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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

WHY IS LIFE? AN ASSESSMENT OF THE THERMODYNAMIC PROPERTIES

OF DISSIPATIVE, PATTERN-FORMING SYSTEMS

by Stuart J. Bartlett

This document charts a series of investigations into some basic questions concerning the

relationship between life and the physical theories of thermodynamics. While equilib-

rium thermodynamics represents a foundational component of modern physics, methods

for non-equilibrium systems have yet to reach the same level of maturity. The first part

of this thesis aims to establish the validity of a burgeoning theory of non-equilibrium

thermodynamics known as the Maximum Entropy Production Principle (MEPP), in the

context of heat transfer by convective fluid motion between heated boundaries. Apply-

ing the MEPP to systems with both fixed and negative feedback boundary conditions

revealed that in fact, the steady state of convective fluids cannot be accurately predicted

from an assumption of maximum entropy production alone. Rather the subtleties of the

boundary conditions and the physical properties of the fluid must be properly accounted

for. It is thus proposed that the MEPP should not, as has sometimes been suggested,

be treated as a universally applicable law of nature.

The second part of this thesis investigates the pattern-forming and transport properties

of reactive fluid systems. It is found that under thermal driving forces, closed systems

utilise the physical processes of reaction and advection to augment their heat transport

abilities. Furthermore, the addition of thermal kinetics and fluid flow to the Gray-Scott

reaction diffusion system, reveals a new range of phenomena including positive feedback,

self-inhibition, competition and symbiosis. Such behaviour can readily be viewed from

an ecological, rather than purely physico-chemical, perspective.
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Chapter 1

Introduction

“There is a famous book published about 1912 by Lawrence J. Henderson

. . . in which Henderson concludes that life necessarily must be based on

carbon and water, and have its higher forms metabolizing free oxygen. I

personally find this conclusion suspect, if only because Lawrence Henderson

was made of carbon and water and metabolized free oxygen. Henderson had

a vested interest.”

Sagan (1973)

I am not the first person to quote this poignant passage from the great science commu-

nicator and arguably the founder of Astrobiology. It beautifully captures a sentiment

that re-surfaces in my mind every time I read a paper or book from that fascinating new

field. Although there is now a concerted effort to explore the concept of life as it could

be, the majority of research in the fields of the origin of life and astrobiology basically

assumes that life in the universe will be similar to life on Earth. Why?

There are obvious reasons of course ranging from purely pragmatic ones (how can we

compare an unobservable biology to our own, and how does one go about inventing

alternative biologies) to pure expectation bias (at present we have only one example

of life to study). We still face the problem of forging the tools necessary to recognise

life, now that we are increasingly equipped with the tools to look for it. The problem

of defining life is nothing short of a philosophical minefield decorated with pitfalls,

1
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paradoxes and dead ends. I will discuss my own position on this subject in the following

sections.

The search for life as it could be was the primary motivation for this thesis. It has led

me down a myriad of roads, many of which turned out to be cul de sacs. The origin

of life on Earth is an exciting field with pioneering developments emerging at a terrific

pace. But I did not wish to explore the detailed, exact chemical process which led to

the formation of our last universal common ancestor (LUCA). I see this partly as a

process of historical re-tracing. Through phylogenetic analysis, researchers now have

a reasonably good estimate for the genetic make up of the LUCA. Although further

back in time there is neither genetic or a fossil record of earlier forms of life. Therefore

this phase of life’s history remains shrouded in mystery. Despite this, some researchers

believe they have a relatively accurate picture for biogenesis (Martin and Russell, 2003;

Martin et al., 2008).

Rather than contribute to this effort I instead tried to consider life from a more abstract

perspective. What is its physical role in its universal context? What might drive it into

existence in other locales? This line of thinking led me to consider deeply whether life

might be definable through its thermodynamic properties. Therefore the starting point

for this thesis will be to contemplate the position of thermodynamics as it stands today.

1.1 Thermodynamics: Its Role and Current State

The famous French engineer Sadi Carnot (1796-1832) was far ahead of his time intellec-

tually, being the first to recognise some of the basic laws of nature, which now underpin

thermal physics (Carnot, 1824). But like many of the pioneers of thermodynamics he

had a sad life. He died at a terribly young age from a Cholera epidemic, and before that

he had been sent to an asylum due to mental illness. We can only imagine the enhanced

state of science and technology we would enjoy now, had he lived a full life or had his

entire collection of work survived.

Let us consider for a moment the translated title of his book: Reflections on the Motive

Power of Fire. Carnot had recognised that fire, a hot state of gas, had motive power,

i.e., it could be turned into mechanical work. He had taken the first steps towards the

recognition that heat and work were two manifestations of the same physical property.
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Although in that period steam engines had been around for some time, it is unlikely that

many other people had properly understood the basis of their function. In the present

day the equivalence of heat and work is understood before a child leaves school. But

in Carnot’s era, before it was common knowledge, it would not have been obvious that

there was a direct correspondence between the two.

In the end it was the work of James Prescott Joule which established the quantitive

relation between energies of different forms. However Carnot had not only noticed that

heat and work are both forms of energy, he had realised that the transformation of one

type to the other is not symmetric. This was the first recognition of the second law

of thermodynamics, one of the most powerful, relevant and enigmatic theories ever to

have been discovered. There are many ways to summarise it but I prefer to use the

following statement: There are astronomically more ways for an isolated system with a

large number of constituents to be disordered, than ordered.

We now understand heat engines very well, and the absolute limits upon their perfor-

mance that Carnot discovered, can almost be reached by modern gas turbines. The

contemporary form of the second law is due to the work of many pioneering figures in-

cluding Clausius, Thomson, Boltzmann and Gibbs. It was Boltzmann who first noticed

that if the basic constituents of matter were discrete particles (atoms), then the second

law is essentially a statistical statement. In this sense it is slightly misleading that it is

described as a law. It has the power and influence of a law, but it is nonetheless just a

statistical effect. It is not a force, in the same way that electromagnetism is.

Another way of stating the second law is this: An isolated system, when left for a suf-

ficient amount of time, will reach a state of equilibrium, in which the system’s state

variables no longer change with time, and which contains negligible gradients of inten-

sive variables. Intensive variables are those which do not scale with the size of the

system, such as temperature and pressure. For simple systems such as ideal gases in

isolated containers, the equilibrium state is completely understood, and characterised

by a uniform distribution of particles across the volume in which they are enclosed. If

we viewed such a system from a dynamics perspective, we might describe it as having a

set of states, defined by the positions and momenta of all N particles in the box. Let us

assume those positions and momenta are discrete. This would be true for real quantum
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particles and the discussion which now follows can be translated to the continuous case

with suitable modifications.

Each unique state of the system can be specified by the 6N numbers indexing all the

particle coordinates and momenta. When the system changes state according to its

microscopic equations of motion, it starts to trace out a trajectory in a 6N -dimensional

phase space. The constraints upon the system, such as the finite range of particle

velocities and the finite size of the container, mean that all the possible phase space

trajectories occupy a finite volume. We could pick any point in this enclosed space

(since it is divided up discretely this is usually referred to as a cell) and imagine the

trajectory emerging from it if that system were allowed to evolve. Let us go further

and imagine all the trajectories allowed by the constraints placed on the system. We

assume that the microscopic equations of motion are deterministic and time reversible.

This means that the trajectories do not intersect because if they did then there could be

a non-unique history for a given path, which would contradict the assumption of time

reversibility.

Let us take a step back and look at the tangled web of phase space paths winding

their way from state to state, each path corresponding to a unique set of states through

which the system can pass, if initialised somewhere along that path. Now consider the

properties of a typical state in the phase space region. With a little thought (or exper-

imentation) we would soon conclude that most of the states are completely disordered.

A common pedagogical approach here is to calculate the relative probabilities of coin-

throwing between all heads and half heads and half tails, as the number of coin throws

becomes very large.

Most of the system states are disordered, whether we look at an individual trajectory

or the whole volume in which the compatible states are enclosed. We can of course pick

out ordered states by imagining the box with all particles concentrated in one corner

for example. But if we were to trace the time evolution of such a system, it would soon

transition to a more disordered state. If we looked at the time reverse path we might

notice something odd: the disordered state reverts to an ordered one. In fact for every

state that evolves from order to disorder, there is an associated reverse path in which

a disordered state becomes ordered. How can we reconcile this apparent spontaneous

ordering with the second law of thermodynamics?
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In fact we have not taken a fair sample of system state changes. Imagine we are focussing

on state changes occurring over a length of time δt. We can find trajectories of this length

where the system goes from an ordered to disordered state. And for each of those we

can take the time reversed version. So we have as many disorder-order transitions as

order-disorder transitions. However we have only looked at transitions in the vicinity

of ordered states. We have not taken a representative sample of trajectory segments

of length δt. If we instead take all segments of that length, what we will find is that

the vast majority of them correspond to systems going from disordered states to other

disordered states.

So ordered states are actually rather anomalous, temporary deviations from the normal

state of affairs: one of complete disorderliness. Many discussions of the second law of

thermodynamics get dragged into conceptual difficulties because of inherent observer

biases, which make us focus a disproportionate amount of time on ordered states. In the

end the second law is simple: there are vastly more ways to be disordered than ordered.

Therefore the normal state that you are likely to find an isolated system with many

degrees of freedom in, is one of complete disorder.

So now we can see that the second law really is just a statistical statement borne out of

the combinatorics of systems containing large numbers of components. The validity of

it is therefore not contingent on any one set of physical laws. For example, it applies to

a Newtonian system as well as a quantum one. It would also apply equally well to other,

perhaps imaginary, sets of physical laws. The main constraint is that the dynamics

be time reversible and deterministic (considering systems with stochastic and variable

dynamics is a difficult endeavour).

The consequences of the second law for systems such as non-interacting ideal gases and

simple chemical mixtures have been rigorously worked out and stand as a seemingly un-

shakeable cornerstone of physics. We have a thorough understanding of the equilibrium

state, and we know that isolated systems march inexorably towards it. Note that there

is nothing to stop an isolated system in equilibrium becoming ordered, it is just so un-

likely as to be effectively unobservable. If the system is relatively small or if we observe

it for short time scales, apparent violations of the second law can occur (Wang et al.,

2002). In these small systems or over short time scales, fluctuations can be sufficient to

move a system spontaneously to a more ordered state. There is however a quantitative
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expression - known as the fluctuation theorem - capable of describing the distribution

of such deviations (Crooks, 1999; Wang et al., 2002).

Ludwig Boltzmann was an early proponent of the atomic theory of matter and we owe

much of modern thermodynamic theory to his achievements. Arguably his greatest

contribution was a formal definition of the quantity known as entropy. He argued that

there is a physically meaningful quantity related to the number of microscopic states

a system can exhibit for a given set of macroscopic constraints (a macrostate). For

example consider two boxes, each filled with gas at the same pressure. If one box

has twice the volume of the other it will have access to a significantly larger number of

microstates, hence its entropy will be greater. The exact expression, which was engraved

on Boltzmann’s tombstone reads,

S = kb lnW (1.1)

where S is the entropy, kb is a constant and W is the number of states a system can be

found in under a given set of conditions. The presence of the logarithm is actually just

for mathematical convenience. If we want to calculate the entropy of two systems, for

each state of system 1, system 2 could be in any of its accessible states. Therefore the

number of states for the composite system is the product of the numbers of states for

the two separate systems. The entropy of the composite system can thus be calculated

as the sum of the separate system entropies thanks to the form of the above expression.

Despite the formal definition, entropy has many physical interpretations. Without want-

ing to go into exhaustive detail, entropy can be roughly thought of as a measure of the

extent to which a system has come to equilibrium. An equilibrium system has uniform

distributions of intensive variables. There are thus many microstates that could satisfy

these constraints. In fact the equilibrium state is exactly that state with the maximum

possible number of microstates.

If we think back to the discussion of phase spaces, the entropy is proportional to the

volume of phase space corresponding to states that are compatible with the system’s

external constraints. The entropy of a system can change when external alterations give

the system access to a different number of microstates. Heating a box of gas for example

increases the range of possible molecular speeds and this expands the accessible phase

space volume for that system.
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In summary, I have described some of the basic facets of modern thermodynamics,

specifically the second law and the concept of equilibrium. We know that systems come

to equilibrium, and we can calculate various properties of equilibrium systems.

However there is still no general theory for systems not in equilibrium. There has been

progress with regard to systems that respond linearly to driving forces and systems close

to equilibrium (Kondepudi and Prigogine, 1998). But it has not yet been possible to

rigorously extend the framework of dynamical systems to systems with large numbers

of constituents i.e., those described by thermodynamics.

In recent years one theory has emerged that has caused both excitement and discord.

It is called the Maximum Entropy Production Principle (MEPP) and it will constitute

a significant focus of this thesis. The principle’s basic premise is that a non-equilibrium

system will adjust itself into a steady state such that its rate of entropy production

is maximised (Dewar, 2009; Dyke and Kleidon, 2010; Kleidon, 2009; Martyushev and

Seleznev, 2006). The nature and consequences of this idea will be discussed in detail in

chapter 4 and chapter 5, where I will carry out a set of simulations to test the validity

of the principle for an interesting class of non-equilibrium system: heated fluids.

My interest in the MEPP stems from the need for a theory of non-equilibrium systems

that can make predictions about their steady states no matter what they are composed

of, or how far they are from equilibrium. In the next section I will discuss the relationship

between biological systems and thermodynamics. Biological systems are never isolated,

nor are they even close to being in equilibrium (an equilibrium system is the epitome of

a dead state). If we had a general theory for non-equilibrium systems we could apply

it also to biological systems and there might be profound consequences for evolutionary

theory and ecology. Indeed the MEPP has been applied to ecological systems, but with

mixed success (Dewar, 2010; Meysman and Bruers, 2010; Vallino, 2010).

If the MEPP fails for a characteristic, non-equilibrium system such as a heated fluid, it

might imply that its validity is limited. Therefore my testing of its predictive power in

chapter 4 and chapter 5 will provide evidence for whether it can provide useful results

for the more complex systems investigated in chapter 6 and chapter 7.
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1.2 Life’s Difficult Relationship with Thermodynamics

The laws of thermodynamics place fundamental constraints on how physical systems

behave. The first law of thermodynamics states that energy is conserved, and that it can

be transformed from one type to another. Not all transformations are equally efficient.

Heat especially is difficult to transform into other forms of energy without large losses.

Any system in isolation will eventually come to a homogeneous, time-independent state

of equilibrium.

The ‘arrow of time’ effect of the second law of thermodynamics has led to the belief that

organisms are capable of defying it. Such erroneous ideas can be immediately dispensed

with if the system is properly considered. Isolated systems come to equilibrium. Or-

ganisms are not isolated, they are constituents of a much larger system that is isolated

(though we probably should avoid discussing the ‘entropy of the universe’). The fact

that organisms exchange matter and energy with the wider environment means they are

not constrained to simply come to equilibrium like isolated systems.

Naturally, the second law still applies, but in a slightly different way. It helps us dis-

tinguish spontaneous processes from impossible processes. So while organisms are not

isolated, they still have irreversible processes occurring within and around them. By

irreversible processes, I am referring to phenomena such as the diffusion of solutes from

a high to low concentration, the movement of heat from hot to cold bodies. Organisms

need these processes to occur. An example is the exchange of gases in the alveoli of

the human lung. If molecular diffusion did not act to equalise concentration gradients,

the removal of carbon dioxide and the incorporation of oxygen into the blood would not

occur sufficiently fast to keep the body alive through aerobic respiration.

In contrast, many biochemical phenomena occur against the natural tendencies of the

second law. One example is the active transport of protons across lipid bilayer mem-

branes. This creates an electrochemical potential gradient which would not arise spon-

taneously. So the picture that emerges when we evaluate life and thermodynamics

together, is one of both conflict and harmony.

Organisms have to fight against the randomising tendencies of equilibration to maintain

their structural and chemical organisation. But organisms also make use of energy

gradients. For instance heterotrophs use the chemical potential gradient between their
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food and waste to power all their activities. Plants and other phototrophic organisms

use the energy of high frequency UV photons to build complex molecules from simpler

building blocks. The energy contained in those photons will eventually be re-radiated

to space as infrared photons. The entropy difference between the incident radiation and

the outgoing radiation is manifested in the fact that the energy of a single incident UV

photon will leave the Earth system in the form of 20 infrared photons.

That organisms produce entropy is not disputed. Boltzmann once said:

“The general struggle for existence of animate beings is not a struggle for

raw materials – these, for organisms, are air, water and soil, all abundantly

available – nor for energy which exists in plenty in any body in the form

of heat, but a struggle for entropy, which becomes available through the

transition of energy from the hot sun to the cold earth.”

Boltzmann (1974)

We can be sure that he meant negative entropy (associated with useful or free energy)

rather than entropy itself, but he nevertheless had noticed that organisms are quite

effective dissipators. I’ll take dissipation to mean the conversion of energy from more

useful to less useful forms (electricity to heat for example). Chronologically, the next

widely known consideration of the thermodynamics of life came when Erwin Schrödinger

delivered a series of lectures in 1943 at Trinity College, Dublin (Schrödinger, 1944).

Schrödinger affirmed that despite some belief to the contrary, organisms obey exactly

the same physical laws as non-living systems. He also had the incredible insight to es-

sentially predict the existence of a genome, which he described as an “aperiodic crystal”.

The basic idea being that crystals have a repeating, unchanging microscopic structure.

Therefore if a crystal was free of this symmetry condition, it would have the ability to

encode information, the same way that digital information is stored on a magnetic disk.

The ideas presented by Schrödinger (1944) have served as the primary inspiration for

much of the modern work concerning biological thermodynamics. The literature base of

this field is now rather large, but quite a fraction of it is, by some measures, undeserving

of credibility. Even the respectable works often do not go far beyond re-confirming that

life does obey the second law of thermodynamics. Given the intellectual talent and time
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that has been spent pondering this problem, the lack of any ground-breaking theoretical

understanding attests to its difficulty.

At its heart, this is a problem of non-equilibrium thermodynamics, which itself does not

yet have a broad theoretical base. We know that the Earth is a strongly driven, non-

equilibrium system. We know that organisms store information about their environments

genetically. We also know that organisms play a major role in the energy and matter

exchanges of the planet. But is that role mathematically definable?

Schneider and Sagan (2005) expressed the idea that life is a manifestation of the second

law of thermodynamics. The concept is intriguing and hard to deny but also somewhat

empty when it comes to predictive power. We know that organisms contend with and

use the second law of thermodynamics. And life may have started because of the strong

disequilibrium found at off-axis hydrothermal vents (Branscomb and Russell, 2013). But

the ideas of Schneider and Sagan (2005) do not seem to offer a lot more insight.

Chaisson (2011a,b) has proposed his own physical metric for complexity (and by ex-

trapolation, life): energy rate density. This variable corresponds to the intensity with

which energy is passing through a unit volume of space. He states that early in the

lifetime of the universe, it was virtually devoid of shape or form, but with time has de-

veloped organised structures which experience progressively stronger flows of energy, and

a higher degree of complexity. Life is the epitome of this sequence of self-organisation

and exhibits the highest energy rate density of any structure in the known universe, he

argues. Of all the contemporary works on biological thermodynamics, his stands out as

having a quantitative basis and being subject to testing and analysis. The data that

he presents naturally suggests his hypothesis is correct but further independent study

will be required to prove its absolute validity. If it did prove accurate it could reshape

our thinking of the role of energy within evolutionary theory. This leads us to question:

Can natural selection be defined in thermodynamic terms?

The theory of evolution by natural selection can seem to be somewhat subjective. Al-

though it may explain the fitness of organisms in a given environment, for persistence

over greater time scales, the ability to adapt to changes is as crucial as fitness to the

present surroundings. After all, the Earth is not a constant, homogeneous, stable place.

Quite the opposite. In fact in any environment (Earthly or otherwise), change is the

rule, rather than the exception.
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Thus the concept of natural selection might benefit from a more rigorous theoretical basis

and the ability to apply over a range of length and time scales, i.e., to chemical structures,

single-celled organisms, larger more complex organisms, even groups of organisms and

structures within economic or social systems. Such a theory ought to encompass both

stability and robustness to perturbations.

Kauffman (1996) has argued that the process of evolution consists of both natural se-

lection and self-organisation. He proposed that self-organisation (also rather ill-defined

as a concept) provides the building blocks and evolution filters out which combinations

of those building blocks make robust organisms. But it could be argued that natural

selection and self-organisation are just two facets of the same underlying effect.

Natural selection favours organisms which can make a living in a particular niche. Self-

organisation (in my interpretation) is a process in which objects interacting in simple

ways form non-trivial aggregate structures (for example large molecules such as pro-

teins or groups of organisms such as coral reefs). Self-organisation could be seen as a

selection mechanism for stable complex structures. After all, the specific tertiary struc-

ture of a macromolecule such as a protein, forms due to the energetic interactions of

its constituents. There is an immense range of possible tertiary structures, but those

structures that one actually observes is a tiny subset of what is possible, due to the

physical constraints upon the molecule. So in this case, the physical interactions of the

components of the system have caused the selection of the resultant structure.

Natural selection could also be viewed as an ordering pressure for stable complex struc-

tures. In their current forms, there is no need for both the concepts of self-organisation

and natural selection. But ideally, there should be a single unified formulation of evolu-

tion based on the idea of robustness to perturbations, which applies equally to all length

scales.

Even before Schrödinger’s pioneering lecture series, Lotka (1922) considered the ener-

getics of the evolutionary process. This short but insightful work expressed the fact

that organisms are in some ways analogous to heat engines (plants were referred to as

accumulators). The author also succinctly wrote that while the first and second laws of

thermodynamics are obeyed by biological systems, they are not sufficient to define how

a given biological system will change over time. In essence, the first and second laws are
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constraints, but they are not a set of dynamical rules. Though even as constraints they

are powerful (imagine a world where perpetual motion machines were possible).

The idea of organisms as heat engines was further elaborated by Cottrell (1979), whose

work helped inspire the idea of free energy converters (Branscomb and Russell, 2013).

All organisms facilitate energy transformations. Indeed I have previously put forth a

tentative definition for life as: A set of linked energy transformations whose action aims

to allow the continuation or augmentation of those transformations (Bartlett, 2012).

Energy transformations occur in living and non-living systems. But in living systems

there is a reflexive, goal-directed element. The set of transformations which comprise an

organism are both the means for building and maintaining the organism but they also

are the organism. It is simultaneously the means and the end for its own activities.

1.3 The Many Faces of Disequilibrium

I have discussed what life does from a thermodynamic perspective but not why it carries

out those actions. It is difficult to argue against the idea that the very first organism

to emerge, did so as a result of large energy gradients (Branscomb and Russell, 2013).

Contemporary life is driven by gradients and without them, there would have been no

need for a set of organised, dissipative processes to be thrust into being. It was the nobel

laureate Ilya Prigogine who first coined the term “Dissipative Structure” (Kondepudi

and Prigogine, 1998). He was a pioneer of non-equilibrium thermodynamics who first

recognised that systems driven out of equilibrium sometimes form organised patterns as

a result of the gradients imposed upon them. Two of the most characteristic classes of

dissipative structures, convection cells and reaction diffusion spots, will be explored in

depth in this thesis.

There is compelling evidence that organisms are dissipative structures, taking part in

the equilibration process of the universe, as the Sun gradually burns through its nuclear

fuel, heading inevitably towards a higher entropy state. But what is the thermodynamic

role played by organisms? Does natural selection imply a pressure for greater entropy

production? Or perhaps lower entropy production? Producing lots of entropy implies

that a large amount of useful energy is being transformed into (less useful) heat. So
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perhaps having a higher efficiency and producing less entropy, is the more successful

strategy.

The opposite could also be argued. If a particular functional process can be achieved

with lower entropy production, an organism might be able to utilise the remaining free

energy content in a different process. Squeezing every last Joule from a given free energy

gradient would imply a pressure for a greater entropy production overall since a larger

entropy production would imply a larger fraction of the useful energy of a particular

source has been utilised.

There is currently no modelling framework that is capable of providing concrete answers

to these lines of enquiry. However numerical simulations can help us make progress on

some basic questions of non-equilibrium thermodynamics, in particular with regard to

pattern forming systems. Simulations can allow us to carry out highly controlled “digital

experiments” where every degree of freedom can be observed.

Many of the most interesting non-equilibrium systems involve fluids and fluid flows. The

chemical processes of life occur in aqueous solution and one could very loosely summarise

the physics of life as: fluid dynamics and chemistry.

What happens when a system with many degrees of freedom, such as a reacting fluid, is

driven out of equilibrium? Generally speaking, we observe fluxes of matter and energy.

These are flows of heat, changes in chemical potential, and the movement of mass due to

fluid motion. They serve to transport energy from regions where it is concentrated, to

regions where it is more diffuse, playing their part in the effects captured by the second

law. What limits the rates of these fluxes? Can they be arbitrarily strong?

Systems driven by extremely strong gradients often experience turbulence, a chaotic,

disordered state of flow where only the statistical properties are predictable. In contrast,

at low driving rates we observe weak, linear flows of matter and energy, usually by the

process of diffusion only. It seems that life operates at neither of these extremes. It is

an organised set of structures and processes, not completely chaotic. At the same time

it is not so ordered that it is completely static and predictable, like the periodic crystals

which Schrödinger pointed out life is not. That life exists on the middle-ground between

order and chaos has been proposed before (e.g., Kauffman, 1996).
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If we simulate such systems, how do they respond to increases in their number of degrees

of freedom? Do they produce more entropy, or less? In extant ecosystems we see

an entangled network of interactions where the autotrophs use an inanimate source of

free energy to locally decrease the entropy of organic compounds. The heterotrophs

then allow those more complex compounds to fall back into higher entropy states and

harvest the useful energy given off in the process, for their growth and reproduction.

The material of the system is simply propelled around the cycle (Bartlett, 2013). The

motive force for this material processing is an external source of free energy (normally

solar radiation, but could also be inorganic chemical energy). Is it possible to observe

anything remotely similar in a complex, but non-living system? How complex a system

do we need for such phenomena to occur?

I will attempt to answer some of these questions in this thesis, through a series of

numerical simulations of fluid systems of varying degrees of complexity. I intend to

analyse the entropy production rate of systems that are materially closed and see how

it changes in response to changes in driving forces and boundary conditions. I will also

examine chemically reacting flow systems which are open to matter fluxes, and observe

whether any life-like phenomena can be identified as the number of constituents and

reactions is increased. Exploring such systems will facilitate the testing of the MEPP.

It will allow hypotheses to be assessed. It may also stimulate the creation of new

ideas or theories concerning the role of dissipative structures in their non-equilibrium

environment.

1.4 The Structure of the Thesis

This work is approximately divided into two separate, albeit related, parts.

1.4.1 Maximum Entropy Production and Fluid Convection

The first part has several objectives. Initially it introduces, derives and tests a numerical

scheme known as the Thermal Lattice Boltzmann Model. The performance of this model

is validated through a series of benchmark tests consisting first of isothermal systems in

chapter 2 and then thermal systems in chapter 3. Having established that the model is

capable of simulating simple flows accurately, I move on to consider the role of entropy



Chapter 1 Introduction 15

production in heated fluid systems in chapter 4. I will critically evaluate the MEPP and

previous results (Ozawa et al., 2001) that claim it can reliably predict the steady states

of systems undergoing natural convection (NC), defined as buoyancy driven fluid flow

caused by temperature gradients.

The results presented in chapter 3 are consistent with previously published works, since

they describe the transport properties of NC systems that have been thoroughly studied,

both theoretically and experimentally (Doering and Constantin, 1996; Grossmann and

Lohse, 2000; Howard, 1963; Johnston and Doering, 2009; Kraichnan, 1962; Malkus,

1954a; Malkus and Veronis, 1958; Malkus, 1954b). Nevertheless using these well-known

results, I will demonstrate that the MEPP is not capable of consistently predicting NC

steady states.

