ultimately limit the field of view.

It is also possible to manipulate the illumination wave-vectors such that
the waves that would normally be coupled into the evanescent wave-field are
instead forced to propagate from the sample. Examples of this are the super-
lens [14] and the super oscillating super-lens [15]. These techniques obtain
high resolution images of flat test samples, however it is the interaction of
this spot with real sample boundaries also impacts this interaction, limiting
the resolution and interpretation of the image.

All of these techniques have their merits and pitfalls, and all play an
invaluable part of a microscopist’s arsenal. However, this thesis is primarily
concerned with the other criteria in 1.1. That is: the reduction in wavelength
of the probe radiation.

1.1.2 Sources of short wavelength radiation

As outlined in the introduction, both particles and photons can be sources of
short-wavelength radiation. Suitable particles include, but are not limited to,
electrons, neutrons and both Helium and Gallium ions. However, electrons
are by far the most widely applicable and commonly available for use in
everyday microscopy due to their ease of production in thermionic emission
and manipulation. This section will hence mainly compare the usage of
electrons with short-wavelength optical radiation such as extreme ultraviolet
(EUV,\ < 50nm), soft (A < 10nm) and hard X-rays (A < 1A4).



History

X-rays were first documented fully and used in experiments by Nikola Tesla
[16], in 1887, although he had not yet investigated their nature, he did take
the first ever x-ray images, of his own hand. X-rays were subsequently clas-
sified as photons by Wilhelm Roentgen [17] in 1898. Although electrons
were experimentally proven to exist by J.J. Thompson in 1897 [18], it took
30 years for the first electron diffraction experiments to be performed [19],
confirming their wave-like behaviour predicted by de Broglie’s relation. Since
the X-rays produced by standard discharge tubes at the time were more pen-
etrating than electrons, they lent themselves more easily towards medical
imaging and were almost immediately seized upon for this usage. It wasn’t
until the advent of modern vacuum equipment in the 1941 that electrons
began to be used for imaging experiments [20].

In general there is a large overlap between the use of electron and photons
for microscopy. However, it is useful to provide a discussion of the limitations
of both techniques.

Fundamentally, since electrons are charged, they interact with both the
positively charged nucleus and the negatively charged electrons of sample
atoms. This makes the interaction slightly more complex, but much more
comprehensive compared to the predominantly electron scattered photons.

However, this more complex interaction does mean that the reduced mean
free path before rescattering of a probe electron is much shorter than that
for photons. This places a limitation on the thickness of a sample. Typically
electron microscopy samples must be a maximum of 100 nm thick, and, for
carbon based samples <60nm is recommended [21]. Whilst microtoming is
possible, it does change the sample to be imaged due to distortions from the
blade used. X-rays and EUV have a much higher penetration and so do not
encounter this problem to such a degree. Hard X-rays usually require sample
thicknesses between 100 pm - 1 m, soft X-rays 1-50 ym and for EUV 100 nm
to 1um is typical. This makes optical based probing more useful for cultured
biological tissue and thicker manufactured thin films.

Radiation damage is a crucial issue for both electron and optical imaging,
especially to biological samples, and has been studied in detail for hard [22]
and soft [23] X-rays, and also for electrons [24] [25] and, if necessary, cryo-
protection is employed. For EUV radiation, damage is less well reported
on and primarily focusses either on CCDs in space science [26], or optics
for XFEL applications at FLASH [27], neither of which provide suitable
comparison to the experiments reported in this thesis. However, we note
that during the experiments reported on during this thesis, no radiation
damage to the samples was noticed .



It is hence possible to write down some basic and very general criteria
with which to assess which probe radiation is best to use for a given sample.

e In general, if a sample can be thinned and stained without too much
damage, or if it is thin by nature, it is usually better to image with
electron microscopy than optically.

e For thicker samples, where the damage tolerance is not critical, hard
and soft-Xrays can be used. Where damage tolerance is critical, the
better of the two techniques should be chosen, although for some sam-
ples femtosecond imaging such as that carried out at XFELs might
circumvent this problem, although they are limited by flux at high
resolution.

o [f very high resolution is not critical and unstained samples are neces-
sary, EUV imaging can be used.

e [f sub-ps time resolution is required then laser based sources can be
implemented. HHG sources can reach atto-second time resolution,
XFEL’s and laser plasma sources can reach 5 femto-second resolution,
where electrons are typically limited to ;100 fs.

1.1.3 Possible sources

One also may wish to consider the accessibility and availability of the source
of coherent radiation when deciding which is best for the purpose. Table 1.1
shows a matrix of important parameters.

Property Electron EUV /Soft Soft/Hard X-ray
Source X-ray
(Laboratory | (Laboratory | (Synchrotron/XFEL
based) based) beamline)

Cost ~£200k ~£1lm > £50m

Size 1-2 m Up to 8 m >250 m

Access I];::e(gatory Il;::e(gatory User facility

Table 1.1: Matrix of availability and access parameters for coherent sources
of short wavelength radiation

This thesis focusses on a coherent source of lab-based EUV radiation,
namely high harmonic radiation, for microscopy.



1.2 High Harmonic Generation

High harmonic generation (HHG) is a highly non-linear coherent optical in-
teraction between an intense electric field and a bound electron that can
serve as a tunable, coherent source of short wavelength radiation, extending
down to the soft X-ray region of the spectrum.

This section introduces some simple models to provide insight into the
nature of HHG radiation and how it may be generated. The practical con-
siderations for the system used at Southampton are outlined and discussed.

1.2.1 The Keldysh parameter

The Keldysh parameter [28] is useful constant to bear in mind when dealing
with interactions between atoms and high laser fields, since it provides insight
into the nature of the interaction. The parameter is a quantitative measure
of the frequency of outer electron tunnelling events (Vymne) that occur per
half optical cycle, where the frequency of the light is given by s and is
given by equation 1.2.

2 aser [ %
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Viunnel 2Up
Where the ponderomotive potential of the electron in the E-field is given

as
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Here, e is the charge on an electron and m, its mass , Fy is the maximum
magnitude of the electric field of the light, and w the frequency of the driving
field.

If K > 1 then we are in the regime of multi-photon ionisation where
the number of tunnelling events per optical cycle is much less than 1. Since
the HHG process is dependent on these tunnelling events, the probability
of HHG in the multi-photon regime is very low. Instead, HHG happens at
the other limit where K < 1 generally known as the tunnelling regime. The
mechanics of this process are explained fully later in this section, but for now
we focus on calculating the Keldysh parameter for the laser system used for
the work reported here, as is detailed in the next section.



1.2.2 The laser system

To achieve the high field strengths necessary for high harmonic generation,
it is possible to use high peak-power ultra-short laser pulses focussed to a
highly intense spot. To achieve this it is preferable to separate out the system
in to two stages. The first consists of generating pulses with large relative
bandwidth (6%) which can be compressed to ultra-short pulse lengths. The
purpose of the second stage is to amplify the pulse peak power via a process
of chirped pulse amplification.

A schematic and basic block diagram of the laser system owned and
maintained by the group is detailed in figure 1.2. A frequency doubled diode
pumped Nd:YLF (Spectra Physics Millenia) pumps a Ti:Sapphire (Spectra
Physics Tsunami) oscillator which is Kerr lens modelocked [11], initiated
by feedback from an acousto-optical modulator (AOM). The spectrum is
selected by the slits (S1) to give the shortest pulse whilst remaining stable.
The typical output from the oscillator is 5 nJ pulses at 82 MHz repetition
rate with a pulse length of 30 fs centred at 790 nm.

The pulses then enter the amplifier system where they are stretched
in time by a factor of 10* by a grating system before entering another
Ti:Sapphire cavity (Spectra Physics Spitfire Pro). This cavity is pumped
by a Q-switched frequency doubled laser (Positive Light Evolution) running
at 17 W average power and a 1 kHz repetition rate. The infra-red (IR) pulses
are switched into the cavity at 1 kHz to overlap with the pump pulses. The
switching occurs by rotating the polarisation of the pulses, using a Pockels
cell, so that they are transmitted through the thin film polariser. The pulses
are kept in using a further Pockels cell and i wave plate for 10 round trips
when the polarisation is again flipped so that the pulses are coupled out.
A compression grating system is used to counteract the dispersion of the
stretcher and provides a final output of 40 fs pulses with 3 mJ energy at 1
kHz repetition rate.

The advantage of such a regenerative amplification system is that the
oscillator provides a good temporal and spatial profile so that the amplifier
can focus on optimising power. Usually, during alignment a good mode
quality is preferred to high power. An M?, a parameter related to the second
moment of the spatial distribution of the beam, of 1.6 is typical.

Upon exiting the amplification system a small pickoff is taken for diagnos-
tics. Here a frequency resolved optical gating device (FROG) is used to char-
acterise the temporal and spectral complex fields. The particular FROG used
for this project is called a GRENOUILLE (GRating-Eliminated No-nonsense
Observation of Ultrafast Incident Laser Light E-fields) and works on a single
shot basis, spatially splitting the beam to use it as its own reference. The



:Fiber-coupled

| diode pump
Milleni FDM MT] MTZ
illenia - .
3.5 W Diode Tsunami Ti:Sapph Oscillator - MT3
Pump GMl
17w Output
Evolution Spitfire Pro Regenerative
Pump Amplifier
MS, ISO

Compressor
grating

Stretcher
grating

VS,

=0 0 0

Figure 1.2: The Spectra Physics laser system. Inset: A block schematic
of the system showing the Millenia pumped Tsunami oscillator coupling to
the Evolution pumped Spitfire Pro regenerative amplifier. Main: A more
detailed schematic of the system. The Tsunami Ti:Sapph gain crystal (GT1)
is pumped by the Millenia. The dispersion of the Tsunami cavity is then
modified by the prisms (PTx) and the aperture (ATx) to obtain stable, high
bandwidth pulses. The transform limited pulses then pass in the amplifier,
whose Ti:Sapph gain crystal is pumped by the Q-switched Evolution. After
being temporally stretched by a factor 10* by 4 passes of the stretcher grating,
pulses from the 82 MHz oscillator train are then gated at 1 kHz by the Q-
switch (QS1), rotating the polarisation to allow transmission by the thin film
polariser (TPS1). The pulses are kept9nside the cavity for 10 round trips, via
a combination of a 3 waveplate and a second Q-switch (QS2). The aperture
in the cavity (AS3) allows optimisation of the mode. After the 10 round trips
QS2 switches the polarisation of the pulse so that it can exit the cavity. The
beam divergence is set by a telescope (TSx) and re-compressed via 4 passes
of the compressor grating.




FROG technique solves a similar phase problem to the Gerchberg-Saxton
algorithm explained in section 1.5.4, where the magnitudes in both spectral
and temporal spaces are measured and constrain the phase such that it can
be solved via an iterative principal component analysis (PCA) algorithm- a
different class of algorithm to those used to solve the phase problems in the
rest of this thesis.

The beam is then split 40:60 into two beamlines. The 40 % beamline
(BL2) is used by the group for source development and other investigations
concerning the non-linear propagation of the pump pulses in a gas filled
capillary [29], however these results are not a subject of this thesis.

Instead, we focus on the 60% imaging beamline (BL1) where the beam
is focussed 5° off-axis by a 0° 50 cm focal length mirror to a spot with
wo = 25um inside a gas cell (section 1.2.4) typically filled with 80 mbar
Argon inside a 107% mbar backing vacuum. The vacuum is necessary to
improve the penetration of the strongly absorbed EUV radiation.

For such a gas cell geometry, the gas atoms experience a field strength of
|E| = 9.206 x 10" Vm™*, providing a Keldysh parameter of 0.0272 putting
these experiments firmly in the tunnelling regime where the probability of
HHG occurring is much higher.

For each experiment described in this thesis the experimental set up is
varied considerably and so this will be explained fully in the experimental
sections.

1.2.3 Semi-classical model for HHG

To fully model the process of HHG a quantum model is required. However,
whilst this is essential for the source development side of the project, for the
work detailed in this thesis a good understanding of the mechanics of the
high harmonic process and the characteristics of the generated radiation can
be obtained by treating the interaction as semi-classical.

A typical high harmonic spectrum is demonstrated schematically in figure
1.3.
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Figure 1.3: A schematic of a high harmonic spectrum. The generation can
be separated into 3 main stages according to the energy of the generated
photons: perturbative, plateau and cut-off.

Whilst low order harmonics can be treated as a perturbation of the classi-
cal atomic polarisation tensor, P = ey F, this does not acount for the plateau
and cut-off regions observed experimentally.

In 1992, Corkum et al. proposed a semi-classical model to describe the
various regions where the electronic model can be broken down into 3 main
steps: ionisation, propagation in continuum and recombination - as shown
in figure 1.4.
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Figure 1.4: The semi-classical method of HHG. a) The electron tunnels
through the atoms coulomb potential barrier. b) The free electron is then
accelerated in the laser electric field. ¢) The electron is accelerated back to
the parent atom, where it recombines. The interaction releases a photon of
high energy radiation.

When a strong laser E-field interacts with an atom, it can distort the
Coulomb potential such that an electron can tunnel through the barrier.
The propagation of the released electron can then be modelled by considering
Newtons equations of motion for an electron travelling in an oscillating E-
field, £ = Ejsin(wt).

€E0

() = 2
where e is the charge on an electron and m, its mass. FEj is the maximum
field strength during the interaction, w is the angular frequency of the laser
E-field and ¢ is the time evolution. We have here assumed that at ¢ = 0 the
electron is at rest at x = 0.
Integrating this equation to find the velocity (#(t)) and displacement x(t)
of the electron assuming at the time of release t,cicase, Z(treicase) = 0 and when

the electron returns at t,epurn, Z(treturn) = 0 We obtain

sin(wt) (1.4)
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x(t) = ci?ioe [cos(wt) — cos(wWiyerease )] (1.5)

and

GE()

x(t) = . [sin(wtyeturn) — sin(wt) + w(treturn — t) CoS(Whretease)]  (1.6)

A plot of the trajectories z(t) is shown in figure 1.5.

It is possible to note several interesting features of figure 1.5. For any
electron tunnelling out between 0 and 0.25, and 1 and 1.25 periods of the
driving field, the restoring force of the harmonic oscillator will be less than the
force exerted by the driving field. This means that the trajectories associated
with these release times will result in the ejection of the electron to infinity.

For the rest of the trajectories, since the E-field changes sign every half
period of the laser laser, the electron can return to z = 0 at twice the
laser frequency. The electron is acting as an oscillating dipole, which will
radiate and the corresponding radiation will hence be separated by twice
the fundamental frequency in the spectral domain at harmonics of the laser
frequency. Due to the 7w phase shift between generation times, the even
Fourier components in this transform cancel, and so only odd harmonics are
propagated.

To get some idea of what the maximum energy that can be generated is,
it is useful to plot the kinetic energy (K E) of the electron trajectories as a
function of their travel time, T = t,cturn — tretease- 10 calculate this, we set
Z(treturn) = 0, and substitute T = t,cpurn — tretease iNt0 equation 1.6 giving

treturn = l |: Lo CO.S(WT> :| (17)
w |wr — sin(wT)
Substituting this into equation 1.5 allows us to calculate the kinetic
energy, which is plotted as a function of travel time in figure 1.6.
We find from figure 1.6 that for any field strength, the maximum of this
curve is at 3.17 U,. Due to the conservation of energy, this gives a maximum
photon energy of

By = 317U, + I, (1.8)

where I, is the ionisation potential of the atom or molecule and U, is
the ponderamotive potential already defined. This defines our cut-off region
shown in figure 1.3, and is the only energy that can be caused by a single
time delay.

13
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Figure 1.5: The classical electron trajectories as a function of driving field
period. Between 0 and 0.25, and 1 and 1.25 periods, the restoring force is
not strong enough to bring the electron back to the 0 position. For these
trajectories, the electron is ejected to infinity. For the other trajectories, the
electron returns and photons emitted.
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Figure 1.6: A plot of electron travel time vs. electron kinetic energy on its
return to x = 0. It is shown that the maximum energy is 3.172U, where U,
is the ponderamotive potential of the driving field.
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Other energies can be created by 2 different travel times, which we class
as the short (S1) and long (S2) trajectories. These will be discussed further
a little later in this thesis.

1.2.4 Phasematching

When ensembles of atoms are considered, the net effect of the of the contribu-
tions describe before are affected by their phase in relation to each other. To
maintain a continuous build-up of generated radiation, the newly generated
light must be in phase with that which is already propagating. In order for
this to occur, the phase velocity for the pump frequencies must be the same
as for the generated radiation. This is termed ”phasematching” and can be
expressed for harmonic number ¢, with wavevector kq, when pumped with
light of wavevector kpump, as a difference in wavevector Ak which must be
minimised as described by equation 1.9

Ak = kg — ¢Kpump (1.9)

Ak is related to the non-linear coherence length [., the length over which
coherent build up is possible, by the following relation.

| = v
© Ak

For the imaging beamline, the generation geometry used is a that of a
simple gas cell as shown in figure 1.7, where the generation region is confined
to half the non-linear coherence length to optimise harmonic build up.

(1.10)
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Figure 1.7: The simple gas cell geometry used for HHG during this thesis.
Around 80 mbar of Argon flows in from the top of the cell and escapes
through the holes in the sides of the cell. The laser beam is focussed through
these holes into the gas, where the HHG process takes place.

For this geometry there are contributions to the difference in dispersion
from the plasma (Akplasma), neutral gas (Akpeutral), the focussing geometry
(Akgouy) and the atomic delay (AKatomic). Ak can be hence expressed as
equation 1.11.

Ak - Akplasma + Akneutral + AkGouy + Akatomic (111)

This section will consider each of these terms in turn and examine their
importance and origins.

Neutral gas and plasma terms

The neutral gas term here includes not only the non-ionised fraction of the
gas, but also the ions that are left by stripping the electrons from them.
Since the pump is far from absorption edges of the Argon gas typically used,
the removal of an electron does not change the refractive index of the gas by
a large amount. It is therefore common for these calculations [28] to make
the assumption that the ionised gas and neutral gas have the same refractive
index. In this case the difference in magnitude of the wave-vector due to this
effect can be expressed simply as

2mqP
Akneu ral —
tral /\laser

_ 2mqP

/\lase'r

[Real{n(\,)} — Real{n(Naser)}]
(1.12)

[5()‘(1 - 5<)\laser)]
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Where P is the pressure of the gas, related to the number density of gas
atoms.

For the plasma term, the EUV radiation does not interact with the plasma
due to its high frequency being far from the plasma frequency of the gas,
and so for high order harmonics the additional dispersion is solely due to the
interaction of the IR pump with the plasma. The refractive index that the
IR experiences is given by

n(w) = (1 - w;”;‘sm“f (1.13)

wlaser

where wyjasme 1s the plasma frequency given by

1
2\ 2
Wplasma = <nee > (114)

Me€g

Where, n. is the number density of electrons, e is the charge on an electron
and m, its mass and ¢, is the permittivity of free space.
The contribution to the phase mismatch is therefore

1
2mq Wy, >
Akpgsma = — | 1 — &= 1.15
" )\0 ( wl%zse'r ( )
In reality, this statement is actually more complicated since the plasma is
time dependent due to the dynamics of the interaction with the pulse. How-
ever, for the purposes of the work in this thesis, equation 1.15 is a sufficient
model.

Gouy phase term

The Gouy phase is a spatially dependent phase shift experienced by a Gaus-
sian beam through a focus. This is combined with a spherical wave phase
term and can be expressed as

1 1 [ kr? ]
exp|—————

P 2(zp + 12)
Where zp is the Rayleigh range and r is the radial co-ordinate with r = 0

defined as being on axis. This can be rearranged to give the phase explicitly
as

explig(r, z)] =

= 1.1
2z2p 412 (1.16)
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1 k2

z
o(r,z) = —= : +iarctan (| — (1.17)
2 Zr + 1z ZR
——
Spherical phase term Guoy phase term

The phase mismatch due to the Gouy phase shift can hence be expressed
as

AKGouy (7, 2) = VPGouy (1, 2) — GV PEST (1, 2) (1.18)

Gouy

Due to the reciprocal relationship of the wavelength in equation 1.17,
the mismatch due to high order harmonics is very much smaller than that
of the fundamental and so is discounted in this analysis. Therefore the total
mismatch due to the Gouy phase is given by

q k2 zZ
Ak(r,z) = =V —— +iarctan (—)] (1.19)
2 ZRr + 1z ZR

Atomic phase term

A final term is important in the phasematching process, that of the so-called
atomic phase delay. This is caused due to the frequency shift experienced by
the travelling part of the electron wavefunction after it has tunnelled out of
the atom as it increases its kinetic energy with respect to the bound part.
All electron trajectories need to be considered for this term.

Mathematically, this is expressed in terms of the quasi-classical action
3<treleasea treturn) where

S(treleaseytreturn) = /dS(KE — PE)
y (1.20)

1
= /dsﬁmev(t)2 + I,

for a given kinetic energy (KE) and potential energy (PE), for electrons
of mass m, travelling at a velocity of v(t). The gas ionisation potential is
given by I,,.

The atomic phase is hence given by

S (treleas& treturn)

¢at:_ A

and the contribution to the phase mismatch is

+ QWtrelease (121)
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Akat - qu)at (122)

Out of all of these terms, the plasma terms is the one that dominates in a
typical gas cell geometry. The remaining terms, in order of most important
first, are: the neutral gas term, the Gouy shift followed by the weak atomic
phase term.

1.3 Diffractive imaging

As outlined in the introduction of this thesis, the technological difficulties
involved in producing EUV /soft X-ray optics of high enough quality to
form an aberration free image make it somewhat impractical at present for
them to be used in a regular microscopy set-up. This section will discuss
the theoretical and practical aspects of diffractive imaging with a focus on
techniques used when imaging with high energy photons. The necessity of
phase retrieval techniques is discussed and the algorithms used throughout
this project are explained.

1.3.1 Diffraction

a) b) ©)

LR

Figure 1.8: The 3 main classes of interactions of light with an obstacle.
a) Reflection: The wave vector is reversed and the wave propagates back
down the path that it came from with perturbations from the interaction
with the obstacle boundary. b) Refraction: Light propagates through the
obstacle, but its wavefront is modified according to Snell’s law due to the
difference in refractive index at the boundary of the obstacle with the external
medium.c) Diffraction: The obstacle occludes part of the wavefront, and the
light scatters on passing it due to the perturbation.
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The behaviour of light at interfaces can be classed as one of three effects:
reflection, refraction and diffraction as depicted in figure 1.8.

Reflection is defined here classed as an inversion of one of the wavevectors
about an axis of symmetry. Refraction refers to the propagation of light as
it passes from a medium of refractive index n; to one of refractive index no
, which includes dispersive effects.

Diffraction, with which this thesis is primarily concerned, is the effect
of the distortion of a barrier on an incident wavefront. Such a distortion
can be caused by either positive (particles) or negative (holes) objects which
clip the wavefront as it propagates through free space. It is also possible,
in any given interaction for light to experience any combination of these
three effects. Strictly speaking, the diffraction phenomenon can be split still
further, with true diffraction arising from large periodic arrays of scatters.
For a single particle, the event is termed scattering. Interference is used to
describe situations that lie somewhere between these definitions. Since in
this thesis we are mostly dealing with weakly scattering light by aperiodic
objects, the term scattering will be used.

The following sections outline the angular spectrum model [30], which
is a technique that considers the propagation of the Fourier components of
light as it interacts with an obstacle, and provides us with some key results
and useful criteria to characterise a given scattering experiment.

1.3.2 The Angular Spectrum Model

The geometry of a typical scattering experiment is show in figure 1.3.2. A
plane wave with wavelength A is incident on a perturbing obstacle in plane
S at z = 0. The incident wave propagates parallel to the surface normal n.
After interacting with the obstacle, we consider the propagation exit wave
field (EWF), which is expressed as U(x,y,0) until it reaches the plane S’ at
z = 7/, where the field distribution can be described as U(x,y, z’). In the
absence of any strong polarization of the medium which would predispose it to
interact with the medium more in one dimension, we can assume the scalar
wave approximation. We also make the time-independent approximation;
assuming that the situation is static and stationary.

The EWF, U(x,y,0) can hence be decomposed by Fourier transform into
the components of its angular spectrum |, U (e, ,0) as given by equation
1.23.

o

Ula, 8,0) = 5—; / U(x,y,0)explik,(ax + By)]|dzdy (1.23)

—0o0
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S, z=0

u(x,y,z')

SReED =

>
k,

where a and [ are the "spatial frequencies” in the x and y directions
respectively. Spatial frequencies are related to the spatial period of features
contained within the sample bounds.

The angular spectrum model (ASM) has the key result that, the propa-
gation of the angular spectrum by a distance 2z’ can be expressed as equation
1.24

Ula, 8,2") = Ula, 8,0) explik.2' {1 — (a® + 62)}%] (1.24)

Taking the inverse Fourier transform of this provides the spatial depen-
dence of the wave-field at 2/, as given by equation 1.25.

o0

Ulw.#) = 5= [ Ula.6. ) explia(ar+ By)ldads (129

—00

We can learn a lot about the way that the scattered wave is propagating
by looking in more detail at the multiplicative factor in equation 1.24, namely
the explik.2'{1 — (a® + %)}2] exponential term.

The first interesting case is when o? + 52 > 1. In this case, the term
just becomes an exponential decay. Physically, this describes the spatial
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frequencies that are scattered to angles higher than 7 i.e. the evanescent
field.

The next interesting case is when o>+ 3% << 1. In this situation, equation
1.23 becomes:

ik.2' 5
U 2) = 25— [ Ua.5.0)expl-ikufar + fpldads  (126)

—0o0

Which is just the Fourier transform of the EWF. This means that when
the detecting plane S’ is a large distance away from the perturbing obstacle,
the relationship between the field at this point and the field at z = 0 is
just a Fourier transform relationship. This approximation is known as the
Fraunhofer condition. In order to clarify what is meant when we say ”very
far away”, we can look still further at the exponential term.

If we assume that o and [ are small, but not so small as to be negligible
in this term, then we can expand it in a binomial series, so that equation
becomes

k,z eikz 2!

o / U(&,B,O) eXp[_

—00

1k, 2

Ulz,y,2") = (o +5%)] exp|—ik. (az+By)|dadB

(1.27)
where the O(4) terms are sufficiently small enough to be neglected.
If we assume that the perturbing obstacle is the simple case of a square
hole with half width a, giving a top-hat output we can substitute into equa-
tion 1.27 to give equation

ketk=? 7 sin(k,aa) sin(k,fa) ik,z'

U N = -
(2,y,2) o e exp[——

(a®+3%)] exp|—ik. (az+By)|dadS
(1.28)
Since this equation is now separable into spatial frequencies a and 3, we
can, without loss of generality specify a single axis to investigate, and make
a simple substitution to make further manipulation clearer.

e=2" [ sin(v i2'v? ,
Ulx,y,2') = 5 / v< )exp[—Qk aQ]eXp[—w]dv (1.29)

—00
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with
v = kaa

We now introduce the Fresnel number, F' defined by 1.30 for the above
aperture of half width a at a distance 2z’ illuminated with light of wavelength
A

CL2

F=_ (1.30)

This can be rearranged and substituted into equation 1.29 to give:

2ma AnF

—0o0

ik, 2’ . )
Ulz,y,2') = ‘ / va(v) exp[— 0 | exp[—iv]dv (1.31)

This statement in the limit of F' << 1 reduces back to the Fraunhofer
limit as expressed in equation 1.26. As F' gets larger the extra term be-
comes more important, but quite how important depends very much on the
geometry of the experiment.

1.3.3 Some useful Fourier relations

Since all of the projections here rely on Fourier transforms, the following
sections list some useful relations that can help to further our understanding
of the diffractive process. To make the following derivations easier to follow,

we define the two dimensional Fourier transform operator F' and its inverse
FL

Shift theorem

The spatial distribution of light at z = 0 is described as U(x,y,0), and its
angular spectrum as U (a, (,0). By ASM in the Fraunhofer limit this is also
the same as U(z,y, 2').

If the distribution at z = 0 is shifted in both axes by 2’ and ¥/, the far-field
angular spectrum can be expressed as

A

FlU(@z—2",y—vy,0)] :/U(:B—:r’,y—y’,O) exp|—2mi(ax+ By)]drdy (1.32)

By changing variables so the ( =z — 2’ and £ = y — ¢/, we obtain
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FlU(x — 2,y — y/,0)] = e~ 2miloa+5v) / U(C,€,0) exp[—2mi(Cor + £f)]d¢dE

) (1.33)
Since the integral is now just U(«, £ 0), this can be reduced to

FlU(z =2,y —y,0)] = Ua, B 0)e 2+ (1.34)

So a shift in real-space is the same as multiplying the angular spectrum
by a linear phase ramp. The relation is also reciprocal. This is an important
result for all far-field diffractive imaging techniques since only the magnitude
of the angular spectrum is measured, a linear shift in co-ordinates can give
the same diffraction/speckle pattern. This ambiguity is trivial to solve by
various image registration techniques and so doesn’t impact the robustness
of the solution.

Convolution theorem

The convolution theorem is paramount to the interpretation of diffraction
patterns by eye, and indeed a lot can be gleaned from a result with no post-
processing by just applying this theorem.

If we define two functions a(z,y,0) and b(x,y,0) with angular spectrums
a(a, 3,0) and l;(a, B, 0) respectively, then the convolution (denoted by the ®
operation) of these two functions can be defined by:

a(x,y,0) ® b(x,y,0) = /a(m, y)b(x' — x,y — y)dzdy (1.35)

If the Fourier transform of both sides of this relation is now taken, and
shift theorem recognised, we arrive at

Fla(z,y,0) ® b, y,0)] = a(a, 5,0)b(, 5,0) (1.36)

And so the convolution operation is identified as being equivalent to the

inverse Fourier transform of the product of the functions respective angular
spectra.

Autocorrelation theorem

With the convolution theorem in mind we can note that if function b(z, y,0) =
a* (x,y,0) then the following relation holds true.
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/ ol )a* (& — oy — o dedy = Fla(z, y,0) ® a*(z, y, 0)

= (e, 8,0)d*(a, B,0) (1.37)
= la(a, 3,0))?
= ‘CL(.%, Y, Z/)|2

Which shows that the inverse Fourier transform of a measured far-field
scatter pattern is actually the autocorrelation of the EWF at z =0

1.3.4 Extension to discrete Fourier Transform

All of the above theorems can be extended by various means to cope with
the transition between continuous data sets to those that are quantised by
discrete measuring processes.

For the case of a scatter pattern measured on a sensor, a CCD for example,
the spatial co-ordinates in the sample plane are determined by the highest
recorded k-vector

2
dr = i

(1.38)

kmaaf:
where we are assuming a 1-dimensional system, with an element of k-
space dk defined as

dk = |k|do (1.39)

where df is the angular acceptance of a single pixel on the detector and
|k| relates to the radius of the Ewald sphere. k.. is hence directly related
to the total acceptance angle of the detector, Ndf for N pixels. For now we
assume the detector is curved to match the Ewald sphere. We can rewrite
1.38 as

2w
"= k[Ndg

The associated Fourier transform can be expressed as

(1.40)

H1 21 .
Ula, B, 2) = % ZN ZN Ulx,y,z) exp[_zm(i\o; il ﬂy)] (1.41)

T=—5 y=—73

with its inverse transform
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This means we can take advantage of the Fast Fourier Transform (FFT)
routines outlined by Cooley and Tukey [31, page 395], which instead of in-
verting the Vandermonde matrices, instead use outer products to circumvent
this computationally intensive process by a close estimate. For larger ar-
rays it is more convenient to use general purpose graphics processing units
(GPGPU) where the time taken to transfer the data to and from the graphics
card is usually less than the time saved in computation. Using GPGPUs for
CDI and ptychography means that usually the time bottleneck in the process
is usually the time spent acquiring data, rather than that of solving for the
phase; a statement that is particularly true for work in the EUV and X-ray
regimes where coherent flux can be limited.
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1.4 Coherence

Figure 1.9: A schematic showing the path differences involved in a far-field
interference experiment. Light of wavelength A is incident on an aperture
with edges defined by points P; and P,. Waves scattered from these points
has the maximum path difference 7.

Coherence is a very important property for diffractive imaging since it deter-
mines how well correlated a wave is with either another wave, or the wave
itself. If two waveforms are correlated then they can interfere predictably
and the previously described relationships hold true.

Since in diffractive imaging we are usually considering the interference of
a beam with itself, it is self-coherence is the property of interest, and can
define the mutual coherence function via the normalised autocorrelation as
given by

Ja@, y)a*(x — 2,y — ¢ )dady
a(0,0)

where z and y are defined as the variables under investigation.

Y11(7) = (1.43)

28



Coherence can be explained by considering a simple diffraction experi-
ment as shown in figure 1.9. Plane waves are incident upon an obstacle of
width P; — P5 and are then scattered into an angular spread. The path dif-
ference between scattering points is given by 7, the maximum possible path
difference being given by the width of the obstacle. For the resulting scatter-
ing to be coherent the incident waveform must therefore be coherent across
the maximum path difference. Incoherence in this format is apparent in two
different forms; temporal and spatial.

The spatial coherence considers the correlation of the waveform across its
spatial extent (y-axis in figure 1.9). It is clear from figure 1.9 that in order
for coherent scattering to occur, the wave must be coherent across the entire
width of the obstacle. A coherence length /4. can be defined as the point
when the magnitude of the mutual coherence function |y;1(7)| drops below
0.5. For a HHG source, the driving laser beam is fully spatially coherent,
and the generation process maintains this coherence, and so the EUV beam
can be considered to be the full width of the beam.

Likewise, the temporal coherence considers the correlation of the wave-
form across its duration. If the delay time associated with 7 between scat-
tered points is greater than the length of time which the wave is correlated
with itself, known as the coherence time ¢, then incoherent addition will occur
for these points. We can associate this with a coherence length liepmporar = cte-
For HHG sources, due to their laser driven nature, the temporal coherence
length is not a single value since all driving pulses are correlated with each
other in time. The limitations of this statement for CDI are examined ex-
perimentally in chapter 2.

1.5 Coherent Diffractive Imaging

As the previous section showed, the EWF immediately after the object can
be determined by measurement of the field at a plane at distance from the
object and inverting the field by the appropriate transform. Experimentally,
since detectors count photons and do not measure their state the phase in-
formation is lost during detection. It is possible to extract this information
by observing the coherent interference pattern produced as a function of de-
lay. The processes of inline holography and Gabor holography are versions
of interferometry that encode this phase information into the recorded inten-
sities. The problem can then be directly inverted and the full EWF can be
retrieved. However, these processes are ultimately limited by the signal to
noise issues.

Instead, it is more common to record the magnitude of the field at 2" and
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resolve the phases by a process known as phase retrieval. It is by this process
that the techniques of crystallography and CDI work.

1.5.1 History

In 1912, Lawrence Bragg successfully showed that it is possible to interpret
the far-field diffraction pattern of crystals as reflections from different crystal
planes. For simple structures it is sufficient to interpret the diffraction pat-
terns from different sample orientations by eye. However, for more complex
structures it is necessary to apply phase retrieval to determine the EWF,
which is related to the density of electrons in the object.

The diffraction pattern from a simulated crystal of an acorn (figure 1.10a))
is shown in figure 1.10Db).

It is possible to see the Bragg reflections forming in this imaging from
the periodic array. The problem with the crystallographic method is that
it requires the sample to be crystallised. This is a severe limitation on the
nature of samples that can be imaged.

In 1954, shortly after releasing a paper on how to solve the phase prob-
lem for crystallography [32], David Sayre suggested that it may be possible
to reconstruct the EWF's of aperiodic, non-crystalised objects if the far-field
speckle pattern is sufficiently sampled. An example of such a speckle pat-
tern from a non-crystalline object (figure 1.10c)) is shown in figure 1.10d).
Sayre took the first ever speckle pattern image of a diatom in 1985 using
synchrotron radiation [33], but no reconstruction was attempted from this
data. The reason for this was presumably the lack of access to a computer of
sufficient power, as well as the fact the fact that phase retrieval algorithms
for aperiodic structures were still in their infancy. It took until 1999 for Miao
et al. to take the first X-ray phase retrieval data and reconstruct it [34].