To add further evidence to my argument, in chapter 5 I will simulate another convective

fluid system but with a less constrained set of boundary conditions. The boundary

conditions will permit a greater freedom in the steady state variables that the fluid can

exhibit. Amongst these possible configurations there will be a unique state of maximum

entropy production (MEP). Despite having the ability to adopt this MEP state, the

results will show that the system never actually does. Instead it shows a range of states,

each dependent on the exact physical parameters describing the fluid.

1.4.2 Reactive Systems and Ecological Dynamics

In the second part of the thesis I will extend the modelling framework presented in

chapter 2 and chapter 3 to include chemical reactions. In chapter 6 an isothermal Reac-

tive Lattice Boltzmann Model (RLBM) is introduced and two sets of assessments of the

abilities of this model are described. We then move on in chapter 7 to the full form of the

model representing a key objective of all the previous work of the thesis: non isothermal

reacting systems capable of fluid flow. This numerical model is capable of simulating a

variety of physical processes in a consistent and coherent manner including diffusive heat

transfer, diffusive mass transfer, thermally induced fluid convection, advection of passive

scalar chemical species and reactions between those species. This represents a powerful

modelling framework with which a plethora of complex systems can be simulated. In

this thesis I will only scratch the surface of the model’s capabilities. The investigations I

present in chapter 7 aimed to elucidate the influence of thermal and convective effects on
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the dynamics of the Gray-Scott (GS) reaction diffusion (RD) system (Gray and Scott,

1985; Pearson, 1993). It will be shown that competition can emerge, not just between

different RD structures, but also between RD structures and fluid convection patterns.

1.5 Contributions

There are several novel aspects to the work presented here. Firstly, it is generally

assumed in the literature that NC heat transfer is an example of a MEP system (Ozawa

et al., 2001; Meysman and Bruers, 2010). But this assumption is unfounded when one

considers all the subtle details of such systems. With the careful analysis of chapter 4

and chapter 5, I present compelling evidence that MEP is not a valid selection rule

for NC systems. This work has been submitted for publication and is currently under

review (Bartlett and Bullock, 2014).

The second set of contributions are the version of the Lattice Boltzmann Model (LBM)

that I develop, allowing it to simulate the combined processes of diffusion, convection

and chemical reaction. I am not the first person to extend the LBM to incorporate these

effects (Amaya-Ventura and Rodriguez-Romo, 2011; Ayodele et al., 2011; Di Rienzo

et al., 2012; Zhang and Yan, 2012), but the version that I present is the simplest and

most general way to simulate all of these phenomena simultaneously.

The majority of research on abstract non-linear reaction systems has been constrained

either by well mixed reactor assumptions (e.g., Gray and Scott, 1985), or has focussed on

purely diffusive (non-convective) mass transport (Mahara et al., 2004; Pearson, 1993). It

seems that introducing thermal effects to the GS RD system has not been done before.

I appear to be the first researcher to employ thermal kinetic schemes for the 2D GS

RD model. Consequently chapter 7 represents the first study of how the combined

processes of enthalpy changes and fluid convection affect the patterns formed in the GS

RD system. The competitive interactions between different types of dissipative structure

in section 7.3 are also novel.

In the next chapter, the core of the thesis begins, by introducing the modelling framework

that serves as the foundation of all the simulations presented herein.



Chapter 2

Lattice Boltzmann Model with

BGK Collision, Single-phase

In this chapter I present the basic workings of the numerical method that will be used

to investigate the questions and hypotheses posed in chapter 1. I have several important

criteria for the simulation technique to be adopted. Firstly, it must be physically realistic.

Abstract models based on a very small number of constraints have a crucial role to

play in the scientific endeavour, as do those highly complicated models with significant

predictive power (General Circulation Models of the climate system for example). Any

theoretical model exists upon a continuum between these extremes. The user must decide

upon the trade-off between physical realism and simplicity, between heavy computational

demands and rapid production of results, between a model almost as complicated as the

real system and one for which the dynamics can be readily understood.

For the purposes of this thesis, physical accuracy is important for I hope to uncover

phenomena which are representative of real systems. On the other hand, a model that

simulated every physical detail would be hopelessly complicated and prohibitively de-

manding of computational resources. Therefore the method used will be physically

accurate for the simpler systems analysed, and for the more complex scenarios, simpli-

fying assumptions and benchmark tests will be employed where necessary to keep track

of the accuracy/simplicity balance.

The method should be as simple and flexible as possible. Many simulation techniques

are simple in principle but end up being extremely complicated when applied to more

17
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complex situations. It should be possible for the method to be naturally extended

without an exponential explosion of complicatedness. It must be straightforward to

extract thermodynamic variables and measurements from the model, and it should be

transparent so that all of its inner workings can be easily understood and controlled.

Finally, it must be as fast and efficient as possible. The objective of this thesis is to

simulate relatively complex systems, and many standard simulation techniques would

require an impractical amount of computer power and/or memory for the scenarios to

be modelled.

The method that satisfies these demands in the most optimal way is the Lattice Boltz-

mann Model (LBM). It has emerged relatively recently as a simple, fast and efficient

numerical scheme for a wide range of physical systems, primarily those involving fluid

flows. In contrast to a commercial package, I can construct LBM codes myself and have

complete knowledge of their inner workings. The only assumptions and interactions

occurring in the simulations will be those that I wish to be present. For a wide range of

problems in computational fluid dynamics (CFD), the LBM has been shown to be just

as accurate as competing simulation techniques (Chen et al., 1992).

Moreover, it is thermodynamically consistent, obeying Boltzmann’s H-theorem (isolated

systems tend to an equilibrium state). It is easily parallelisable since all its interactions

are local. Coupled with its simple construction, this makes it a relatively fast method.

I will also be able to straightforwardly add additional components and interactions to

the model. The algorithm itself does not require significant modification for this, rather

it just requires additional memory and processing power. Having explained why I have

chosen the LBM, I will now describe the physics behind it, which will clarify further

why it is a natural choice for the problems explored in this thesis.

2.1 The Physical Basis of the Lattice Boltzmann Model

The LBM represents a relatively novel method in CFD. Rather than calculating an

approximate, numerical solution of the continuum Navier-Stokes equations, which de-

scribe the fluxes of mass and momentum in a fluid, the LBM begins at a finer, kinetic

length scale. As per Boltzmann’s 19th century assumption, the fluid is represented by

a collection of many hard particles moving and colliding with one another.
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The LBM drew significant inspiration from the Lattice Gas Automata (LGA) of Frisch

et al. (1986). This is another CFD technique that models the fluid as a collection

of discrete particles, occupying the links of a discrete lattice. Each time step they

propagate along their current lattice link. They then undergo elastic collisions with the

other particles that share the lattice node they have just arrived upon. The collisions

conserve mass and momentum and such a simple model of a fluid on a triangular lattice

can actually be used to simulate real systems. In fact, the Navier-Stokes equations can

be derived from the microscopic evolution equations of the LGA (Frisch et al., 1986).

While the LGA has the advantage of being unconditionally stable, it has been shown

that it does not satisfy Galilean invariance and the pressure of a LGA fluid contains a de-

pendence upon velocity. An ideal gas equation of state has no such velocity dependence.

Furthermore, it exhibits a considerable degree of statistical noise due to its particulate

nature. It is thus necessary to conduct some process of ensemble or time-averaging to

extract macroscopic data from LGA simulations.

From one perspective, the LBM represents a method for circumventing this problem since

it is essentially a coarse-grained, meso-level scheme for the lattice gas (Chen et al., 1992;

McNamara and Zanetti, 1988). Rather than modelling the translation and collision of

individual particles, the LBM describes the evolution of collections of particles. The mass

of the fluid is represented by sets of velocity distribution functions. At any given time

and location in the numerical domain, the model stores the density of particles moving

in each of a discrete set of directions. It proceeds by solving the equations governing

the time evolution of these velocity distributions. There is no explicit representation or

solution of the Navier-Stokes equations. Instead, through a re-scaling technique known

as the Chapman-Enskog expansion, it is possible to derive the Navier-Stokes equations

from the equations of the LBM (Chen et al., 1992).

This feature is quite remarkable. The LBM is founded upon a completely fictitious

model for the microscopic behaviour of fluids (as we know from quantum mechanics,

atoms and molecules are not hard spheres undergoing elastic collisions), and yet in the

macroscopic limit, it leads to physically correct behaviour. It is perhaps less of a surprise

when we bear in mind that the majority of physical models are not derived from first

principles (certainly not from the quantum level) but rather constructed from higher

level, known phenomena.
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This begs some interesting metaphysical questions such as: why is it that there seems

to exist a family of fictitious molecular dynamics which all map to the correct fluid

behaviour at the macroscopic level? Or more generally, what is required for completely

robust emergence of higher level laws from another set of laws at a smaller length

scale? The emergence of Newton’s laws from quantum mechanics or of chemistry from

quantum mechanics for example. In our case with lattice-based CFD models, it seems

that conservation of mass and momentum are the most fundamental characteristics of

a fluid dynamical system and other details are much less relevant to the large-scale

behaviour. While interesting, these questions unfortunately are somewhat beyond the

scope of this thesis and we must return to the task at hand.

As well as a coarse-grained average of the LGA, the LBM can be thought of as a

discretised numerical scheme for the Boltzmann equation (He and Luo, 1997a,b). The

Boltzmann equation is a continuity equation for distribution functions of fluid properties

such as momentum and internal energy. It essentially states that the rate of change of

the distribution function at a point in space is equal to changes caused by advection

(net fluid flow) and from collisions between the particles.

Now that we have an approximate understanding of the physical basis of the LBM, we

can proceed to construct the equations to be solved in a LBM code.

2.2 Theoretical Derivation

The form of the model that I present here is a single-phase isothermal model. In later

chapters I will extend it to include additional components including the internal energy

in chapter 3, and passive scalar species in chapter 6.

We begin with a foundational component of kinetic theory, the continuous Boltzmann

equation:
∂f

∂t
+ v∇f = Ω(f), (2.1)

which describes the evolution of the velocity distribution function f(x,v, t). This func-

tion represents the mass of particles per unit volume moving at velocity v measured over

some small volume centred on position x at time t. Changes in f within this volume

element occur through advection by the particle motion (at velocity v), and through
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collisions between particles within the element, encapsulated in the collision term Ω(f).

Note that v is the microscopic velocity of the volume element. Macro-level properties

of the fluid can be derived from the appropriate moments of the velocity distribution,

ρ =
∫

fdv (2.2)

ρu =
∫

vfdv (2.3)

where ρ is the fluid density, u is the velocity, and the integrals are evaluated over the

entire velocity space. The full form for the collision operator Ω contains some rather

complicated integrals which led Bhatnagar et al. (1954) to devise a greatly simplified

form for this term. The so-called BGK LBM approximates the collision process with a

single-time relaxation:
∂f

∂t
+ v∇f = −f − f eq

τν
(2.4)

where τν is the characteristic time scale for equilibration and feq is the velocity distri-

bution of the equilibrium state. For this state, the Maxwell-Boltzmann distribution is

assumed:

f eq =
ρ

(2πRT )D/2
exp

[

−(v− u)2

2RT

]

(2.5)

where R is the molar gas constant and D is the dimensionality of space. In order

to construct a solvable numerical scheme, Equation 2.4 must be discretised in terms

of space, time and particle velocity. The appropriate equilibrium distributions (discrete

forms of Equation 2.5) must also be found for such a velocity set. Let us choose velocities

vi where i = 0, 1, ..., N − 1 and corresponding distributions fi. The evolution equation

becomes
∂fi
∂t

+ vi∇fi = −fi − f eqi
τν

. (2.6)

This is known as the discrete Boltzmann equation since it describes a discrete velocity

space. In contrast, the discretised Boltzmann equation, which we shall now derive,

describes the evolution of a discrete set of velocities over a discretised space and time

domain.

First the above equation must be de-dimensionalised by introducing a characteristic

speed U , length scale L, density nr, and time between collisions tν . This allows the

dimensionless velocities ei = vi/U , normalised gradient operator ∇̂ = L∇, dimensionless

time t̂ = tU/L, relaxation time τ̂ν = τν/tν and distribution function Fi = fi/nr to be
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defined. Finally the dimensionless parameter ǫν = tνU/L must be introduced, that is

the ratio of two time scales: collision time to characteristic flow time. When ǫν ≪ 1,

collisions occur sufficiently fast that they do not sense the net fluid advection. The

non-dimensional discrete Boltzmann equation now reads

U

L

∂

∂t̂
(nrFi) +

Uei

L
∇̂(nrFi) = − nr

τ̂νtν
(Fi − F eq

i )

∂Fi

∂t̂
+ ei∇̂Fi = − 1

τ̂νǫν
(Fi − F eq

i ). (2.7)

Discretising this equation in space and time using a uniform grid spacing ∆x̂ and time

scale ∆t̂ = δtU/L such that ei = ∆x̂/∆t̂ leads, after some algebra to

Fi

(

x̂+ ei∆t̂, t̂+∆t̂
)

− Fi(x̂, t̂) = − ∆t̂

τ̂νǫν
(Fi − F eq

i ) (2.8)

If the time between collisions and time step are set equal: δt = tν , this yields ∆t̂ =

tνU/L = ǫν . Equation 2.8 now becomes:

fi (x+ ei∆t, t+∆t)− fi(x, t) = − 1

τν
(fi − f eqi ) (2.9)

where carets have been omitted and the distribution function has been returned to lower

case. The dimensionless version of our evolution equation is essentially identical to the

dimensional version and only the parameter τν is required to alter the viscosity of the

simulated fluid (the desired flow characteristics can then be obtained with a suitable

selection of domain size and characteristic fluid velocity).

It can be shown that the equilibrium distribution functions that have identical moments

(up to fourth order) to the Maxwell Boltzmann distribution (Equation 2.5) are the

following (Wolf-Gladrow, 2000),

f eqi = ωiρ

[

1 + 3
ei · u
c2

+
9

2

(ei · u)2
c4

− 3

2

u2

c2

]

. (2.10)

Throughout this thesis, the 2-dimensional D2Q9 model will be used, which utilises a

square lattice with 8 velocities and rest particles (see Figure 2.1). For this velocity set

the weights ωi are ω0 = 4/9, ωi = 1/9 for i = 1, 2, 3, 4 and ωi = 1/36 for i = 5, 6, 7, 8.
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Figure 2.1: Discrete velocity vector set for the D2Q9 Lattice Boltzmann Model.

The velocity vectors are thus defined,

e0 = (0, 0)

e1,3, e2,4 = (±c, 0), (0,±c)

e5,6,7,8 = (±c,±c) (2.11)

To calculate macroscopic fluid variables, the appropriate moments of the distribution

functions must be taken (now discrete):

ρ(x, t) =
∑

i

fi(x, t)

ρ(x, t)u(x, t) =
∑

i

eifi(x, t) (2.12)

Using the Chapman-Enskog expansion, it can be shown that at the macro-level, a fluid

obeying the above equations satisfies the Navier-Stokes equations with a kinematic vis-

cosity given by:

ν =
1

3

(

τν −
1

2

)

c2δt. (2.13)

The integration step δt plays no physical role so it will be set to 1 and omitted from

all equations henceforth. All that remains at this stage is to define the dimensionless

relaxation time τν . Unit lattice spacing c can be used since there is no requirement to

adjust its value. However in later chapters, the non-isothermal LBM will require a value

for c that depends on the average temperature (see section 3.2).

As expressed by dynamical similarity, flow conditions for a given fluid system often
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depend only upon a small number of dimensionless parameters. The most important of

these is the Reynolds number:

Re =
UL

ν
, (2.14)

which is a ratio of inertial forces to viscous forces. The Reynolds number seems to cor-

relate experimentally with the degree of turbulence (although definitions of turbulence

and the transition to turbulent conditions are still an area of active research and are by

no means fully understood). In this expression, U is a characteristic velocity (such as the

free stream velocity of a flow past an obstacle), L is a characteristic length scale (such

as the size of a flow obstacle) and ν is the fluid viscosity. Almost everything required

to construct a LBM-based CFD code is now present. All that remains is to define the

boundary conditions (BCs).

2.3 Definition of Boundary Conditions

The most commonly used BCs of the LBM will now be introduced. At a plane boundary,

there will be three distributions that are unspecified after the streaming step. At a corner

node, there will be five unknown distributions. Here I describe in detail, two different

approaches from the literature for calculating values for these unknown distributions at

the streaming step of the algorithm. I will also discuss some other BCs featuring in the

literature and describe their relationship to these two methods.

It is not immediately obvious how BCs should be defined for the LBM, since there is

no clear intuitive picture for how probability distribution functions should behave when

encountering a solid boundary. However, inspiration can be taken from the LGA, since

the LBM is in some sense a coarse-grained version of it. In the LGA a very simple

approach is taken to particles encountering a wall. The boundary acts to completely

reverse the velocity of the incoming particles (their velocity vectors are rotated by 180◦).

This is known as the bounce-back method and it is the most common technique for

specifying the unknown distributions after the streaming step in the LBM. As the name

implies, distributions that stream out of the domain are simply reversed in direction by

the solid wall, that is assumed to lie half a grid spacing away from the boundary nodes

(see Figure 2.2).
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Figure 2.2: Streaming step for boundary nodes using the bounce-back method.
a) Pre-streaming velocity distributions, f−i . b) Post-streaming velocity distri-
butions, fi. Note that distributions streaming into the wall have had their
directions completely reversed. Other distributions have propagated along their
respective velocity vectors ei.

The fact that the distributions have their directions completely reversed rather than

undergoing specular reflection, ensures that the wall imposes a viscous shear stress on

the fluid and enforces a no-slip condition at the solid boundary. A detailed analysis of

several variations of the bounce-back method have shown that the halfway wall version,

which is the version I have described and made use of, is second order accurate (He

et al., 1997).

Note that upon first inspection, it appears that at corner nodes, there will always be

two distributions which perpetually bounce-back at the corner, and never stream into

the bulk of the fluid. There are several resolutions of this issue. Firstly it should be

noted that they do interact with the rest of the domain because of the collision step

(Equation 2.9), wherein they may lose or gain mass to or from other distributions.

They are not completely isolated. Secondly some authors choose to simply set those
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distributions to their equilibrium values with some characteristic density value (Peng

et al., 2003). And finally, in this thesis the majority of the simulations will have periodic

BCs in the horizontal direction. Therefore such corner BCs will not be used except in

one set of simulations in subsubsection 3.4.2.1.

As an alternative to the bounce-back method, a no-slip condition could be enforced by

placing the wall very close to the boundary nodes or by forcing the extrapolated velocity

at the wall to zero. Since the LBM came to light about 20 years ago, there have been

many BCs put forward in addition to the bounce-back method, which arguably remains

the most popular due to its ease of application for complex boundaries such as porous

media. The aim is to ensure that the BCs do not reduce the accuracy of the numerical

scheme. In the bulk of the domain the LBM is second order accurate (Chen and Doolen,

1998).

Taking inspiration from finite difference methods, Chen et al. (1996) proposed an extrap-

olation scheme for calculating unknown distributions at boundaries. Other extrapolation

schemes have also been proposed more recently (Guo et al., 2002; Tang et al., 2005).

The principle of diffuse reflection from kinetic theory has also been used to derive the

‘counter-slip’ approach (D’Orazio et al., 2004; Inamuro et al., 1995; Sofonea and Sek-

erka, 2005). With this BC, the particles reflected from the wall are assumed to have

velocities distributed according to a Maxwell-Boltzmann distribution with mean velocity

equal to that of the wall. Zou and He (1997) deduced a modified bounce-back method

where the non-equilibrium part of the distribution perpendicular to the wall is reflected

and the remaining two unknown distributions are calculated using the constraints of

specified wall velocity and/or pressure. This method is similar to that of Maier et al.

(1996). Assuming equal and opposite non-equilibrium distributions at a solid wall stems

from a fortunate symmetry property of the non-equilibrium part of the velocity distribu-

tions (He et al., 1998). The last three methods have a similar conceptual foundation of

specifying provisional values for the unknown distributions (usually using some form of

bounce-back) and then enforcing a correction procedure to ensure that the wall velocity

and/or density conditions are adhered to.

The authors of each of these variations of LBM wall BCs have shown that their method

is accurate to second order, in line with the LBM itself. Therefore it seems clear that the

LBM is somewhat indifferent to the specific method used to calculate the values of the
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unknown distributions. The crucial factor is that there is some implementation of the

no-slip condition, either by using bounce-back to provide a shear stress from a halfway

wall, or by explicitly forcing the velocity at the boundary nodes to zero. It would be

instructive to see whether there is any advantage to be had with a non-bounce-back

method. Therefore the BC of Zou and He (1997) will now be defined in complete detail,

and in the next section the accuracy of this method will be compared to that of the

bounce-back method for a simple flow.

Consider an upper horizontal wall. After the streaming step all new distributions are

known except for f4, f7 and f8 (these shall henceforth be written as f∗4 , f
∗

7 and f∗8 since

they are as yet unknown). The new values for these distributions must be calculated

by considering the mass and momentum constraints at the wall. In this thesis, there

will be no requirement for moving walls, only a no-slip velocity BC will be needed

(uw = vw = 0). Equation 2.12 gives expressions for the density, horizontal momentum

and vertical momentum at the boundary:

ρw = f0 + f1 + f2 + f3 + f∗4 + f5 + f6 + f∗7 + f∗8
ρwuw
c

= f1 − f3 + f5 − f6 − f∗7 + f∗8 = 0

ρwvw
c

= f2 − f∗4 + f5 + f6 − f∗7 − f∗8 = 0. (2.15)

Adding the first and last equations yields

ρw = f0 + f1 + f3 + 2 (f2 + f5 + f6) , (2.16)

giving a value for the density at the wall node, ρw. With these equations alone there

are too few constraints to close the system. Therefore, following the method of Zou and

He (1997), it can be assumed that the non-equilibrium part of the distribution normal

to the wall and pointing inward is equal to the non-equilibrium part of the distribution

pointing in the opposite distribution. So in this case, f∗4 − f eq4 = f2 − f eq2 . Since there

is a velocity of 0 at the wall, the equilibrium distributions for opposite directions are

equal, f eq4 = f eq2 (see Equation 2.10). This in turn means that f∗4 = f2. With this in

hand, f∗7 can now be calculated by adding the two momentum equations (Equation 2.15)
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together:

f1 − f3 + 2f5 − 2f∗7 = 0

f∗7 =
1

2
[f1 − f3 + 2f5] (2.17)

and f∗8 can be calculated by subtracting the vertical momentum from the horizontal:

f1 − f3 − 2f6 + 2f∗8 = 0

f∗8 =
1

2
[−f1 + f3 + 2f6] (2.18)

Corner nodes can now also be considered. At the upper left corner the following dis-

tributions are unknown after the streaming step, f1, f4, f5, f7, f8. It is assumed that

the non-equilibrium parts of the distributions that are normal to both the upper and

the left walls are set equal to their opposing counterparts, i.e., f∗4 − f eq4 = f2 − f eq2 and

f∗1 −f eq1 = f3−f eq3 (Zou and He, 1997). Again, with the case of zero velocity, oppositely

directed equilibrium distributions are equal in magnitude, therefore the expression for

the wall density becomes

ρw = f0 + f∗1 + f2 + f3 + f∗4 + f∗5 + f6 + f∗7 + f∗8

= f0 + 2f2 + 2f3 + f∗5 + f6 + f∗7 + f∗8 , (2.19)

while the two momentum equations are

ρwuw
c

= f∗1 − f3 + f∗5 − f6 − f∗7 + f∗8 = 0

= f∗5 − f6 − f∗7 + f∗8 (2.20)

ρwvw
c

= f2 − f∗4 + f∗5 + f6 − f∗7 − f∗8 = 0

= f∗5 + f6 − f∗7 − f∗8 . (2.21)

Subtracting the vertical momentum from the horizontal gives

− 2f6 + 2f∗8 = 0

f∗8 = f6. (2.22)

At this point there is once more an insufficient number of equations to specify the final
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two distributions f∗5 and f∗7 . To solve this issue, Zou and He (1997) simply specify

the density at the corner node. Other authors have taken alternative approaches but

in practice, the choice makes very little difference to the simulation results. The most

important requirement is that the prescribed constraints are satisfied. So the expressions

for density and horizontal momentum can once again be used,

ρw = f0 + 2(f2 + f3 + f6) + f∗5 + f∗7 (2.23)

ρwuw
c

= f∗5 − f6 − f∗7 + f6 = 0, (2.24)

giving the final unknown distributions:

f∗5 = f∗7 =
ρw − (f0 + 2(f2 + f3 + f6))

2
. (2.25)

Analogous procedures can be used for other boundaries and corners. This concludes

the derivation of the BCs due to Zou and He (1997). Their performance on a simple

test problem will be compared to the performance of the bounce-back method in the

following section.

2.4 Isothermal Benchmark Tests

2.4.1 Poiseuille Flow

With the description of the isothermal LBM in hand, it is now possible to begin testing

the algorithm on characteristic flows for which there are either analytic or benchmark

solutions. The model will be used to simulate a simple flow system: 2D laminar channel

flow, or Poiseuille flow. A horizontal pressure gradient will be imposed and this will

drive the fluid through the channel (see Figure 2.3). The pressure gradient will be

imposed using a body force method, since imposing a density gradient between inlet

and outlet leads to high frequency instabilities due to compressibility effects (Maier

et al., 1996). Since only laminar flows will be considered (low Reynolds number), the

following analytical solution for a channel flow can be used:

U(y) = U0

(

1− y2

H2

)

, (2.26)
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P
in

P
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yH

L

Figure 2.3: Poiseuille flow diagram. The pressure gradient ∇p = (Pin−Pout)/L
drives a purely horizontal flow through the 2D channel, U = U(y)̂i. Note the
origin of the y-axis is in the central plane of the channel. H is the half-width
of the channel.
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Figure 2.4: RMS error as a function of lattice size for LBM simulations of 2D
Poiseuille flow.

which gives a parabolic velocity profile. The accuracy of the following two BCs will be

compared: halfway wall bounce-back and the non-slip method of Zou and He (1997).

Figure 2.4 shows the root mean square error (normalised by the centreline velocity

U0) of the two methods as a function of grid resolution. Also shown is a straight line

proportional to the inverse square of the grid spacing. It is clear that both methods

retain the second order accuracy of the LBM itself.

The method of Zou and He (1997) does exhibit a slight problem compared with the

bounce-back method: if the simulation is initialised with very small random perturba-

tions in the velocity field, it become unstable. In contrast, the bounce-back method
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remains stable in the presence of small initial perturbations. Furthermore, it is faster

than most other methods since it involves only memory manipulation, and thus no cal-

culations are required for its implementation. Coupled with its superior versatility (it

applies equally easily to corners or irregular boundaries), simplicity and accuracy, it

makes sense to use this method in all simulations henceforth. Its accuracy will be put

to the test further in the next chapter where more comparisons of LBM results with

literature benchmarks will be carried out.

2.4.2 Flow Past a Cyclinder

To conclude this chapter, a qualitative demonstration of the performance of the isother-

mal LBM will be presented. One of the most characteristic flow patterns observed in

nature and the laboratory is known as the von Kármán vortex street (see Figure 2.5).

This occurs when a steady flow encounters an obstacle such as a plate or cylinder. At low

Reynolds number under laminar conditions, flow past an obstacle is completely smooth

and steady, and exhibits a symmetric wake caused by the drag of the obstacle. However

once the Reynolds number is raised above ∼ 90, that laminar flow becomes unstable

to perturbations and vortices begin to be produced alternately from either side of the

obstacle.

The hydrodynamic details of this fascinating behaviour are still the subject of research

and beyond the scope of this thesis. However for the purposes of this section, the flow

pattern will simply be used as an example to demonstrate that the LBM can successfully

Figure 2.5: Vortex shedding caused by wind flowing past the Juan Fernández
Islands off the Chilean coast. Image by Bob Cahalan, NASA GSFC.
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(a)

(b)

(c)

Figure 2.6: Horizontal momentum density fields for channel flow past a circular
obstacle. Colours correspond to momentum magnitude with red being strongest
and blue weakest. a) Laminar wake formation at Re = 80, below the critical
value of Rec ∼ 90. b) Non-laminar vortex shedding at Re = 100, above the
critical value of Rec ∼ 90. c) Non-laminar vortex shedding at Re = 1000.

simulate such phenomena. Figure 2.6(a) shows the simulated flow field at a Reynolds

number of 80. There is a stationary, symmetric wake formed downstream of the obstacle,

as expected for a laminar flow. In contrast, figure 2.6(b) shows a vortex street, since

the Reynolds number has now been raised to 100. For comparison, figure 2.6(c) also

shows the same flow at Re = 1000. Note how much more pronounced the vortices have

become.

2.5 Conclusions

In this chapter the physical and algorithmic basis of the LBM has been presented, such

that isothermal simulation codes could be constructed. The specification of BCs was

discussed and two of the most commonly used methods were compared with a benchmark
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flow for which an analytical solution exists. It was found that the simple bounce-back

method is not only simple, versatile and fast, but also has the same accuracy as the

slightly more complicated BCs of Zou and He (1997). This led to the conclusion that

the bounce-back method is the most logical choice for further simulations. Finally,

additional qualitative evidence of the LBM’s efficacy was given. The vortex shedding

phenomena characteristic of obstacle flows was successfully re-created by the LBM.

Having established the validity of the method for isothermal flows, it can now be ex-

tended to fluids that do not have a constant, uniform temperature. This will allow

significantly more freedom in terms of the formation of patterns and will also pave the

way for making assessments of the non-equilibrium thermodynamic properties of heated

fluids. It will then be possible to carry out an interesting and completely novel test of

the Maximum Entropy Production Principle in chapter 5.





Chapter 3

Lattice Boltzmann Model with

Internal Energy as a Passive

Scalar

This chapter will describe how the isothermal assumption of the Lattice Boltzmann

Model (LBM) can be relaxed by adding an extra level of description to the model.

Being able to model a system with variable temperature is crucial since the aims of this

thesis are centred upon the ways in which non-equilibrium systems respond to driving

forces. A temperature gradient is a prime example of such a driving force, that can

provoke a system to exhibit a vast array of interesting behaviours including convection

cells and turbulence. There is more than one way in which the LBM can be extended

to include thermal variations. The internal energy can actually be calculated through

an appropriate moment of the velocity distribution function, so it is possible to simply

calculate the temperature of the standard LBM. However it turns out that such an

approach requires additional particle velocities or additional relaxation times to prevent

numerical instabilities (McNamara et al., 1995).

Instead the temperature field can be modelled as an additional distribution function un-

dergoing streaming and collision processes as the velocity distributions do. This method,

which is arguably the most popular modern thermal LBM (TLBM), models the internal

energy as a passive scalar, which is advected by the fluid flow and has no influence upon

it unless extra interactions are incorporated into the collision term.

35
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In the following section, the governing equations controlling changes in fluid velocity and

temperature as a function of space and time will be defined. By de-dimensionalising these

equations, it can be shown that there are only two dimensionless parameters that dictate

the properties of a given thermal fluid flow. The derivation of the model equations for

the TLBM will then be presented. Finally, a series of benchmark tests will be carried

out to establish the model’s validity.

3.1 Equations of Motion

A non-isothermal fluid can be described using the Navier-Stokes equations for the con-

servation of momentum, the continuity equation for the conservation of mass, and the

advection-diffusion equation for the conservation of internal energy. In order to make

the equations more tractable, it can also be assumed that the physical properties of

the fluid are constant with respect to time, space and temperature. This is known as

the Boussinesq approximation and has been successfully applied to a variety of thermal

flow problems for many years. One crucial property of a Boussinesq fluid is that it is

assumed to be incompressible except with regards to buoyancy forces. The assumption

of incompressibility allows a simple continuity equation to be written:

∇ · v′ = 0 (3.1)

where v′ = u′̂i+ w′k̂ is the dimensional fluid velocity. This equation simply states that

the mass of the fluid is conserved. The incompressibility assumption means that for any

given control volume, the mass of fluid leaving is balanced by fluid entering. This leads

to the vanishing velocity divergence shown above. Applying Newton’s second law to a

fluid parcel yields the momentum equation:

∂v′

∂t
+ v′ · ∇v′ +

1

ρ
∇P ′ = ν∇2v′ + βg0(T

′ − T0)k̂ (3.2)

where P ′ is the pressure, β is the coefficient of thermal expansion, g0 is the strength of

gravitational acceleration and T ′ is the temperature. This equation simply states that

changes in the fluid velocity occur through driving forces such as pressure gradients (third

term) and thermal expansion leading to gravitational buoyancy forces (last term). Flows

can also be attenuated through viscous dissipation (fourth term). Finally, the equation
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describing flows of heat in the fluid reads:

∂T ′

∂t
+ v′ · ∇T ′ = χ∇2T ′. (3.3)

This equation embodies the fact that heat flows occur either through advection by the

fluid velocity or diffusion. Defining a set of characteristic scales will make it possible to

de-dimensionalise this equation. A characteristic length scale δ, and time scale δ2/χ will

be used (Otero et al., 2002). As a temperature scale the total temperature difference

across the system ∆T ′ can be adopted. Returning to the momentum equation, it can

be seen that each term has units of Lt−2. Therefore the equation must be multiplied by

(δ2/χ)2/δ = δ3/χ2 to express it in dimensionless form,

δ3

χ2

∂v′

∂t
+
δ3

χ2
v′ · ∇v′ +

δ3

χ2

1

ρ
∇P ′ =

δ3

χ2
ν∇2v′ +

δ3

χ2

∆T ′

∆T ′
βg0(T

′ − T0)k̂ (3.4)

∂v

∂t
+ v · ∇v+∇P =

ν

χ
∇2v+

ν

χ

βg0∆T
′δ3

νχ
T k̂, (3.5)

where v, T and P are the new dimensionless variables. Note that this leaves two co-

efficients, which are also dimensionless. The first, the Prandtl number Pr = ν/χ mea-

sures the ratio of momentum to thermal diffusivity. The second, the Rayleigh number

Ra = βg0∆Tδ
3/νχ measures the strength of thermal driving forces. The Rayleigh

number is of key importance, and will be very relevant to the discussions in following

chapters. The purpose of this section and the derivation just given, was simply to show

that these two parameters naturally emerge from the equations of motion of a thermal

fluid.

3.2 Theoretical Derivation

The LBM framework is ideal for adding extra components to a system. With suitable

definitions of relaxation parameters, equilibrium distributions and collision terms, extra

constituents can be added, whether they are extra fluid phases, dissolved solutes or

internal energy. The reason for this generality stems from the fact that (as the name

implies) the LBM is based upon the Boltzmann equation, which applies equally to

almost any well-defined statistical property of a system (one which can be expressed in

terms of a distribution function). In this chapter, the objective is to model the diffusion
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and advection of heat and this extra physical component will be represented using its

own distribution function. The current model is therefore a two-phase version where a

coupling between the phases must be defined to ensure the correct large-scale behaviour.

It was presented originally by He et al. (1998) and then re-formulated into a simplified

version by Peng et al. (2003), which is the version to be adopted here.

Modelling temperature through a second distribution function assumes that heat is a

passive scalar that does not affect the net fluid flow (apart from inducing buoyancy-

driven convection when a body force is added). This assumption is valid in the limit

of low Mach number flows (this assumption is discussed in more detail below) where

viscous heat dissipation and compression work are negligible. All simulations in this

thesis will reside within this limit. The internal energy distribution function must first

be defined,

g =
(v− u)2

2
f. (3.6)

Note that
∫

gdv = ρǫ where ǫ = DRT/2 is the internal energy density. The function g

corresponds to the kinetic energy (per unit volume) present in any given discrete velocity

direction with the mean flow u subtracted from it. Now Equation 3.6 must be inserted

into Equation 2.1, the Boltzmann equation:

∂

∂t

(

2g

(v− u)2

)

+ v∇
(

2g

(v− u)2

)

= Ω(f). (3.7)

Some stages of manipulation are now required to come to the final expression:

2g
∂

∂t
(v− u)−2 +

2

(v− u)2
∂g

∂t
+ v

(

2g∇(v − u)−2 + 2(v − u)−2∇g
)

= Ω(f)

4g(v − u)−3 ∂u

∂t
+

2

(v− u)2
∂g

∂t
+ 2v

(

2g(v − u)−3∇u+ (v− u)−2∇g
)

= Ω(f)

2g(v− u)−1 ∂u

∂t
+
∂g

∂t
+ v

(

2g(v − u)−1∇u+∇g
)

=
(v− u)2

2
Ω(f)

∂g

∂t
+ v∇g =

(v− u)2

2
Ω(f)− 2g(v − u)−1∂u

∂t
− 2gv(v− u)−1∇u

∂g

∂t
+ v∇g =

(v− u)2

2
Ω(f)− 2g(v − u)−1

(

∂u

∂t
+ v∇u

)

∂g

∂t
+ v∇g =

(v− u)2

2
Ω(f)− f(v− u)

(

∂u

∂t
+ v∇u

)

∂g

∂t
+ v∇g =

(v− u)2

2
Ω(f)− fq, (3.8)
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where the last term on the right-hand side represents viscous heat dissipation:

q = (v− u) ·
[

∂u

∂t
+ v · ∇u

]

. (3.9)

For low mach number, incompressible flows, this term can be neglected (Peng et al.,

2003). Now we will again use the BGK approximation for the collision term in the

evolution equation for the internal energy,

(v− u)2

2
Ω(f) = −g − geq

τc
. (3.10)

A Maxwellian equilibrium distribution is also assumed,

geq =
ρ(v− u)2

2(2πRT )D/2
exp

[

−(v− u)2

2RT

]

. (3.11)

The evolution equation for the internal energy distribution is thus:

∂g

∂t
+ v∇g = −g − geq

τc
. (3.12)

The discretisation steps presented in section 2.2 can be applied analogously to this

equation yielding:

gi (x+ ei∆t, t+∆t)− gi(x, t) = − 1

τc
(gi − geqi ) (3.13)

The equilibrium distributions for the internal energy are, like those for the velocity

distributions, truncated polynomials of the fluid velocity (Peng et al., 2003),

geqi=0 = −2

3
ρǫ

u2

c2

geqi=1,2,3,4 =
1

9
ρǫ

[

3

2
+

3

2

ei · u
c2

+
9

2

(ei · u)2
c4

− 3

2

u2

c2

]

geqi=5,6,7,8 =
1

36
ρǫ

[

3 + 6
ei · u
c2

+
9

2

(ei · u)2
c4

− 3

2

u2

c2

]

. (3.14)

It is now possible to calculate an additional macroscopic variable from the new distri-

bution function, namely the internal energy density (proportional to the temperature):

ρ(x, t)ǫ(x, t) = ρ(x, t)RT (x, t)

=
∑

i

gi(x, t). (3.15)



40 Chapter 3 Lattice Boltzmann Model with Internal Energy as a Passive Scalar

The diffusivity of this extra component (the thermal diffusivity) is given by

χ =
2

3

(

τc −
1

2

)

c2, (3.16)

and the lattice spacing by

c =
√

3RT0, (3.17)

where T0 is the average temperature of the system and Cs =
√
RT0 = c/

√
3 is the speed

of sound (He et al., 1998). The relationship between pressure and density is: p = C2
sρ.

At this point the flow field influences the internal energy through the presence of the

fluid velocity u in the equilibrium distributions for the internal energy. However, the

internal energy still has no effect on the fluid flow since there is no ‘reverse’ coupling

between them in the system of equations. To model natural convection (NC) processes,

a means for temperature gradients to induce a buoyancy force must be introduced. This

force can be represented through an additional term in the evolution equation for the

velocity distribution function (He et al., 1998; Peng et al., 2003):

fi (x+ ei∆t, t+∆t)− fi(x, t) = − 1

τν
(fi − f eqi ) + Fi, (3.18)

where

Fi =
G · (ei − u)

RT0
f eqi . (3.19)

Introduction of this additional term does not violate mass conservation,

∑

i

Fi =
∑

i

G · (ei − u)

RT0
f eqi

=
1

RT0
G ·

[

∑

i

eif
eq
i − u

∑

i

f eqi

]

=
1

RT0
G · [ρu− ρu]

= 0. (3.20)

The external force term is given by (Peng et al., 2003):

G = βg0(T − T0)ĵ. (3.21)

This force term makes use of the Boussinesq approximation, mentioned in the previous
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section, wherein it is assumed that thermally induced density variations are small enough

that they do not cause compression work (the fluid is effectively still incompressible), but

they are strong enough to induce a gravitational forcing effect. It is also assumed that

fluid properties such as the thermal expansion coefficient and viscosity remain constant

with changes in temperature. This approximation is standard practice for the simulation

of NC problems (Johnston and Doering, 2009; Otero et al., 2002) and it allows the above

simple form for the buoyancy force to be employed.

To complete the numerical scheme the set of equations must be closed. So far, the

following equations have been defined: the evolution equations (Equation 3.18 and

Equation 3.13), equilibrium distributions (Equation 2.10 and Equation 3.14), macro-

scopic variables (Equation 2.12 and Equation 3.15), and lattice spacing (Equation 3.17).

However, values for the relaxation times τν and τc and the thermal expansion coefficient

β are still required.

Here the principal of dynamical similarity and dimensionless groups can be used as

a guide. The Reynolds number, that measures the ratio of inertial to viscous forces,

was defined previously. For convective flows, there are two key parameters, as shown

in section 3.1. The Prandtl number is the ratio of momentum diffusivity to thermal

diffusivity, and the Rayleigh number is a measure of the relative strength of buoyancy

forces to viscous and thermal diffusive forces:

Ra =
βg0∆TH

3

χν
(3.22)

where ∆T is the temperature difference existing across the characteristic length scale H.

Large temperature gradients, gravitational fields, and coefficients of thermal expansion

make convection more likely, whereas high viscosity fluids which are also effective thermal

conductors will be more likely to transport heat via diffusion than convection.

When dealing with a convection problem, the Rayleigh number can be used to define the

unknown lattice parameters since it is known that all flows with the same Rayleigh and

Prandtl numbers will be dynamically similar (this was shown in section 3.1 through the

de-dimensionalisation of the equations of motion for a convecting fluid). The Prandtl
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number is given by:

Pr =
ν

χ

=
(τν − 1

2 )

2(τc − 1
2)

(3.23)

Before the relaxation times τν and τc can be calculated, a value for the thermal expansion

coefficient β must be found, since it was not yet defined for the lattice fluid. Here, the

Mach number can be utilised,

Ma =
|u|
Cs

=
[βg0∆TH]

1
2

Cs
, (3.24)

where |u| = [βg0∆TH]1/2 is the characteristic convective velocity (Dixit and Babu,

2006). Simulations with this model must be restricted to flows of low Mach number.

This is because the equilibrium distributions are truncated (to second order) polynomials

of the fluid velocity and flows of high Mach number (in which the velocity is of similar

magnitude to the speed of sound) would require the retention of higher order terms of

those series expansions.

Note that the low Mach number assumption is not fundamentally restrictive. Imagine

that a relatively turbulent flow must be simulated. It might be found that the low Mach

number assumption breaks down for a particular simulation setup. However the flow

can still be simulated simply by increasing the grid resolution and then altering the

viscosity to retain the same Reynolds number. The LBM relies on local deviations from

equilibrium being small (large changes in intensive variables cannot occur on very short

length scales). Even though this sounds limiting, it is always possible to simply increase

the resolution of a given simulation to the extent that local gradients are sufficiently

small, so as to not violate the founding assumptions of the model.

Returning to the problem of calculating the thermal parameters, the Mach number

can be set at Ma = 0.1 to ensure that the basic assumptions of the model are not

violated. The temperature scales for the lattice system can be set arbitrarily (e.g.,

∆T = 1, T0 = 0.5) since variations in temperature are relevant but numerical magnitudes

are not. Assuming a size for the simulation domain has been chosen, β can then be
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calculated,

β =
[MaCs]

2

g0∆TH

=
Ma2RT0
g0∆TH

. (3.25)

Note that parameters such as the molar gas constant R and the acceleration of gravity

g0 can be set to unity in the model. Since they are just linear scaling factors, there is

no real requirement to ever adjust them, and so their influence can be removed without

loss of generality. If Ra and Pr are now combined,

Ra =
βg0∆TH

3Pr

ν2

=
βg0∆TH

3Pr
[

RT0(τν − 1
2 )
]2 (3.26)

It is now possible to solve for the first of the relaxation times τν making use of Equation 3.26,

and assuming values for Ra and Pr have been chosen,

τν =

[

βg0∆TH
3Pr

Ra(RT0)2

]1/2

+
1

2
(3.27)

This also allows the calculation of the second relaxation time using Equation 3.23,

τc =
1

2

[

τν − 1
2

Pr
+ 1

]

(3.28)

At this stage almost all the tools necessary to write a LBM code have been presented.

The physical properties of the fluid are encompassed within the relaxation times τν , τc

and the thermal expansion coefficient β.

3.3 Definition of Boundary Conditions

Before performing numerical tests, the model requires a suitable set of boundary con-

ditions (BCs) for the internal energy distributions. A common procedure for insulated

walls is to simply use the bounce-back rule as was used for the velocity distributions.

The fact that internal energy distributions are bounced back ensures a zero-flux condi-

tion. Even though the temperature gradient at the boundary may not be exactly zero,



44 Chapter 3 Lattice Boltzmann Model with Internal Energy as a Passive Scalar

it is at least guaranteed that no heat has been lost from the numerical domain at such a

boundary. But it must still be possible to add or remove heat from the system at non-

insulated walls. At a boundary that is held at a constant temperature, the bounced-back

distributions can be adjusted to ensure the correct temperature is maintained. Taking

the case of the upper wall and making use of Equation 3.15, the boundary temperature

can be calculated from the post-streaming distributions:

ρwǫw = g0 + g1 + g2 + g3 + g∗4 + g5 + g6 + g∗7 + g∗8 . (3.29)

Note that in contrast to the velocity distributions, there is only one equation like the

one above because the internal energy is a single scalar quantity, as opposed to a scalar

(the mass density) and a vector quantity (the fluid velocity). An additional component

can be added to the bounced-back distributions such that the boundary temperature is

correctly enforced. The contribution from each unknown distribution is set proportional

to its velocity vector weight factor ωi:

g∗i = g−
−i +

ω∗

i
∑

ω∗

i

φ (3.30)

where g−
−i is the pre-streaming value for the distribution in the opposite direction of ei.

So for example the new value for g4 would be

g∗4 = g−2 +
ω4

ω4 + ω7 + ω8
φ (3.31)

(see Figure 2.1 for discrete velocity directions). Re-writing the equation for the wall

temperature gives an expression for the energy deficit φ,

ρwǫw = g0 + g1 + g2 + g3 + g−2 + g5 + g6 + g−5 + g−6 + φ (3.32)

φ = ρwǫw − (g0 + g1 + g2 + g3 + g−2 + g5 + g6 + g−5 + g−6 ) (3.33)

Note that the wall internal energy density ǫw is defined by the prescribed conditions,

and the wall density ρw can be calculated from the velocity distributions. Corner nodes

can be resolved using an analogous process to that described above.

This is the simplest way to specify internal energy BCs for our TLBM. Some authors

make use of the counter-slip approach for TLBMs (D’Orazio et al., 2004), and one can
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also use a finite difference method to extrapolate the boundary temperature for zero-

flux walls (He et al., 1998). For all the benchmark tests presented in the next section,

the differences in accuracy between the bounce-back and counter-slip/zero flux methods

were found to be negligible, so the bounce-back method was adopted for all further

simulations.

3.4 Thermal Benchmark Tests

In this section a set of numerical tests will be performed using the TLBM where the in-

ternal energy is represented by a separate distribution function. As described previously,

this distribution function also undergoes collision and streaming stages but since heat is

a passive scalar, there is only a scalar field associated with it (in contrast to the vector

field of the fluid velocity). Fluid motion is modelled using the velocity distributions, and

the diffusion and advection of heat is modelled using the internal energy distributions. It

is assumed that the flows are sufficiently slow that viscous dissipation can be neglected

(valid in the limit of low Mach numbers) and so the only effect of the temperature field

on the fluid velocity is through the buoyancy term. This imposes a vertical body force

due to density gradients, which causes warm fluid to rise and colder fluid to sink.

Thermal flows in 2-dimensional cavities will be modelled, starting with isolated systems

that will be left to simply come to equilibrium, moving on to driven systems with various

BCs. Such systems have been invoked previously as a useful demonstration of certain

concepts of thermodynamics (Kleidon, 2009, 2010a,b). The tests to follow are performed

using well established flow scenarios that have been simulated repeatedly in the past with

a variety of numerical methods including the TLBM.

3.4.1 Constant Internal Energy

The simplest conceivable system is one in which all the walls are insulated such that the

total internal energy of the system remains constant. Whatever configuration the system

is initialised in, it is expected that after sufficient time, it will settle into a homogeneous

steady state containing no gradients of energy density. This principle is formalised by

the second law of thermodynamics, which was discussed in chapter 1. The second law

directly applies to the system modelled in this section since it is thermally isolated from
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its surroundings. Any simulation of such a system should obey the second law (or an H

theorem) so it will be used as an elementary test. If a square cavity is divide into two

imaginary halves, it can be initialised such that each half has a different temperature,

T ′

a0 and T ′

b0
. This then reduces to an elementary one-dimensional diffusion problem,

governed by the following partial differential equation,

∂T ′

∂t′
= χ

∂2T ′

∂x′2
(3.34)

with initial condition

T ′

0(x
′) =











T ′

a0 0 ≤ x′ < W/2

T ′

b0
W/2 ≤ x′ ≤W

(3.35)

and boundary conditions
∂T ′

∂x′

∣

∣

∣

∣

x′=0,W

= 0, (3.36)

since the walls of the cavity are non-conductive. The governing equation can be de-

dimensionalised using a characteristic temperature scale T ∗, length scale W and time

scale td = W 2/χ, which essentially represents the time required for a diffusion front to

traverse the entire domain horizontally. The dimensionless version of the problem now

reads:

td
T ∗

∂T ′

∂t′
=

td
T ∗
χ
∂2T ′

∂x′2

∂T

∂t
=
W 2

χT ∗
χ
∂2T ′

∂x′2

∂T

∂t
=
∂2T

∂x2
(3.37)

with initial condition

T0(x) =











1 0 ≤ x < 1/2

0 1/2 ≤ x ≤ 1

(3.38)

and boundary conditions
∂T

∂x

∣

∣

∣

∣

x=0,1

= 0 (3.39)
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Figure 3.1: Equilibration of an isolated fluid cavity with two halves initially at
temperatures Ta0 = 1 and Tb0 = 0. There is no net fluid motion and heat moves
purely by diffusion.

where T ′

b0
= 0 and T ∗ = T ′

a0 − T ′

b0
= T ′

a0 . This initial-boundary-value problem can be

solved by separation of variables to give a Fourier series solution:

T (x, t) =

∞
∑

n=1

Cn exp
(

−n2π2t
)

cos (nπx) (3.40)

where the coefficients are given by

Cn = 2

∫ 1

0
T0(x) cos (nπx) dx

=
2

nπ
sin

(nπ

2

)

. (3.41)

It is thus possible to directly compare the evolution of the temperature profile T (x, t)

from the TLBM to the analytic solution above.

The TLBM does seem to model the diffusion of heat correctly and this can be seen

in Figure 3.1, where the mean temperatures for the two halves of the cavity, Ta and

Tb, are plotted as a function of time. Also plotted is the mean horizontal heat flux

Q. As dictated by the second law, the cavity comes to a uniform temperature profile

and the flux of heat decays to zero. As seen in the figure, there is very little difference

between the exact solution, and that of the TLBM. This accuracy is invariant to the
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value of the relaxation parameter τc. In some ways it makes sense that the LBM is

effective at numerically solving the diffusion equation. Any isotropic cellular automata or

regular grid based method would work in a similar manner, i.e., recursive spreading and

averaging of a scalar variable (assuming a sufficient number of discrete lattice vectors).

It is now permissible to allow heat to move by convection as well as diffusion.

3.4.2 Constant Boundary Temperatures

The assumption of a thermally isolated system will now be relaxed and energy fluxes

can be applied to the cavity so that it exhibits non-equilibrium steady states. At this

stage it is not expected that highly complex, organised patterns will emerge since a

single-phase fluid is limited in its ability to express such patterns. The system can only

show variations in density, velocity and temperature and it therefore lacks the freedom

required for elaborate structure formation. At present the objective is purely to validate

the accuracy of the TLBM.

3.4.2.1 Horizontal Gradient

In this section the two vertical walls of the cavity will be maintained at different tem-

peratures to induce convective fluid motion (now the temperature field is coupled to the

velocity field through the buoyancy force term, shown in Equation 3.19). The upper and

lower walls will be insulated. This constant boundary temperature system is frequently

used as a benchmark test for thermal computational fluid dynamics (CFD) models. The

standard numerical solution of De Vahl Davis (1983) will be compared to the results

from the TLBM. The Prandtl number is fixed at Pr = 0.71 to allow comparison with

the benchmark solutions.

Figure 3.2 shows the temperature fields for the four different Rayleigh numbers anal-

ysed. These are in excellent agreement with the literature (Liu et al., 2010; Peng et al.,

2003). Also, Table 3.1 lists various measurements of the convection flows performed in

the numerical tests alongside benchmark values. The results shown are the maximum

horizontal velocity on the vertical midplane umax, the vertical location of that maximum

y, the maximum vertical velocity on the horizontal midplane vmax, the horizontal loca-

tion of that maximum x, and finally the Nusselt number Nu, which is a dimensionless
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(a) (b)

(c) (d)

Figure 3.2: Isotherms for convection flows in a square cavity with a horizontal
temperature gradient at different Rayleigh numbers. a) Ra = 103, b) Ra = 104,
c) Ra = 105, d) Ra = 106.

ratio of total heat transport to conductive heat transport. It is defined as

Nu =
〈Qtot〉 /A
〈Qdiff 〉 /A

(3.42)

where Qtot is the total heat flux, Qdiff is the diffusive heat flux and 〈·〉 denotes a time

average. The instantaneous local heat flux (per unit area) in the horizontal direction is:

qx = uxT − χ
∂T

∂x
(3.43)

the first term being due to advection, and the second to diffusion. Here Fourier’s Law

for heat conduction has been assumed. Inserting this into the definition for the Nusselt
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number,

Nu =

〈∫

qxdV
〉

〈∫

qxdiff
dV

〉

=

〈∫

uxT − χ∂T
∂x dV

〉

〈

−
∫

χ∂T
∂x dV

〉

= 1 +

〈∫

uxTdV
〉

〈

−χ
∫

∂T
∂x dV

〉

= 1 +

〈

uxTHLW
〉

〈χ∆THL〉

= 1 +
W

χ

〈

uxT
〉

〈∆T 〉 (3.44)

This equation can be modified for temperature gradients in other directions by replacing

the characteristic length and velocity component (e.g., replacing W and ux with H

and uz for vertical heat flows). Note that this expression has been left in a slightly

more general form than normal, by leaving the averaging operation on the temperature

difference ∆T . This allows the expression to apply equally to configurations where

the two boundary temperatures are not fixed by the BCs. Also note that the averaging

process · is a spatial average (the boundary temperatures will also be spatially averaged

in later simulations in which they are not horizontally uniform).