Even 20 years after Sayre presented his paper on the idea of CDI, many
researchers remained unconvinced that unique phase retrieval from such a
speckle pattern was possible. Even though the existing crystallographic
methods allowed structure determination via phase retrieval, they relied on
some fundamental a prior: information- that the scattering structures were
single atoms whose structure factors were fairly well understood. The con-
figuration and molecular morphology of these atoms was the reason why
crystallography was necessary.

In CDI, although the structure factors of the atoms are known, the ob-
jects under study are made up of many thousands of these and so interference
between all of these scattered wavelets are what form the EWF. This is the
unknown and is much harder to see a way to reconstruct the EWF uniquely
without at least some prior knowledge of its characteristics. Gerchberg and
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Figure 1.10: Comparison of crystal and aperiodic sample scattering. a)A sim-
ulated crystal array of an acorn with b) Its Bragg scatter pattern showing
discrete well defined peaks.c) an isolated acorn sample with d) its oversam-
pled speckle pattern. Both scatter patterns have log,o colour axes
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Saxton (GS) [35], had shown in 1972 that if the field magnitudes in at least
two planes were measured then the missing phase information could be re-
constructed via an iterative algorithm. Fienup then formulated a modified
version of the GS algorithm, whereby the initial realspace guess, otherwise
known as the "support” was just a non-zero region inside a zero padded real-
space [36]. This technique is termed ”error reduction” (ER) and was the first
a priori phase retrieval algorithm. In the same paper, Fienup then went on to
improve this algorithm by including information from the previous iteration
in the update for the next.

Since these algorithms were designed, understanding of 2-dimensional
phase retrieval has leapt forward. The next sections put forward a formalism
for the algorithms used in the work detailed in this report and detail the
nature of their origin. First, however, we discuss the nature of the support
and how this determines the required sampling of the signal in Fourier space.

1.5.2 Sampling requirements

The scaling of realspace in relation to Fourier space are given by equa-
tion 1.40. It is clear from this that the pixel spacing in one of these domains
is inversely proportional to the total field of view (FOV) in the other. So the
number of pixels in real space that lie outside of the support and provide no
extra information for our reconstruction are actually working to sample the
data points in Fourier space more finely. Indeed, it is upon this basis that
Fourier based data smoothing works [31, page 495]. The effective redundancy
of points, given by equation 1.44, is referred to as the oversampling ratio O.

Total number of pixels

0= (1.44)

Number of pixels inside the support

Now we have outlined this relation, the important task is to find out what
oversampling factor is necessary for the recorded data to contain enough
information to reconstruct the input faithfully.

If we consider the case of a 1-dimensional object as shown in figure 1.11a),
with recorded diffraction pattern shown in figure 1.11b), the spatial autocor-
relation of the object given by equation 1.37 allows a maximum space for
the object to exist within as shown by figure 1.11¢c). Therefore, in order to
appropriately sample all of our intensity data once, a real-space field of view
is required that contains the entire autocorrelation: twice the width of our
object. This sets the number of pixels per fringe in Fourier space. In actual
fact, to prevent aliasing, the signal should be sampled at twice the Nyquist
frequency, giving an oversampling factor of 4. Since interesting EWF’s for
use in CDI are actually complex valued, and the width of the autocorrelation
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Figure 1.11: The 1-dimensional oversampling criterion. a) A simple object.
b) The autocorrelation of a) showing the minimum area we can suppose a)
will take up in realspace. c¢) The speckle pattern (with amplitude on logig

scale.
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also depends on the phase information, the minimum 1-dimensional oversam-
pling ratio required is usually taken to be 5 [37]. It is actually possible for
this reason to use a thresholded autocorrelation as the support for a phase
retrieval routine [38], so long as the oversampling condition is met.

Now, if we try to generalise this rule to higher dimensions, a first ap-
proximation [ref] is that we must oversample by the same criteria as the
1-dimensional case, but in each of the additional dimensions. For example, a
2-dimensional signal would have to be over-sampled by 5 in the x dimension,
and 5 in the y dimension. However, Miao et al [39] pointed out in 1998 that,
since in n-dimensional space, each voxel is constrained n times, the signal
actually needs to be sampled less finely in each dimension by a factor of \/n.

1.5.3 The modulus constraint

For all CDI phase retrieval problems, the hard constraint on which all recon-
structions are based is that of an oversampled field-intensity measured at a
given point. For this project the measured intensities are the square far-field
magnitudes measured in the Fraunhofer regime. This gives a definite value
that we know the recovered EWF must fit to be a solution to the phase
problem.

For this case we can define the modulus constraint by the projection onto
the set for all possible solutions (x equation 1.45) that fulfil the condition of
matching the measured field magnitudes when propagated to Fourier space.

Proala) = Y rourier Elm] (1.45)

| £l

where F is the Fourier transform operator in this case. Indeed this opera-
tor can change for difference geometries, but in general is the operation that
minimises the distance to project on to each of the sets involved. [pyrier are
the measured Fourier-space magnitudes.

With this as a given, the next stage of applying a constraint on the
realspace projection can be approached in a number of different ways. Once
these have been defined, the updated iterate can then be formulated. In the
following sections a number of these methods are demonstrated.

1.5.4 Gerchberg-Saxton and ER algorithms

The original Gerchberg-Saxton (GS) and Error Reduction (ER) algorithms
for CDI work under the same basic principles, but with slightly different
support set projections.
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The realspace projection

For GS, we can define the following realspace projection, where I, are the
measured realspace field magnitudes.

F WV,

Pl) = =5

(1.46)

where F! is the distance minimising inverse Fourier transform operator.
For the case of ER, where the support constraint is not measured, we
instead define a guessed support D, and change the realspace projection to

P(z)=F'2] €D (1.47)

P.(2y=0 ¢ D (1.48)
The update

The iterative update for both of these algorithms is achieved by applying
the above projections in turn to the current iterant g, as given by equation
1.49. This gives the updated iterant x,.; for iteration number n.

gk+1 = Prs [Pmod(gk)] (149)

To get a feel for how this type of algorithm behaves, figure 1.12 shows
a simple example of two complex sets represented by lines on an Argand
diagram. The point that fits both sets is at the intersection of the two lines.
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Figure 1.12: The convergence of the Gerchberg-Saxton/Error reduction algo-
rithms in the simple case of two complex-valued line functions in the presence
of one minima. Starting from a random point, the algorithm projects on to
each set in turn, minimising the distance between each point. The algorithm
converges at the crossing point since this is where the distance between pro-
jections is minimised. The iteration at each step is plotted here.

The algorithm starts from a randomly generated point and is projected
onto each set in turn by minimising the distance between the set and the
current projected point. As is clearly shown in figure 1.12, each iterant moves
along one of the sets until it reaches the point when successive iterations have
no additional effect. This point is the intersection between the two sets.

For such a simple problem, this approach is ideal since it finds the near-
est minimum in constraint space. However, for more complex problems, in
particular for those that are non-convex [40, Chapter 1] such as that shown
in figure 1.13, this can cause stagnation of the algorithm in local minima
which are dependant on the starting point chosen. For such problems, these
algorithms are a good part of the solution process, but other algorithms such
as those discussed in the next section are required in order to find global
minima.
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Figure 1.13: The convergence of the Gerchberg-Saxton/Error reduction algo-
rithms in the simple case of two complex-valued line functions in the presence
of a local minimum and a separate, global, minimum. Here, the algorithm
has converged on the local minimum, a pitfall of these types of algorithms.

1.5.5 Hybrid Input/Output

The idea of a Hybrid Input/Output (HIO) algorithm was first proposed by
Fienup in 1978 [36]. The basic concept is to use feedback from the previous
iterant to update the solution. The idea is to prevent stagnation and the
missing of global minima that are experienced in GS and ER. HIO is actually
a special case of a family of algorithms called difference maps as we will see
in a later section.

The realspace projection

For the HIO algorithm we can define a realspace projection P,¢ that can
be defined by the following equation for the m! iteration.

Pz’ )=F '] eD (1.50)

m m
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Pry(ay,) = F7V ) = BF 2, )] ¢ D (1.51)

m

where 3 can be any positive or negative value, but 8 = 0.9 is the most
typical value for work in this thesis. As with the previous section, D here
represents the support in realspace.

The update

As with the GS and ER algorithms, the update for the next iterant g,
is just given by applying each of the projections in turn to the current iterant

k-

Gk+1 = Prs[Pmod(gk)] (152)

If we again apply this to our basic model of the intersection of two complex
lines, the convergence path is shown as in figure 1.14 below.
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Figure 1.14: The convergence of the Hybrid Input/Output algorithm in the
simple case of two complex-valued line functions in the presence of one min-
ima. Starting from a random point, the algorithm projects on to both sets
simultaneously. The difference between both of these projections is then
taken, scaled according to a feedback constant, and added to current iterate.
The algorithm converges at the crossing point since this is where the distance
between projections is minimised, and hence the feedback tends to zero.

This algorithm does not keep the iterate constrained to the individual
sets themselves, but instead is free to roam the complex space. This gives
it the opportunity to explore all possible minima that could exist before
converging on a global minima. Figure 1.15 shows the convergence of the
HIO algorithm but for a situation where there are local minima. The iterate
is actively repelled from the local minima, allowing it to explore and find the
global minima. This makes it much more useful for non-convex problems such
as that 2-dimensional phase retrieval. In reality this is used in combination
with the ER algorithm, switching between them until the best fit to the data
is found.
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Figure 1.15: The convergence of the Hybrid Input/Output algorithm in the
case of two complex-valued line functions in the presence of a local minima
and seperate global minima. The algorithm is actively repelled by the local
minima, since the distance between the two projections on to the sets at
this point stays constant, and does not decrease to zero. The iterate is then
attracted to the true global minima, where the difference tends towards zero.

1.5.6 Difference Maps

As previously mentioned, the HIO algorithm is a specific case of a class of
algorithms referred to a difference maps (DMs). The DM method outlined
in this section is that proposed by Veit Elser [41] and expounded upon by
Pierre Thibault in his thesis [42].

The DM method comprises of taking increasingly more accurate estimates
of the search space, the difference of which informs the update of the iterate.

Projections and estimates

For the case where the minimising projector is a Fourier transform, we
can define the projections to each set as equations 1.53
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P.s(x) = Flx] (1.53)

and as shown in equation 1.54

I ourierF 7’
Pralsl) = YA rourir L] (154)
| E'l]]
These projections are then applied to the current iterate to give two
estimates y; and s

1(2) = Prs[(1+ 72) Pnoa(z') — 722] (1.55)

Y2(7) = Proal(1 +71) Prs(w) — mi7] (1.56)
where v, and v, are real-valued feedback constants which we will explore
shortly.
The update

The update of the iterate for the DM method then used the difference
between these two estimates to inform the feedback in the algorithm. This
can be expressed for iteration number n as

Tnt1 = Tp + B(Y1 — yo) (1.57)
This convergence is shown for our simple two line problem in figure 1.16
for a variety of different parameters. For g = 0.9,y = %3 and 7, = —1,

the difference map takes on the same characteristics as the HIO described
previously a result that is proved combinatorially in [42].
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Figure 1.16: Difference map convergence on the intersection of two simple
complex sets. It is seen that by changing either the value of the § or the v
coefficients, it is possible to change the size and how compressed the search

space is.

The key thing to note about all difference map techniques is their propen-
sity to avoid traps in local minima (demonstrated by the parameters plotted
in figure 1.17), predominantly because the iterate is not actually itself con-
fined to either of the sets. The size of the region of constraint space that is
explored by the algorithm is defined by the v and  coefficients, and so can
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be tuned according to the particular problem. The solution is found when
the difference between the estimates goes to zero (or below a preset noise
threshold). At this stage, the iterate can be projected on to either one of the
two sets to obtain the solution.
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Figure 1.17: Difference map convergence on the intersection of two simple
complex sets in the presence of both a local and global minima. It is seen that
by changing either the value of the 8 or the v coefficients, the convergence
path is altered, but the iterate is always pushed away from the local minima
and attracted towards the global minima.
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1.5.7 Additions: Reducing the support

Whilst it is theoretically possible for combinations of the above CDI algo-
rithms to converge to a solution with any initial support after a significantly
high number of iterations, issues such as twinning and phase vortices [43] can
cause a failure to converge. Unaided, this makes the choice of the support
set a critical variable.

There have been various attempts at modifications to the phase retrieval
‘recipe’ that aim to change the support set as the algorithm iterate evolves,
to provide a better constraint.

One of these methods was introduced by Fienup in 1999 and is known
as the reduced support method [44]. This technique is specifically targeted
at reducing the impact of the twin image problem on the convergence path.
The concept is that after a fixed number of iterations of phase retrieval
starting from an initial support of the object’s autocorrelation, the support is
halved in area for a small number of iterations before reverting to the original
support constraint. The idea is to bias the solution towards a particular
orientation in real-space; an idea that seems to work well in the literature.

For the work carried out in this thesis, another method designed by
Marchesini et al [45] termed ‘shrinkwrap’ is used. This technique again
involves reducing the support after a given number of iterations of HIO, typ-
ically 50 for the experiments detailed in this thesis. The idea is to improve
the estimate of the real-space constraint by convolving the current iterate’s
amplitude with a normally distributed intensity mask with a small FWHM
- typically 3-5 pixels - before thresholding to give a hard edge. This has the
effect of blurring out the current solution, allowing room for relaxation of
the next iterate, whilst biasing the current solution to a particular spatial
distribution.

The shrinkwrap method has been adopted for reconstructions used in this
thesis since it seems to work best for the data acquired.

1.6 Iterative Ptychography

Ptychography was initially conceived, in a similar fashion to holography, to
overcome technical limitations of the resolution due to lens aberrations of
scanning transmission electron microscopy (STEM) [46]. Broadly speaking,
ptychography is a method of solving the phase problem by inverting a series
of scatter patterns (in either the near or far field) to recover the complex
transmission function of an object via the use of the convolution theorem,
overcoming the inherent phase ambiguities in phase retrieval by modifying
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the probe in a known way [47].

Most commonly, and for the case of the research detailed in this thesis,
the probe modification is achieved by a lateral scanning of the probe relative
to the sample in overlapping steps (see figure 1.18 with the deconvolution
hence making use of shift theorem (section 1.3.3).

Figure 1.18: The basic premise of iterative ptychography. An extended object
is scanned by apertured illumination at overlapping regions in real-space
and the respective speckle patterns recorded. The phase is then solved for
algorithmically.

Whilst direct inversion is indeed possible [48], a far more robust and com-
monplace methodology is to solve the problem iteratively. The first example
of such a solution was shown by Rodenburg in [49] using the ptychographic
iterative engine [PIE]. This first algorithm, whilst successful, requires very
accurate knowledge of both the incident probe and the stage positions, which
limit the possible resolution of the reconstruction.

To alleviate the problem of knowledge of the probe, a further extended
ptychographic iterative engine (ePIE, [50]) was developed. Other algorithms
were also developed independently of this [51], based on the difference map
formulation shown in section 1.5.6. Furthermore, it was then shown that,
due to the huge constraint provided by both the recorded data, and the
scanning overlap, knowledge of the probe positions was also not required in
such depth, and could in fact be retrieved in the algorithmic process without
any further a priori information [52]. These two advancements made the
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use of iterative ptychography for high resolution microscopy a completely
standalone technique.

Since these developments, it has also been shown that iterative ptychog-
raphy is somewhat immune to partial coherence in both spatial and temporal
domains by a modal decomposition of the probe [53], [54]; an addition that
has proved especially useful in the synchrotron community where coherent
flux can be a limitation.

Finally, and most recently, it has been shown that, since the probe part
of the convolution also includes the shift, and is hence 4-dimensional, the
tradition CDI requirement of Nyquist sampling of the recorded intensities is
lessened so long as the step size is decreased appropriately [55], [56].

Since its initial use in electron microscopy, the application of iterative
ptychography to various material science and biological problems is a fast
growing technology in optical and X-ray fields. Indeed there is even a com-
pany (Phase Focus Ltd, [57]) based on providing optical instruments for such
purposes. At the cutting edge of present X-ray research in iterative ptychog-
raphy are the team at the cSAXS beamline at the Swiss Light Source, who
can currently achieve 11 nm resolution in their planar reconstructions [58],
and 16 nm voxel size when combining ptychographic reconstructions of ro-
tational projections with tomographic reconstruction techniques [59]. There
is also a considerable push to apply iterative ptychography with laboratory
based sources of short wavelength resolution, such as the work shown in
chapter 3 of this thesis.

The following section describes the two most commonly used variants of
iterative ptychographic algorithms as mentioned above; namely Rodenburg’s
ePIE and Thibault’s difference map method.

1.6.1 Difference Map method

The difference map method for iterative ptychography is of a similar format
to that described for CDI, but with a few alterations to the updates.

The Projections

As always with the phase retrieval routines the dominant constraint is
that of the modulus constraint given here as a reminder as

Poa(z) = VrourierF'l2] (1.58)

|Flz]

which must be true for all Fourier projected views.
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For the difference map routine, the support projection for each view is
defined as being the product between the object and probe wave fields. For
the j™ view with the probe at displacement r; these can be expressed as

P., = P(r—r;)O(r) (1.59)
where O and P are defined as follows
. Prr.
Or) = 2= L") ; (1.60)
> |P(r =)
and
. O* 1.
Pir) = 20" . (1.61)
> 10(r +15)]
The Update
We again define our two estimates y; and yo, but here we set vp = —1

and Ypg = %3 and § = 1 as the most common values used [51].

= Prsx
N RS (1.62)
Yo = Pp[2Prsx — 1z
The update is then given as
Tpy1l = Tp + Y2 —
+1 Y2 — U1 (1.63)

= &, + Pr[2Prs — x,] — Prszy

For this algorithm the updates are carried out every full iteration of the
algorithm and so it not so prone to stagnation in local probe iterate minima.