The Nusselt number is often referred to as a dimensionless measure of heat flux. However

this can lead to confusion since it is a ratio of two fluxes and therefore does not express

the magnitude of a dimensional flux. This point will be discussed in detail in section 4.2.

There are several different (dimensional) heat fluxes involved with the system. There

are the two boundary flux values, one for each of the two vertically-oriented boundaries,

an average bulk heat flux for the body of heated fluid, and the diffusive flux that would

occur through the system if there were no convection. In steady state (no net change

in the system’s total internal energy with time), the heat flux within the fluid, when

averaged over the entire volume, and also averaged over a sufficient window of time (to

eliminate the effect of transient fluctuations) must equal the boundary flux. This is

basically an expression of a steady state continuity condition (the system cannot have

a sustained heat transport bottleneck when in a stationary state).

Having derived the Nusselt number, it can now be used to assess the performance of the

TLBM when simulating the horizontal convecting fluid problem. Table 3.1 shows the
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Table 3.1: Convective flow properties for a 2D cavity with a horizontal
temperature gradient. Results are shown for the benchmark calculations of
De Vahl Davis (1983) (BM) and for TLBM simulations.

Ra 103 104 105 106

umax BM 3.649 16.18 34.73 64.63
TLBM 3.642 16.22 35.01 65.66

y BM 0.813 0.823 0.855 0.850
TLBM 0.812 0.823 0.854 0.849

vmax BM 3.697 19.62 68.59 219.4
TLBM 3.689 19.68 69.09 223.5

x BM 0.178 0.119 0.066 0.0379
TLBM 0.179 0.120 0.066 0.0382

Nu BM 1.118 2.243 4.519 8.800
TLBM 1.118 2.251 4.558 8.976

results of these tests. Comparison of the TLBM results with those of the benchmark

imply that the TLBM does indeed simulate NC accurately. Note that making use of

counter-slip (D’Orazio et al., 2004) and zero-flux BCs (Shu et al., 2002) instead of the

halfway wall bounce-back method had no effect on the results shown in Table 3.1.

3.4.2.2 Vertical Gradient

In this section another system with constant temperature boundaries will be simulated,

but this time the fluid will be heated from below and cooled from above. The cavity will

be rectangular with an aspect ratio of 2. The horizontal boundaries will be periodic so

topologically this system is equivalent to the surface of a cylinder. Such a configuration

has been used many times as a benchmark for convection experiments (Clever and Busse,

1974). The Nusselt number will be measured as a function of Rayleigh number for the

following values: Ra = 103, 104, 105, 106. The total temperature difference ∆T will be

kept constant and the viscosity and thermal diffusivity will be reduced (while keeping

the ratio of the two, Pr = ν/χ, fixed).

Figure 3.3 shows the mean temperature profiles (as a function of vertical coordinate) for

the four different steady state flow fields. Also shown are the corresponding temperature

fields and flow streamlines. The first simulation at Ra = 103 is below the critical

Rayleigh number (Rac ≈ 1706), at which the static diffusive state becomes unstable to
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perturbations. Therefore the temperature profile is linear and heat is moving purely by

diffusion. Above the critical value, the diffusive state is unstable to perturbations, which

can grow and cause the system to settle into a steady state of sustained fluid motion

(NC). As the convective driving force increases, the system responds by partitioning itself

into two boundary layers, which become progressively more pronounced with increasing

Ra. Note that the net effect of this partitioning is that the temperature gradient at the

boundaries increases.

Heat can only move into and out of the system by diffusion since there is no fluid

motion at the boundaries due to the no-slip velocity BC. An increase in boundary

temperature gradient would suggest a concomitant increase in heat flux. However heat

flux is proportional to both temperature gradient and thermal diffusivity χ. Since

both the viscosity ν and the diffusivity χ were reduced, it is not clear whether the

increased temperature gradient is sufficient to offset the loss in thermal diffusivity. In

fact, measurements of the boundary heat flux reveal that it does actually decrease as

Ra increases. This relation of decreasing heat flux with increasing Ra is not universally

applicable since there are many ways to increase Ra. For example the system size H or

the thermal expansion coefficient β could have been increased. Both of these changes

would have augmented the heat flux because they would have made the system more

amenable to convective transport, that can deliver more heat through the system than

diffusion alone (assuming the thermal diffusivity is left constant).

Alternatively the viscosity could have been reduced while keeping the thermal diffusivity

constant. Again, this would have made the body of fluid more liable to convect (due

to reduced friction) and without a change in the thermal diffusivity the boundary (and

hence the average total) heat flux would have increased. Again, increasing the thermal

driving force Ra can be achieved by several different means. They all lead to an increase

in the ratio of total to diffusive heat flux Nu. However they do not universally cause

an increase in heat flux, some of them cause the heat flux to decrease. Therefore even

though in the literature and textbooks the Nusselt number is often referred to as the

dimensionless heat flux, it can increase without an increase in the dimensional heat flux.

So just because the Rayleigh number increases, it does not always follow that the heat

flux and the entropy production should also increase. Entropy production is the product

of heat flux and the difference of inverse temperatures, and will be dealt with in depth

in chapter 4 and chapter 5.
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Returning to the task of assessing the performance of the TLBM, Figure 3.4 shows the

scaling of Nu against Ra for the system with an imposed vertical temperature gradient.

Also shown for comparison is the numerical solution of Clever and Busse (1974). The

simulation results are once more in excellent agreement with the benchmark solutions.

While these results are encouraging, it is also desirable to see whether the TLBM can

handle larger driving forces since the flows at moderate Ra are somewhat sedentary.

Thus simulations with higher grid resolutions and Ra ≤ 108 were also carried out.

For Ra > 108, the computational cost becomes prohibitive and the use of non-uniform

grid meshes was not explored. Values for the mean Nusselt number will be compared

to the benchmark direct numerical simulation results of Johnston and Doering (2009).

Those authors were exploring the power law relationship between Ra and Nu, that is

still a matter of ongoing theoretical and experimental research. They found that above

Ra = 107, the scaling law is of the form Nu ≈ 0.138 × Ra2/7. Figure 3.5 shows the

results of both the high Ra and low Ra simulations. Even at high Ra the TLBM results

are close to those of Johnston and Doering (2009). The dotted blue line is a theoretical

prediction based on the assumption of maximum entropy production (MEP). This will

be discussed in detail in the next chapter.

To give a sense of perspective, an image of the temperature field for a system with

Ra = 108 is shown in Figure 3.6. This image shows the system at an early stage when

the initial plumes have not yet morphed into a single pair of system-sized convection

cells.
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Figure 3.3: Mean horizontal temperature as a function of vertical coordinate,
and temperature fields for fixed boundary temperature convection systems of
different Rayleigh numbers. Flow streamlines are also displayed showing the
characteristic boundary layers and convection rolls. a) Ra = 103, below the
critical Rayleigh number (Rac ≈ 1706) there is no convective motion and heat
transport occurs purely by diffusion, b) Ra = 104, c) Ra = 105, d) Ra = 106.
Note that the boundary layers become increasingly well defined with increasing
Rayleigh number.
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Figure 3.4: Nusselt number as a function of Rayleigh number for a fixed temper-
ature convective fluid system with an aspect ratio of 2. Red asterisks correspond
to values from TLBM simulations and black triangles to the benchmark solution
of Clever and Busse (1974).
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Figure 3.5: Nusselt number as a function of Rayleigh number for a fixed tem-
perature convective fluid system with an aspect ratio of 2. Black triangles
correspond to the benchmark solution of Clever and Busse (1974), red asterisks
correspond to values from TLBM simulations, the black line is the scaling law
observed in the direct numerical simulations of Johnston and Doering (2009)
and the blue dashed line is the MEPP prediction of Ozawa et al. (2001).

Figure 3.6: Temperature field of a fixed temperature NC system with Ra = 108.
The snapshot shows the system during the early transient phase, during which
the first set of convective plumes are growing towards the cold upper boundary.
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3.4.3 Constant Boundary Fluxes

In the previous section the total temperature difference across the system was prescribed

and the Rayleigh number was varied by altering the domain size H, viscosity ν and ther-

mal diffusivity χ (while keeping Pr = ν/χ constant). In such a situation the system has

the freedom to adjust its total heat flux, but not its boundary temperatures. The BCs

will add or remove as much heat as is required to maintain those boundary tempera-

tures. Hence such BCs are often described as infinitely conducting, since the boundary

heat flux can in principle be arbitrarily large. Of course it is limited by the rate at which

the fluid can import, transport, and export heat. In this section, rather than fix the

boundary temperatures, the rate at which heat enters and leaves the system will instead

be prescribed.

So now the boundary heat flux is constant, but the total temperature difference across

the system is free to vary. As well as a benchmark test, it is natural to ask whether

this kind of BC produces any elementary differences in the transport or hydrodynamic

properties of the resulting flow compared to the constant temperature BCs. In fact

this has already been investigated by Johnston and Doering (2009), who compared the

behaviour of constant flux and constant temperature systems using direct numerical

simulations. They concluded that above Ra ∼ 106, the imposition of different BCs has

no effect on the steady state flow (at least in terms of the relationship between Ra and

Nu). In chapter 5 a third type of variable BC will be applied, in which the boundary

flux is a function of temperature (both the temperature difference and heat flux can

vary), and it will be shown whether this has an impact on the scaling of Ra and Nu.

Returning to the benchmarking task, before making assessments of the model perfor-

mance, the definitions of Ra and Nu must first be modified. The magnitude of heat

injected into the lower boundary and extracted at the top boundary at each time step

will be denoted by Q. Since the boundary temperatures are no longer constrained, the

previous definition of the Rayleigh number can no longer be used as a measure of thermal

driving force. Instead it can be modified by making use of the temperature gradient that

would arise if all heat transport occurred through diffusion. By re-arranging Fourier’s
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law it is found that

Q

A
= −χ∆Tdiff

H
(3.45)

|∆Tdiff | =
QH

χA
. (3.46)

A constant flux forcing parameter can now be defined using this expression for a charac-

teristic temperature difference (Johnston and Doering, 2009; Otero et al., 2002; Verzicco

and Sreenivasan, 2008):

R̂ =
βg0∆TdiffH

3

νχ
(3.47)

=
βg0H

3

νχ

QH

χA
(3.48)

The Nusselt number takes on the following form:

Nu =
Q/A

χ
〈

∆T
〉

/H
(3.49)

The temperature difference used here
〈

∆T
〉

, is the time and horizontally averaged (at

each boundary) temperature difference that the system exhibits, in contrast to ∆Tdiff ,

the total temperature gradient that would exist if the fluid was motionless and only

able to transport heat via diffusion. The heat flux across the two boundaries is fixed

(the average bulk flux will in general exhibit transient fluctuations but a suitable time

average must always yield a value equal to the boundary flux), leaving only the steady

state temperature difference
〈

∆T
〉

as a free variable. Combining the above expressions

yields

R̂ =
βg0QH

4

νχ2A

=
βg0∆TH

3

νχ

Q/A

χ∆T/H

= RaNu (3.50)

Thus R̂ now becomes the dimensionless driving parameter. Note that the previous

definitions for Ra and Nu are still compatible with the BCs in this section but they

involve unnecessary calculation steps compared with the modified definitions given here.

It is now possible to simulate the constant flux system for a range of driving fluxes
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Figure 3.7: Nusselt number as a function of Rayleigh number for a fixed heat
flux convective fluid system with an aspect ratio of 2. Blue circles correspond to
values from TLBM simulations, and the black line corresponds to the scaling law
observed in the direct numerical simulations of Johnston and Doering (2009).

and compare the results to those of Johnston and Doering (2009). Figure 3.7 shows

the familiar scaling behaviour, once again demonstrating that the TLBM can simulate

convective flows with similar accuracy to traditional CFD techniques.

These results also show that above Ra ∼ 107 the system is indifferent to the type of

BCs imposed. Whether the flux or temperature difference is prescribed seems to make

no difference to the macroscopic transport properties. In fact this makes intuitive sense

because any state of dynamical equilibrium has to be characterised by non-varying Q

and ∆T and having found that steady state, if the same conditions were enforced by

fixing Q instead of ∆T (or vice versa), the system wouldn’t ‘sense’ any difference.

Nevertheless there is a difference between the two BCs for lower values of Ra (see

Figure 3.9). The constant flux systems seem to achieve higher Nusselt numbers for the

same Rayleigh numbers compared to the constant temperature case. This is caused by

a slightly more efficient flow structure that is permitted in the constant flux case since it

can exhibit a non-uniform boundary temperature profile. Having higher temperatures

near upward plumes and lower temperatures near downward plumes compared to a fixed

temperature equivalent, allows the convection cells to extend slightly further vertically,

allowing the ratio of total to diffusive heat transport to increase. The flow structure is
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Figure 3.8: Temperature field for a fixed flux NC flow with Ra = 1.2 × 105.
Note the apparent lack of distinctive boundary layers compared to the fixed
temperature systems (see Figure 3.3). This flow structure allows fixed flux
systems of low Ra to achieve higher magnitudes of convective transport than
equivalent fixed temperature systems.

illustrated in Figure 3.8. This ‘advantage’ disappears when the system is more turbulent

because the boundary layers are then so thin that any increase in convection cell size

that the fixed flux systems might attain becomes negligible.

Finally, Figure 3.9 shows both the fixed temperature and fixed flux results. The slightly

augmented Nusselt numbers of the fixed flux systems compared to those of fixed tem-

perature are clearly visible here. What is also shown is the agreement between both

sets of results and the scaling law of Johnston and Doering (2009) at higher Rayleigh

numbers. The agreement is not perfect since resolving all flow features accurately for

these turbulent systems is a formidable task, and it could be that certain small scale

effects are not captured in the TLBM simulations. Furthermore there is considerable

intermittency in the variables of these systems due to their chaotic nature, and this noise

makes it more difficult to extract well-behaved averages for Nu in particular.

3.5 Conclusions

This chapter has described in detail the TLBM of He et al. (1998) and Peng et al.

(2003), and established its validity as a CFD method for thermal flows. The equations of

motion for a single-phase thermal fluid were presented and de-dimensionalised, showing
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Figure 3.9: Nusselt number as a function of Rayleigh number for fixed tem-
perature and fixed heat flux convective fluid systems with an aspect ratio of
2. Red asterisks correspond to fixed temperature BCs and blue circles to fixed
flux BCs. The black line is the scaling law observed in the direct numerical
simulations of Johnston and Doering (2009).

that the behaviour of such fluids depends only upon two dimensionless groups, the

Prandtl number, the ratio of momentum to thermal diffusivity and the Rayleigh number,

a measure of thermal driving force. The exact construction of the TLBM was then

presented including the necessary BCs for the extra distribution function. A set of

benchmark tests were then carried out, demonstrating that, in accordance with literature

results, the TLBM can indeed simulate buoyancy-induced flows accurately.

Having established the validity of the method, it is now possible to begin using TLBM

simulations to analyse the thermodynamic properties of pattern-forming systems. Specif-

ically, the focus of the next two chapters will be the Maximum Entropy Production

Principle (MEPP). Can such a principle predict the steady states of NC systems? If

so why should this be the case? If not, are there any other variational principles us-

ing thermodynamic measures which could offer more predictive utility? These lines of

enquiry will be addressed in the following chapters.





Chapter 4

What Can Maximum Entropy

teach us about Convection?

Natural convection (NC) occupies a privileged position in the world of non-linear and

non-equilibrium physics. When driven out of equilibrium, NC systems form sustained

patterns: convection rolls (see Figure 3.8). Why does the system structure itself in this

way? Disequilibrium induces fluxes of matter and energy and the effect of those fluxes is

to reduce the gradients that produced them. The system is constantly acting in such a

way as to bring itself back to an equilibrium state. In doing so it affects its environment

because the environment provides the driving forces.

In the case of NC, by transporting heat from a hot to a cold boundary, the action of the

fluid is bringing the composite system of the fluid plus external heat reservoirs, closer

to equilibrium. In a real system those reservoirs would eventually come to the same

temperature as a result of the system funnelling thermal energy from one end to the

other. Ultimately all three components (system plus two reservoirs) would be of equal

temperature with no discernible order or structure. The march to this inevitable end

state is the essence of the second law of thermodynamics.

However the second law only states that the whole system will come to equilibrium, it

does not provide any details concerning how it gets there. Systems in equilibrium remain

in equilibrium. Systems not in equilibrium come to equilibrium with time. Thankfully

we live in a universe that is currently not in equilibrium but is on its way there. Many

(perhaps the majority) of the most critical scientific problems facing society today involve
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systems that are not in equilibrium. Unfortunately, while equilibrium thermodynamics

enjoys its deserved and enduring position as a foundation of physical theory (or perhaps

statistics depending on your persuasion), non-equilibrium thermodynamics has a long

way to go before it can lay claim to being established, predictive and well understood.

Of course important results have been proven, mainly in the last century, such as On-

sager’s reciprocal relations (see e.g., Kondepudi and Prigogine, 1998) and the non-

equilibrium Boltzmann equation (Equation 2.1). But these theories tend to apply to

linear systems or require assumptions of local equilibrium. Are there any general ten-

dencies concerning the manner in which systems achieve equilibrium states, whether

they are slightly or very far from equilibrium? Instinctively it feels like there should be

due to the obvious and ubiquitous reproducibility and regularity that we can observe

in most non-equilibrium systems. At the moment, theories that describe such regular-

ities tend to work well for a subset of systems but have a relatively narrow range of

applicability (for example, fluid dynamics theory does not translate to ecological sys-

tems). A theory or body of theories which could unite all non-equilibrium systems and

predict certain properties of their behaviour would be an extraordinary achievement of

far-reaching utility.

And so it was that the Maximum Entropy Production Principle (MEPP) emerged and

created waves of excitement and anticipation. Simply put, the MEPP postulates that

non-equilibrium systems of many degrees of freedom will adjust their steady state to

that which maximises the rate of entropy production, subject to basic physical con-

straints (such as mass and energy conservation). On the face of it, the MEPP appears

somewhat ambiguous and indeed it has received criticism because of this. However it

has also enjoyed significant triumphs. Some pioneering, early analytical work on the

problem of NC suggested that convecting fluids adjust their flows so as to maximise

heat flux (Malkus, 1954a; Malkus and Veronis, 1958; Malkus, 1954b). If the boundary

temperatures are fixed then this is equivalent to maximising entropy production (see

Equation 4.1). However, that is absolutely not the end of the story when it comes to

entropy production and NC, as will become clear later in this chapter.

Setting aside NC for a moment, in recent years the MEPP has found application in a

range of fields. It has shown utility for predicting the steady state behaviour of several

non-equilibrium systems including crystal growth (Hill, 1990; Martyushev and Axelrod,
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2003), electrical current flow (Zupanović and Juretić, 2004), ecosystems (Vallino, 2010)

(also see articles within Kleidon et al., 2010) and plant functional optimisation (Dewar,

2010). For a review, please see Martyushev and Seleznev (2006). Inspired by these

achievements, it has been hoped that the MEPP may after all be the unifying principle

of non-equilibrium thermodynamics.

It has been particularly successful in an area somewhat related to NC: the analysis of

atmospheric heat transport (O’Brien and Stephens, 1995; Ozawa et al., 2003; Paltridge,

1978). These works, as well as others, found that certain transport properties of the

atmospheric circulation of several planetary bodies including Earth can be reliably pre-

dicted using a simple 2-box model of the planetary energy balances and the application

of the MEPP. A similar model will be explored in chapter 5.

Despite its accomplishments, there has been criticism of the principle since it has no

rigorous theoretical basis. In fact some early proponents of the MEPP have (in the last

decade or so) changed position on the philosophical role of the principle. For example

Dewar (2003) appears to present the MEPP as an elementary principle of nature and

attempts to derive it from a minimal set of statistical assumptions. In contrast De-

war (2009) takes a more cautious tone, emphasising instead the information theoretic

interpretation of the MEPP in which the uncertainty of the observer is maximised. Fur-

thermore, when it comes to fluid dynamical systems, entropy minimisation, as well as

maximisation, has been observed (Niven, 2010; Paulus Jr. and Gaggioli, 2004). Which

extremum emerges seems to depend in a non-trivial way upon the BCs and particular

flow being studied. Even in the case of NC flows - which are often highlighted as a

case in point for the MEPP (e.g., Meysman and Bruers, 2010) - entropy production

minimisation can also emerge, and this is something that will be explored in this chapter.

4.1 Ozawa’s Scaling Law

An explicit application of the MEPP to NC will now be explored in detail. The focus

will be upon the work of Ozawa et al. (2001), who derived a scaling relation for the

two key dimensionless groups describing NC flows, Ra and Nu (see Equation 3.22 and

Equation 3.42 or below for definitions). The system in question is a heated fluid held

between two parallel plates (the analysis applies to 2D or 3D systems). Initially it
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will be assumed that the two horizontally oriented boundaries will be held at constant

temperatures, but in section 4.2 systems with fixed boundary heat fluxes will also be

considered.

One of the principle qualities of the MEPP is that it can help identify which aspects of

a system’s dynamics are relevant to a certain aspect of its behaviour. For example, in

the work on atmospheric heat transport (Ozawa et al., 2003; Paltridge, 1978), one of the

interesting consequences of the simple model was that the large scale transport properties

seemed to be invariant to the physical properties of the materials involved (since the

model did not include such details and yet still produced accurate predictions). In the

derivation to be re-produced below, certain properties of the system in question are also

ignored, and yet the predictions of the model represent a reasonable first approximation

to experimental results.

With NC, as in many fluid dynamical systems, even if the equations of motion cannot be

solved exactly, it is frequently found that a small number of dimensionless parameters

(such as Ra and Nu, see section 3.1) are sufficient to describe the hydrodynamics of

the system. This is the basis of dynamical similarity, and for any two NC flows, if

Ra and Pr are equal, the resulting flows will be identical even if they vary on specific

physical properties. It has been proposed that the following relationship applies to NC

systems: Nu ≈ 0.138×Ra0.285 for Ra ≥ 107 and Pr ≈ 1 (Johnston and Doering, 2009).

However, this scaling law is still an empirical relation. It would be advantageous to be

able to derive such correlations from a reasonable model of the transport properties of

the system. This is precisely what was done by Ozawa et al. (2001), and the key steps

in their derivation will now be described.

Since the boundary temperatures are fixed, maximum entropy production (MEP) implies

maximum heat flux through the system,

dS

dt
= Qab

(

1

Tb
− 1

Ta

)

= Qab × const = max (4.1)

Qab = max (4.2)

Note that here the focus is solely upon the entropy produced through the process of the

quantity of heat Qab per unit time changing from temperature Ta to Tb. It is convenient

to think of the expression as representing the net outward flux of entropy from the fluid

system (equal to the internal entropy production), since in steady state, an amount of
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entropy Qab/Ta enters the system and an amount Qab/Tb leaves. So the change dS/dt

refers to the entropy change of the system’s environment due to entropy production

within the system.

It is also clear that the above expression differs from the original identity due to Clausius:

dS = δQrev/T . One could call into question the reversibility of the process of fluid

convection (such heat transfer is certainly not carried out quasi-statically). However,

Equation 4.1 has become standard in the literature and even though it’s not identical

to the Clausius definition, it could simply be re-named if necessary (there are already

numerous different entropies). The point is that the quantity expressed by Equation 4.1

could be used to predict steady state properties of non-equilibrium systems. That utility

is not contingent on whether the quantity is identical to other definitions of entropy or

what it is named.

At this stage additional constraints are required to place a limit on the total heat flux

Qab. Ozawa et al. (2001) employed a simplified physical picture of the system’s hydro-

dynamics. They assumed it would arrange itself into two thin boundary layers next to

the upper and lower boundaries with convective motion transporting heat between these

layers. They assumed that within each boundary layer the fluid would be motionless

and the heat would be moving purely by diffusion. In the interior of the boundary lay-

ers, the heat was assumed to move by convective transport with negligible temperature

gradient.

Since it is known that a layer of heated fluid will undergo NC once the Rayleigh number

exceeds a critical value, stability of the boundary layers implies that the Rayleigh number

of those sections of fluid must be exactly the critical value (if it was higher, further

convection would set in and the boundary layer would become thinner). They assumed

nothing about the interior fluid dynamics. Therefore transport of heat was limited by

the rate at which it could travel by diffusion only, i.e., the overall temperature gradient,

size of the cavity and the thermal diffusivity of the fluid.

The expression relating Nu to Ra as per Ozawa et al. (2001) will now be derived. The

total heat flux through the boundary layers can be written as:

Qabmax

A
= χ

∆T

2δ
(4.3)
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where δ is the height of each boundary layer (there are two of them). The stability of

the boundary layers implies that those two regions of fluid alone can be characterised

by the critical Rayleigh number:

Rac =
βg0∆T (2δ)

3

χν
≈ 1706 (4.4)

If δ is written in terms of the critical and overall Rayleigh numbers,

Ra

Rac
=

(

H

2δ

)3

(4.5)

δ =
H

2

(

Rac
Ra

)1/3

, (4.6)

the boundary layer thickness can be eliminated by inserting this into Equation 4.3. An

expression for the maximum heat flux can then be found:

Qabmax

A
=
χ∆T

H

(

Ra

Rac

)1/3

(4.7)

Finally, if this is inserted into the definition for the Nusselt number (Equation 3.49), a

rather elegant relation is revealed,

Nu =

(

Ra

Rac

)1/3

. (4.8)

Within these constraints, it is possible to calculate the maximum possible heat flux for

a given temperature gradient.

4.2 How does the Maximum Entropy Production Principle

Measure up?

It is claimed that the values for Nu calculated using Equation 4.8 show good agreement

with experimentally measured values (Ozawa et al., 2001). This agreement is shown in

Figure 3.5, where the 1/3 scaling law provides a rough approximation for the correlation

between Ra and Nu. However it is very approximate, and when Ra > 106, the relation-

ship begins to break down. But the MEPP values should show better agreement with

the known results as Ra increases, because the boundary layers become better defined

with increasing Ra (see Figure 3.3). In contrast, at Ra < 5 × 103, the boundary layers
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are relatively large and are not clearly distinguished from the convection region, so the

assumptions of the MEPP derivation might not be completely valid. Instead of a value

of 1/3, it has been shown that as the convection becomes more turbulent (Ra ≥ 107),

the scaling exponent seems to be 0.285 ≈ 2/7 (Johnston and Doering, 2009).

So while the MEPP prediction appeared to be accurate, it seems to provide only a first

approximation, since it does not accurately capture the simple low Ra flows, or the more

turbulent ones. Indeed it is clear that it is not possible for a simple power law alone to

capture all the scaling in Figure 3.5 since the low Ra results do not form a straight line,

and there appears to be two scaling laws present at least. It is likely that at low Ra, the

assumption of well-defined boundary layers would need to be relaxed. For these flows

there is considerable spatial overlap between the regions where diffusion dominates (near

the boundaries), and where convection dominates (the interior). And for higher Ra,

while the boundary layers and convective regions may be relatively well distinguished,

the internal dynamics of the interior region are by no means trivial but would probably

need to feature in any model of the system. Finding simple parameterisations for the

heat transfer occurring here is challenging, as evidenced by the large body of literature

concerned with analytical treatments of such flows.

At this stage it is worth considering some of the many other investigations of convection

using both analytical and numerical methods. In the middle of the 20th century, Malkus

(1954b) performed a theoretical study of thermal convection. It was found that NC

flows appear to maximise their rate of heat flux, subject to basic hydrodynamic con-

straints. Since that seminal work, many other theoretical investigations have used the

same maximum flux assumption with various analytical techniques to produce scaling

relations between Nu and Ra including Nu ∝ Ra1/3 and Nu ∝ Ra1/2, with varying

dependencies on the Prandtl number (Doering and Constantin, 1996; Grossmann and

Lohse, 2000; Howard, 1963; Kraichnan, 1962).

So it seems that NC flows do seem to arrange themselves in such a way as to maximise

their net vertical heat flux. Returning to Figure 3.3, it is clear that under the constraint

of fixed boundary temperatures, the systems are trying to maximise the temperature

gradient at the boundaries. But as noted before, whether this translates to maximisation

of heat flux as Ra increases depends on how the fluid parameters are being adjusted. If

the viscosity is reduced with other parameters held constant, the heat flux does indeed
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increase. But if the viscosity is reduced at constant Prandtl number, then the thermal

diffusivity is also decreased and this results in a reduction of heat flux even though the

thermal driving force experienced an increase.

To clarify this further, it would be beneficial to first review the definitions of Ra and

Nu:

Ra =
βg0∆TH

3

νχ
(4.9)

Nu =
Qdiff +Qconv

Qdiff

= 1 +
Qconv

χ∆T/H
(4.10)

It has been established that increases in Ra, however they are executed, lead to increases

in Nu. But here it should be noted that Nu only represents the ratio of total to diffusive

heat flux. While it is proportional to the total heat flux, it can increase even when the

heat flux decreases. For example, imagine the thermal diffusivity χ is decreased. The

Rayleigh number increases, so too must the Nusselt number. Clearly the reduction in

the denominator of Nu causes an increase, but what about any changes in Qconv? In fact

it decreases but by a smaller factor than χ. The decrease stems from the fact that even

with the same temperature gradients at the boundary and the same convection in the

interior, the diffusive heat transport at the boundary is reduced because of the reduction

in diffusivity. So if the Nusselt number had been interpreted as being analogous to the

heat flux, it might have led to false conclusions.

What about variations in the fluid viscosity? Reducing the viscosity increases the

Rayleigh number. How does it affect Nu? Less friction allows greater fluid motion,

delivering more heat from one boundary to another and thus the heat flux increases. An

increase in heat flux also means an increase in entropy production.

What about when the boundary heat flux is held constant instead of the temperature

difference? In that case reducing the viscosity causes a decrease in the total temperature

difference. Physically, this is because more efficient heat transport mechanisms require

smaller driving gradients. This behaviour is illustrated in Figure 4.1, where a schematic

shows the changes that occur when a system is taken from the diffusive state through the

critical Rayleigh number. The resulting changes in boundary temperatures and fluxes

are shown.
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Figure 4.1: An illustration of the changes in transport properties of NC sys-
tems with two different types of fixed BCs. Note that going from the upper
configurations to the lower set, the fluid viscosity is reduced while keeping the
thermal diffusivity constant. This takes the Rayleigh number from Ra < Rac to
Ra > Rac, causing the onset of convection. Thus on the left, the temperature
difference ∆T remains constant while the boundary temperature gradient (heat
flux) changes, and on the right, the boundary temperature gradient remains
constant while the temperature difference changes.

Clearly an extremum principle concerning the most basic interpretation of entropy pro-

duction cannot offer a unifying theory for NC systems. Indeed the theoretical and

conceptual foundations of the MEPP are far from universally accepted (Martyushev

and Seleznev, 2006). The state selection version of the MEPP suggests that any non-

equilibrium system which can settle into a range of steady states, will choose that state

which has the MEP. However above the critical Rayleigh number, fixed flux NC systems

settle into states of lower entropy production than the maximum.

In recent years, it has become increasingly clear that the MEPP shouldn’t be viewed

as a principle of nature, but rather a useful information theoretic tool to un-bias model

predictions (Dewar, 2009; Dyke and Kleidon, 2010). Any dynamical system consists of

a set of states defined by its external constraints plus a set of rules for the evolution

of those states as a function of time. For most problems of interest, there are a vast
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number of microscopic states that all produce similar macroscopic properties. Often

the objective is to follow the trajectories of these bundles of microscopic states into the

future and garner predictions about the macroscopic state of the system at those future

points in time.

The information-theoretic concept of MaxEnt (Jaynes, 1957) begins with the assumption

that our knowledge of which individual microscopic state a system will be in, is mini-

mal. This allows one to begin to define properties of the probability distribution of the

microscopic phase space paths, since minimising the state of knowledge is equivalent to

maximising the Shannon information entropy, SI = −
∑

i pi ln pi. The exact phase space

trajectory of the system is not known but in any real experimental or field scenario a set

of measurements or parameters would provide a limited amount of information. This

information could serve as constraints for the process of maximising SI . The resulting

distribution pi can then be employed to make predictions about the likely future states

of the system by taking suitable expectation values for any relevant measurement over

the states i, weighted by their probabilities pi.

If those predictions prove correct, then there can be some confidence that the constraints

that were used during the entropy maximisation procedure are sufficient to define the

macroscopic evolution of the system. If the predictions are not correct, or not suf-

ficiently well-defined (have a broad distribution), then it means more constraints are

required to fully resolve the relevant macroscopic physics of the system. This procedure

is the essence of the Bayesian, information theoretic approach to statistical mechanics.

It is more general than equilibrium statistical mechanics because it is not restricted to

systems that have reached equilibrium. The MaxEnt procedure has a strong intuitive

appeal and indeed the famous probability theorist Edwin Jaynes believed that its basic

logic underpins the foundations of the scientific method. I feel inclined to agree since we

must always deal with incomplete information and we should always assume maximum

uncertainty about those aspects of a system we do not understand or cannot measure.

New measurements and theories introduce new constraints to our models and this in-

creases the accuracy of our predictions. The process iterates and our state of knowledge

increases with time (hopefully).

While the information-theoretic foundations of MaxEnt seem quite concrete, their rela-

tionship to the MEPP is still a matter of debate (Dewar, 2009). Some have argued that
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for any given set of phase space paths of a non-equilibrium system, the vast majority of

those paths should correspond to the maximum possible rate of thermodynamic entropy

production (Equation 4.1), subject to whatever physical constraints the system is placed

under (Dewar, 2003). Indeed it seems that the mathematical basis of the MEPP is es-

sentially the same as the Gibbs derivation of the probability distribution for equilibrium

systems. However the physical basis for this proposition has not been properly justified

and a universally accepted derivation of the MEPP from MaxEnt is still lacking. There-

fore one certainly shouldn’t look to the MEPP as an encompassing principle of nature,

a non-equilibrium version of the second law if you will.

As a final note, there is some evidence to suggest that the formation of organised struc-

tures in non-equilibrium systems can actually slow down the rate of approach to equi-

librium. Experiments with simple reaction-diffusion systems performed by Awazu and

Kaneko (2004) showed that pattern-formation caused a temporary decrease in the rate

at which a chemical system relaxed to equilibrium. When a particular set of structures

finally disintegrated, the rate of evolution towards equilibrium increased. So the default

assumption that dissipative structures form and persist ‘in order to’ facilitate more rapid

equilibration may not be generally true.

4.3 Conclusions

This chapter has critically evaluated the validity of the MEPP, specifically with regards

to its application to the problem of heat transfer in fluid convection systems. The

dimensionless groups used to describe the flow characteristics of thermal fluids can be

modified in a variety of ways and the entropy production does not always increase with

the dimensionless thermal driving parameter Ra. Furthermore when different BCs are

used, such as fixed heat flux BCs, the entropy production decreases with Ra due to the

decline of the temperature difference ∆T with increasing Ra. This decrease in ∆T stems

from the increased heat transfer efficiency of fluids with for example, a lower viscosity,

meaning that the fixed flux imposed on the system can be achieved with a smaller driving

temperature difference.

The state selection principle of the MEPP would imply that any NC system should settle

into the state of MEP. But as just discussed, at Ra > Rac, fixed flux systems select
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states of lower entropy production than the maximum due to the reduced temperature

difference of the convective state compared to the purely diffusive state.

It seems to have been assumed in the literature (e.g., Meysman and Bruers, 2010)

that at the bifurcation point (the critical Rayleigh number), convection is selected as

the more stable steady state because it has higher entropy production. But as shown,

for a system with fixed flux BCs, entropy production actually decreases below that of

the static diffusive state beyond the bifurcation point, as the system settles on to the

convective branch. I am not aware of any such detailed assessment of the role of BCs

on the entropy production of convective fluids currently in the literature. Virgo (2010)

discussed the role of BCs with regard to the MEPP but does not discuss convection

in any depth. Therefore there is a need for some degree of clarification such that the

general opinion shifts, from the default assumption that NC is a prime example of the

MEPP to one that acknowledges the whole variety of entropy extremisation that can be

observed in such systems.

In the next chapter another NC system will be investigated but it will have an extra

element of freedom with respect to its BCs. It will be able to not only adjust its

boundary heat flux but also its boundary temperature difference. Such an arrangement

means that there is a peak in entropy production at intermediate values of heat flux.

A direct interpretation of MEPP might suggest that the system should always choose a

flux value of MEP. With the help of the TLBM, such a system will be simulated and it

will be seen how it responds to its new found freedom.



Chapter 5

Negative Feedback Boundary

Conditions

In the previous chapter it was argued that for natural convection (NC) fluid systems with

fixed boundary conditions (BCs), maximum entropy production (MEP) does not seem

to represent a universal steady state attractor. Some systems appear to minimise their

rate of entropy production whereas others appear to exhibit maximisation, depending

on how the BCs of the system are set up. What was evident though, is that the entropy

production either increases or decreases monotonically as a single parameter of the

system (such as the fluid viscosity or temperature difference) is varied.

In the previous two chapters only fixed temperature or fixed flux BCs were considered.

Such systems have the freedom to adjust either their heat flux or temperature gradient,

but not both. With one of these two fixed, any changes in the other variable will produce

either increases or decreases in entropy production. What if the BCs are configured such

that neither the heat flux or the temperature difference is prescribed? Such BCs are

relatively simple and are often referred to as negative feedback BCs (Virgo, 2010), the

reason for which should become clear in the following sections.

This form of model BC was first used in the middle of the last century to construct

idealised models for atmospheric heat transport (Paltridge, 1978). While the original

works made use of planetary atmosphere models consisting of 10 boxes through which

heat was transported, the results are essentially unchanged if a model of 2 boxes is used.

One box represents the equator of a planetary atmosphere and the other represents

75
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the poles. It is assumed that both receive a solar energy flux, with the equatorial box

receiving a higher flux due to its larger area exposed to radiation.

It is also assumed that both boxes are able to radiate heat away. The rate at which

heat leaves the boxes is assumed to be a linear function of their temperatures (see

Figure 5.1). If fixed heat capacities are defined for the two boxes, it is possible to

calculate the energy balance for the entire system. What emerges is a range of steady

states, each with a unique set of values for the box temperatures and the rate at which

heat is being transported. Details of how the heat is funnelled from one box to the other

(equator to poles) are excluded from the model. Instead a single variable representing

the rate at which heat is transported is used to parameterise the physical mechanisms

operating.

The range of steady states is bounded by the following two extremes: the equator-pole

heat flux could be very low, causing a large temperature difference to build up between

the boxes, or the equator-pole heat flux could be very high, bringing the temperatures

of the two boxes closer together. Because of this trade-off between heat flux and tem-

perature difference, changes in entropy production are not as simple as those for fixed

BC systems. Instead of monotonic increases or decreases, there is actually a peak in

entropy production at intermediate heat flux values. It was postulated that this peak

might represent some kind of attractor for atmospheric steady states, and comparison

with real data seemed to support this (Ozawa et al., 2003; Paltridge, 1978). The agree-

ment even seems to extend to other planetary bodies including Mars and Titan (Lorenz,

2010).

Thus there is some evidence to suggest that the MEPP applies to atmospheric heat

transport, although this is still a hotly contested area. The atmosphere is the epitome of

a complex system involving a huge number of feedbacks, non-linear effects and different

spatial and temporal scales. In essence it has a huge number of degrees of freedom, so

uncovering exactly why such a system might maximise its entropy production is difficult

to say the least.

However, the BCs of the 2-box model could be applied to a much simpler system: the 2D

fluid systems that were investigated in previous chapters. Applying negative feedback

BCs to the TLBM is straightforward. The system would have the same macroscopic

energy balance as the 2-box model, but the internal dynamics would be fully resolved.
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Figure 5.1: Schematic of a negative feedback BC system showing the various
steady state fluxes, which comprise the boundary energy balances. Boundaries
are periodic in the horizontal direction and upper and lower walls enforce the
no-slip velocity condition.

Simulating the system would reveal whether the MEP state is also an attractor for simple

convecting fluids, as it seems to be for atmospheres. Indeed some authors have hinted

at this in the past (Kleidon, 2009), though the simulations of the following sections do

not seem to have been performed previously. Before carrying out these experiments, it

is important to first explicitly define the system and consider the details of the TLBM

BCs required.

5.1 The Model System and its Macroscopic Variables

As in previous chapters, the model system is a 2-dimensional fluid enclosed between

two solid plates. In the horizontal direction the system’s boundaries are periodic. The

upper and lower walls receive inward heat fluxes Qin,b and Qin,a respectively, and are

also able to radiate heat away from the system. The outward fluxes have the functional

form Qout,i = βTi where i ∈ {a, b} and β is a parameter. Figure 5.1 shows a schematic

of the system.
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Heat flows through it by a combination of diffusion and NC, and it is assumed that it is

a Boussinesq fluid (see section 3.1).

Ignoring the internal details of the system and regarding it as a black box that has

reached a state of dynamic equilibrium, the energy balances at the two boundaries can

be expressed,

Qin,a −Qab − βTa = 0 (5.1)

Qin,b +Qab − βTb = 0 (5.2)

where Qab is the net heat flux away from and into the lower and upper boundaries

respectively. Adding these two equations yields

Qin,a +Qin,b − β(Ta + Tb) = 0 (5.3)

Writing the two temperatures in the form Ta = T0+∆T/2, Tb = T0−∆T/2, the equation

above can be used to find the system’s average temperature T0 = (Ta + Tb)/2,

T0 =
Qin,a +Qin,b

2β
. (5.4)

To find an expression in terms of ∆T Equation 5.2 can be subtracted from equation

Equation 5.1,

Qin,a −Qin,b − 2Qab − β(Ta − Tb) = 0 (5.5)

Qin,a −Qin,b = 2Qab + β∆T. (5.6)

It can now be seen that in fact the system has only a single macroscopic degree of

freedom. The equation above shows that once the temperature difference is determined,

the heat flux is also then determined (or vice versa). If there existed a relation between

the heat flux and the temperature difference then the steady state of the system would

be fully determined by the values of the boundary parameters and Equation 5.6. Such

a relation does not exist for NC systems (at least not for all values of Ra).

However, the extrema of the heat flux and temperature difference can be calculated. In

the case of zero flux through the fluid, Qab = 0 and thus ∆Tmax = (Qin,a−Qin,b)/β. The

opposite case is that of perfect mixing, ∆T = 0, for which Qabmax
= (Qin,a −Qin,b)/2.
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Figure 5.2: Macroscopic transport properties of the model system. External flux
parameters are fixed at Qin,a = 0.1, Qin,b = 0.01, β = 0.1. The numerical value
of the boundary heat flux Qab is varied between its lower and upper extremes,
0 and (Qin,a − Qin,b)/2. The resulting boundary temperatures Ta and Tb can
then be calculated.

At this stage it could be assumed that the flux Qab depends linearly on the temperature

gradient, i.e., Qab = ke∆T where ke is an effective thermal diffusivity. This relation

would hold true if heat were being transported purely by diffusion, whereby ke would

just be the thermal diffusivity of the system’s material. However a key characteristic of

NC heat transfer is that it has a non-linear response to driving forces. Therefore the

linear approximation does not hold.

Instead, one can get a sense of the system’s transport properties by choosing a set of

values for the flux parameters (Qin,a = 0.1, Qin,b = 0.01, β = 0.1), varying the boundary

flux linearly between its extrema, i.e., Qab ∈ [0, (Qin,a − Qin,b)/2], and calculating the

resulting boundary temperatures.

This behaviour is illustrated in Figure 5.2, which shows the boundary temperatures as

a function of Qab. This figure illustrates the single degree of freedom that the system

has (in terms of macroscopic energy balance). Larger heat fluxes Qab result in lower

temperature differences and vice versa. A relation between Qab and ∆T would be a

sufficient constraint to completely determine the steady state of a given system. However
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in the absence of such a relation, the system has the freedom (in principle) to choose

any value of Qab.

Also shown in Figure 5.2 is the entropy production rate σ = Qab (1/Tb − 1/Ta). It has

a maximum at an intermediate value of Qab. This contrasts with the cases of fixed

BCs in which the entropy production changes monotonically with boundary heat flux

or temperature difference.

As discussed in the previous chapter, it has been hoped that the MEPP may be a uni-

fying principle of non-equilibrium thermodynamics. However evidence was presented

suggesting that different variational principles involving entropy production seem to ap-

ply to NC depending on the BCs used. Ozawa et al. (2003) found that certain transport

properties of the atmospheric circulation of several planetary bodies can be reliably pre-

dicted using a simple application of the MEPP and (Kleidon, 2009) suggested that in a

simple convective fluid system like the one described in this chapter, the characteristic

peak seen in Figure 5.2 should define the steady state heat flux of the system.

In the following sections, by modelling such a system, this hypothesis will be tested.

However there is an apparent inflexibility of the MEPP when applied to this NC system.

The entropy production peak (visible in Figure 5.2) occurs without any incorporation of

the particular physical properties of the fluid used in the system. It comes purely from

an analysis of the steady state energy balance. The boundary parameters feature in

this energy balance but the fluid parameters do not. Surely a more viscous fluid would

adopt a different steady state heat flux than one that was less viscous? In section 5.3

it will be shown exactly how the system responds in this respect. First, a method for

constructing suitable BCs for the TLBM of chapter 3 will be described.

5.2 Definition of Boundary Conditions

Careful consideration of the BCs for the internal energy distributions must be taken as

they are not uniquely defined for this new system. There are essentially two alternatives

for applying the relevant boundary heat fluxes at each integration step. The first method,

to be referred to as the vari method involves a simple point-by-point application of the

BC. For the boundary grid nodes, after the bounce-back stage of the algorithm and

before the collision step, the three inward-pointing internal energy distribution functions
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underwent the following forcing step:

g′j,k = gj,k + 6ωj
Qini

− βTi,k
W

(5.7)

where j indexes the distribution function (for a lower boundary, j ∈ {2, 5, 6} and for an

upper boundary, j ∈ {4, 7, 8}), i ∈ {a, b} denotes the upper or lower boundary, k denotes

the grid node (Ti,k is the temperature of node k on the boundary i calculated after

streaming and bounce-back) and W is the total grid nodes in the horizontal direction.

The factor of 6 in the equation above stems from the division of heat flux between the

three inward-pointing distributions. For example at an upper boundary, the fraction of

the additional internal energy assigned to the direction e7 would be

ω7

ω4 + ω7 + ω8
= 6ω7. (5.8)

With this form of BC the temperature at either boundary is not constrained to be

horizontally uniform.

The second BC type, referred to as the uni method, assumes that the boundary of the

system has perfect thermal conductivity in the horizontal direction such that there is

always a horizontally uniform temperature profile. The first stage is to calculate the

mean boundary temperature after streaming and bounce-back. Then, the total heat

flux into the boundary can be calculated,

Qtoti = Qini
− βTi. (5.9)

Recall the expression for the total internal energy at grid node k,

ρkǫk =

8
∑

j=0

gj,k (5.10)

where ρk and ǫk are the mass and internal energy densities of grid node k. Summing

this over the entire length of the boundary gives an expression for the total boundary

internal energy

E =

W−1
∑

k=0

ρkǫk (5.11)
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The new boundary internal energy after the heat flux step can now be calculated,

E′ = Qtoti + E (5.12)

= Qini
− βTi +

W−1
∑

k=0

ρkǫk. (5.13)

It only remains to calculate the new boundary internal energy ǫ′ resulting from this

inward flux of heat. Remember that the incoming energy is to be distributed such that

every boundary grid node will have this new temperature. Thus ǫ′ does not depend on

the node index k. Equation 5.11 can be used here,

W−1
∑

k=0

ρkǫ
′ = E′

= Qini
− βTi +

W−1
∑

k=0

ρkǫk

ǫ′
W−1
∑

k=0

ρk = Qini
− βTi +

W−1
∑

k=0

ρkǫk (5.14)

ǫ′ =
Qini

− βTi +
∑W−1

k=0 ρkǫk
∑W−1

k=0 ρk
. (5.15)

The inward-pointing (for a lower boundary, j ∈ {2, 5, 6} and for an upper boundary,

j ∈ {4, 7, 8}) internal energy distributions can then be modified before the collision step

according to

g′j,k = gj,k + 6ωjρk
(

ǫ′ − ǫk
)

(5.16)

All simulations were initialised in a state of zero fluid velocity at the mean temperature

(Equation 5.4), with a uniform internal energy distribution and a small degree of random

noise. Runs were concluded when the system’s key variables (boundary temperatures,

Rayleigh and Nusselt numbers) showed no further variation with time. In the more

turbulent cases (Ra > 106), in which the key variables showed no sign of becoming

stationary, but instead showed oscillatory behaviour, a long time average was taken.

5.3 New Results

The first set of experiments had the following boundary parameters: Qin,a = 0.1, Qin,b =

0.01, β = 0.1. The following system properties were varied: grid size H, viscosity ν and
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Figure 5.3: Dimensionless heat flux ratio Nu as a function of dimensionless
thermal driving force Ra for NC systems with negative feedback BCs. Red
circles correspond to systems with uniform boundary temperature profiles and
blue triangles correspond to systems with a variable boundary temperature
profile. The solid line shows the empirical scaling law Nu ≈ 0.138Ra0.285 due
to Johnston and Doering (2009).

thermal diffusivity χ, while keeping the ratio Pr = ν/χ constant. The reason that

both the grid size and the viscosity were varied is that the most turbulent simulations

require a significantly enhanced resolution to resolve the small scale flow features. For

the simpler, laminar flows, all features can be simulated adequately with much coarser

grids. If the grid size had been kept constant, carrying out all the simulations would

have required an inordinate amount of time.

The scaling of the dimensionless groups Ra and Nu will first be considered. Figure 5.3

displays these results for the negative feedback system. The Ra−Nu relation appears

to be identical to the fixed temperature and fixed flux data (shown in Figure 3.9),

and adheres to the same scaling law proposed by Johnston and Doering (2009) when

Ra ≥ 107. Notice also that at lower Rayleigh number the simulations that permitted

a non-uniform boundary temperature profile (vari) were able to achieve an augmented

Nusselt number compared to those with uniform boundary temperatures (uni). This

is similar to the slight differences between fixed flux and fixed temperature systems

over the same range of Ra values. The fixed flux BCs also allowed a slightly higher



84 Chapter 5 Negative Feedback Boundary Conditions

heat transport since the convection rolls could penetrate into the region which would

normally be occupied by boundary layers in the fixed temperature systems. A similar

explanation applies here to the difference between the uni and vari systems.

So in terms of the standard dimensionless measures, the fluid seems to behave identically

to a system with fixed BCs. This implies some kind of hydrodynamic invariance to BCs.

Intuitively this seems to make sense because in steady state, the boundary fluxes and

temperatures are constant. In such a state, there would be no physical difference if it

were chosen to prescribe the temperature, and adjust the flux to achieve that, or the

flux such that the relevant temperature was achieved (with the exception of the subtle

differences at low Rayleigh number).

Moving on from hydrodynamics, the steady state heat fluxes Qab and temperature dif-

ferences ∆T can now be assessed, relative to the entropy production peak. Figure 5.4

shows this data. Plotted in the figure are the steady state temperature differences ∆T ,

normalised by the maximum possible temperature difference ∆Tmax = (Qin,a−Qin,b)/β,

as a function of the steady state heat flux Qab, normalised by its maximum Qabmax
=

(Qin,a−Qin,b)/2. The first thing to notice about the data is that all points lie consider-

ably to the right of the entropy production peak. So the system transports much more

heat than it would in a state of MEP. Secondly, it can be seen that there is significant

spread among the points, so a steady state attractor does not appear to exist. But what

is it that dictates the steady state properties of a system as a function of its physical

properties (viscosity, coefficient of thermal expansion and system size for example)?

Imagine a system in steady state, with a flux and temperature difference that have been

measured. If all the fluid properties were kept constant but the system size H was

increased, an increase in Qab would be observed (and a concomitant decrease in ∆T ). A

larger system experiences stronger convection because the resistance of the whole fluid

body to motion is reduced. So as a system is made larger, its steady state flux moves

to the right on Figure 5.4 (and ∆T decreases).

Instead, an increase in fluid viscosity ν could be enforced. Such an increase weakens

convective motion due to increased frictional resistance. As a result this change would

shift a point on Figure 5.4 up and to the left due to the decrease in heat flux and increase

in temperature difference. If the viscosity is increased further, eventually the fluid would

become so ‘thick’ that fluid convection would stop altogether and heat transfer through
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Figure 5.4: Normalised steady state temperature difference as a function of
heat flux for TLBM simulations with negative feedback BCs. Red circles and
blue triangles show results from the uni and vari simulations respectively. The
black dotted line shows the heat flux value corresponding to a state of MEP and
the black asterisk shows the corresponding value of the temperature difference.
As predicted from the energy balance equations (and displayed in Figure 5.2),
higher heat fluxes result in a lower temperature difference.

the system would occur purely by diffusion. At this point any more increases in viscosity

would have no effect on the heat flux because that flux would then be constrained purely

by the fluid’s thermal diffusivity.

In contrast, decreasing the viscosity has the effect of increasing a system’s heat flux,

and this would continue until the system tends to the hard limit of ∆T → 0 at which

point the transport of heat is so strong that the two boundaries would have almost equal

temperatures. Since the temperature difference is the driving force for convection and

heat transfer in general, the system cannot attain the limit ∆T = 0 since there would

then no longer be a driving force (the flux would reduce until a gradient developed again,

at which point the flux would also re-initiate and an oscillatory negative feedback cycle

would set in).

Finally, the case of increasing the viscosity at constant Prandtl number should be con-

sidered (increasing both the viscosity and thermal diffusivity). It might be expected

that the flux would simply decrease since a more viscous fluid has a greater convective
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resistance. Indeed this is true, but a proportionate increase in thermal diffusivity means

that boundary heat flux is also increased (for the same local temperature gradient). In

fact the increase in heat flux from the augmented thermal diffusivity actually outweighs

the loss in flux due to increased viscosity. The net effect is that a point on Figure 5.4

would move down and to the right with this change, even though the Rayleigh and Nus-

selt numbers would decrease. Note that the Nusselt number has decreased even though

the magnitudes of the total and diffusive fluxes have increased. Once again, it is clear

that the Rayleigh and Nusselt numbers encompass several hydrodynamic effects and on

their own, do not give us a complete description of the steady state.

So NC systems seem to be insensitive to their entropy production, MEP does not appear

to be a steady state attractor. But only steady states that transport significantly more

heat than the MEP value have been observed. Might it be possible to observe heat

fluxes that are less than the peak or of a similar value? It has been established that a

system’s state can be shifted around Figure 5.4 by altering the physical properties of

the fluid. Can a system be moved arbitrarily far to the left of the figure?