1.6.2 Extended Ptychographic Iterative Engine

The ePIE routine has a different approach to that of the DM routine, which
will be described here.

The Projections

The real-space projection, is very similar to that for the DM routine,
except applied at every view instead of every iteration. The real-space pro-
jection is hence expressed as the EWF for the ;™ view, ¢;(r)

Y;(r) = O(r)P(r — ;) (1.64)

47



The Update

In difference to the DM routine, each iterate is actually confined to the
constraint sets. For this reason, the Fourier transform operators must be
included in the updates for p,,.q to still be valid.

O(r) and P(r) are defined very differently to the DM routine with

P(r—r;) 4 (] — (e
B e E Wmea FLEs (D] = 45(r)] - (1.65)

max

Ojy1(r) = O0;(r) +

and symmetrically

o O*(T’ + T’j)
O(r — 1)1

max

Pi(r) = Py(r) + [ o (F o (M) = 45(r)] (1.66)

Since the iterate is confined to each set in turn in ePIE, and also due to
the update of the probe at each view, the convergence of this algorithm can
be thought of as being closer to that of ER for CDI and can be more prone to
stagnation in local minima. However since the phase problem for ptychog-
raphy is so over-constrained, the difference between the two algorithms in
experimental applications is more subtle than this and not particularly well
understood.

1.7 Fitness Parameters

This section describes a couple of useful parameters that can help determine
when the phase retrieval algorithms previously described have reached a good
fit to the data. These parameters are: The g and the Fourier-space error.

1.7.1 Real-space Error

The real-space error [42] gives a very good handle on how stable a given re-
construction is. The idea is that by taking the difference between the current
iterate (x,(z,y)) and previous iterate (x,_1(x,y)) in a convergence path, and
summing the array over all its spatial elements (z,y)(as per equation 1.67),
any variances in these iterates can be found, and hence a final fit value de-
termined.

rkE, = Z (2, y) — Tp1(x,y) (1.67)

All x,y
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It can be noted that this parameter with the summation removed is ac-
tually the same as the difference term noted in the difference-map methods
for phase retrieval (sections 1.5.6 and 1.6.1).

Whilst this measure is useful for measuring the convergence of ptycho-
graphic object reconstructions, it is not necessarily useful for monitoring the
progress of CDI algorithms. This is due to the ambiguities inherent in far-
field CDI reconstructions. Since only the magnitudes of the angular spectrum
are measured, real-space reconstructions can be subjected to both arbitrary
phase offsets and ramps, both which can make the real-space error unreliable
for CDI reconstructions.

1.7.2 Fourier space error

The Fourier-space error [45] is another useful fitness parameter, which quan-
tifies how close the current iterates Fourier transform (#,(ky,ky)) fits the
input data (Ipeqs(kx, ky)) as a whole. It is characterised by a cost func-
tion( 1.7.2).

Al (fn(kx’ ky) - Imeas(kx7 ky))
fE, = — (1.68)
Z Imeas<kX7 ky)

All kx, ky

1.8 Resolution

It is apparent to any student of microscopy that there are a broad range
of definitions of what constitutes the smallest resolvable feature in a mi-
croscope system. Indeed, usually the most useful criterion to know is ac-
tually the response of the system over all resolution components, charac-
terised by a transfer function. This section describes three such functions:
The crystallographers’ R?(section 1.8.1), the phase retrieval transfer function
(PRTF)(section 1.8.1), and the Fourier ring correlation (FRC) (section 1.8.1).
However, when comparing microscopy systems it is also useful to be able
to reduce this transfer function down to single figure of merit and compare
this to the best that could be hoped to be achieved according to certain
theoretical criteria. The criteria considered in the following sections are the
Rayleigh criterion (section 1.8.2) and the Sparrow criterion (section 1.8.2).
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1.8.1 Transfer functions

When comparing microscopy systems based on similar technologies, it is very
useful to consider the response and stability of the microscope system for all
resolution components. In the CDI case this information is dominated by the
computational element. This is information that can be readily characterised
by the various transfer functions that are described in this section.

The crystallographers’ R? measure

For a single reconstructed wave-field, it is useful to use the crystallographer’s
R? parameter [60] defined by equation 1.69 to judge how accurately the re-
constructed far-field magnitudes Z fi,q;(q) match the recorded data I,,cqs((q))
for each spatial frequency q.

R*(q;) = %: % (1.69)

This is a useful data fitness parameter, but doesn’t show how robust
the given solution is. It may be that perhaps that a given feature only
reconstructed once, and that is what is being quoted here.

The phase retrieval transfer function

To give a better judge of how reliable the resolution is for a given resolution
element q, it is more useful to run the same reconstruction many times (>
100) and to look at the far-field phase 1(q error over all of these for each
spatial frequency when the trivial shift and absolute phase ambiguities have
been removed. This corresponds to the phase retrieval transfer function
(PRTF) [61].

PRTF(q) = [(explit)(q])|

xfznal(q) >| (17())
% inai(al)

It is suggested that a resolution cut-off can then be taken to be measured
when the PRTF drops to 0.5 [43]. Whilst useful for quoting a single figure of
merit, as mentioned above, the real power of the PRTF is that it tells how the
entire spatial frequency spectrum is transferred through the system, and so
it is this entire plot that is interesting. Also, if the EWF under investigation
has no features at a given spatial frequency, the PRTF may drop at these
points due to the detector noise, which clearly is not a real result.
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In some journal articles some researchers have found it useful to instead
use the Weiner filtered version of the PRTF (wPRTF) [62], in order to get
a smoother roll off at the higher resolution data as the signal to noise ratio
gets worse. This helps to get a better 50% cut-off to give a single number for
the resolution. However, as previously iterated: this is not what the PRTF
is for. For this reason the wPRTF is not used in this thesis and instead the
full PRTF curve will be shown and quoted along with the Sparrow criterion.

Fourier ring correlation

For ptychographic datasets, the PRTF is still a nice way of measuring the
reliability of the reconstruction for a single view. However, when data for
large numbers of views (> 100) are collected, it makes calculation, let alone
interpretation, of these curves infeasible. For this reason it is useful to look
at other, more developed areas of research to find a suitable figure of merit.

In macromolecular crystallography and 3D cryo-electron microscopy (cryo-
EM), a standard measure of the reliability of data has been decided upon,
namely Fourier shell correlation [63]. This measure involves finding the cross
correlation of two data-sets of the same object as a function of recorded spa-
tial frequency. For the lower dimensional data of 2D ptychography one can
consider the similar process of Fourier ring correlation (FRC) [63] defined by
equation 1.71 for radial (r) distributions F; and Fb.

zaun Fy(r)F5(r)
Zall'ri |Fy(r)[? Zalm | Fo(r)[?

This curve will have a magnitude of 1 for resolution features that are
correlated perfectly between the two reconstructed images, and a value of 0
for features that are completely uncorrelated.

For both FSC and FRC, there is still the urge for researchers to quote a
single number for the resolution, mostly for publication reasons. In [64], the
authors argue that the best criteria one can suggest for the resolution cut-off
is when the signal of this correlation disappears into the noise, i.e. when
the signal to noise ratio = 1. In cryo-EM applications, the data recorded is
usually redundant enough that reconstructions from a data set can be divided
into two and compared to each other. For this reason the "half-bit” criterion
was decided upon for the figure of merit, representing the point where the
signal to noise ratio for each half data-set is 0.5 - the total dataset hence
having a ratio of 1. However, for the ptychographic case, where the same
probe function can be used across multiple objects of interests, we can take
the FRC of the probe functions across full data-sets, keeping the cut-off at a

FRC(r;) =

(1.71)
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signal to noise ratio of 1. Even better than this would be taking the FRC of
two independant object functions, if they are available.

For the work in this thesis, the full FRC curve will be shown for each
ptychographic dataset presented along with the 1-bit cut-off.

1.8.2 Resolution by comparison to figures of merit

For comparison of results across different microscopic techniques, it is usu-
ally move preferable to obtain a single value for the resolution of an imaging
system. Practically, this can be achieved by comparing the smallest resolv-
able feature to the theoretical limit of the capability of the microscope. In
this sub-section, two of the most popular theoretical formulations for a mi-
croscope are discussed.

The Rayleigh/Abbe/Helmholtz diffraction limit

The most commonly used theoretical limit for a microscope is that set out
by Abbe [8] and Helmholtz [9], building on work done by Rayleigh [10]. This
limit is expressed mathematically for a circular objective by equation 1.72
for a wavelength A and objective with a numerical aperture NA imaging a
feature size dd.

1.22)
od = NA
Physically, this factor of 1.22 comes from the fact that the smallest object
imaged by a circular lens will be a Bessel function. The smallest resolvable
feature according to this criterion is when the peak of one Bessel function

overlaps with the null point of a second one. This is shown graphically in
figure 1.19.

(1.72)
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Figure 1.19: The Rayleigh diffraction limit. When two 1D Bessel functions
are closer than 1.22 radians, they cannot be distinguished from each other
since the null of one functions is masked by the maxima of the other.

At separations less than this distance, it is argued that the two shapes
cannot be distinguished from each other since the signal does not drop down
close enough to zero between the two features.

The Sparrow Criterion

The Sparrow criterion is another diffraction limit measurement commonly
used for astronomical purposes, but provides a different take on the limit of
resolution. The method was initially developed by C.Sparrow [65] for the
spectrographic case and is more useful than the Rayleigh criterion since it
can be adapted to measurements with a discrete grid.

As with the Rayleigh diffraction limit the case considers two point sources,
represented by their respective Bessel functions for a circular objective aper-
ture. Instead of the dip in the measured intensity signal as seen in Rayleigh
limit, the Sparrow criterion instead considers the two objects unresolvable
when the gradient of the incoherent sum between the two sources goes to
zero. This is most useful for the discrete case considered here in this thesis
since we can no longer distinguish between two points when their separation
is less than two pixels on the discrete grid. At this stage the features are
unrecognisable from each other. Again, this can be shown graphically as in
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figure 1.20.

Gradient of summed
intensities goes to 0

sine(x-a)|*
[sinc(x+a)|?
|sinc(x-a|* + sinc(x+a)|?

Figure 1.20: The Sparrow diffraction limit. When two 1D Bessel functions
are close enough that the gradient of their incoherent sum is 0, they cannot
be distinguished from each other.

1.9 Summary

This chapter has outlined the background and concepts for the work pre-
sented in this thesis. The general scope of how HHG CDI/iterative ptychog-
raphy fits into general microscopy techniques was discussed and comparisons
to other techniques were drawn.

The physics of the HHG process were introduced and their application and
optimisation for the work presented in this thesis were discussed, along with
details of the equipment required to generate such radiation in a laboratory
environment.

Lastly, the algorithms used for phase retrieval were outlined and some
simple examples of their behaviour were discussed for both CDI and iterative
ptychography. Some parameters for monitoring the goodness of the fit during
the algorithms progression were outlined. An overview of how to quantify
and characterise the resolution of the resultant CDI/iterative ptychography
images were put forward and clarified.
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Chapter 2
Coherence in CDI

This chapter introduces ideas of how partial temporal coherence can be
treated in the CDI process to reduce integration time and radiation damage.
In comparison to work by other groups using a modified algorithm [66, 67,
the limitations of the fully coherent CDI routines are investigated and a re-
sult showing a reasonable reconstruction using 20% bandwidth is presented.
This work has been in the Institute of Physics Journal of Optics [68] and
has been presented at multiple international conferences [69, 70].

2.1 Background

Since scattering by an aperiodic sample results in reduced signal to noise
compared to by a crystal, it is essential in CDI to use as much of the probe
flux as possible, which can require a compromise on the beam coherence
properties.

A single exposure technique termed ‘polyCDI’ [66, 67], allows the use
of broadband polychromatic radiation, alleviating the limitation on flux im-
posed by the need to monochromatize the X-ray beam; a technique com-
plemented by [71] for spatial coherence. The concept of these algorithms is
that if the EWF for each of the temporal/spatial modes have similar speckle
patterns - i.e. the illumination wavelengths are away from absorption edges -
then this provides an additional constraint in the fit to the recorded speckle
pattern, allowing the spectrum to be recovered.

The limitation that the sample be non-dispersive does not limit the use-
fulness of the technique since the region of interest may be buried beneath
a layer of material opaque to other forms of radiation, but transmitting and
non-dispersive in the EUV or soft X-ray. An example of such an object is
shown for clarity in figure 2.1 below.
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Buried particles e.g. ViSibly opaque
Nanoparticles material

Figure 2.1: An example of a buried sample that could not be imaged via elec-
tron or optical imaging. Broadband X-ray CDI could recover the structures
of such buried objects.

However, polyCDI algorithms generally require a good initial starting sup-
port of the object in order to break the ambiguity between spectral and spa-
tial contributions to the scattering angle. A support for buried samples would
be hard, if not impossible to determine. An alternative broadband technique
is available for pulsed sources [72, 73], which modulates the spectrum via
spectral interference from identical, but delayed-scanned probe pulses. How-
ever, such techniques have yet to be proven in the lower signal-to-noise, and
higher resolution, far-field regime.

2.2 Theory

To fully understand and characterise the temporal coherence of any system it
is necessary to find the complex mutual coherence function (see section 1.9).
This provides a measure of how well the wave form correlates with itself over
a large distance, and can be parameterised by a temporal coherence length
l. representing the half width at half maximum (HWHM) of the mutual
coherence function. This definition is good for accelerator based sources of
short-wavelength radiation where the coherence length is dependant on the
relativistic length of the insertion device used to generate the radiation.

For most laser based sources however, the mutual coherence function can
be quasi-infinite, so the effective coherence length is instead determined by
the experimental requirements. In EUV CDI experiments, the beat period
between the difference frequency components if much shorter than the mea-
surement time (>1s), so an incoherent sum |U;(,y,2')|* of the absolute
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magnitudes of the wavelength-scaled far-field scatter patterns U(z,y, 2’'(\))
is measured as denoted by equation 2.1 for a resultant field

|Ut0t(x7y7 2/)|2 = Z |Utot($7y72,<>‘)|2 (21)
all
This results in a reduction of the fringe visibility V of the scattering peaks,
defined by equation 2.2.

Imaz‘ - Imm

V= I 1. (2.2)

Spence et al. [74], propose a limit on the maximum energy spread %
allowed for a CDI experiment to still appropriately sample (see section 1.5.2),
and reliably retrieve the phase of the scattered far-field magnitudes and not
be affected by reduced fringe visibility. This limit is expressed in equation 2
for an object of width W imaged with resolution defined by a spatial half-
period d and represents the sampling of the non-zero density in sample space.

I w

This definition assumes the sampled spectral envelope is smooth and does
not take into account any sub-structure of the spectrum such as that which
is generated during the non-linear optical process of HHG. The HHG process
produces a train of fully spatially and temporally coherent EUV pulses (see
section 1.2), which in the spectral domain provides a harmonic comb down
to a cut-off frequency. In far-field CDI imaging of non-dispersive objects, the
scattered signal from each of the harmonics will be similar, with a wavelength
scaled scattering angle.

The impact on fringe visibility of the incoherent sum of scattered signals
for a theoretical source with finite bandwidth is illustrated in figure 1 where
an incoherent sum of analytically derived Young’s slits experiment is plotted
for two different spectra. Figure 2.2a) shows simulated spectra of the sources,
one broadband, and one harmonic with similar envelope. Figure 2.2b) and
c¢) show the fringe patterns from a simulated Young’s slits experiment illumi-
nated with the two sources shown in a), with a slit width and separation of
1 micron. Fringes from the harmonic source, ¢) retain visibility at high spa-
tial frequencies, unlike the envelope case b). Since the scatter patterns from
different spectral components from a non-dispersive objects are the same,
simply scaled by wavelength, the improvement in visibility is attributed to
overlapping speckles from different spectral components. In the envelope
case, the speckle minima are washed out by the other spectral components.
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Figure 2.2: a) A simulated 20% bandwidth spectral envelope (green line) and
a modulated, harmonic, spectrum with the same bandwidth (blue line). A
simulated 1 pm separated Young’s slits experiment for the envelope b) and
the harmonic c) spectra in the same geometry as the experiments in this
chapter. The plots represent an incoherent sum of an analytic Young’s slits
scatter pattern

Previously on synchrotron based CDI experiments it has been shown that
standard CDI reconstructions fail completely when a bandwidth of greater
than 1 % is used [67].

In the following experiment and analysis, by comparing speckle patterns
collected from the same sample illuminated via broadband and narrowband
illumination the required integration time for experiments is reduced and
further understanding of how partial coherence is treated through the CDI
process is obtained.

2.3 Experiment

The experimental set-up for the experiments detailed in this chapter are
shown in figure 2.3. A 50% pick-off of the Spectra Physics laser system
described in section 1.2.2 is focussed using a 50 cm spherical dielectric mirror
into a gas cell containing 80 mbar Argon gas to generate the high harmonic
radiation. The EUV imaging chamber is held at a 107 mbar high vacuum
to increase transmission along the optical path. Two sets of Al free-standing
thin film filters (Lebow) are used in the beam path to separate the infrared
(IR) beam from the generated EUV. These filters are each composed of two
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100 nm films layered together to avoid the pinhole effects induced by oxide
window formation [75, 76, 77]. The experiments detailed in this paper can be
classified into two separate experimental configurations: narrow-bandwidth

(NB, figure 2.3 a)) and broad-bandwidth (BB, figure 2.3b)).

a)
Gas Cell with %
80 mbar Ar

|
- | = Sample

4|

b)

|
2x200nm : Y

Al foils

Figure 2.3: The two experimental geometries used for this experiment. The
pump infrared is focused into a gas cell containing 80 mbar Argon to generate
the high harmonics. The pump is then filtered from the generated harmonics
by free-standing Al foils. a) The experiment for the broadband geometry.
The light is focussed off a single 50 cm spherical multilayer mirror. b) The
narrowband experiment. Before being condensed by the same spherical mir-
ror, the light is incident first on a flat multilayer mirror. The reflectivity
curves of these mirrors overlap so as to isolate a single harmonic.