In fact this is possible if the assumption of constant Prandtl number is relaxed. Then

the thermal diffusivity can be set very low and the viscosity very high (large Prandtl

number). This would yield a fluid that would not undergo convective motion but also

would not conduct a great deal of heat. Although heat would be moving by diffusion

only, it would be possible to observe values of Qab as far to the left of Figure 5.4 as

required. As χ→ 0, Qab → 0, the lower limit of heat flux.

There is also a more elegant alternative. So far the BC parameters have been kept

constant. Changing them will have a direct impact on the energy flows of the system.

The primary driving force for heat flux through the fluid system (as opposed to heat

instantly leaving the boundaries of the system through the outward fluxes), is the flux

difference Qina −Qinb
. Looking back at Equation 5.6, it is clear that increasing this flux

difference will have the effect of increasing both Qab and ∆T . However at present the

aim is to find situations in which the relative heat flux is lower than intermediate values.

If the parameter β were increased, the dependence of the outward fluxes on boundary

temperature would be increased. Hence a larger fraction of the total energy being

received by the system would be re-emitted at the boundaries, and a smaller fraction

would be funnelled through the fluid than an equivalent system with a smaller value of
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β. Note also that changing β does not affect the range of flux values: Qab ∈ [0, (Qin,a −
Qin,b)/2]. What is affected is the range of temperature differences: ∆T ∈ [0, (Qin,a −
Qin,b)/β].

All ∆T values (and indeed the mean temperature T0) will experience a decrease with

increasing β. However since this is a linear re-scaling of all values, the position of the

entropy production peak remains unchanged (as long as only β is adjusted). Thus if

systems with different β values are simulated, the results can be compared with other

data sets as long as the heat flux and temperature difference values are normalised by

their relevant maxima.

At this stage it is possible to notice an apparent issue. If the fluid properties are

kept similar to those used previously and β is increased, the mean temperature will be

decreased significantly. Surely then, the fluid will not convect because the temperature

differences in the new system will be far too small to induce convective motion?

This problem can be alleviated however. There are no constraints on the fluid properties

(other than Pr = 1) so the viscosity and thermal diffusivity can simply be reduced

proportionately to the reduction in mean temperature, such that the system returns to

a convective regime. With this in mind, simulations were carried out with two additional

values for the parameter β and the results are shown in Figure 5.5.

Note that each of the three data sets represents a range of Rayleigh numbers: Ra ∈ [2×
103, 5×105] (more turbulent simulations were not carried out for the two additional data

sets and so those higher Ra results from the first data set are omitted from Figure 5.5).

These results show that the system does indeed seem indifferent to entropy production.

With suitable adjustments of parameters, steady states have been observed spanning

the whole range of flux values, and one of the data sets even passes straight through the

MEP flux value.

This, combined with the results in the previous chapter, constitutes sufficient evidence

that entropy production rate has no bearing on the steady state properties of NC sys-

tems. Previous work that suggested such a link seems to have missed the fact that Nu

can increase even when total heat flux decreases and that Ra can also increase even

when the entropy production shows a decrease. To describe a NC system fully, all of its

physical properties must be taken into account. While the dimensionless groups Ra and
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Figure 5.5: Normalised steady state temperature difference as a function of
normalised heat flux for TLBM simulations with negative feedback BCs. Red
circles and blue triangles show results from the uni and vari simulations re-
spectively. The black dotted line shows the heat flux value corresponding to a
state of MEP. As predicted from the energy balance equations (and displayed in
Figure 5.2), higher heat fluxes result in a lower temperature differential. On this
figure there are three separate data sets, each corresponding to a different value
of the parameter β, but all had common values for the other BC parameters,
Qin,a = 0.1, Qin,b = 0.01. The leftmost cluster of points represent simulations
with β = 4, the central cluster β = 1.3, and the rightmost cluster β = 0.1.

Nu are useful for the purposes of dynamical similarity, they do not convey every detail.

Nor in fact can we summarise the steady state with just the heat flux and temperature

difference (the two components of the entropy production).

5.4 Can the Maximum Entropy Production Principle be

Trusted?

Even though the MEPP has failed for NC, it has succeeded for the problem of atmo-

spheric heat transport (O’Brien and Stephens, 1995; Ozawa et al., 2003; Paltridge, 1978).

Why is it that it was successful for that system and not for simpler NC systems? A

physically rigorous explanation as to why it seems to work so well for atmospheres (and
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indeed why it should work in general) is still lacking. However, the most obvious dif-

ference between atmospheric transport and the single-phase fluid systems dealt with in

this chapter, is the significant reduction in the degrees of freedom of the simpler system.

To say it is more constrained is an understatement. And this is precisely why taking

into account the physical specifics of the system is so important.

If MEP is indeed an attractor for atmospheres, changing the thermal expansion of oxygen

for example, is likely to be insufficient to shift the system away from that attractor. In

fact in the MEP literature the phrase “What if the sea was made of vinegar?” is

frequently mentioned pertaining to the suggestion made at a workshop that since the 2-

box model doesn’t take account of the particular physical properties of the atmospheres

that it models, it would make no difference to the predictions if the water oceans were

replaced by vinegar oceans. And since several different planetary atmospheres have been

shown to exhibit MEP, this seems to hold true; it does not matter what materials or

properties comprise the atmosphere, when it comes to atmospheric circulation, MEP

appears to be the selection rule (Kleidon et al., 2006; Ozawa et al., 2003).

The MEP peak for the simple NC system also doesn’t take into account the physical

particulars of the fluid. But that system is much simpler than an atmosphere. In

fact it is approximately as constrained as a linear diffusive system. Even though the

functional relationship Qab(∆T ) is not known, it might be expected that it is of the

form Qab = α∆T γ , where the physical properties of the fluid and the nature of the heat

transfer process are embedded within the two parameters α and γ. If this relationship

was revealed, there would no longer be any question of MEP because the system’s

macroscopic properties would be completely predictable. So it is possible that the 2D

fluid system is too constrained to have the real freedom needed to express MEP, but the

theoretical knowledge of its behaviour is not quite sufficient to completely resolve it.

The empirical scaling law, Nu ≈ Ra2/7 of Johnston and Doering (2009) for systems with

Ra ≥ 107 could be used as a constraint:

Nu =
Qab

χ∆T/H
≈ 0.138 ×Ra2/7 (5.17)

Qab ≈ 0.138
χ∆T

H
Ra2/7 (5.18)
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Introducing this into Equation 5.6 yields, after some re-arrangement,

Qin,a −Qin,b = 2(0.138
χ∆T

H
Ra2/7) + β∆T

= 0.276
χ∆T

H

[

bg0∆TH
3

χν

]2/7

+ β∆T

= 0.276
χ

H
∆T 9/7

[

bg0H
3

χν

]2/7

+ β∆T

= φ∆T 9/7 + β∆T. (5.19)

This defines a fixed relationship between the macroscopic parameters of the system

(Qin,a, Qin,b, β) and the steady state temperature difference ∆T (as long as Ra ≥ 107).

When such a relationship exists (another case is when Ra < Rac and the heat transport

is diffusive and linear), an extremum principle such as the MEPP is no longer required

because macroscopically, there are no remaining degrees of freedom. The system’s dy-

namics are fully resolved and all the physical properties of the fluid are embedded within

φ. While Equation 5.19 is not universally applicable, the idea was simply to show that

the only missing piece in this puzzle is the function Qab(∆T, φ), which if known, would

allow the system to be completely described.

The results and conclusions of this and the previous chapter imply that MEP is unfortu-

nately not a useful guide when it comes to ‘simple’ NC systems. How does this bear on

the general position of the MEPP? It has a significant body of proponents, critics and

bench-sitters, so the MEPP will be a feature of non-equilibrium thermodynamics for

some time yet, whether it is ‘correct’ or not. My own position is that the information-

theoretic interpretation of the MEPP is the correct one. There is no doubt that in any

physical model, one should assume maximum (not just partial) uncertainty about those

aspects of a system about which there is no knowledge or understanding. The problem

is then a matter of rigorously working out the consequences of this.

In some models it may be straightforward and the assumption of maximum information

entropy may easily translate to maximum thermodynamic entropy production. However

in most cases, it is not so simple. It may be that some of the successes of the MEPP

are actually cases in which a diligent choice of force and flux automatically reveals

maximisation of entropy production. There are many simple non-equilibrium systems

which behave in predictable ways and one can imagine adapting a variational principle

like the MEPP into a variety of problems. This is rather speculative and the success
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of the MEPP for atmospheric heat transport is not in doubt, so my words come with a

degree of caution.

5.5 Conclusions

I have spent the first half of this thesis analysing heated fluid systems and their ther-

modynamic transport properties. While these systems are interesting, it is more or less

impossible for them to exhibit life-like behaviour (unless we can simulate self-reproducing

hurricanes perhaps). My main motivation for the previous two chapters was to establish

the role of thermodynamic entropy production in predicting the steady states of complex

fluid systems. Since I have uncovered no evidence that entropy production represents

an attractor for such systems, I cannot assume that this variational principle will serve

as a guide for how similar and also more complex systems will behave.

The relevance of entropy production to biology should however not be ignored. It may

be that in years to come a comprehensive theory for the flows of entropy (or its nega-

tive, information) through biological and ecological systems is discovered. The presence

of life on Earth has pushed it into a state of much greater disequilibrium than would

have occurred without life (the primary example being the high concentration of atmo-

spheric oxygen). Might it be possible to observe anything remotely similar in simple

physicochemical systems? The second half of this thesis aims to begin to answer such a

question. I will use the modelling framework presented thus far as a platform to build

more complex models of thermal, reactive fluid systems. These systems will exhibit

a richer pattern-forming phenomenology and it will be seen whether their transport

properties throw up any surprises.





Chapter 6

Doing Chemistry with an

Isothermal Lattice Boltzmann

Model

So far the behaviour of single-phase, single component fluids undergoing flows due to

energy gradients have been explored. It has been shown that the thermodynamic char-

acteristics of these systems are not trivial and cannot be straightforwardly predicted

from the boundary conditions or macroscopic energy balance expressions. However,

such systems are fundamentally limited in terms of their diversity of emergent patterns.

A principal aim of this thesis is to explore the ways in which non-equilibrium systems

make use of additional degrees of freedom. To that end, the complexity of the Lattice

Botlzmann Model (LBM) simulations will now be ramped up to a new level, that of

extra chemical species and reactions between them. Fully resolving a chemically react-

ing fluid flow is a daunting task to say the least and there are many different levels of

description that could be chosen from the microscopic (usually treated with molecular

dynamics simulations) to the bulk level (described by a small number of macroscopic

state variables).

In fact, like many others my interest lies in an intermediate length scale, the so-called

mesoscopic. Following the trajectories of individual molecules is impossible for all but

the smallest systems. However it is undesirable to coarse grain all the interesting details

out of the system. This was the essence of the previous justification for adopting the

93
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LBM and it applies once again here. Introducing additional passive scalar species to

the LBM is simple and actually this was already done in one form in chapter 3 for the

internal energy. Introducing reactions between components is something that has not

been as comprehensively explored in the literature as say, flows through porous media,

although this is beginning to change. Most modern studies of reactive LBMs involve

specific engineering problems, most commonly the combustion of a fuel in a chamber

(Chen et al., 2008). There are some elemental studies however (Ayodele et al., 2011;

Zhang and Yan, 2012).

In chapter 3 I introduced the Thermal LBM (TLBM) in which internal energy is modelled

as an additional component with its own set of discrete distribution functions. The

equilibrium distributions used for this component ensure that at the macroscopic level,

the internal energy obeys the advection-diffusion equation of a passive scalar, i.e., the

extra component does not influence the fluid flow unless some form of extra coupling is

introduced (this was done through the buoyancy force term). Analogous to the advection

and diffusion of heat, dissolved solutes also have very little influence on the flow of their

solvent assuming their concentration is low.

A vast number of biochemical reactions occur in aqueous solution. However, much of the

previous modelling work focussing on chemical systems, particularly with regard to the

origin of life and astrobiology, has been performed under a well-mixed solution assump-

tion (for example, the pioneering work of Kauffman, 1996, on autocatalytic chemical

reaction networks). The models do not incorporate any spatial aspect. Furthermore the

dynamics of chemical reaction networks on their own do not seem to offer any universal

answers to how life-like behaviour can emerge from a non-living system (Vasas et al.,

2012). Including space as a variable has proved very fruitful in uncovering fascinat-

ing and novel chemical phenomena, a primary example of which is the 2-dimensional

Gray-Scott (GS) model (Pearson, 1993), that originally had no spatial aspect (Gray and

Scott, 1985). In the past it was rather difficult to model such systems due to limited

computational power and the large increases in memory required for multi-component,

spatially resolved systems. In this respect, the LBM will prove its utility, since extra

components only cause a linear increase in memory requirements. Additionally there is

only a meagre increase in algorithm complexity when one wishes to include additional

chemical species and reactions.
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6.1 Theoretical Considerations

This section will describe the additions required to bring chemistry into the LBM. In

this chapter only isothermal, 2-component systems will be considered. This will allow

some elementary tests of the new LBM’s performance to be performed. Furthermore it

will allow the extra elements of the algorithm to be introduced step-by-step.

The distribution functions for extra chemical species diffusing and advecting within the

solvent fluid behave just as the mass density and internal energy density,

hσi (x+ ei∆t, t+∆t)− hσi (x, t) = − 1

τσ
(hσi − heq,σi ) (6.1)

undergoing completely analogous streaming and collision steps. This is because the dis-

tribution functions representing the chemical species also obey the continuous Boltzmann

equation (Equation 3.7). On its own, the above algorithm is essentially a numerical so-

lution method for the diffusion equation (repeated propagation and spreading of mass).

The new index σ = 1, 2, ..., n corresponds to the n different passive scalar species. In

the above expression hσi (x, t) is the distribution function for the component σ, and τσ is

the relaxation parameter, controlling the diffusivity of that component.

In this chapter the focus will be on static fluids (no flow-induced advection). As a result

the equilibria for the new distribution functions have the following form:

heq,σi = ωiψσ (6.2)

expressing the fact that the equilibrium state should simply be the maximum entropy

distribution of mass at a grid node. The concentration ψσ of species σ is given by:

ρ(x, t)ψσ(x, t) =

8
∑

i=0

hσi (x, t) (6.3)

The diffusivity of component σ is calculated from the relaxation parameter,

Dσ =
1

3

(

τσ − 1

2

)

c2 (6.4)

At this stage a mechanism for chemical change is required. The LBM has been applied to
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reactive systems, but in a limited number of examples compared to the multi-phase, non-

reactive versions. Simulating a non-equilibrium, reacting flow system is difficult. The

exact kinetic mechanisms underlying the dynamics of fluid flow and chemical reaction

and the resulting phenomena emerging from the combination of the two are very much

an active area of research (particularly in the case of combustion). However, the level

of description relevant to this thesis, and to which the LBM is ideally suited is the

meso-level. Therefore molecular-level dynamics will be ignored and it will be assumed

that the law of mass-action kinetics holds at the level of the individual grid node in the

LBM. In its most basic form, the law of mass action states that the overall rate of an

elementary, irreversible reaction aA+ bB → cC + dD is given by

r = k[A]a[B]b, (6.5)

where [A] represents the concentration of species A. This law will be used for defining

the additional reaction term in the collision stage of the Reactive LBM (RLBM). The

exact form of the reaction term to be added to the collision step (Equation 6.1) will be

given in the following sections.

The accuracy of the RLBM can now be assessed. There will be two key tests of its

performance: A linear system for which an analytical solution exists, and a non-linear

system, the results of which will be compared with the literature.

6.2 Benchmark Tests

6.2.1 Two-species Linear Reaction in a Closed System

6.2.1.1 Analytical Solution

The first assessment will be the simplest possible: the irreversible decay of a reactant

A→ B in a closed system with no fluid motion. The equations of motion for this system
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are

∂ψ̂A

∂t̂
= DA∇̂2ψ̂A − kψ̂A (6.6)

∂ψ̂B

∂t̂
= DB∇̂2ψ̂B − kψ̂B (6.7)

(6.8)

where k is a rate constant. These are somewhat similar to the 2D heat equation with a

source term and can be solved analytically with the help of Fourier transforms. The first

step is to de-dimensionalise using a reference concentration ψA0 , characteristic length

L and time scale td = L2/DA, which corresponds to the time required to diffuse over

length L (Ayodele et al., 2011). The equation for species A now becomes:

td
ψA0

∂ψ̂A(x̂, ŷ, t̂)

∂t̂
=

td
ψA0

(

DA∇̂2ψ̂A(x̂, ŷ, t̂)− kψ̂A(x̂, ŷ, t̂)
)

∂ψA(x, y, t)

∂t
=

L2

ψA0DA

(

DA∇̂2ψ̂A(x̂, ŷ, t̂)− kψ̂A(x̂, ŷ, t̂)
)

∂ψA(x, y, t)

∂t
= ∇2ψA(x, y, t)− φ2ψA(x, y, t) (6.9)

where carets indicate dimensional variables and φ2 = L2k/DA is the Thiele modulus, a

dimensionless parameter which measures the ratio of the characteristic reaction time to

that of mass diffusion. For systems which are very large, have a high rate constant or a

low mass diffusivity, φ2 ≫ 1 and chemical reaction will be the dominant process. When

φ2 ≪ 1 due to some combination of small characteristic length or high diffusion rates,

the dynamics of the system are diffusion dominated. Transforming the above equation

into the frequency domain makes it amenable to analytical solution:

dΨA(ξ, t)

dt
= −ξ2ΨA(ξ, t)− φ2ΨA(ξ, t) (6.10)

where ΨA(ξ, t) is the Fourier transform of ψA(x, y, t), ξ is frequency (incorporating both

of the two coordinate axes). This equation has the following solution:

ΨA(ξ, t) = Ce−ξ2te−φ2t (6.11)
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The constant C corresponds to the Fourier transform of the initial condition: ΨA(ξ, 0).

The solution thus reads

ΨA(ξ, t) = ΨA(ξ, 0)e
−ξ2te−φ2t. (6.12)

The final solution will be the inverse Fourier transform of Equation 6.12:

ψA(x, y, t) = [ψA(x, y, 0) ∗ f(x, y, t)] e−φ2t (6.13)

where f(x, y, t) is the inverse Fourier transform of F (ξ) = e−ξ2t:

f(x, y, t) =
1

4πt
e−

x2+y2

4t (6.14)

Note that the process of Fourier transformation has caused multiplication in Equation 6.12

to become a convolution operation in Equation 6.13. Carrying out the convolution op-

eration yields the final solution:

ψA(x, y, t) =

[

δ(x− x0)δ(y − y0) ∗
1

4πt
e−

x2+y2

4t

]

e−φ2t

=
1

4πt
e−

(x−x0)
2+(y−y0)

2

4t e−φ2t (6.15)

where it has been assumed that the mass of the species A is initially concentrated at

the point (x0, y0), in which case ψA(x, y, 0) = δ(x− x0)δ(y − y0) (Ayodele et al., 2011).

This exact solution will allow the accuracy of the RLBM to be assessed.

6.2.1.2 Reactive Lattice Boltzmann Model Implementation

Simulating this 2-component system is straightforward with a RLBM. There are two

equations for the streaming and collision of the chemical species distributions:

hAi (x+ ei∆t, t+∆t)− hAi (x, t) = − 1

τA
(hAi − heq,Ai )− ωikψA (6.16)

hBi (x+ ei∆t, t+∆t)− hBi (x, t) = − 1

τB
(hBi − heq,Bi ) + ωikψA, (6.17)

that encompass the two processes of diffusion and chemical reaction. The equilibrium

distributions are given by Equation 6.2, since there is no fluid motion.
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6.2.1.3 Test Results

Insight into the accuracy of the RLBM on this elementary system can now be gained.

The assessment will be similar to that performed in Ayodele et al. (2011), one of the few

recent works to assess the performance of RLBMs. The assessment does differ from that

work slightly. In order to avoid the use of initial conditions with large discontinuities,

all test simulations will be initialised at dimensionless time ti = 1 × 10−4, and run

through to tf = 2× 10−4. This avoids the (non-fatal) numerical instabilities that occur

as a result of significant gradients of mass density. Such gradients are inevitable if the

simulation is initiated simply with unit concentration of reactant at the central grid

node. In the simulations presented in later chapters, the systems will never involve

extreme discontinuities of mass or momentum and therefore it is un-representative to

perform a benchmark test that begins with such a condition.

The simulation will be run for a range of relaxation parameters τA. Note that for

comparison with the analytical solution, the species B and its concentration field is

actually irrelevant (since it does not affect the reaction rate), so it was not represented

in the simulations. The rate constant k was also varied. In order to compare the same

physical problem across different parameter combinations, the dimensionless group φ2

must be kept constant for all simulations (φ2 = 2 × 104, in line with Ayodele et al.

(2011)). The dimensionless end time tf must also be the same for all simulations. To

keep φ2 constant, the characteristic length L (grid size) was appropriately adjusted for

each [τA, k] pair (Ayodele et al., 2011). The error is calculated using:

E =

√

√

√

√

∑

x,y [ψA,exact(x, y)− ψA,sim(x, y)]2
∑

x,y ψA,exact(x, y)2
. (6.18)

Figure 6.1 shows this error as a function of τA and k.

The figure shows that lower reaction rates and higher diffusivities lead to lower errors. It

seems that the method cannot reproduce the correct dynamical behaviour if the reaction

rate is very large (compared to the diffusion rate). This makes intuitive sense because

it is well established that the LBM is accurate and isotropic for diffusion-only systems,

whereas its accuracy for reactive systems is still being explored. It is likely that a more

sophisticated implementation of the reaction term in the LBM evolution equation would
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Figure 6.1: Numerical error of RD simulations as a function of relaxation pa-
rameter τA for several reaction rates k. For each simulation the dimensionless
parameters φ2 and t were kept constant allowing an objective comparison be-
tween [τA, k] combinations.

be required to alleviate this issue. However, when τA ≥ 0.9, the error is still less than

0.6%. With regards to the reduction in error with increasing τA, this is probably due

to the concomitant increase in grid resolution L, required to maintain φ2 at a constant

value. What can be learned from this assessment is that it will be advantageous to make

use of large grids and to use relaxation parameters τσ ≥ 0.9.

6.2.2 Two-species Non-linear Reaction in an Open System

6.2.2.1 Reaction-Diffusion Dynamics

The next system to be considered stands alongside NC as a pinnacle of pattern forma-

tion in a non-equilibrium system: GS reaction diffusion (RD) systems. The umbrella

term RD, applies to an ensemble of fascinating physico-chemical scenarios in which two

or more chemical species spread and transform due to the simultaneous processes of

mass diffusion and chemical reaction (these systems exist in both the theoretical and

experimental realm). So in fact the system of the previous section was a RD system,

albeit without lighting any fires in terms of interesting patterns.



Chapter 6 Doing Chemistry with an Isothermal Lattice Boltzmann Model 101

The key, it seems, to many of the most interesting non-living and living phenomena in

science is non-linearity. This behaviour often manifests itself in the form of exponential

growth or exponential decay. Or in other words, positive feedback or negative feedback.

Positive feedback is closely related to autocatalysis, wherein the presence of something

makes its growth more likely. If a component of a system experiences positive feedback

it will increase in magnitude until it exhausts whatever supplies it requires. In this sense

an analogy can be drawn between chemical and biological systems. An autocatalytic

substance will increase in concentration exponentially as long as the supply of input

substances is not limited. If such a limit is imposed and the supply is sustained at

a constant value, negative feedback will set in and the system will settle into dynamic

equilibrium of some form. If the input substance is not replenished then the autocatalyst

will no longer grow in concentration and may decay into lower enthalpy products and

disappear altogether.

A similar dynamic occurs with any tragedy of the commons scenario in ecology. Organ-

isms will flourish when they discover a plentiful source of vital nutrients. This source

will inevitably be shared between many such organisms. Upon exploiting the resource

(another organism in the case of heterotrophs), that resource will begin to recover (e.g.,

plants re-growing). With moderate consumption, a steady state may eventually emerge

in which the production of new resource is balanced by predation. If however the preda-

tors are too enthusiastic with their feasting, they may begin to diminish the ability of

the resource to replenish itself.

In fact that resource may collapse completely (if its ability to reproduce was made

unviable because of a large reduction in its breeding population for example). At that

point the predators will die back. Perhaps the resource may then recover and a periodic

cycle of oscillations will set in (as captured by Lotka-Volterra dynamics). But it is also

possible that the predators secure their own demise. The effect in biological populations

is well documented and one could argue that as a species, we ourselves are currently

entering into our own tragedy of the commons as we push the productive processes of

the planet to the very last depths of possibility. In this and the next chapter, it will

be shown that patterns formed in chemical systems can exhibit some of these ecological

effects.

The most painless route into the annals of RD systems begins with the GS model (Gray
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and Scott, 1985; Pearson, 1993). Despite its simplicity, this model can conjure stunning

displays of coherent order. It comprises just two chemical species (it sometimes contains

a third waste product, but its presence is not strictly required). They are imagined to

be sandwiched in a thin (effectively two-dimensional) film by two porous plates. Within

the layer, the two species are governed by the following equations

∂ψA

∂t
= DA∇2ψA − ψAψ

2
B + F (1− ψA) (6.19)

∂ψB

∂t
= DB∇2ψB + ψAψ

2
B − (F +R)ψB , (6.20)

with the following autocatalytic reaction occurring: A + 2B → 3B. There are the

elements of the heat equation as before (rate of change of concentration depends upon

local curvature of concentration), and also a non-linear reaction mechanism in which

the presence of 2 B particles with an A particle stimulates the conversion of that A

particle to a third B particle. The rate law is again based upon mass action kinetics

(Equation 6.5).

Finally there are also processes in place to add reactant A and remove product B.

These are not so strong that they fix the concentrations of the two species. But they do

impose a negative feedback effect. Notice that the supply of A diminishes as ψA → 1.

In addition, the removal of B diminishes as ψB → 0. Physically, it is assumed that there

is a reservoir of A at concentration 1 in contact with the system. Particles of A diffuse

in at a rate proportional to the concentration difference (1− ψA), and the parameter F

quantifies the resistance to inward flux of A from the reservoir. The same applies for

the removal of B except in that case, it is assumed that the diffusive resistance of the

reservoir barrier is greater for removing B, by an amount R (if R = 0, then removal of

B occurs just as fast as the supply of A).

In terms of parameters, it has been found that the most interesting dynamics occur

when DA/DB = 2, F ∈ [0, 0.082] and R ∈ [0.02, 0.07]. The pattern-forming phenomena

actually occurs in an interface region (technically the saddle-node bifurcation line) of

the model’s [F,R] phase space (see Figure 6.2 for a sneak preview). Either side of the

critical region one finds only homogeneous states. The first consists of ψA = 0, ψB = 1

for F ≫ R (since the supply of A is large and the removal of B is relatively low, there is

constant, rapid conversion of A to B). The second consists of ψA = 1, ψB = 0 for F ≪ R

(the removal of B is so fast that the conversion reaction is relatively slow, insufficient
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to reduce ψA significantly). This is a simplified description and there are further subtle

complexities to the system.

Within the critical region between these two extreme cases, an incredible variety of

structures form including chaotic waves, spirals, lamellae, tubes and solitions. Unfortu-

nately the governing equations currently have no analytical solution. A linear stability

analysis could be performed but there would be nothing particularly novel about that

(such an analysis can be found in many good non-linear dynamics textbooks). The task

here is to explore the performance of the RLBM. Thus the focus now moves to RLBM

simulations of the GS RD system.