For BB experiments, the EUV transmitted through the filters is further
spectrally filtered by a spherical Mo/Si multilayer coated focussing mirror
with 50 cm radius of curvature, giving a spectrum with a relative envelope
bandwidth of 20% (figure 2.4a)) incident on the sample. In the NB experi-
ment the EUV spectrum was filtered further (figure 2.4b)) by a flat Mo/Si
multilayer mirror fabricated by Sasa Bajt from the X-ray optics group at
DESY. The reflectivity curve of this mirror overlaps with that of the focussing
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mirror, isolating a single harmonic with bandwidth 0.7%. This monochro-
matic optic reduces the total flux by 80%.
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Figure 2.4: The two different spectra used to illuminate the sample.a) Broad-
band: The beam filtered only by the condensing multilayer has a bandwidth
of 20% but has a harmonic structure to it. b) Narrowband: A single, domi-
nant, harmonic is isolated by also filtering using the flat multilayer.

The sample for these experiments was an amplitude mask manufactured
in collaboration with the University of Southampton Electronics and Com-
puter Science (ECS) Nanofabrication department. A scanning electron mi-
crograph of this sample is shown in figure 2.5a). A 50 nm thick low stress
silicon nitride (non-stoichiometric, low-stress, SiN, Silson Ltd) membrane
was coated by the author with a 95 nm thin film of Au deposited via elec-
tron beam evaporation. A 5 nm layer of Cr was deposited first onto the
SiN to improve the adhesion of the film. A structure, a pictoral representa-
tion of a methanol molecule, was milled through all of these layers using a
focussed beam of gallium ions (FIB) by Stuart Boden (ECS). A schematic
of the cross-section of this sample is shown in 2.5b). The extremely low
transmission coefficient (< 10™* at 27 nm [78]) of the combined deposited
material compared to the complete transmission of the milled hole validates
the non-dispersive scattering approximation. Some key dimensions of fea-
tures include its 2-dimensional full extent of 2.5 ym x 2 ym. The ‘arms’ of
the object are 200 nm across and the circular tips are 300 nm in diameter.
The diamond shape in the centre of the sample has a width of 400 nm.
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Figure 2.5: The sample used for these experiments. a) A SEM of the sample.
b) a schematic cross section through the red line in a) showing the compo-
sition of the sample. The high attenuation of the sample coating compared
with the FIB milled hole gives this sample binary transmission characteris-
tics.

In the CDI experiment the scattered photons were collected on a 1024 x
1024 X-ray charge-coupled device (CCD, Andor DV434) with 13 pum pixels.
For these experiments the sample to CCD distance is fixed at 15 mm, which,
for 27 nm radiation gives a diffraction-limited resolution by the Sparrow
approximation (section 1.8.2 of 61nm with numerical aperture (NA) of 0.22.
This means that the % value defined in equation 2.3 can be calculated for this
experiment to be 42. For the NB experiment 5% = 153, which easily fulfils
the limits in equation 2.3. It follows that the effective coherence length for
the NB experiments is 5 pm, fulfilling the standard imaging criterion that
the coherence length be larger than the sample. For the BB experiment % =
5 and the effective coherence length is 135 nm putting the experiment firmly
into the regime where the image quality should be affected by incoherence.

Data collected for the NB experiment was integrated over a single 220s
exposure. Due to the overlapping and summed DC Fourier components from
the different harmonic components, data for the BB experiment was summed
over 5 x 45s exposures to increase dynamic range giving a total integration
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time of 225s, approximately the same as for the NB dataset.

Both data sets were centred, background subtracted and any cosmic
rays/hot pixels removed by rejection of any pixels outside a 30 range. The
data were then projected to the Ewald sphere of the central scattering wave-
length by cubic spline interpolation. To improve the accuracy of this interpo-
lation the data was first smoothed by zero-padding the Fourier transform of
the signal by a factor of 5 for this process. The signal was then down-sampled
similarly afterwards.

2.4 Data analysis

The upper left quadrant of the signal on the CCD for BB and NB data sets
collected during the experiments are presented in figure 2.6. It is immedi-
ately clear from the expanded views and line plots, the impact that the broad
bandwidth has on the reduction of the visibility of the recorded scatter pat-
tern. By comparing the DC peaks of both datasets we can deduce that by
using a beam block in this experiment, to increase the dynamic range of the
detector, the integration time could be reduced by a factor of 5.
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Figure 2.6: Comparison of the speckle pattern for a) the narrowband and b)
the broadband illuminations.a)Narrowband: The speckles in the narrowband
image are quite sharp and easily resolved. This is particularly clear in the
close up of the area inside the dotted box, shown in the inset with a cross
section though its central region.b)Broadband: This image is of the same
portion of the speckle pattern as shown in a) but under broadband illumi-
nation. One can see from the inset image of the area enclosed within the
dotted box that the speckles indeed have lower visibility as expected.

By taking the inverse Fourier transform of the speckle patterns, the auto-
correlations of the sample are obtained (see section 1.3.3).The logarithm of
the magnitudes of the autocorrelations are shown in 2.7a) left (broadband)
and right (narrowband). By summing in the vertical axis ( 2.7b)) it is clear
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to see that the narrow bandwidth data has a factor of 20 greater range in
magnitude in its autocorrelation than the broad bandwidth data. The main
broad peak in the centre however, looks very similar in both cases suggesting
that this information is the same between the two datasets.
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Figure 2.7: A comparison of the two-dimensional autocorrelations of the
real-space magnitudes.a)A log,, plot of the autocorrelations for broadband
(left) and narrowband (right) data sets. The white line separates the data
sets. It can be seen that the broadband set has a considerable amount of
structure outside the main density of its autocorrelation in comparison to
the narrowband autocorrelation.b) A vertical sum of a), emphasising the
difference in densities outside the main body of the autocorrelations between
the narrow and broadband data.

In the case of data with zero noise it would be possible to obtain a poorly
resolved version of the mutual coherence function by taking the ratio of these
datasets. However, for real data this is hard to implement and does not aid
recovery of the object by a single illumination - the focus of this work - so
instead we apply techniques to remove those areas that are different between
the two results.

64



2.5 Comparison of phase retrieval results- Nar-
rowband vs. Broadband Illumination

Figure 2.9 shows a comparison of the phase retrieval results for the NB and
BB experiments. For the NB reconstructions, a standard recipe of 5000
iterations Hybrid input/output (HIO) with = 0.9, shrinkwrapping every
50 iterations followed by 5000 iterations with no shrinkwrap and f=1 was
implemented. The solution to the phase retrieval is determined when the
real-space error (see section 1.7.1) varied below a 107" threshold between
iterations. For the BB experiments, the routine is run for 1000 iterations
of HIO with $=0.9 and shrinkwrap every 20 iterations. The real space pro-
jection selected for analysis and further use is that which corresponds to
the minimum Fourier error over the 1000 iterations. For this set of recon-
structions this happens before 60 iterations of the routine. This corresponds
to a nearby local minimum, which, in general, is that which most closely
resembles the object.

The shrinkwrap technique explained in section 1.5.7 is similar to applying
a variable low pass filter, working to optimise the result so that it matches
the scattering intensities, but also reduces the area of the non-zero support
to find the best edge. This has the effect of restricting the amount of data
outside of the main body of the autocorrelation that is present in the solution.
For quasi-monochromatic scattering data, such as that in the NB datasets,
this has the effect of increasing the resistance of CDI to noise. In the case of
broadband illumination with a spectrum containing significant gaps, not all
the speckles will average away, allowing useful information to remain in the
pattern, as shown in figure 2.2. The loss of information at points where the
speckles average is similar to the effect of a noisy speckle pattern. Rather
than apply a fixed low pass filter to restrict this noise however, it is more
favourable to use a variable low pass filter to select the parts of the signal
that fit the reconstruction best.

A reconstruction that best matches the data under a phase retrieval rou-
tine utilising shrinkwrap, will have the lowest Fourier error (see section 1.7.2)
and also the smallest mask size. Once the algorithm has reached this re-
construction, it may rapidly diverge since it is not a solution to the phase
problem.

The reconstruction algorithms were run 50 times for each data set from a
difference quasi-random starting seed. The Fourier-space and real-space error
corresponding to the iteration where the final reconstruction was chosen is
indicated in figure 2.8. The conjugate (i.e.inverted) object is also a solution to
the phase problem, so the solutions were then flipped to the same orientation
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and registered using the algorithm described in [79].
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Figure 2.8: The real-space a) and Fourier-space b) errors for the reconstruc-
tions. Whilst the narrowband reconstruction was taken at the end of the
full number of iterations, the broadband result was taken where the Fourier-
space error was minimised. This occurred after 23 iterations of the routine
for the error shown.

Figures 2.9a) and 2.9b) show the average and standard deviation of
the BB reconstructions in real-space. Figure 2.9c) and 2.9d) show the
same information but for the NB data. As expected, the NB data shows
excellent stability across the 50 iterations, but, more unexpectedly perhaps,
the BB data is surprisingly stable considering it is not a solution. The mean
normalised variance is especially low within the main density region.
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Figure 2.9: The mean of the absolute value of the reconstructed exit wave
field from 50 runs of the phase retrieval routine with the same parameters,
but different starting phases for (a) broadband and (c) narrowband data. (b)
and (d) show their respective mean normalized variances. e) A cross section
along the white dashed line of the mean averages in a) and ¢). It is clear that
the broadband data appears blurred compared to the narrowband data.
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The key difference between the results to note is a blurring around the
edges of the reconstruction in figure 2.9a), much like what would be expected
from an aberrated image from a conventional light microscope. This is shown
in better detail in the cross section in 2.9¢e), where the gradient on the rising
and falling edges of the signal is much slower for the broadband image than
it is for the narrowband image.

The increased variance in the low density region is attributed here to
the reduced contrast in the autocorrelations shown in figure 2.7, the main
difference between the two data sets. The area outside the main body of
the average reconstruction has higher density fluctuations than that in the
narrowband reconstruction. This is due to the side-band information visible
in the autocorrelation information in figure 2.7. Some parts of the density
have been generated by the algorithm to fit the extra data probably because it
appears as background noise on a monochromatic signal. This extra density
is typically within 0.30 of the total reconstructed intensity, and could be
thresholded if necessary for further use.

To further analyse the impact of the additional bandwidth on the recon-
structions, it is useful to look in more depth at each resolution component by
way of the PRTF. Figure 2.10 shows the PRTFs for both the BB and NB data
taken over the same 50 reconstructions previously described in figure 2.9.
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Figure 2.10: The phase retrieval transfer functions for the reconstructed data.
The narrowband curve represents the PRTF for 50 separate starting seeds
run in the algorithm according to the stated recipe for 1000 iterations. The
broadband iterates were selected when the Fourier error was minimised. The
data were set to have the same phase offset and centred by image registration
before the PRTFs were calculated.

This shows that at high spatial resolution, the transfer function follows
the same curve, although the information is less reliably reconstructed for
the broadband illumination resulting in a lower value for the PRTF.

At low resolution the PRTF for the broadband data shows the absence of
a pedestal for 2-4 um resolution data, the same resolution information that
appears blurred in figure 2.9a). This suggests that the blurring seen in the
average is a manifestation of poor reconstruction stability for these spatial
frequencies, a similar result noticed as in the case for poor signal to noise
ratio data. This is a similar and related result to that obtained earlier in
the simulation of Young’s slits. For some spatial frequencies, there is just
enough information due to the increase in visibility of the speckle pattern,
to reconstruct. For others however this is not the case and that resolution
component is lost.

In comparison to previous research using the polyCDI algorithm on high
harmonic sources, the reconstructions shown here are of similar quality al-
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though they were achieved without prior knowledge of the spectrum being
required. Since the spectral components are not separated, the phase of the
reconstruction in figure 2.9a) does not have a physical meaning [35] and
hence this reconstruction is not a solution to the phase problem, unlike that
shown in [67, 66]. Instead, these reconstructions should be considered as an
approximation to the solution, albeit a very good approximation.

2.6 Summary

In conclusion, it has been demonstrated that it is possible to use monochro-
matic phase retrieval techniques on ultra-broadband scatter patterns to ob-
tain a good first approximation to the object amplitude reconstruction using
CDI. Whilst such broadband reconstructions are generally not stable, it is
believed that this will increase the stability and noise tolerance of algorithms
such as the polyCDI algorithm [67, 66], and also provide new routes to full
solutions in these cases. The technique could be applied to radiation from
other sources as long as the spectrum is filtered or scanned to increase the
visibility of speckles at the required spatial frequencies. This work provides
a way to dramatically reduce limitations on flux requirements imposed by
spectral filtering on both large scale and lab-based sources of EUV and soft
X-ray radiation by increasing the tolerated bandwidth to 20 %.
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Chapter 3

Iterative Ptychography
experiments

This chapter presents preliminary results implementing iterative ptychogra-
phy using a HHG source. To provide some context, and to gain experience
with real data, I participated in an experiment as part of lan Robinsons group
at University College London (UCL). The work in section 3.1 is presented
with their permission. Results imaging a test sample at the [13 beamline are
presented and contrasted to those achieved on the HHG source at Southamp-
ton.

The work at Southampton, detailed in section 3.2, is the first reported
iterative ptychography experiment using a laboratory-based source in the
world. This work also documents the first imaging of a biological sample
from a laboratory-based source of EUV.

3.1 Ptychography at Diamond light source
113 beamline

To gain some experience implementing ptychography using real data, I partic-
ipated in a beamtime with Ian Robinsons group (UCL). The results presented
in this section were taken with Joerg Schwenke and Laura Shemilt from this
group. The I13 beamline produces a spatially and temporally coherent beam,
specifically targeted at implementing CDI and iterative ptychography tech-
nologies. It is hoped that by comparing the results between this and the
HHG source at Southampton more can be understood about how the pty-
chographic process deals with noise, beam drift and other experimentally
important factors.
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3.1.1 Experiment

Figure 3.1 shows the beamline set-up for this experiment. After the X-
rays are generated via the relativistic electron interaction with an undulator
insertion device (ID), they are focussed by way of a compound refractive
lens (CRL), situated near the source, 250 m away. Due to the difference
in divergence of the X-ray beam in the horizontal and vertical axis, the
focus produced in the sample plane is astigmatic. For this reason, guard
slits 4 cm before the sample are used to shape the beam to an even spot
with size wy = 15 x 107%. Since at Diamond the electron beam is very
small and a the I13 beamline very long, the spatial coherence is very high
>100 pm. The beam is then monochromated by way of a double pass single
silicon crystal monochromator, aligned in single circle mode, giving a final
bandwidth 5% = 10% at 7.5 keV 4= 25 eV. The error in energy here comes from
phase error in the ID over its 50 period magnetic array; the monochromator
is tuned to the peak of the relativistic cone [80].

The light then propagates in vacuum until it is spatially defined with
a final pair of slits. The light is then incident on the sample, propagating
through another 14.5 m section of vacuum until it is recorded on the detector.
The detector for this experiment was a Quad Maxipix CMOS photon counter,
using Medipix2 chips made up of 4 panels of 256 x 256 pixels. The signal
is centred on one of the panels of this detector providing an NA of 2.43 x
10~* fulfilling the small angle approximation, so no further projection to the
Ewald sphere is necessary. The 1D oversampling ratio for this experiment is
2.38 which provides 5.26 pixels per scattering peak. The object space pixel
size is 87 nm and so by the Sparrow criteria the diffraction limited resolution
is 174 nm.

To Undulator
-

CRL Monochromator Defining slits Sample Detector

===l

Figure 3.1: A schematic of the experimental layout at 113 for this experiment.
The beam comes in from the left and is incident on the detector on the right
after passing through the chain of components

Guard Slits

The sample for the experiment reported here was a test sample made
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of low stress silicon nitride coated with 200 nm tungsten. The pattern was
etched into the tungsten using e-beam lithography to reveal the transmitting
structures as shown in figure 3.2 a). The large square structure in the middle
of the pattern is a phase plate with different thicknesses of material. The
star structures are Siemens stars which are commonly used in microscopy
to characterise the resolution of a system. Figure 3.2 b) shows a schematic
cross section through part of the sample.

Tu ~—
SiN

Si—

Ae B

Figure 3.2: Top: An SEM of the resolution test sample designed by the UCL
group. Bottom: A schematic of the sample cross section through line AB.
The sample is SiN coated with Tungsten. The Tungsten is then removed via
e-beam lithography to reveal the structures

The sample was scanned behind the slit defined beam in a round ROI [51]
spiral format. The scan positions are shown in figure 3.3 a). At each point
an exposure of 10 s was taken. A single shot of the total exposure is shown in
figure 3.3 b), with a total of 300 views collected. The centre of the speckle
pattern demonstrates some defects due to a tungsten beam stop that was
used to increase the dynamic range of the signal that could be recorded at
each dwell point. The signal at these points was multiplied by a constant
factor calculated by calibration of the beamstop to bring the signal up to the
correct value.
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Figure 3.3: a)The round ROI scan position map which was input directly to
the piezo motors to perform the ptychographic scan. b) A sample data-set
from a single view taken whilst the Siemens star was aligned to the probe

The advantage of collecting such a large amount of data is that it allows
some statistical analysis to be applied to the signals. Figure 3.4 shows a plot
of —2— (the mean-normalised variance) for each pixel over the whole 300
views. Analysis of 3.4 allows us to state several things about the data.

Firstly, the data shows a large variation across a broad range of scattering
angles, which demonstrates that there is a lot of view dependant signal across
the total data set. This is a good first check to tell whether the data is viable
for reconstruction via iterative ptychography.

Secondly, there is a lot of information that is relatively independent be-
tween views. This data extends out to the very edges of the collected scat-
tering angles, suggesting that the probe is very well defined within the data.
This means that a weak guess at the initial probe should be sufficient to
reconstruct; a 'model’ probe of a top hat function with a radius equal to the
half width of the defining slit separation was chosen for this work.

Lastly, it is possible to discern several data points which have either
abnormally low or high —— values. Those which are very low correspond to
either dead or hot pixels on the detector. Those which are high correspond
to cosmic ray events which occur for a single exposure. The low —2— data
points are left to "float” in the algorithm and hence are not used to constrain
the far-field magnitudes, instead being filled in by the iterative nature of
the algorithm. The high variance data points are examined a little more
thoroughly, with points along each pixels distribution that fall outside of

20_ floated only for the views for which they occur, since they have low

enough significance to the data to be excluded.
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Figure 3.4: A plot of —2— for each pixel across all recorded views. Areas
which have a high value (an example of which is inside the black circle)
are those which change between views and can be associated with the ob-
ject wave-field. Low values (red circle) are independent of the view and so

correspond to the probe wave-field

3.1.2 First attempts applying the ePIE algorithm

To begin with, a naive assumption was made that the experimental data
would behave exactly as theoretical data would do, and a basic, unmodified,
ePIE algorithm (see section 1.6.2) was applied. A 30um diameter circular
model probe was used as a starting guess for the first 10 iterations of the
algorithm, which was then allowed to update according to equations 1.65
and 1.66 in section 1.6.2 for the remaining 200 iterations. This was tried a
number of times from different starting seeds and probe sizes, with the best
results shown for the object wave-field shown in figure 3.5a), the probe 3.5b)
and the Fourier space error 3.5¢) as the algorithm progresses.
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Figure 3.5: The initial results using unmodified ePIE on the collected data.
Some structures are visible in the object wave-field a) but further processing
is required.b) The reconstructed probe wave-field showing that it has moved
out to the edges of the array. ¢) The Fourier error of the reconstruction as
function of iteration, showing that it is not smooth or stable.

Judging by the Fourier error shape in 3.5c), this reconstruction is an
unstable fit to the data since after the initial estimate, the residuals from the
comparison of the current iterate to the data are increasing. However, it is
possible to note some structures in the reconstructed object wave function
that look similar to the Siemens star in the test sample (see SEM figure 3.2).
This suggests that the algorithm is somewhat close to the correct solution,
but needs more care and constraining when applying the ePIE routine. A
glance at the probe reconstruction shows that the probe function has spread
out into the corners of the array, another good indication that something is
wrong with the reconstruction, since we expect it to have some resemblance
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to the square aperture provided by the defining slits.

3.1.3 Optimising the reconstruction

To improve upon the previous results, a mask was applied to the probe sup-
port. This mask was a circular mask occupying 70% of the total probe space,
applied with the aim of constraining the probe to the centre of its support,
counteracting the behaviour seen in the previous attempt. Further, another
dataset was introduced taken during the same experiment, but of a different
region of the sample. The probe function from a reconstruction with one of
these data-sets was iterated between both of them in turn as an improved
starting guess. This approach was continued until the Fourier error and probe
field did not improve significantly with further iterations. A reconstruction
showing this applied to the same data as figure 3.5 is shown in figure 3.6a)
and 3.6¢) and demonstrates a considerable improvement in the reconstructed
probe and object phase in comparison to the SEM image. Figures 3.6b) and
3.6d) show the object and probe wave fields for the second data set under
investigation and 3.6e) the errors for both sets of reconstructions respectively.

It is apparent from the smoothly decreasing error functions ( 3.6 e))that
the probe has stabilised between the two reconstructions, and so the additions
to the method have aided the convergence. The Siemens star and phase plate
features in the object wave fields ( 3.6 a) and b)) have increased in sharpness
and contrast and compare much more favourably with the SEM image. The
probe functions ( 3.6 ¢) and d)) also seem to look very similar to each other.
It is even possible to detect the edge of a slit-like structure to the left hand
side of the probe functions.

To try and quantify this somewhat, we can calculate the Fourier ring
correlation of the calculated probes from the two datasets as described in
section 1.8.1. This is shown in figure 3.7

This curve is far from clean, and indeed it crosses the threshold curve
twice; once at 9.6 pum and again at 300-400 nm. Since the 9.6 mum de-
tail actually corresponds to one of the dead spaces between the chips on the
Maxipix detector which are floated in the reconstruction, it is perhaps unsur-
prising that the data here is less well correlated than one would like. Since
this information is view independent it is natural that it would be picked up
as an artefact in the probe.

For the remainder of the FRC, the two curves nearly cross a number of
times, but this mostly happens at around the 350 nm point, hinting that this
may be the limit on the resolution of what this data can yield.
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Figure 3.6: The improved ePIE reconstruction using a probe support.a)
and b) are the reconstructed wave-fields for both data-sets showing a much
sharper and clearer definition which corresponds nicely to the SEM. ¢) and d)
are the reconstructed probe wave-fields corresponding to these object recon-
structions. The probe looks very similar in amplitude and phase between the
two reconstructions suggesting that an reasonable solution has been found.
e) The Fourier error as a function of iteration for both reconstructions. The
error comes down smoothly as the algorithm progresses until it reaches a
plateau, indicating that the reconstruction has reached a stable solution
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Figure 3.7: The Fourier ring correlation between the two reconstructed
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and suggests that the cut-off for reproduceable solutions should be around
350 nm, where the signal meets the noise.
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3.1.4 Summary

Before moving on to the results obtained on the HHG source, a new source
for iterative ptychography experiments, it is useful to summarise this section
in terms of the key points to look for in reconstructing ptychographic data.

1. Applying a support to the probe seems essential to get repeatable re-
constructions from real data. Otherwise the probe may tend to move
to the edges of the support.

2. If the independence between all views is high, it would seem that a
simple modelled probe guess can be used.

3. Using the same probe across two independent data sets improves the
stability of the probe and hence object field reconstructions.

4. Floated pixels may cause multiple threshold crossing points and hence
issues with the interpretation of the FRC and so a standard cut-off
cannot be used for the figure of merit for resolution.
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3.2 Iterative ptychography using a High Har-
monic source

The previous section of this chapter described a basic experiment using syn-
chrotron radiation to image an extended test object. Iterative ptychogra-
phy using synchrotron radiation is fast becoming a mainstream technique to
characterise a broad spectrum of samples including biological objects at the
water-window [81]. However, such sources are ultimately limited by their
size, typical coherence properties and also by radiation dosage to the sample.

To complement these experiments, HHG iterative ptychography offers
the potential for characterisation of extended samples in the soft x-ray/EUV
spectral ranges. Whilst lower in flux and less penetrating than synchrotron
radiation, the lower dosage and ease of access available for such sources is a
nice advantage.

An example of an experiment that would benefit from such a source is
for imaging sensitive tissues such as hippocampal neurons. These samples
are of particular interest for the studying of neuro-degenerative diseases such
as Alzheimers. In Alzheimers, the neural synapse is subjected to plaque
growth. This growth is thought to slow down the transfer for information
between neurons. However, the process of the growth and its effects are not
yet well understood, and such understanding is vital to the future of drug
development.

Ultimately, one would like to image the live cells as they degenerate in a
petri dish environment; such a test would be impossible using synchrotron
radiation due to its highly ionising nature. However, such images may well
be possible to achieve using future HHG CDI/ iterative ptychography exper-
iments. Iterative ptychography would be the preferable technique here since
its relatively low sensitivity to noise compared to CDI would allow a lower
dose per view. However, to date, no attempts to to apply iterative ptychog-
raphy techniques or to image biological samples using lab-based high energy
photon sources has been reported.

One key reason for the lack of ptychographic results are apparent when
one considers the Fresnel numbers of apertures that are required to enforce
the support constraint for ptychographic experiments.

For a 5ym pinhole illuminated by a plane wave at A = 1.5A (7.5 keV) and
A = 27nm (44 eV), to achieve a high enough Fresnel number (F' > 2), and
hence maintain a well defined illumination function, the required pinhole to
sample distance is given by z where

2
a
ZHHG = F 115um (3.1)

81



compared to

ZSy’VLChTotron = 2cm (32)

Since the Fresnel number of the focussed HHG beam varies considerably
through the Rayleigh range due to the change in radius of curvature (the
total Fresnel number being the addition of the source and object Fresnel
numbers [6]), z in equation 3.1 can be increased slightly to maintain the
same overall Fresnel number. However, this does not alleviate the technical
difficulties in achieving this proximity to the sample, and so work on such
experiments has been stalled. Indeed some research [82], has suggested that
a projected pinhole maybe be used to obtain some phase retrieval results.
Whilst this is a useful technique for the visible spectral regime, where optics
are considerably easier to fabricate with the required resolution, in the EUV
this may be impractical and defeat the advantage of lens-less imaging.

The following sections detail work carried out to engineer a pinhole align-
ment system that can achieve the required mobility. The sample choice and
composition is outlined and some preliminary ptychographic data sets and
reconstructions are presented; the first such result using HHG radiation in
the world.

3.2.1 Experiment

This section will describe and discuss the experimental procedures and equip-
ment used to record the ptychographic datasets of complex-valued objects
using the high harmonic source at Southampton.

Beamline Layout

The beamline layout for this experiment is depicted in figure 3.8 and is
similar to the narrow bandwidth set-up used for experiment in chapter 2.
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Figure 3.8: A schematic of the ptychography experiment set-up at Southamp-
ton. The beam enters from the left and reaches the detector on the right after
passing through the apparatus. The experiment is nearly identical to that
used in chapter 2, with the exception of a modified sample mounting scheme.

Pulses of 42 fs duration and 1.4 mJ energy at 1 kHz repetition rate were
focussed into a gas cell containing 90 mbar Argon. Two sets of Al free-
standing thin film filters (Lebow) are used in the beam path to separate the
infrared (IR) beam from the generated EUV. These filters are each composed
of two 100 nm films layered together to avoid the pinhole effects induced
by oxide window formation as was previously discussed in chapter 2. The
harmonics were then spectrally filtered and condensed using a combination of
two multilayer coated optics. The sample assembly was placed in the plane of
the circle of least confusion of the slightly off-axis spherical multilayer mirror.

The resultant speckle patterns were then captured in the far-field on a
CCD (Andor DX-434) after 20 mm of propagation in 10~° mbar vacuum.
The highest scattering angle recorded during the experiment means that the
cropped data provides an NA of 0.15, the pixel size in the sample plane is 90
nm and hence a predicted Sparrow resolution of 180 nm. The oversampling
ratio of the signal was 22 allowing the signal to be binned twice to increase
the signal to noise ratio.

Sample Preparation

The samples of choice for this experiment were cultured cortical mouse neu-
rons from the hippocampal region and were prepared by Rachel Card, a joint
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student between the group and the Institute for Life Sciences (IfLS) also at
Southampton. These samples were used instead of a more simple test sam-
ple purely due to their availability at the time of the experiment. In this
subsection we provide a brief introduction into the structure of hippocampal
neurons and show some images from general microscopy techniques of these
samples.

The hippocampus is the region of the brain responsible for memory and
some motor function. Figure 3.9 shows the location of the hippocampus in
a human brain.

Hippocampus

Figure 3.9: A schematic of the hippocampus in a human brain. The
hippocampus is responsible for memory and motor function.(Underlying
schematic from [83])

One of the reasons for studying the hippocampus is that it is the region of
the brain that is affected by neurodegenerative diseases such as Alzheimers
and Huntingtons. To understand how such diseases affect the hippocampus,
we must consider the process on a cellular level.

Figure 3.10, shows a generalised schematic of a neuron cell with its
associated process. Although a neuron may have several dendrites exiting
the soma, it will have only one axon, which it uses to send out signals to other
cells. The axon is identifiable in general by a myelin sheath which coats the
neurite structure [84]. Myelin is a material which not only protects the axon,
but also helps electrically insulate the neurite so that it can transmit signals
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more quickly and clearly. There are periodic breaks in this structure where
the neurite can take on additional ions to change the conductivity of the
neurite at that point. These gaps are known as the nodes of Ranvier after
Louis-Antoine Ranvier who first recorded them [84]. The gaps are typically
under a micron in size.

Node of
Ranvier

Dendrite

Soma

Figure 3.10: A schematic of a neuron. The key parts of interest for this
study are the dendrites and axon. Each cell only has one axon, which it
uses to communicate with other cells. Axons are identifiable by their myelin
sheath, which is broken periodically by a node of Ranvier.( [85] for underlying
schematic)

In contrast to neurons that are found elsewhere in the nervous system,
the myelin sheath around hippocampal axons is very thin, if it exists at all.
The neuron samples used for the work in this chapter were cultured from day
3 mice, and such sample shave been previously shown [86] to have not only
a myelin layer, but also the Ranvier nodes.

A microscope image of one of the samples used for this thesis is shown in
figure 3.11 b) next to a schematic cross-section in 3.11c).
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To prepare the samples, neurons are cultured on to a low-stress silicon
nitride (non-stoichiometric SiN) membrane of 50 nm thickness. To ensure
the samples grow on the substrate, they are first treated by dipping into
a solution of poly-L-lysine, a complex protein. The dissected neurons are
placed in suspension in a culture medium above the prepared SiN membrane.
The neurons are then cultured for 2 weeks before being fixed using a methanol
dip.

Since the culture medium is fairly thick layer (around 30 nm) of organic
material, it was useful to check the transmission of the sample before com-
mencing a ptychography experiment. An EUV transmission image was taken
by placing the neuron sample in the beam far away from the focus of the sys-
tem in figure 3.8. By dividing this shadow image by the intensity distribution
of the beam when the sample is removed, the spatially resolved transmission
values can be found as shown in figure 3.11a). The oval shape of the field
of view in this image is due to the shape of the beam at this position, the 5
degree off-axis focussing causing a tighter spot in the horizontal axis.

By comparison of this low resolution EUV shadow image to the micro-
scope image in figure 3.11b) it can be seen that whilst the main bodies of the
cells are too thick for transmission at this wavelength, the thinner neurites
are transmissive. It can also be seen that the poly-L-lysine coating also has
a slightly variable transmission.

The dendritic structures corresponding to the processes of the neurons,
the part of the sample under investigation, correspond to spatial frequencies
that are below the diffraction limit of the 20x 0.4NA objective used to pro-
duce figure 3.11. Even when a more powerful 40x 0.6NA objective was used
(figure 3.12a)) to image another sample from the same cultured batch, the
image suffers from poor contrast due to the dynamic range of the detector;
the increased contrast is part of the reason why using EUV as the probe is
desirable. However the resolution of the EUV shadow image in 3.11a) is still
too poor to define any dendritic structures.

For this reason, these cultured samples were also characterised by dark
field optical microscopy using the same objective 3.12 ¢) and scanning elec-
tron microscopy (SEM) 3.12b), the latter being carried out by Jennifer Holter
(Research Complex at Harwell). Figure 3.12d) is a software processed ver-
sion of 3.12b), where the colour map has been inverted and the contrast
improved by the imageJ processing package. This was carried out in order
to make it easier to pick out the dendrites by eye.

It can be seen that in the dark-field and SEM images, the sample ap-
pears to be criss-crossed with many dendritic features. These are the neural
processes that are sent out from a living neuron. When two of these meet
they form a synapse over which information can be exchanged between the
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cells. The joined processes are then termed neurites, and understanding of
their structure, connection and degeneration is an essential tool in the search
for cures for Alzheimers and other neuro-degenerative diseases. It is these
structures which the following experiment attempts to image. Figure 3.12e)
is a cross section through one such section, marked out by the red line in
3.12d), showing that it is roughly 100 nm across.

These images are of a sample from the same preparation batch as the one
used in the ptychography experiments.
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Figure 3.12: Optical bright field a) and dark field ¢) images of an example
neuron structure using a 40x, 0.6NA objective. b) An SEM of the same
sample scaled to the same field of view. d) An image processed version of b)
showing better contrast. All images exhibit the same criss-crossed pattern of
dendrites.
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Aperture assembly

To define the support for ptychography, a laser drilled molybdenum 5 pym
pinhole (Edmund Optics) is used. This is glued to a self-made support piece
shown in figure 3.13 a). This piece fits into a %” mirror mount (Thorlabs)
which in turn is attached to another self-made mount. This attaches to the
front of the frame of a Princeton Instruments (PI) piezo stage (model 733).
The sample is mounted on a plate on the moveable centre of the stage.

a) Pinhole

Support ring

1/2 " mirror mount -

Through holes

<—q<—|
< ol |

b) )
Sample for ptychography

1
I] A Through hole

\
Sample

late .
Piezo stage P Grid

Figure 3.13: A schematic of the sample.a) The pinhole mounting system.
This was attached to the stationary outside frame of the piezo stage mount,
while ¢) shows the sample mount itself, which was mounted to the moveable
part of the piezo stage so it could be scanned behind the pinhole.b) shows
how the parts were assembled.

To align the pinhole to the sample, a travelling microscope technique
is employed as is schematically shown in figure 3.13a). By illuminating
the sample and pinhole from the top and bottom it is possible to bring the
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surface of the pinhole to within 10+2 pm. Figure 3.14b) shows the finished
alignment viewed via a 20x 0.4NA objective under illumination from both
sides of the sample.
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Light microscope 20x to pinhole pinhole removed
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Figure 3.14: a)The sample-pinhole alignment technique. The pinhole was
both back and front illuminated so that it could be seen at the same time
as the sample. Since the sample is optically transparent, the pinhole could
be brought down using a calibrated travelling microscope technique until it
sat > 10 microns away from the sample. The pinhole was then translated by
hand to align to the sample until it was in range of the piezo-stage travel. b)
The finished alignment with the pinhole aligned to a neurite on the substrate.

3.2.2 Raw data collection and analysis

The exposure time for a single view of the ptychography experiment was 4
minutes, with a readout time of 32 us per pixel. A previous beam stability
experiment using the same sample at a fixed position shows that the speckle
pattern slowly drifts over the course of an hour (figure 3.15a)) an effect
attributed to the thermal drift of the oscillator coupling into the amplifier.
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Figure 3.15: The far-field movement of the beam through the 5 pym pinhole
vs. time. a)A log,, plot of vertical slices through the centre of the far-field
speckle pattern of the pinhole aligned over an empty region of the sample
are shown vs. time over an hour. It is apparent that over this time there is
a slight (80 pm) drift to the right hand side of this plot, demonstrating the
beam moving down on the detector. To minimise the impact of this on the
ptychography experiment, the experimental duration was kept to 20 min-
utes.b) A comparison of the speckle patterns after 5 and 20 minute intervals
showing minimal change in their structure.