6.2.2.2 Reactive Lattice Boltzmann Model Implementation

To extend the current RLBM to non-linear reactions and supply and depletion requires

modest adjustments. The evolution equations of the two chemical species take on the

following form:

hAi (x+ ei∆t, t+∆t)− hAi (x, t) = − 1

τA
(hAi − heq,Ai )− ωiψAψ

2
B + F (1− ψA) (6.21)

hBi (x+ ei∆t, t+∆t)− hBi (x, t) = − 1

τB
(hBi − heq,Bi ) + ωiψAψ

2
B − (F +R)ψB (6.22)

Note that a rate constant k is no longer required since the effects of tuning such a

constant can be absorbed into the relative tuning of the other parameters of the system.

The equilibrium distributions are identical to those in Equation 6.2 since the system is

static once again.

6.2.2.3 Test Results

Since an analytical solution cannot be computed, qualitative comparison must be re-

lied upon. Fortunately, there has been a huge amount of research carried out on this

quintessential system, and its behaviour has been thoroughly documented (see, e.g.,

Pearson, 1993). It is thus possible to compare the complete phase portrait of the system

between RLBM simulations and the literature. The phase portrait was constructed by

carrying out simulations in which the parameters F and R vary continuously across the
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simulation domain. In this way it is possible to observe all the pattern-forming features

of the system in a single simulation.

This assumes that features in one region cannot significantly influence the properties

of the patterns in the rest of the domain. Such an assumption may be violated and it

is possible that the homogeneous regions either side of the critical zone have the effect

of squashing it from either side. However such issues are not particularly relevant to

the current focus. The objective here is simply to ensure that the RLBM is capable of

producing the full repertoire of patterns observed in the GS RD system. Therefore the

small non-local influences of different regions of the simulation domain will be assumed

negligible. Comparison of the results with the literature will support the validity of this

assumption.

The initial condition consisted of

ψA(x, y) = 1 (6.23)

ψB(x, y) =











0 if X > 0.2

1 if X ≤ 0.2

(6.24)

where X is a uniformly distributed random variable. Figure 6.2 displays the phase por-

trait produced by the RLBM. Comparison with similar figures in the literature (Pearson,

1993) imply that the RLBM can indeed reproduce the full spectrum of patterns and

structures.

There is one remaining parameter, the choice of which is not defined by the specification

of the model system. This parameter is the relaxation time τA. Since the ratio of

diffusivities for the GS system has to be fixed (DA/DB = 2), the second relaxation time

τB is defined once τA is chosen. However there is complete freedom in the value chosen

for τA. Therefore, the effect of varying τA was investigated and the results are presented

in Figure 6.3. This figure demonstrates the influence that the mass diffusion rate has

on the system’s emergent patterns.

A lower diffusion rate (lower value for τA) - which means that reaction is given a stronger

relative influence - leads generally to structures with smaller characteristic length scales

and vice versa. The relaxation parameter has a lower bound of τA > 0.5 (lower values

would lead to negative diffusivities), but what about larger values? Do the spot patterns
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Figure 6.2: RLBM simulation of a GS RD system. The feed rate F and de-
pletion rate R were varied continuously across the domain, allowing all the
characteristic structures to emerge in a single simulation. The relaxation pa-
rameter is fixed at τA = 0.9. The colourmap shows the order parameter
φ(x, t) = ψA(x, t) − ψB(x, t), with red corresponding to values of φ = 1 and
the deepest blue corresponding to φ ≈ −0.5.

and other structures just become arbitrarily large? In fact this enlargement of pattern

length scales does continue as τA, and hence the diffusivity, is increased even further.

This is illustrated in Figure 6.4, which shows the same system again for τA = 3. Since

the mass diffuses at a higher rate, all the emergent structures swell in size. It seems

that the mass of the two species diffuses so fast that the stable reaction fronts required

for the formation of distinct structures are blurred out of existence except at very large

length scales.

As well as demonstrating the abilities of the RLBM, the results of this section will be

used to choose values of the relaxation parameters such that patterns of reasonable size

emerge in the simulations of the next chapter.



106 Chapter 6 Doing Chemistry with an Isothermal Lattice Boltzmann Model

R

F

0.02 0.03 0.04 0.05 0.06 0.07
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) τA = 0.6
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(b) τA = 0.75
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(c) τA = 0.9
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(d) τA = 1.05

Figure 6.3: RLBM simulations of a GS RD system with different relaxation
parameters τA. The feed rate F and depletion rate R were varied continu-
ously across the domain. The colourmap shows the order parameter φ(x, t) =
ψA(x, t)− ψB(x, t), with red corresponding to values of φ = 1 and the deepest
blue corresponding to φ ≈ −0.5.

6.3 Conclusions

In some respects the thesis up to this point represents a process of foundation build-

ing. Simulating non-isothermal, reactive fluid flows is a formidable task. There are all

manner of ways in which highly simplified, heuristic models of such systems could be

constructed. While useful and informative, such models run the risk of representing a

different logic and reality to our own. Conversely the state of the art in computational
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Figure 6.4: RLBM simulation of a GS RD system. The feed rate F and de-
pletion rate R were varied continuously across the domain. The relaxation
parameter is fixed at τA = 3. The colourmap shows the order parameter
φ(x, t) = ψA(x, t) − ψB(x, t), with red corresponding to values of φ = 1 and
the deepest blue corresponding to φ ≈ −0.5.

physics techniques can simulate such systems with very high accuracy, but only for very

short time scales, over extremely small length scales.

The RLBM as developed here, represents an excellent balance between these two options.

Of course like any model, it comes with a set of assumptions. Furthermore there is no

analytically tractable system with which one can assess the combined effects of reaction,

diffusion and advection in the RLBM. However, this and previous chapters have shown

that at its own level of description, the meso level, it can accurately simulate the following

physical phenomena: diffusion of scalar fields, the advection of scalar fields by fluid flow,

convective heat transfer and reactive mass change of passive scalar chemical species. The

testing and analysis of the various versions of the model give confidence that systems

combining all of the physical effects just listed can be simulated.

There doesn’t seem to be any published work in which the GS RD model was enhanced

to include thermal kinetics and advection by a fluid flow. But such a system would
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surely reveal a considerable suite of phenomena, given that it has several extra levels of

physical detail and degrees of freedom. Therefore the next chapter will explore exactly

this kind of system.



Chapter 7

Turning up the Heat: Enthalpy

Changes and Convection

It was shown in the previous chapter that the Reactive Lattice Boltzmann Model

(RLBM) is capable of simulating simple reaction diffusion (RD) systems. In this chapter

the simulations will be delving into somewhat new frontiers. The concept of enthalpy

changes will be introduced. While the non-linear dynamics of RD systems are fasci-

nating in their own right, they have been well studied and it is unlikely that there are

significant new phenomena to be discovered without adding extra levels of complexity to

the models. However what is generally missing is the next level of physical description.

Hence in this chapter, thermal RD (TRD) systems will be the focus.

Chemical reactions occur because of scattering events between reactant molecules. They

pass through intermediate, transition states somewhere between that of reactants and

products, in which old bonds are broken and new ones formed. These intermediate states

are higher energy, unstable states than either the reactant or product state. The system

relaxes into the product state and the reaction is complete. In general the product

state has a different energy than the reactant state, and the difference is known as the

enthalpy of reaction ∆H (see Figure 7.1).

Furthermore, reaching the intermediate state requires an initial input of energy, known

as the activation energy, Ef . The probability of a reaction thus depends critically on the

activation energy and the local temperature. If the temperature is very low compared

to the activation energy then the reaction will not take place. The difference in enthalpy

109
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Figure 7.1: Schematic of a typical exothermic chemical reaction. The reactant
state is represented by the initial portion of the curve and the product state
by the final portion. The reaction coordinate approximately represents how far
through the microscopic reaction process the reaction has proceeded.

between reactants and products manifests as a release or uptake of heat from the local

environment of the reaction. How could all these chemical details be taken into account

in the RLBM? This will be revealed in the next section.

7.1 Theoretical Considerations

Here the RLBM will be generalised to model systems with flows of the solvent fluid (in

which the chemical species are dissolved). Another aim is to include the effects of chemi-

cal reactions on the temperature field and vice versa. It will thus be a Reactive Thermal

Lattice Boltmann Model (RTLBM). To achieve these goals, the model must include the

following elements: the fluid distribution functions fi using Equation 3.18, the inter-

nal energy distribution functions gi using Equation 3.13 with some extra terms taking

account of enthalpy changes, and the distribution functions for an arbitrary number of

passive scalars hσi (the exact form of the collision operation for these distributions will

depend on the reaction scheme adopted). The equilibria for the fluid mass and internal
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energy distributions will be of the same form that was used before: Equation 2.10 and

Equation 3.14 respectively.

Analogous to the internal energy, the equilibria for the solute chemical species will be

of the following form:

heq,σi=0 = −2

3
ρψσ

u2

c2

heq,σi=1,2,3,4 =
1

9
ρψσ

[

3

2
+

3

2

ei · u
c2

+
9

2

(ei · u)2
c4

− 3

2

u2

c2

]

heq,σi=5,6,7,8 =
1

36
ρψσ

[

3 + 6
ei · u
c2

+
9

2

(ei · u)2
c4

− 3

2

u2

c2

]

(7.1)

In order to specify the additional collision terms for the internal energy and chemical

species distributions, it is convenient to focus on a specific case, the irreversible 4-

component reaction: aA+ bB → cC + dD. Invoking the law of mass-action once more,

the following expressions for the RTLBM collision step can be constructed:

hAi (x+ ei∆t, t+∆t)− hAi (x, t) = − 1

τA
(hAi − heq,Ai )− ωiamAk(x, t)ψ

a
Aψ

b
B (7.2)

hBi (x+ ei∆t, t+∆t)− hBi (x, t) = − 1

τB
(hBi − heq,Bi )− ωibmBk(x, t)ψ

a
Aψ

b
B (7.3)

hCi (x+ ei∆t, t+∆t)− hCi (x, t) = − 1

τC
(hCi − heq,Ci ) + ωicmCk(x, t)ψ

a
Aψ

b
B (7.4)

hDi (x+ ei∆t, t+∆t)− hDi (x, t) = − 1

τD
(hDi − heq,Di ) + ωidmDk(x, t)ψ

a
Aψ

b
B (7.5)

where the ωi’s are the velocity distribution weights and mσ is the molar mass of species

σ. Also note that a unit integration step δt = 1 has been assumed (a factor of δt is

required in the final terms of the above equations to maintain the correct units).

Since temperature must now be taken into account, the rate constant k now takes on a

more complicated, but physically representative form, known as the Arrhenius equation:

k(x, t) = Ae−Ef/T (x,t) (7.6)

where A is known as the frequency factor, encompassing several effects related to the

speed of the reaction such as the cross-sectional areas of the reactant molecules. Use of

the Arrhenius equation reflects the fact that as the temperature increases, all physical

processes start to become equally likely, since thermal energy is less of a limiting factor.
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The rate law also now incorporates the kinetic barrier that a reaction must surpass in

order to proceed fully: the activation energy Ef .

An additional term must also be included in the collision step for the internal energy

distributions to represent heat release due to enthalpy changes. For the 4-component

reaction above, the following expression applies:

gi (x+ ei∆t, t+∆t)− gi(x, t) = − 1

τc
(gi − geqi )− ωik(x, t)ψ

a
Aψ

b
B∆H, (7.7)

where −∆H is the heat released per unit reaction rate (the presence of the minus sign is

simply for the sake of convention, wherein an exothermic reaction leads to a lower energy

state and ∆H < 0). For multiple reactions additional ∆H terms would be required for

each reaction.

With this simple scheme it is possible to implement a good approximation to a real

chemical reaction system. It is possible that a Chapman-Enskog expansion might reveal

that at the macroscopic level, the above system does not exactly reproduce the reaction-

diffusion-convection equations since the reactions occur under an assumption of local

well-mixed reactors. At each grid point it is assumed that the chemistry is effectively

isolated from the perturbations due to net fluid flow and that the different species are

well-mixed at the scale of the grid node. In reality reactions might proceed more slowly

than this since the distribution functions streaming into each node do not equilibrate

with each other completely during one integration step. But if the effect was simply a

change in reaction rate then it would make no phenomenological difference because the

error could be corrected simply with a linear adjustment of the rate law (by adjusting

the magnitude of the frequency factor A).

Besides, highly turbulent flows will not be simulated, the Mach number will always be

kept low. And the objective here is not quantitatively accurate, predictive solutions to

specific differential equations. The interest lies in more basic phenomenological questions

about the pattern-forming and transport properties of complex reacting fluids. Upon

discovering an interesting new class of behaviour requiring intense further study, the

method could be refined to be more physically rigorous.

Another assumption built into the above RTLBM is that there is no cross-diffusion

between passive scalar species, i.e., their diffusion is independent of all the other species
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and the internal energy. This is justified by the simple fact that they are assumed to

be in dilute solution and thus the effect of cross-diffusion from other species will be

negligible compared to self-diffusion and advection.

The scheme described above represents a complete RTLBM toolkit, able to simulate an

immense variety of complex flow phenomena. It should not be understated the potential

of this model (within the limits of its basic assumptions). It is now possible to simulate a

huge range of reaction schemes and observe the basic interactions between the reactions,

the temperature field, the resulting buoyancy induced flows and the various feedbacks

between these different phenomena. Unfortunately there is no possibility to fully explore

the space of behaviours and parameters now available. A rigorous exploration of the

model would take a daunting amount of time, and it will only be possible to scratch the

surface in this thesis.

Nevertheless, it is now feasible to begin to uncover some of the basic phenomena of

this new model. The first scheme will be the simple decay reaction A → B that was

assessed previously. The complexity of the model systems will increase gradually. In the

following section the static fluid assumption will still be adopted. The focus will instead

be on the interplay between the mass diffusion, reactions, and the production, depletion

and diffusion of heat. Section section 7.3 will move on to systems involving fluid flow.

7.2 Two-Species Diffusive

7.2.1 Linear Closed System

For the two-component, single-stage reaction system, the collision operation becomes:

hAi (x+ ei∆t, t+∆t)− hAi (x, t) = − 1

τA
(hAi − heq,Ai )

−ωiψAAfe
−Ef/T (x,t) + ωiψbAre

−Er/T (x,t) (7.8)

hBi (x+ ei∆t, t+∆t)− hBi (x, t) = − 1

τB
(hBi − heq,Bi )

+ωiψAAfe
−Ef/T (x,t) − ωiψbAre

−Er/T (x,t) (7.9)

where unit masses have been assumed for the chemical species and the enthalpy change

is defined as the energy difference between the product and reactant states ∆H =
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Figure 7.2: Temperature and concentration profiles for TRD systems. Simula-
tions were initiated with ψA = 1 and ψB = 0, and T (x, z) = Tb+∆T (H−z)/H,
with a small degree of noise. The parameters were varied as follows: a)
Af = 1, Ar = 0,∆H = 0, b) Af = 1, Ar = 1,∆H = 0. Profiles are plot-
ted for several different times through the simulation. The time intervals are
logarithmically spaced due to the exponential decay inherent to these systems.
Red indicates early times in the simulation, turning to blue as the simulation
progresses.

Ef − Er. Note that here the reaction has been allowed to be reversible by introducing

the appropriate term in the equations. This means that the system no longer simply

marches inexorably towards a state of pure B, but has the possibility to be cyclic in

some sense. It is possible to control the following kinetic parameters: the two activation

energies Ef , Er and the two frequency factors Af , Ar. The forward frequency factor

is set to Af = 1 for simplicity, and Ar ∈ {0, 1} is used as a reversibility switch. The

activation energies will be varied.

Due to the form of the rate term, when Ef/T (x, t) ≫ 1, the forward reaction will proceed

very slowly and as Ef/T (x, t) → 0, the reaction rate becomes no longer limited by local

temperature. The system will be initialised with ψA = 1 across the whole domain with

a small degree of noise. There will be none of species B present and the temperature

will vary linearly from Ta = 2 at the bottom of the domain to Tb = 1 at the top. The

boundary temperatures will be maintained at these values but the temperature is free

to vary internally.

For the first two experiments, Ef = Er = 10, and both an irreversible and reversible

version were simulated. The results are shown in Figure 7.2. In the simplest version
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with an irreversible reaction, the concentration of A diminishes across the whole domain.

The rate of this depletion is highest at the bottom of the domain where the temperature

is highest and lowest at the top, where the temperature is also lowest. One would expect

nothing else from such a system: an exponential decay of reactant, modulated by the

local temperature.

In the second experiment, the reaction is made reversible. A similar decay process occurs

but after the initial transient, a state of dynamic equilibrium is reached, wherein the

conversion of A to B is matched by the reverse process. The steady state concentration

of the two species represents an equal division of the initial mass between the two species.

Again, this matches the natural intuition for how such a system should behave. Since the

two activation energies Ef and Er are equal, temperature should not provide any bias

for the steady state concentration profile, hence why it is a perfectly straight vertical

line at ψA = ψB = 0.5.

Now more complicated scenarios in which the reactions alter the local internal energy

balance will be considered. All four combinations of irreversible and reversible, exo- and

endothermic were explored. The results are shown in Figure 7.3.

With the exothermic reaction in Figure 7.3(a), the same decay process observed before

occurs, but with some subtle differences. The reaction proceeds fastest near the warmer

end of the domain as before, but the temperature profile is significantly affected by the

reaction. Since it releases heat, there is an initial rise in the temperature, particularly at

the bottom of the system. Such a temperature increase has the effect of enhancing the

reaction rate and the decay proceeds even faster, leading to the noticeable kink in the

concentration profiles in the lower section. The reason there is a kink and not simply

a straight line is that the temperature, while being raised by the reaction locally, was

held constant at the boundary. So immediately above the boundary there was a small

restriction in the reaction rate increase.

During the initial transient phase there is a small period of positive feedback in the lower

part of the domain but this soon fades as the concentration ψA → 0. The temperature

profiles show that there was a large amount of heat released in the lower region during

the positive feedback period. However, the rate of heat release declined as ψA and the

reaction rate also declined and with time, the temperature profile returned to a straight

line between the fixed boundary temperatures.
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Figure 7.3: Temperature and concentration profiles for TRD simulations with
varying kinetic parameters. Simulations were initiated with ψA = 1 and ψB = 0,
and T (x, z) = Tb+∆T (H−z)/H, with a small degree of noise. The parameters
were varied as follows: a) Af = 1, Ar = 0,∆H = −0.5, b) Af = 1, Ar =
1,∆H = −0.5, c) Af = 1, Ar = 0,∆H = 0.5, d) Af = 1, Ar = 1,∆H = 0.5.
Profiles are plotted for several different times through the simulation. The time
intervals are logarithmically spaced due to the exponential decay inherent to
these systems. Red indicates early times in the simulation, turning to blue as
the simulation progresses.

In the reversible version of this system (Figure 7.3(b)), similar phenomena occur, but

there appears to be a significant amount of damping, and the steady state is differ-

ent. The damping is caused by the reverse reaction effectively cancelling the action of

the forward reaction. This applies also to the heat produced by the forward reaction.

A fraction of that released heat is absorbed by the endothermic reverse reaction. So

compared to the irreversible version, there is decreased heat release and a lower rate of

A → B conversion. The steady state is an approximately equal split of mass between
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the two species. There is slightly less of species A present in the steady state because of

the difference in activation energy between the forward and reverse reactions. Because

the forward reaction has a lower activation energy, when the forward and reverse rates

equalise, they do so with a slight bias towards a lower mass of A. There is also a small

temperature dependence of this effect, with the steady state concentration of A being

slightly lower at the lower temperature of the top of the domain.

Turning to the endothermic, irreversible system in Figure 7.3(c), it is clear that the

reaction is self-inhibiting and it proceeds fastest near the lower boundary where the

temperature is held constant. Above this position, the reaction rate is reduced by its

own heat uptake causing local cooling. The reaction proceeds slowly at the upper end

of the domain due to the lower boundary temperature, so the rate of heat depletion is

also lower but it still has an effect. Eventually all of the A species decays.

Finally in Figure 7.3(d), with the addition of the reversible reaction, there is again

significant damping of the dynamics compared to the irreversible case. The reverse

reaction is now exothermic and has a cancelling effect upon the heat uptake of the

forward reaction. In contrast with the exothermic version (Figure 7.3(b)), the steady

state concentration of A is now slightly higher than ψA = 0.5. The small bias towards

higher concentrations of A is caused by the slightly lower energy barrier of the reverse

reaction. This can be seen by making use of the steady state condition (forward and

reverse rates equal):

Afe
Ef/T [A] = Are

Er/T [B]

[A]

[B]
=
eEr/T

eEf/T

= e(Er−Ef )/T (7.10)

Hence as the difference in activation energies diminishes to 0, the concentration ratio of

the two species tends to 1.

This concludes the analysis of static, linear, 2-component, TRD systems. It has been

shown that the addition of enthalpy changes in a system of variable temperature can

induce different feedbacks. Exothermic reactions feed back positively on themselves,

since they enhance their own reaction rate by raising the local temperature. Endothermic

reactions have a retarding effect on themselves, and rely on external heat input to



118 Chapter 7 Turning up the Heat: Enthalpy Changes and Convection

compensate for localised cooling effects. The introduction of reversibility permits states

of dynamical equilibrium wherein reaction rates are finite, but there are no net changes

in concentration with time.

7.2.2 Non-linear Open System

This section will deal with a system with slightly richer dynamics, due mainly to its

non-linear reaction term. It will take the classic Gray-Scott (GS) RD system (simulated

in subsection 6.2.2), and relax the isothermal assumption. In the standard version of

the model, the reaction rate depends only upon the concentrations of the two chemical

species (see Equation 6.19). Now, rate constants of the Arrhenius type will be added,

introducing a dependence upon activation energy and local temperature. This leads to

the following form for the chemical species collision and streaming operation:

hAi (x+ ei∆t, t+∆t)− hAi (x, t) = − 1

τA
(hAi − heq,Ai )

−ωiψAψ
2
BAfe

−Ef/T (x,t) + F (1− ψA) (7.11)

hBi (x+ ei∆t, t+∆t)− hBi (x, t) = − 1

τB
(hBi − heq,Bi )

+ωiψAψ
2
BAfe

−Ef/T (x,t) − (F +R)ψB . (7.12)

There are two free parameters: the activation energy Ef and the frequency factor Af .

Vast regions of the available parameter space will produce trivial steady state behaviour

such as the system being fully saturated with one of the two species or the reaction

not occurring due to the temperature being too low for example. It also goes without

saying that an exhaustive exploration of the parameter space of this new model would

be a significant task. Therefore the parameters will be chosen such that much of the

well-known dynamics of the model are retained, but the influence of thermal effects can

be easily observed.

To that end, the frequency factor was calculated thus: Af = eEf/T0 , where T0 is the

mean temperature of the simulation. This ensures that for the forward reaction, when

T = T0, the system reverts to its standard behaviour. But at temperatures either side

of this, a thermal enhancement or modulation of the reaction rate can be observed.

With fixed temperatures at the boundaries of the domain, the activation energy Ef

can be used to directly control the thermal influence upon the reaction dynamics. This
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Figure 7.4: Changes in reaction rate as a function of temperature for different
activation energies Ef . The frequency factor is calculated using Af = eEf/T0

where T0 = 1.5 is the mean temperature. The range of activation energies
plotted extends from Ef = 0 in red to Ef = 2 in blue.

is illustrated in Figure 7.4, which shows how the reaction rate constant changes with

temperature and activation energy, with the form for Af given above.

For the supply and depletion parameters it was decided to focus on a single pair of values,

F = 0.03, R = 0.061 since this causes the emergence of replicating spots, arguably the

most life-like phenomenon exhibited by GS RD systems.

The simulation results produced by this system can now be evaluated. An activation

energy of Ef = 1.7 was used (since this exerted a sufficiently strong thermal effect on

the reaction rate), and boundary temperatures were fixed at Ta = 1 and Tb = 2. Initial

conditions were identical to those used for isothermal RD systems in subsection 6.2.2.

As an initial assessment, the reaction was prevented from releasing or absorbing heat,

∆H = 0. The system formed several different types of structure, since the reaction rate

was augmented in the lower region of the domain and reduced in the upper region due

to the temperature profile. The system’s behaviour is displayed in Figure 7.5.

Enhancing the reaction rate of a GS RD system has a similar effect to reducing both

the diffusion rate and supply and depletion rates, effectively altering the position of the

system on the phase portrait (Figure 6.2). This is why it is possible to see progressively,
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spot patterns, worm-like structures, inverted spots and then a pure phase as one traces

down through the domain in Figure 7.5. The effect is similar to moving along a line (in a

west-southwesterly direction) through the phase portrait of the isothermal RD system.

Near the lower boundary, the reaction proceeds so fast that stable structures cannot

form.

Spots exist because of a stable balance between reaction, diffusion and addition and

removal of particles. In the interior of a spot, the reaction is fast enough that the

concentration of species A is kept low, and B high. Outside of a spot, the concentration

of B is lower and so the reaction is slow, slower than the rate at which A is supplied

and B removed, causing the concentration of A to remain high there. Moving from the

outside of the spot to the inside there is a gradual change of conditions from one to the

other and in the boundary layer between, species A is diffusing inwardly and species

B outwardly. The rate of inward diffusion of A (plus the external supply) is matched

by the rate at which it is converted to B inside the spot due to the reaction. And

the production of B within the spot is balanced by the removal of B (due to external

extraction) and outward diffusion away from the spot’s vicinity where the reaction is

proceeding at a lower rate. Under conditions of a higher reaction rate (due to higher

temperatures), it becomes impossible for any region to have a high concentration of A

because the reaction consumes it immediately.

It has been shown that with variable temperature and a thermal rate term, variation in

emergent structure within a system can be observed even when the supply and depletion

parameters are kept constant (as a function of position). The focus will now move on

to systems where the reaction itself influences the local temperature by releasing or

absorbing heat, starting with an exothermic reaction, shown in Figure 7.6.

The emergence of multiple patterns can once again be seen but the heat released from

the reaction soon begins to alter the temperature field. The heating effect enhances

the reaction rate, destroying nearby structures, and a relatively thin interface front

forms between the upper region of almost pure A and the lower region of almost pure

B. This front propagates upwards as the continued heating distorts the temperature

profile. The reaction front only stalls near the upper boundary due to the temperature

being held constant there. In the interior the temperature continues to rise without

limit because the enhanced reaction rate causes further heating, enhancing the reaction
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rate further, releasing more heat. In summary, making the reaction exothermic causes

a strong positive feedback effect, that runs away with time. Attention can now turn to

an endothermic reaction system, shown in Figure 7.7.

In contrast to the previous system, the absorption of heat by the reaction pushes the

‘viable zone’ for structure formation downwards, where the constant temperature bound-

ary will supply as much heat as is needed to maintain that temperature. Eventually

a steady state is reached in which reactive heat depletion is compensated for by heat

supply from the boundary. In such a scenario there is still scope for the stable existence

of a range of structures.

The differences between the exothermic and endothermic systems are stark. In the

former, the effect of the reaction is to enhance the conditions for the reaction and in

the latter, it worsens the conditions. A natural question is then: is there any similarity

between these chemical systems and ecological systems? An organism’s survival depends

critically on the effect it has on its environment. Any organism has to consume some

source of free energy, i.e., taking in low entropy energy and expelling that energy in a

less useful, higher entropy form.

For modern organisms this energy comes in a variety of forms from solar radiation for

phototrophs, to chemical potential gradients for chemoautotrophs (postulated to be the

first organisms to emerge on Earth), and chemical potential gradients due to other organ-

isms for heterotrophs (such as ourselves). The fate of the higher entropy waste products

is crucial. Organisms can easily poison themselves if there is not some recycling mecha-

nism available to remove those waste products or turn them back into something useful.

Following the evolution of oxygenic photosynthesis, the Great Oxidation caused toxic

poisoning for huge numbers of organisms including possibly those organisms producing

the oxygen.