For this reason, only 4 views were taken for each ptychographic dataset to
ensure that the beam stayed stable throughout the course of the experiment.
A total of 2 datasets were taken during the experiment over two independent
areas of the sample. Since only a small number of views were to be collected,
a raster scan of data was taken, with an offset in each direction to attempt
to reduce grid artefacts appearing in the data, a technique described in [50].
The two regions which data were taken over correspond to the neurite region
of the sample isolated and shown in figure 3.14 (data set 2) and another
arbitrary region of the sample taken as a reference and chosen for its higher
transmission (data set 1).

Since the oversampling for this data is very high, a consequence of working
in the far-field at EUV wavelengths, the background subtracted data can be
binned twice in each dimension without losing any information, increasing
the signal to noise of the data [31]. Also the data is cropped to the outermost
spatial frequency visible above the noise. Due to the relatively low NA of
this experiment, the small angle approximation still holds and so no further
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Figure 3.16: The two dimensional mean normalised variance of data-set 1 a)
and data-set 2 b). Since their are a lot more view dependent speckles than
independent ones, we can deduce that the probe may be poorly constrained
in the reconstruction.

projection to the Ewald sphere was necessary.

As with the synchrotron data in the previous section, it is useful to plot
the 2-dimensional —°— for each pixel as shown in figure 3.16a) for the first
data set and 3.16b) for the second dataset.

Although the number of data points for each pixel is small here compared
to the synchrotron data, it is still useful to note any outliers to the distri-
bution which can be removed as noise and floated in the reconstruction, as
explained for the synchrotron experiment.

Figure 3.16 also shows that, although the data is limited in terms of
resolution by the maximum scattering angle recorded, it is still possible to
discern regions where the speckles are independent and regions where they
are related. Unfortunately, there are a lot more view dependant speckles
than independent ones and so we can expect the the probe reconstruction to
be poorly constrained, although the object should be relatively well defined.

Probe reconstructions

Learning from the experiments at [13, we know that it is useful to focus on
the stability of the probe as an indicator of good reconstruction. A perfect
circular pinhole was initially assumed in the form of a top hat function for use
in the reconstructions, backed up by a support of 70% of the the probe area
as described in section 3.1.3. The probe was fixed for the first 10 iterations
of the algorithm and then allowed to update according to the standard ePIE
rules. The reconstruction that was obtained from the first data set is shown
in figure 3.17, next to 2-dimensional means and standard deviation maps of
the reconstructed field starting from 50 different random seeds.
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Figure 3.17: Probe reconstructions from data-set 1 using a top hat model
probe to start with a) The average and b) the mean normalised variance of
the probe wave-field magnitudes ¢) The average and d) the mean normalised
variance of the probe wave-field phases. It is clear from the lack of structure
in the variance of the phase that this probe guess has not helped the algorithm
to converge to a solution.

and from the second set in figure 3.18.

By looking at the large variance in these reconstructions, it can be inferred
that these reconstructions have not worked and are too unstable to make any
concrete statements with regards to the object or probe. The reason for this
is that, as shown in figures 3.16a) and b), the constraint on the probe is
not strong due to the small amount of data collected. It should therefore
be expected that we would have to put in a better starting guess for this
function. However, ideally information from external sources or microscopy
technique would not be entered into the algorithm, since this loses the a
priori nature of the algorithm.

By re-examining the plots in figure 3.16, it is possible to improve our
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Figure 3.18: Probe reconstructions from data-set 2 using a top hat model
probe to start with a) The average and b) the mean normalised variance of
the probe wave-field magnitudes c¢) The average and d) the mean normalised
variance of the probe wave-field phases. It is clear from the lack of structure
in the variance of the phase that this probe guess has not helped the algorithm
to converge to a solution.
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estimate of the probe function by first selecting the parts of the averaged
speckle pattern that are have a low —>— from each data set and averaging
them. By inverse Fourier transforming this pattern and thresholding at 0.5%
of the maximum amplitude, provided an improved estimate of the probe
support is obtained as shown in figure 3.19, a function related to the probe

autocorrelation.

Displacementiim
=

-5 0 5
Digplacement/pumn

Figure 3.19: The magnitude and phase of the crude probe autocorrelation
obtained from the low variance data in both data sets. This was entered into
the algorithm as an improved starting guess for the probe.

The processing chain that was followed to optimise the data is shown in
figure 3.20 for clarity. The new probe function shown in 3.19 was used in the
ePIE reconstruction for the first dataset, and the updated probe from this
entered into the second dataset. This process was then continued, iterating
between datasets and keeping the output probe from each step as an improved
starting probe. Initially the probe function was supported with a mask of
50% of the area of the probe array. This support was gradually increased in
size until it was no longer needed in the reconstruction. A total number of
5 steps on each data set running for 200 iterations were required until the
Fourier error reached a stable plateau. Finally this probe function was used
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to run the reconstructions again, independently for each data set, starting
from a random noise guess for the object. These reconstructions were run 50
times over 1000 iterations each in order to provide some statistics that can
be used to judge the degree of confidence we have in the retrieved values.

Initial probe
guess

Updated e c—

probe guess

{

ePIE using
data-set 1 for
500 iterations

Repeat n=5 times
‘ increasing probe
support area

Updated
probe guess

{

ePIE using
data-set 2 for
500 iterations

Figure 3.20: The processing chain that was followed to improve the recon-
structions. The process was iterated 5 times before a good convergence was
found.

Note here that no external information has been added to the algorithm,
just an average between two independent data-sets.

The reconstructed averages and mean normalised variances obtained from
this process for the probe (a) and b)) and the object (c¢) and d)), alongside
an example of their Fourier errors, are shown in figures 3.21 and 3.22 for
data-set 1 and data-set 2 respectively.
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Figure 3.21: Improved reconstructions from data-set 1 using an improved
probe guess a) The average and b) the mean normalised variance of the
probe wave-field magnitudes c¢) The average and d) the mean normalised
variance of the probe wave-field phases. The low variance and well defined
probe suggest that the algorithm has converged.e) The Fourier error of the
reconstruction. The smoothly decreasing nature of this further hints that
the algorithm has found a good solution. The initial 10 iterations show the
error increasing since the probe was held fixed over a free-space guess of the
object.
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Figure 3.22: Improved reconstructions from data-set 2 using an improved
probe guess a) The average and b) the mean normalised variance of the
probe wave-field magnitudes ¢) The average and d) the mean normalised
variance of the probe wave-field phases. The low variance and well defined
probe suggest that the algorithm has converged.e) The Fourier error of the
reconstruction. The smoothly decreasing nature of this further hints that
the algorithm has found a good solution. The initial 10 iterations show the
error increasing since the probe was held fixed over a free-space guess of the
object.
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The probe reconstructions are very stable indeed with respect to the
recovered probe function, showing a low mean normalised variance (0.5%)
over each data set. The Fourier errors for both reconstructions also look
to come down smoothly and end at a plateau which could not be improved
upon with further analysis. The initial ramp on the Fourier error for both
data-sets is caused by the first 10 iterations being run with a non-updating
probe. This is a standard step in ptychography and is used to push the object
function into a reasonable starting position before both the probe and object
functions are allowed to update.

The shape of the probe is certainly not circular as was previously assumed.
To investigate the reasons for this anomaly, an SEM was taken of the pinhole
after the experiment for comparison to the reconstructed function. The SEM
is shown in figure 3.23c)with the average probe reconstruction from data-set
1 3.23a) and from data-set 2 in 3.23b). The SEM has here been scaled
to the same pixel size as the ptychogram, and also its orientation has been
rotated to match the same co-ordinate system.
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Figure 3.23: The average full field probe reconstructions for a)data-set 1
and b) data-set 2 over 50 independent reconstructions; )c) the SEM of the
pinhole on the same grid size as the reconstructions and rotated to match
the orientation of the reconstructions.

The SEM in 3.23c) shows that the aperture is definitely not circular, in-
stead containing a thin layer of residual Molybdenum from the laser ablation
process. Indeed it looks very similar indeed to the reconstructed probe from
the ptychogram, and it is possible to make out the partially transmitting
region of the Molybdenum in the probe reconstructions. The next subsec-
tion uses this information to attempt to calibrate the thickness of this defect
region, but for now we focus on verifying the validity of the reconstruction.

Since the SEM contains inherently different information to the HHG pty-
chogram, it is not possible to perform a more detailed analysis of this com-
parison, except this initial verification that they do look the same. Instead,
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Figure 3.24: The Fourier ring correlations between the probe wave-fields
(blue line) and the object wave-fields (green line) from each independent
data-sets. The lack of correlation between the object fields shows that the
data-sets are indeed independent, while the strong correlation between the
probe fields shows that the probe solution is consistent across both data-sets.
The red line shows the cut-off where the signal meets the noise.

since two independently measured and reconstructed ptychograms are shown
which are formed by averaging over multiple reconstructions from the same
data, we can check the reliability of the information by finding the Fourier
ring correlation (FRC) as we carried out for the synchrotron data. This FRC
is shown in figure 3.24, along with the FRC of the object reconstructions to
confirm the assumption of independence of the data sets.

From the information in figure 3.24 it can be concluded that the two
probes are indeed strongly correlated over the entire range of spatial frequen-
cies present in the reconstruction, meaning the result is diffraction limited
instead of noise limited; in contrast, the object field reconstructions are not
correlated at all, with the correlation coefficient dropping straight to 0 aside
from a small correlation of the background 'DC’ frequencies. This suggests
that a larger section of the raw data could have been used in the reconstruc-
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tions to gain higher resolution. However, as shown in figures 3.16, the data
does not provide any significant information over the noise outside of this
region. From this, we can be satisfied that we have achieved the best fit to
the recorded data possible and can proceed to use this information to make
some statements about both the probe and object fields.

Pinhole defect analysis from HHG ptychography

In this subsection we will try to make some concrete statements about the
nature of the defects seen inside the aperture used.

Although Molybdenum is a good electrical conductor, and so would ground
most organic material in the formation of an SEM, none of the defect ma-
terial showed any inclination to charge during the measurement. For this
reason, the defect can be attributed to a defect in the manufacture of the
pinhole and not any of the materials used in the sample preparation. For
this reason it is a relatively safe assumption that this defect material is re-
deposited material from the laser ablation process used to manufacture the
pinholes.

With this in mind, we can convert the exit-wave field (EWF) of the probe,
into a thickness function for the material. For an EWF U(x,y, z, \) measured
at wavelength A, the thickness function T'(p) for a material of density p and
complex refractive index n(\) can be expressed as equation 3.3.

127
Ulw,y, 2 A) = exp[==n(A])T(p)] (3.3)
which can be rearranged as
T(p) = — 2 W[U(z, 4, 2, A)] (3.4)
p) = 271'71()\) 'Yy %5 .

The refractive index in the EUV and X-ray regions of the spectrum can be
expressed as equation 3.5, where fi(A) and fo(\) are the atomic scattering
factors in the forward direction and r. is the classical electron radius.

n(\) =1 —35(\) — iB(\)

1 g—;/\Q(fl()\) +ifa(N))

(3.5)

By calculating n(\) using values for the scattering factors obtained from
CXRO [78], we can calculate the 2-dimensional thickness functions for both
average probe functions as shown in figure 3.25a) and b) for data-sets 1 and
2 respectively. Since the wave-field incident on the pinhole is unknown and
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Figure 3.25: The magnitude of the thickness functions for the average probe
reconstruction for data-set 1 a) and data-set 2 b). c) the difference between
the two thickness functions providing the error in measurement of this thick-
ness. The colormap in all these plots is indicative of thickness, with the units
in m.

hence the incident intensities and phases are also unknown, an assumption of
plane wave incidence has been made and the minimum ”thickness” in these
arrays have been subtracted from the other data points to provide absolute
values.

To calculate a rough error range for these measurements, the thickness
functions in figure 3.25 a) and b) were subtracted from each other with the
result shown in figure 3.25c¢). Hence we can say with some certainty that
the defects in the pinhole are 5.5 nm 4+ 1 nm thick at the thickest part.
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3.2.3 Object wave-field reconstructions

The stability and repeatability of the probe wave-field analysed in the pre-
vious subsection show that we can trust the validity of this reconstruction.
Since the probe and object functions are coupled in the reconstructions, the
fact that one of these functions is well defined, suggests that the other will be
stable and reliable also, and so we can move straight in to the interpretation
of the results, without requiring further validation.

Since two data-sets were taken during the experiment, corresponding to
two independent object wave-field reconstructions, it makes sense to consider
each one in turn in order to extract the maximum useful information. Since,
from figure 3.16, it was concluded that data-set 2 ( 3.16 b) contained the
most information about the object, this data set will be investigated first.

3.2.4 Object field analysis from data-set 2

The initial reconstruction of the object wave-field from data set 2 was intro-
duced in figure 3.22 whilst the reconstructions were being optimised. They
were ignored initially whilst we optimised and analysed the probe informa-
tion, but are now reproduced in more detail in figure 3.26.

Figure 3.26 a) shows a zoomed in plot of the complex object field. Since
the 4 scanned probe points were not enough to fill up the field of view, and
the starting guess for the object was an array of random numbers, we can
improve the object reconstruction by applying a mask to this field. A suitable
mask was found by scanning the probe magnitudes according to the recorded
views and summing them. The resultant distribution was then thresholded
at 10% of the maximum to produce the final mask shown in figure 3.26 b).
Applying this mask to the reconstruction gives the result shown in figure
3.26 c).

Figure 3.26 c), although consistent with the data, gives little in the way
of usable information about the features of the object exit wavefield.

The reasons for this become apparent, when we consider the fact that
the reconstruction of the probe function was in focus. We know from the
alignment of the sample using the travelling microscope technique that the
defining pinhole is within 10 microns of the sample substrate. However, the
plane of reconstruction has been defined as that of the pinhole due to its
strongly scattering nature. A schematic of the sample layout with respect to
the pinhole is shown in figure 3.27 as a reminder of what we should expect
to see.

Since the full field is known at this position, it is possible to propagate the
function forward until the plane where the sample is in focus by considering
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Figure 3.26: The reconstructed object for data-set 2. a) The mean average
object exit wave field over 50 independent pseudo-random starting seeds.
b) A binary mask of the reconstructed field of view formed by addition of
the reconstructed probe magnitudes at the 4 scan positions. The resultant
magnitudes were then thresholded at 10%. c¢) The reconstructed field shown
in a) multiplied by the mask in b). d) The field of view in ¢) interpolated
twice by padding in Fourier space to increase the sampling rate. No extra
information is added in this process.
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Figure 3.27: A schematic of the pinhole and sample layout showing which
order the elements interact with the EUV radiation. The light is incident
upon the pinhole first. After this, it progresses onto some of the larger neuron
cells, which will be closest to the pinhole. This is then followed by the thinner
dendritic structures and then the Poly-L-Lysine coated SiN
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the propagation of the angular spectrum of the sample, as explained in depth
in section 1.3.2 and re-iterated here in equation 3.6.

Ua,B,2') = Ua, B,0) explik.2'{1 — (a® + 52)}2] (3.6)

The propagation of the angular spectrum works best when the signal at
z = 0 is finely sampled. However, with the current wave-field shown in figure
3.26 c), this is not the case. Instead the wave-field was up-sampled by a factor
of two by padding the angular spectrum with zeros. Fourier interpolation is
the best choice for this smoothing process since it adds no extra information
to the data, unlike the assumptions of spline interpolation. The result of
this interpolation is shown in figure 3.26 d) and shows that no artefacts have
been picked up in the transformation.

The function can now be propagated through via the ASM. Since the
object is an organic compound, and hence the refractive index is hard to
determine, the refractive index for the ASM propagation will be set to unity.
This does limit the interpretation of the result, as will be discussed later,
such that a true thickness function cannot be determined. However, this is a
standard limitation of just considering the forward projection of the object;
to fully characterise the object in question would require a full tomographic
scan of the ptychograms would need to be collected. This type of "ptycho-
tomo” experiment is frequently carried out at the Swiss Light Source (SLS),
a synchrotron based source, but currently is beyond the scope of lab-based
sources. Alternately, reconstructions using different wavelength probes could
be considered to distinguish between the dispersive change and the density,
however the equipment required for this was not available at the time of the
experiment.

Figure 3.28 shows some cross sections through the interpolated array
as it is propagated, figure 3.28a) being the reference for the cross sections
in 3.28b). Ignoring the scattering from the ”pinhole” effect of the limited
field of view, it is possible to identify several points where the wave-field is in
focus at various obstructions. These are shown in the figure by white arrows,
and are identified by tracing back the scattered rays to their source.
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Figure 3.28: Complex cross-sections of the propagation of the object field
reconstructed from data-set 2 a) Identifying some cross sections across the
object field.b) the ASM propagated field for cross-sections A-F respectively.
The white arrows point to some of the perturbing obstacles in the light path.
These are identified by tracing rays back to their point of origin.
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For the remainder of this analysis of data set 2 we will concentrate on
one of these focal points, which corresponds to the neurite that the pinhole
was aligned to in figure 3.14.

An EUV ptychogram of a neurite

By picking one of the planes identified in figure 3.28, we can look at the 2-
dimensional variation in the EWF of the object, as the propagation distance
is varied. Figure 3.29 shows this propagation for slice E (shown previously
in figure 3.28e) as it is scanned from 0.5 microns to 2.5 microns. It is clear to
see from the propagation in 3.29b) that some dendritic structures do indeed
appear as the focus is scanned; a fact reinforced by looking in more detail at
the expanded version in 3.29c).

The dendritic structure that appears through this propagation is retarded
and attenuated with respect to the areas around it, suggesting that a thicker
or denser structure is obstructing the propagation of the light. This feature
can be seen in more detail in figure 3.30a). The neurite structure appears
to be around 200 nm in width, and to cause a phase shift of just under 7
radians.

To try to identify whether these structures are part of a neurite complex,
we return to the optical microscope image we showed earlier during the align-
ment process. A zoomed and enhanced version of this light micrograph is
shown here in figure 3.30, next to the EWF from this reconstruction. This
zoomed region is the area of the sample scanned during this ptychography
experiment. Although the light microscope image is low resolution, there is
definitely a strong similarity between the two images, confirming that nothing
had drifted during the light microscope alignment and the EUV experiment.

Unfortunately, the sample broke on removal after the ptychography ex-
periment and so no other microscopy techniques could be applied to this
same sample. Instead, a sample from the same cultured batch was imaged
via SEM. This is shown figure 3.30, which is a close-up of the SEM shown in
3.12d). This also shows a good similarity to the EUV ptychogram, confirming
that the reconstructed object EWF is definitely that of a neurite.

109



0.5um1.5 um2.5 um

Displacementiim
- =

0.5-
0
£ 2 £ -0.5+
3 )
e 5 -1+
2 £
z 0 g
o & -1.5-
= o
& 2
-‘Q—‘ a -2-
2 25-
3
0
4 0.5

Displacementfim Displacementim Displacementfim

Neurite feature

Figure 3.29: A more detailed look at a focal point around 1.5-2 microns. a)
The ASM propagation of this cross section as previously shown in 3.28e).
Cross sections of the two dimensional complex field corresponding to the
white lines in a) are shown in b) at their positions along the travel direction.
It is possible to see features that are not visible in the 0.5 micron image
coming into focus in the 1.5 micron images and 2.5 micron suggesting that
the field has been propagated to the region of the disturbance. ¢) a zoomed
in version of b) showing detail corresponding to a dendritic structure in the
sample.
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Figure 3.30: Comparison of the reconstructed EWF with other microscopy
techniques. a) An image of the full field ptychogram zoomed in at 2.5 micron
propagation length, with the in focus region shown (white circle). b)inset:
The light microscope image using a 20x 0.4 NA objective previously shown
in figure 3.11b), Main: The area inside the white dashed box in the inset
image zoomed and enhanced using ImageJ software. The colormap has been
inverted to better show the neurite region. ¢) A cross section of the region
marked by the red line in b) showing the feature with is around 200nm.
This measurement is limited by the pixel size of the detector on the micro-
scope.d)Inset: The enhanced SEM shown in figure 3.12. The square marks
a position that is zoomed in on the main image, Main image: a zoomed in
region of the enhanced SEM showing neurite complex. The SEM is from
a different sample to the one studied since the original broke on removal
from the ptychography system. The arrows mark the similarity between the
features in the two different images
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From this initial look at the data, it is not possible to tell whether the
neurite in question is a dendrite or axon, although the optical micrograph,
shown in full in figure 3.11b), suggests that this neurite is connecting be-
tween two neurons, and may potentially be an axon. Identifying axons from
dendrites is a task that is usually technically challenging unless the sample
is micro-tomed and imaged via TEM.

Ideally, from the EUV ptychogram, we could now plot a thickness function
for this EWF, as we did for the pinhole defect. As previously mentioned,
since the elemental composition,density or thickness are not known, it is
more complicated to get this information out of the EWF. Since we know
both the transmission and phase of the light however, we can make some
investigation into the variation of the composition of the features.

The EWF can be expressed in terms of a thickness function as shown in
equation 3.3, re-printed here as equation 3.7, where the refractive index has
been written in terms of its real and imaginary parts.

127

U@y, 2, A) = exp[—~(1 = 6(}) = iB(A)T(p)] (3.7)

Separating out the real and imaginary terms in equation 3.7, allows us to
write the following statements for the magnitude and phase of the EWF.

UGy, 2 X)| = expl- 25T ()]

127

arg[U (2, y, 2, A) = —=(1 = 6(N))T(p)

(3.8)

Dividing the equation for the phase by the equation for the magnitude
gives a quantity that is independent of the thickness function, and only in-
cludes information about the relationship of the phase delay ratio with the
attenuation, or real and imaginary parts of the refractive index, as shown in
equation 3.9

arg[U(z,y, z, \)] _ 1-p (3.9)
U(z,y,2,)] 0

This quantity is similar to a measure frequently used in RF electronics [87]

and microwave optics [88] and is known as the loss tangent of a dielectric

medium. It can be understood as the tangent of the phasor angle of the

refractive index tensor, which is unique to specific compounds. Hence, a plot

of the loss tangent should provide information of the object which is inde-

pendent of the thickness function and related to the change in composition
of the material.
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Figure 3.31 shows a plot of the loss tangent for the cross section of the
loss tangent over the dendritic structure that we focussed on in figure 3.30.

Figure 3.31 shows that the neurite feature in the EWF does indeed
represent an area of the sample which has a different composition to the
background, having a higher phase shift per unit attenuation. From the
cross section in d) we can see that the width of the neurite structure is
around 200 nm wide which corresponds to that which we outlined in figure
3.12e). from an SEM of a neurite. We see that their is an asymmetry about
this feature; the signal does not go down to the same background level on
either side. This is probably because the gap on the left hand side between
the neurite and the adjacent feature is below resolution of the image.

If we now inspect the feature along its length (figure 3.32), we see a steady
decrease in the value of the loss tangent, indicating that the composition
is changing along it’s length, decreasing linearly from right to left. This
agrees with the known fact that neurites have a polarity, allowing them
to communicate via electrical and chemical gradients. It can also be seen
that there is a region of constant composition, corresponding to a plateau
in the loss tangent. Although the information here is limited due to the low
resolution, a modulation of this kind would fit the model of an axon, with
alternating periods of myelin sheath and Ranvier nodes. Combined with the
light microscope image however, we can be fairly certain that this is indeed
what we are seeing. The spacing of the node would hence be around 300 nm,
around the expected size scale for such a feature.
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Figure 3.31: A comparison of the dielectric loss tangent to the reconstructed
EWF across a cross section of the neurite. a) The reconstructed EWF propa-
gated to the region with the neurite in focus. ¢) a cross section in amplitude
and phase across the region depicted by the sold black line in a). b)A 2-
dimensional plot of the loss tangent calculated from the field shown in a)
depicting areas of different composition. d) A cross section across the black
line shown in b) showing a region with higher phase shift per unit attenua-
tion than the surrounding areas. The reason for the asymmetry about this
feature may be the low resolution of the image.
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Figure 3.32: A comparison of the dielectric loss tangent to the reconstructed
EWF along the length of the neurite. a) The reconstructed EWF propa-
gated to the region with the neurite in focus. c¢) a cross section along the
region depicted by the sold black line in a). b)A 2- dimensional plot of the
loss tangent calculated from the field shown in a) depicting areas of different
composition. d) A cross section along the black line shown in b) There is a
steady decrease in the loss tangent as we move to the left of the plot, indi-
cating a polarity to the neurite composition. There is also a plateau region
present where the composition must remain the same. This is indicative of
the feature being an axon.

3.2.5 Object field analysis from data-set 1

Now we have analysed the dataset 2, we will return to dataset 1. Recall
that this was the dataset that we deduced from figure 3.16 to have less
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information about the object.

As with data set 2, it makes sense to first look at the raw reconstruction of
the object field. This is shown in figure 3.33 where the average wavefield over
50 iterations ( 3.33a)) is first isolated by multiplication of a mask of the non-
zero probe scan points ( 3.33b) shows the mask, and c), the resultant object
field) and then Fourier interpolated twice ready for the ASM propagation.
The result of this interpolation is given in 3.33d).

As with the dataset 2 analysis, we can see that the resulting wavefield,
does not show many obvious features, primarily because the reconstructed
object field is currently situated in the plane of the pinhole. To propagate
it to the correct plane, we will use the ASM with all the same assumptions
as for the dataset 2. Figure 3.34 shows this propagation for a range of cross
sections through the object field.

Comparing this to dataset 2, we can see that the region of the sample in
dataset 1 does indeed seem to be much more weakly scattering, and indeed
it is hard to pick out any particular regions which may be in focus at points
along the propagation. However, there are still a few points of interest, one
of which is identified by a white arrow in figure 3.34d).

Figure 3.35 shows a 2D scan of this area in 3.34d). This figure shows
that although the features here become slightly more sharp, they are still not
well defined, which is what would be expected for a sample region of poor
contrast.

To better see what the field looks like at the region that is in focus, figure
3.36 shows the field at 3 microns propagation distance.

The features in this field still looked very blurred, even though they are
in the best focus position. This is probably due to the low contrast of this
region of the sample and low diffraction limited resolution of the experiment.

3.3 Summary

In summary, this section has shown the first demonstration of ptychography
of real objects from a lab based source of short wavelength radiation. Whilst
initially the data did not converge to a solution due to the limited number
of views collected, an improved starting probe calculated directly from the
data was used, resulting in good convergence and high correlation between
two independently acquired datasets.

The reconstructed probes provided enough information to identify and
analyse the defects in the laser drilled Molybdenum pinhole used to provide
the support constraint. A maximum thickness of 6 nm 4+ 1 nm was found
for the obstructing piece of Molybdenum.
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Figure 3.33: The reconstructed object for data-set 1. a) The mean average
object exit wave field over 50 independent pseudo-random starting seeds.
b) A binary mask of the reconstructed field of view formed by addition of
the reconstructed probe magnitudes at the 4 scan positions. The resultant
magnitudes were then thresholded at 10%. c¢) The reconstructed field shown
in a) multiplied by the mask in b). d) The field of view in ¢) interpolated
twice by padding in Fourier space to increase the sampling rate. No extra
information is added in this process.
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Figure 3.34: Complex cross-sections of the propagation of the object field
reconstructed from data-set 1 a) Identifying some cross sections across the
object field.b) the ASM propagated field for cross-sections A-F respectively.
Compared to figure 3.28 these images show that the object imaged here has
much less contrast and hence is much less strongly scattering than dataset
2. The white arrow in d) points to a region that is in focus.
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Figure 3.35: A more detailed look at a focal point around 1.5-2.5 miorons in
dataset 1. a) The ASM propagation of this cross section as previously shown
in 3.28¢). Cross sections of the two dimensional complex field corresponding
to the white lines in a) are shown in b) at their positions along the travel
direction. c) shows a finer scan in the travel direction of a zoomed in section
of b). It is still very hard to discern a region that becomes sharp with this
propagation.
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Figure 3.36: The object field at 3 microns propagation distance. The features
that are in focus are circled, however they still seem blurred. This may be
due to their low contrast, and their feature size being below the diffraction
limit of this experiment.

Two reconstructed objects were examined; one providing no resolvable
information, and the other providing compositional information about the
cultured neurite growth. The neurite under investigation was imaged with
180 nm resolution, the diffraction limit for this experiment, and better than
could be achieved via a regular light microscope. By analysis of the loss
tangent of this structure in combination with the light microscope image
it was identified to be an axon; information not available by EM or light
microscopy without destruction of the sample.
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Chapter 4

Conclusions

The work outlined in this thesis has been fairly varied from a microscopy
point of view. After outlining the background of phase retrieval techniques
and the nature of the source in chapter 1, we visited topics as diverse as the
exploration of the treatment of coherence through a computational imag-
ing system(chapter 2) and microscopy of extended hippocampal neural com-
plexes in chapter 3.

This chapter will pull together the main conclusions and results from the
two experimental chapters.

4.1 Coherence in CDI, chapter 2

The main idea behind the published work set out in this chapter was to inves-
tigate the tolerance of the standard CDI algorithms as the relative bandwidth
of the source was increased from 0.7% to 20%, increasing the scattered flux
by a factor of 5. For the conventional, uniform spectra of existing lab and
facility based sources of short wavelength radiation, has been shown in pre-
vious work [67] to lower the visibility of the recorded speckle pattern by such
an extent that, unless specifically designed algorithms [66] are used, or the
signals separated [73], the process of CDI would fail completely. The hy-
pothesis under test during the investigation in this chapter was whether for
a non-dispersive object the modulated nature of the high harmonic spectrum
would improve the visibility of the signal enough in the broadband case at
selected spatial frequencies so that the CDI algorithm could reconstruct both
correctly and reliably.

An experiment was designed and implemented to measure the speckle
patterns of the same non-dispersive, binary transmission test sample in both
broadband and narrowband conditions. The raw data were compared to
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confirm that indeed the effect of the high bandwidth was enough to lower
the visibility of the recorded speckles, alongside further analysis of the real-
space spatial dependence of the signal on the coherence.

CDI reconstructions were then performed on both data sets and a statis-
tical interpretation of the results was performed. It was found that, whilst
the broadband reconstructions were a little more noisy and slightly blurred,
applying the shrinkwrap modification to the iterate, and then selecting the
iterate that corresponded to the lowest Fourier-space error gave a result that
was consistent in shape almost 100% of the time. These reconstructions were
claimed not to be a solution to the phase problem, but instead are presented
as an improved support guess for further refinement via other optimisation
algorithms. This result was claimed to be broadly applicable across a range
of high energy photon sources provided that the spectrum can be modulated
accordingly.

4.2 Iterative ptychography experiments, chap-
ter 3

This chapter presents the key advances in the use of lab-based EUV mi-
croscopy of extended complex valued objects. At the time of writing this
thesis, it was the first such result in the world, and is soon to be published
in an appropriate, high impact, journal.

The main concepts for the experiments detailed in this chapter were:

1. To check and prove that iterative ptychography could be used to image
extended samples for a high harmonic source.

2. To image complex-valued objects, notably those of scientific interest.

3. To attempt to image and characterise biological samples using the high
harmonic source via iterative ptychography, notably hippocampal neu-
rites.

To gain some experience working with experimental ptychographic data
sets, I attended a beamtime with Ian Robinsons group (UCL) at the i13 co-
herence beamline at Diamond Light Source. Chapter 3, section 3.1 presents
some simple results from this experiment where a test sample was imaged.
The lessons learned from processing this data were summarised as

1. Applying a support to the probe seems essential to get repeatable re-
constructions from real data. Otherwise the probe may tend to move
to the edges of the support.
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2. If the independence between all views is high, it would seem that a
simple modelled probe guess can be used.

3. Using the same probe across two independent data sets improves the
stability of the probe and hence object field reconstructions.

4. Floated pixels may cause multiple threshold crossing points and hence
issues with the interpretation of the FRC and so a standard cut-off
cannot be used for the figure of merit for resolution.

An experiment was next performed using the high harmonic source at
Southampton, the tips in the above list were applied in combination with a
novel formation of a probe constraint to encourage the data to converge. The
resulting probe wave-field from this showed a high Fourier ring correlation
out to a high resolution across two independent and uncorrelated data sets.
The investigation of the probe wave-field allowed characterisation of defects
in the pinhole: a thickness of 6 nm £+ 1 nm was found for this defect, with a
lateral resolution of 90 nm.

The two reconstructed object data sets were examined and it was con-
firmed that a neurite had indeed been imaged, as we had intended from the
sample alignment steps. Since the composition of the sample was complex
and unknown, the loss tangent was used to note the change in composition of
the sample across a cross section and along its length. This revealed that the
neurite was around 200 nm thick at its thinnest point (a resolution above the
Sparrow diffraction limit of 180 nm), and modulations of compositions along
its length were observed. This combined with the initially light microscope
image and SEMs of other samples confirmed that what was imaged was in
fact an axon, the neurites responsible for carrying neuron communication.

The capability of HHG ptychography to resolve such features and estab-
lish patterns in their composition is a very useful tool, that has been so far
unreported in the field. Usually in order to get this information of neurite
complexs, active microscopy (PALM/STORM) is required and even then it
can be inconclusive due to the resolution limitations and need for sample
preparation.
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Chapter 5

Future Work

The main goal of the coherent diffraction project at Southampton is ulti-
mately to image biological samples at high diffraction-limited resolution us-
ing a lab-based source. The University of Southampton is a prime location
for such research since the group is on the same campus, and has very strong
links with, the Institute for Life Sciences (IfLS) with whom the work detailed
in the iterative ptychography section of this report (chapter 3) was part of a
collaboration with.

Although the work detailed in this thesis provides a lot of the ground
work for future work. There are a number of things that have been high-
lighted in the analysis of this thesis which currently provide limitations on
the applicability of the HHG coherent diffraction technique to such a goal.

These are

1. The stability of the source
2. The available flux
3. The wavelength of the source

4. The repeatability of biological sample manufacture

The stability of the source is inherently linked to the stability of the pump
laser system. Currently, the maximum data collection time for an experiment
is limited to around 20 minutes ( 3) due to this instability, limiting the field
of view that can be collected for a ptychogram.

This limitation can be addressed from a few different perspectives. The
first of these is to make the laser system more stable. Since the cavity Spec-
tra Physics amplifier system used throughout this thesis is not temperature
stabilised, one should expect nanoscopic slow thermal drifts to cause shifting
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of the cavity components. This in term will cause the EUV source to drift
over time. To fix this directly would involve the major task of rebuilding
the amplifier system on a water-cooled table. Instead it may be preferably
to actively or passively stabilise the laser beam exiting the system. Active
methods, although nowadays very accurate, could have the disadvantage of
causing the beam to jump as the steering is corrected. Instead is may be
preferable to apply the passive step of de-magnifying the beam, which would
give an improvement in stability proportional to the de-magnification. How-
ever, this would then affect the available flux of the system.

To improve the available flux, one could consider pumping a larger volume
inside the gas cell. Since the Keyldysh parameter (detailed in chapter 1) is
currently very small indeed, a more slowly focussed pump beam could be used
allowing a greater volume to be pumped. Other source geometries are also
under investigation in the group such as those of gas-filled capillaries. These
show great promise for increased flux at 40 eV as well as for future sources
extending down to the water-window (500eV - 1keV) by using Neon and
Helium gases to push the energy cut-off in the HHG process. However, these
sources are currently too unstable for use in imaging experiments. This novel
source research is part of an ongoing collaboration with the Central Laser
Facility at the Rutherford Appleton laboratories.

Lastly, the availability of suitable biological samples is limited. The dom-
inant issue with these samples is currently the repeatability of creating a
sample with the necessary features of interest. For neurons this is the neural
synapse region. This is, however, the nature of dealing with biological speci-
mens. The samples are currently manufactured by the group in collaboration
with IfLLS, and this work is part of the remit of this collaboration.
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