Fortunately for us this paved the way for the evolution of aerobic respiration, but for

a certain period those early photosynthesisers were probably killing themselves. Life

frequently solves this kind of problem through symbiosis. In the contemporary world

ecosystems are a dense network of exchanges where the waste of one organism can repre-

sent the staple diet for another. Planet-wide cycles of material have emerged including

the carbon, water and nitrogen cycles. In the absence of life these cycles would turn at

a drastically reduced rate and the Earth would be a very different place.
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Might it be possible to observe the emergence of any such similar symbiosis in an abstract

model like the ones we’ve looked at in previous sections? What about dissipative struc-

tures that can proliferate into regions where they cannot form spontaneously, so-called

precarious structures? It will be seen in the following sections that such phenomena can

readily be observed in simple physico-chemical models.



Chapter 7 Turning up the Heat: Enthalpy Changes and Convection 123

0 1 2 3
0

0.2

0.4

0.6

0.8

1

T − T b

∆T

z
/
H

(a) t = 750

0 1 2 3
0

0.2

0.4

0.6

0.8

1

T − T b

∆T

z
/
H

(b) t = 2750

0 1 2 3
0

0.2

0.4

0.6

0.8

1

T − T b

∆T

z
/
H

(c) t = 9000

0 1 2 3
0

0.2

0.4

0.6

0.8

1

T − T b

∆T

z
/
H

(d) t = 30000

Figure 7.5: Temperature profiles and chemical order parameter (ψA−ψB) fields
for a thermal GS RD simulation at several different times through the sim-
ulation. There is no enthalpy change ∆H = 0, and the time intervals are
logarithmically spaced.
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Figure 7.6: Temperature profiles and chemical order parameter (ψA−ψB) fields
for an exothermic GS RD simulation at several different times through the
simulation. The enthalpy of reaction is ∆H = −5 × 10−3. The time intervals
are logarithmically spaced. See an animation of this simulation in additional
digital material.
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Figure 7.7: Temperature profiles and chemical order parameter (ψA−ψB) fields
for an endothermic GS RD simulation at several different times through the
simulation. The enthalpy of reaction is ∆H = 5× 10−3. The time intervals are
logarithmically spaced. See an animation of this simulation in additional digital
material.
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7.3 Two-Species Convective

In this section things will begin to get moving and the simulations will progress from

still fluids to convective motion. A reasonable amount of work has been carried out

on the simulation of reacting fluids, but primarily on very specific applications, usually

with the goal of providing a predictive capacity for the design of functional mechanical

devices (Chen et al., 2008). Some work has also been done on adding flow to simple RD

schemes, but as far as I’m aware, they always involved forcing a prescribed flow upon a

reaction scheme.

To allow fluid flows, the RTLBM will consist of: the mass density distributions that

will undergo the standard collision operation as before (Equation 3.18), the internal

energy distributions that will also undergo the standard collision operation of the form

of Equation 7.7 and the chemical species distributions that will have equilibria of the

form of Equation 7.1, and collision operations of the form of Equation 7.2.

7.3.1 Linear Closed System

Before hunting for the emergence of ecological phenomena, there is a simple question

to be answered: what is the net effect of the presence of chemical species and the re-

versible reaction A ⇋ B on the thermal transport properties of a fluid system? If they

were non-reactive passive scalars or if the reaction was thermally neutral, the buoyancy

driven convection seen in previous chapters would be unaffected by their presence. How-

ever when these assumptions are relaxed, and the processes of chemically-induced heat

absorption/production and transport by advection are included, how does the system

make use of these extra degrees of freedom? For cases of fixed temperature boundary

conditions (BCs), is the heat flux enhanced? For fixed flux BCs, how is the steady state

temperature difference affected?

In order to shed light on these questions, a series of experiments were conducted on

systems of a single size, with two different sets of fluid parameters. In the first case, a

fluid was used that would normally exhibit a Rayleigh number of Ra = 5×103, and in the

second case Ra = 5×104. Experiments were performed with fixed temperature BCs and

fixed flux BCs. The total mass of dissolved chemical species was varied. It was increased

incrementally from 0 to a value that gave mean concentrations of ψA = ψB = 4. Each
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Figure 7.8: Steady state of a RTLBM simulation in which a passive scalar species
A can undergo a reversible decay reaction A ⇋ B to a lower energy product
B. The top image shows the temperature field with fluid velocity streamlines,
the middle image the concentration field for the first component ψA, and in
the lower image the concentration field for the second component ψB . The
simulation was initialised with ψA0 = ψB0 = 2.

experiment was initiated with random homogeneous conditions and run until a steady

state was reached.

Figure 7.8 shows the steady state configuration of a simulation with Ra = 5 × 104 and

ψA0 = ψB0 = 2. The system has arranged itself such that the endothermic reaction

B → A dominates at the lower, hotter end of the domain, leading to a higher ψA in

that region. Conversely, the forward reaction dominates at the cooler end, giving rise to

higher concentrations of B near the upper boundary. This arrangement seems to be the

one which would maximise the heat flux through the system. Having the endothermic
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reaction dominate at the lower boundary means that the system invests heat energy

in converting B to A, this energy is carried by A as it is advected by the flow before

being released gradually as the reaction turns to A → B at the top boundary. Thus

the system is using the two chemical species as an additional heat delivery mechanism

alongside the advection and diffusion of heat itself.

It is useful to look quantitatively at this enhancement of heat transport. Figure 7.9

shows the different components of heat flux as a function of average chemical species

concentration. The heat flux values are normalised by the total heat flux, so the figure

displays the fractional contributions to the three different types of heat flux: diffusion,

convection and advection by chemical species (and reactive heat release and absorption).

For both types of BC, identical trends are exhibited. As the concentration of chemical

species increases, the role played by them in heat transport increases, and the role of the

other heat transport mechanisms diminishes. So the system is gradually switching over

to a configuration wherein advection and reaction provides a more and more significant

role in terms of heat transport. This makes intuitive sense because a higher concentration

of chemical species means that the heat exchange as a result of reactions will increase,

and the amount of heat that can be invested in the enthalpy of chemical species also

increases.

This raises an interesting issue however: what is the limit of this trend? If the passive

scalar concentration was increased further would the system continue to reduce the

relative roles of convection and diffusion? Firstly there should be a lower limit for the

diffusive heat transport (indeed in the fixed temperature case it is constant since the

temperature difference and thermal diffusivity are constant), since all heat must enter

and leave the system by diffusion. Secondly, the advection of chemical species relies on

there being a sustained fluid flow. The fluid flow is induced by the temperature gradient

and so in the fixed flux case as the system becomes ‘more efficient’ at transporting heat,

it gradually diminishes the driving force for that transport.

What of the fixed temperature case? Here the temperature difference can never be

diminished but if the reaction depletes significant amounts of heat from the hot boundary

and releases large amounts at the cold boundary then this begins to reduce the driving

force for convective motion. Having said that, a finding not shown in Figure 7.9 is that

for this BC, the total heat flux increased with ψ. While the presence of the passive scalars
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enhanced the system’s heat transport abilities, it used those new abilities to augment

its total heat flux above that which would occur without the action of the chemistry.

So it may be that if the reaction system erodes the overall temperature gradient within

the system, the system compensates by simply extracting more heat at the boundaries

(that are perfectly conducting and so can deliver arbitrary amounts of heat).

In conclusion, the system appears to have made use of its additional degrees of freedom

to increase its heat transport abilities. There were higher fluxes for fixed temperature

systems and lower temperature differences for fixed flux systems. This all implies that

the system can transport heat more easily with the addition of the chemical species

and reactions. This is not altogether surprising, but it does not support any kind of

maximum entropy production (MEP) hypothesis because the entropy production of the

fixed flux system decreases with increased heat transport efficiency. This effect is similar

to that which was discussed in chapter 4, where it was noted that when the boundary flux

is fixed and the system’s convective resistance is decreased, a reduction of temperature

difference occurs (except under certain, contrived changes in parameters).
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Figure 7.9: Component heat fluxes as a function of average chemical species
concentration for RTLBM simulations at two different Rayleigh numbers. The
heat flux values (corresponding to diffusion in blue, convection in red and ad-
vection by passive scalar chemical species in green) are normalised by the total
heat flux.
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7.3.2 Non-linear Open System

This is a particularly fascinating and visually appealing part of the journey. In a convec-

tive fluid system within which the thermal GS RD model is embedded (dissolved), how

do the dual pattern formation processes of convection and RD interact? Throughout

this section it should be kept in mind the concept of stability, being robust to perturba-

tions. It will be shown that both convective structures (convection cells) and RD spots

can withstand a certain degree of tampering from other physical processes occurring in

their vicinity. However it is also possible (probably more common) to find parameter

combinations where the balance is tipped and patterns may be destroyed, only to emerge

again if the perturbations recede.

Furthermore there will be examples in which emergent structures critically impact their

surroundings, spelling either prosperity or disaster for their own persistence. Scenarios

will be shown where there is a perpetual competition between different pattern-forming

processes, all of which are being driven by gradients, but by existing they are also

dissipating those gradients. Like biological organisms, the second law of thermodynamics

is neither friend nor foe: without free energy flows, any ordered structure will eventually

fall victim to fundamental statistical randomisation, but at the same time the dissipation

of available energy is the driving force that perhaps defines the living state. Life is

simultaneously driven by and must resist, free energy dissipation. So it is with these

simple, non-living patterns.

7.3.2.1 Thermally Neutral Reaction

It is sensible to begin with a system in which the RD dynamics do not influence the

temperature field and fluid flow. As in subsection 7.2.2, Ef = 1.7 and ∆H = 0 so that

no heat is absorbed or produced by the reaction. The reaction will simply occur where

the temperature is sufficiently high. The evolution of the system is shown in Figure 7.10.

Since the GS layer of the system does not influence the temperature field, a normal

convection pattern forms along with a range of RD structures. The changes in RD

structure formation are simply due to the temperature variation. In the hottest regions,

the reaction takes over and there are regions of mostly B, and as the temperature declines
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(a) t = 500

(b) t = 2200

(c) t = 10600

(d) t = 50000

Figure 7.10: Temperature and chemical order parameter (ψA − ψB) fields for a
thermally neutral (∆H = 0), convective GS TRD simulation at several different
times through the simulation. The time intervals are logarithmically spaced. See
an animation of this simulation in additional digital material.

moving through one of the convection cells, there are worm-like structures, spots and

then regions of almost pure A where the reaction rate has diminished considerably.

Note that in this simulation the emergent configuration consisted of 4 convection cells.

Given that the aspect ratio of the domain was fixed at a value of 2, it was more often

the case that a 2-convection cell arrangement emerged. Throughout performing these

simulations it was clear that the stability of these two steady states was relatively close.
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However the 2-cell arrangement was slightly more stable, since in the presence of fluc-

tuations, the 4-cell configuration sometimes lost stability and the system fell into the

2-cell attractor. Nonetheless, the number of convection cells did not significantly impact

the basic phenomenology of the TRD dynamics when the whole simulation domain was

differentially heated. In later sections, portions of the lower boundary will no longer

be heated and in those cases the convection pattern is highly relevant to the system’s

evolution.

7.3.2.2 Exothermic Reaction

The thermal neutrality assumption can now be relaxed and the same system but with

an exothermic reaction: ∆H = −0.5× 10−3 will be simulated. This system’s states are

qualitatively very similar to those of the thermally neutral system shown in Figure 7.10.

The additional heat released does however allow the pattern-forming region to extend

slightly higher. The expansion is halted by the extraction of additional heat by the upper

boundary. When the reaction is more strongly exothermic, a different arrangement of

chemical concentration gradients begins to arise. This is illustrated in Figure 7.11, which

shows a simulation with ∆H = −1× 10−3.

Now the steady state has shifted to one with higher average temperature and a large

portion of the structure forming area has been enveloped by the B-dominant region. If

∆H is decreased further (greater heat release), there is a continuation of this trend and

the B-dominant region eliminates essentially all of the finer structure that is normally

observed in GS RD systems. Since the positive feedback between the temperature and

reaction means that its rate is significantly enhanced, the effect is similar to a reduction

in the other parameters relevant to GS RD dynamics: the feed rate F , the removal rate

R and the diffusion coefficients of the chemical species. Referring back to the standard

phase portrait in Figure 6.2, this effect is roughly equivalent to moving down and to the

left in the phase space, moving the system into a regime dominated by a simple interface

and periodic concentration waves. Indeed this is what occurs in the strongly exothermic

simulation. Further reductions in ∆H cause very strong positive feedback leading to

divergence of temperature.
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(a) t = 500

(b) t = 2200

(c) t = 10600

(d) t = 50000

Figure 7.11: Temperature and chemical order parameter (ψA−ψB) fields for an
exothermic, convective GS TRD simulation with ∆H = −1 × 10−3 at several
different times through the simulation. The time intervals are logarithmically
spaced. See an animation of this simulation in additional digital material.
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(a) t = 500

(b) t = 2200

(c) t = 10600

(d) t = 50000

Figure 7.12: Temperature and chemical order parameter (ψA − ψB) fields for
an endothermic, convective GS TRD simulation with ∆H = 2× 10−3 at several
different times through the simulation. The time intervals are logarithmically
spaced. See an animation of this simulation in additional digital material.

7.3.2.3 Endothermic Reaction

Endothermic systems can now be considered. If the reaction enthalpy is adjusted to

∆H = 2× 10−3, a different configuration of patterns emerges, as shown in Figure 7.12.

In contrast to the exothermic systems, the emergent structures here are self-limiting.

Early in the simulation while the temperature is relatively high across the domain, RD

spots replicate and proliferate. However, they soon have a dramatic cooling effect and

‘die back’ to the lower portion of the domain. This thermal damping is not strong enough
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(a) t = 500

(b) t = 2200

(c) t = 10600

(d) t = 50000

Figure 7.13: Temperature and chemical order parameter (ψA − ψB) fields for
an endothermic, convective GS TRD simulation with ∆H = 5× 10−3 at several
different times through the simulation. The time intervals are logarithmically
spaced. See an animation of this simulation in additional digital material.

to prevent the onset of convection however, and the characteristic double convection cell

forms and persists. The heat flux from the lower boundary eventually adjusts such that

the heat loss due to convective heat transport and the chemical reaction is compensated

for.

If the reaction is even more strongly endothermic, such as in Figure 7.13, the pattern

forming region is forced back further, and the heat absorbed by the reacting spots almost

eliminates any rising convection plumes. Eventually, when the reaction is sufficiently
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(a) t = 500

(b) t = 2200

(c) t = 10600

(d) t = 50000

Figure 7.14: Temperature and chemical order parameter (ψA−ψB) fields for an
endothermic, convective GS TRD simulation with ∆H = 10 × 10−3 at several
different times through the simulation. The time intervals are logarithmically
spaced. See an animation of this simulation in additional digital material.

endothermic, the bifurcation to convective motion can be almost entirely prevented, as

shown in the simulation of Figure 7.14.

In this example, the RD spots effectively destroy the conditions for their own prolifer-

ation. They are thus forced to only grow and divide by the lower boundary where the

large heat flux can counter the reactive losses. If the temperature was not held constant

here, the reaction would cease across the entire domain. Despite the cooling effects

of the spots, convective plumes sporadically appear when a fluctuation allows a local
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heating event. Such plumes initially grow as they displace colder fluid above. However,

since they draw up warmer fluid from below, they cause the RD spots to undergo rapid

growth in the warm wake. The growth and division of the spots causes rapid cooling

and what might have led to the setting in of convection is all but extinguished. This be-

haviour is best viewed through the animation provided in the additional digital material,

associated with this thesis.

A stronger competitive dynamic of the form just described can be observed if the ac-

tivation energy of the reaction is reduced to Ef = 0.2. Giving the reaction a weaker

temperature dependence means that RD spots are less restricted by local tempera-

ture constraints. It is then possible to further increase the enthalpy of reaction to

∆H = 25 × 10−3. As a result, there is a very strong, oscillatory dynamic involv-

ing a combination of several feedbacks. Snapshots from the simulation are shown in

Figure 7.15, although the behaviour is best viewed with the corresponding animation in

the additional digital material.

Due to the strength of the reactive heat absorption, the average temperature of the

system is somewhat lower than even the low temperature upper boundary. This has the

effect of increasing the driving force for convective motion between the central part of

the domain and the warm lower boundary. With this strong gradient, small fluctuations

in temperature can allow convective plumes to grow rapidly and begin transporting heat

from the lower boundary to the central part of the domain. Because the lower boundary

provides whatever heat is required to maintain its temperature, the convective plumes

can transport significant quantities of heat. However this local abundance of heat is

rapidly exploited by the RD spots, which are otherwise prevented from growing and

dividing.

The convective plumes can sometimes withstand this heat loss temporarily, but even-

tually once the collection of RD spots grows to a certain size, their collective cooling

effect dampens the convective flow back to the lower boundary.What makes this phe-

nomena so intriguing is that here we have two characteristic pattern-forming processes,

both competing for a supply of free energy in a perpetual conflict, which under certain

conditions (such as the parameters used in Figure 7.15) appears to go on indefinitely.

Note that some RD spots are able to survive near the upper boundary. This is because

the upper boundary is held at a constant temperature that ends up being higher than
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(a) t = 500

(b) t = 2200

(c) t = 10600

(d) t = 50000

Figure 7.15: Temperature and chemical order parameter (ψA−ψB) fields for an
endothermic, convective GS TRD simulation with ∆H = 25 × 10−3 at several
different times through the simulation. The time intervals are logarithmically
spaced. See an animation of this simulation in additional digital material.

the average temperature of the bulk of the fluid. This temperature, while being lower

than that of the lower boundary, is sufficiently high for a layer of RD spots to persist.
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7.3.2.4 Precariousness

In the previous section it was shown that adding a thermal level of description to the

kinetics of RD systems produces a whole new branch of behaviours. Broadly speaking,

when the reaction is exothermic, it produces a positive feedback effect, and when it is

endothermic, it is self-inhibiting. In the spirit of relating the dynamics of RD systems to

those of living systems we could then ask: Can RD structures re-pattern their surround-

ings such that they can expand into regions where they cannot form spontaneously?

This notion of creating conditions favourable to your own persistence in hostile areas

has been termed precariousness (Virgo, 2010).

Precarious structures are able to outwardly ‘colonise’ regions where they would not

emerge on their own, but they are still vulnerable to perturbations, certain types of

which can destroy the organisation which constitutes those structures. Virgo (2010)

focusses on precarious dissipative (free energy consuming) structures as analogues for

biological organisms. Organisms and precarious dissipative structures so defined, can

form spontaneously under certain conditions. Once formed they can then enter regions

where they would not form spontaneously, and re-create the conditions under which they

emerged, such that they can expand or replicate in the previously hostile environment.

Their persistence is robust to some, but not all, perturbations. For example a human

body can withstand an astounding range of disruptions (temperature changes, mechani-

cal stress, immersion in water), but within limits (at extreme temperatures death occurs,

very strong impacts can kill and remaining submerged for too long also causes death).

Furthermore the human embryo develops in a very special set of conditions. But once

fully formed and functioning in the world external to its Mother’s womb, it can go on

to produce the necessary and sufficient conditions for the emergence of another human.

Extremophile bacteria are prime examples of precariousness, seemingly able to reach

every last corner of the planet and still make a living even in places that were previously

utterly lifeless. Virgo (2010) already characterised the simple self-replicating spots of

the GS RD system as precarious structures since a single spot in isolation can replicate

to fill its surroundings. This seems like a slightly weaker version of the concept since the

environment of a standard GS RD system is not particularly hostile to the formation of

further spots.
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Keeping this in mind, in this section the objective is to assess the precarious nature of

TRD spots. Taking a fluid system in which only half the domain is heated, the emergence

of RD structures in that half is expected. Can those structures also expand into non-

heated regions where they would not form spontaneously or where the low temperature

provides a strong inhibition to their growth? The simulations to follow aimed to answer

these questions. For each simulation presented, a control case was performed to ensure

that the RD structures could not form spontaneously in the reduced temperature regime

(when the whole system was not heated). In all cases, the structures failed to form.

In subsubsection 7.3.2.2 it was found that for ∆H ≤ −1 × 10−3, the system typically

undergoes such a strong positive feedback that the majority of the emergent organisa-

tion becomes enveloped by a homogenous region of almost pure B. This value for the

reaction enthalpy is thus a logical starting point in the search for precarious behaviour.

The evolution of a partially heated system with this enthalpy change value is shown in

Figure 7.16.

After the initial transient the system’s steady state consists of a double convection cell

and two ‘soliton channels’ from which RD spots emerge like sprouting spores. However

these ‘spores’ seem unable to seed the growth of further spots elsewhere. The heat that

they produce is wholly insufficient to counter the low temperature environment that

they get propelled into. Doubling the enthalpy of reaction to ∆H = −2 × 10−3 allows

the spots to survive slightly longer, as shown Figure 7.17.

In this case there is some re-circulation since the spots can persist long enough to be

swept into the interior of the convection cell. However, in the steady state the rate of

spot production is balanced by the rate at which they disintegrate and so there is no

outward proliferation. Decreasing the reaction enthalpy yet further to ∆H = −3× 10−3

pushes the dynamics of the system into a rather different mode. Figure 7.18 illustrates

the positive feedback effect that is unleashed in this system.

It seems that when the reaction is sufficiently exothermic, a threshold is passed beyond

which the expanding reactive zone experiences exponential growth as the system strug-

gles to remove the excess heat produced by the reaction. An extreme example of this

occurs when the enthalpy of reaction is decreased further. In Figure 7.19 all traces of

structure are wiped out by the prevailing reaction front, which eventually dominates the

system.
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(a) t = 500

(b) t = 2300

(c) t = 10800

(d) t = 50000

Figure 7.16: Temperature and chemical order parameter (ψA−ψB) fields for an
exothermic, convective GS TRD simulation with ∆H = −1 × 10−3 at several
different times through the simulation. The time intervals are logarithmically
spaced. See an animation of this simulation in additional digital material.

The enthalpy limits of this exothermic RD system have now been navigated. The ques-

tion remains as to whether any of these systems can produce RD structures that might

deserve the label of precarious. One way to assess this is to simulate a system that

reaches a quasi steady state with consistent pattern emergence, and then remove the

thermal driving force. This is the most aggressive test for whether the RD structures

can persist in foreign environments because the conditions in which they spontaneously



Chapter 7 Turning up the Heat: Enthalpy Changes and Convection 143

(a) t = 500

(b) t = 2300

(c) t = 10800

(d) t = 50000

Figure 7.17: Temperature and chemical order parameter (ψA−ψB) fields for an
exothermic, convective GS TRD simulation with ∆H = −2 × 10−3 at several
different times through the simulation. The time intervals are logarithmically
spaced. See an animation of this simulation in additional digital material.

emerge will be entirely absent from the system once the temperature of the warm bound-

ary section is reduced to that of the other, cooler boundaries.

Thus several systems were simulated that proceeded for twice the duration of the pre-

vious simulations. Half way through the simulation at t = 50000 time steps, the tem-

perature of the lower right boundary was gradually reduced to match that of the other

boundaries. By t = 70000 all boundaries were at an equal, low temperature. A temper-

ature at which RD structures cannot form spontaneously. Several system states from
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(a) t = 500

(b) t = 2300

(c) t = 10800

(d) t = 50000

Figure 7.18: Temperature and chemical order parameter (ψA−ψB) fields for an
exothermic, convective GS TRD simulation with ∆H = −3 × 10−3 at several
different times through the simulation. The time intervals are logarithmically
spaced. See an animation of this simulation in additional digital material.

one such simulation with ∆H = −3× 10−3 are displayed in Figure 7.20.

It is clear that while the patterned region does persist beyond the time at which all

boundaries reach the reduced temperature, its heat production is not sufficient to with-

stand the heat removal occurring at the system boundaries. So while the spots are

precarious in the sense that they can move into the colder region and survive, they

cannot grow and divide and colonise such regions. They cannot persist independently

without the support of the spawning heat source.
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(a) t = 500

(b) t = 2300

(c) t = 10800

(d) t = 50000

Figure 7.19: Temperature and chemical order parameter (ψA−ψB) fields for an
exothermic, convective GS TRD simulation with ∆H = −4 × 10−3 at several
different times through the simulation. The time intervals are logarithmically
spaced. See an animation of this simulation in additional digital material.

In fact the enthalpy needs to be as low as ∆H = −5 × 10−3 for a reacting region to

sustain itself through its own heat production against the heat removal pressure of the

boundaries. However in such a state there is very little structure, rather just an enclosed

region of almost pure B, surrounded by a reaction front. Perhaps we could regard this

as a super RD spot. Since it does not replicate or undergo any morphological change,

it would not appear to qualify as being precarious.

The range of behaviours observable in this exothermic RD system have now been more
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(a) t = 50000

(b) t = 60000

(c) t = 70000

(d) t = 80000

Figure 7.20: Temperature and chemical order parameter (ψA−ψB) fields for an
exothermic, convective GS TRD simulation with ∆H = −3 × 10−3 at several
different times through the simulation. The time intervals are linearly spaced
and the temperature of the right half of the lower boundary is linearly reduced
from Tar = 2 to Tar = 1 between times t = 50000 and t = 70000. See an
animation of this simulation in additional digital material.

or less explored. One parameter that has remained constant throughout is the activation

energy Ef . If this parameter was to be reduced the reaction rate would gradually become

insensitive to temperature. There would then be no requirement for emergent structures

to form in warmer regions and heat could no longer be considered as a ‘fuel’ for such

objects. Although interesting dynamics were observed with the endothermic system

(Ef = 0.2,∆H = 25 × 10−3), it would require an entire dedicated study in itself to
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assess the entire Ef ,∆H parameter space. Such a study would likely reveal even more

interesting behaviours.

7.4 Thermal Symbiosis: Four-Species Convective

In subsubsection 7.3.2.4 it was shown that an exothermic, partially heated system ex-

hibits either runaway expansion of a reactive zone, enveloping any finer grained structure,

or the emitted spots were completely unable to ensure their own survival in hostile envi-

ronments. However one could envision a system with more than a single spot ‘species’.

There could be several sets of RD systems existing simultaneously. The purpose of this

section is to begin to explore the behaviour of such systems.

In terms of the RTLBM algorithm, it is only required to add an extra two sets of chemical

species with identical streaming and collisions steps, and identical equilibria. The same

activation energy that has been used previously will be adopted again for the sake of

simplicity: Ef1 = Ef2 = 1.7. What can be varied between the two RD systems is their

reaction enthalpies: ∆H1 and ∆H2. The diffusion constants DA1 and DA2 could also

be varied, causing the two spot species to be of different characteristic sizes. This was

explored briefly, but not comprehensively. Therefore, only results from equal diffusion

rate simulations will be presented here.

To begin with, it would be revealing to establish whether the runaway growth of the

reactive zone can be arrested by the presence of a companion, endothermic set of RD

structures. Several simulations were carried out with various combinations of enthalpy

values. The most important results will be presented.

It was found in subsubsection 7.3.2.4 that ∆H = −4×10−3 leads to positive feedback and

a system-wide takeover by the reactive zone. A logical first assessment would therefore

be to set ∆H1 = −4×10−3 and ∆H2 = 4×10−3 to see whether the second, endothermic

RD system can stabilise the first and prevent the encompassing positive feedback effect.

Such a system is displayed in Figure 7.21.

Note that the concentration profiles of the two sets of chemical species appear to be

identically distributed in space. This phenomenon of phase-locking seemed to occur

in all simulations of this type (with one exothermic and one endothermic species of
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(a) t = 500

(b) t = 2300

(c) t = 10800

(d) t = 50000

Figure 7.21: Temperature and chemical order parameter fields (ψA1 − ψB1)
and (ψA2 − ψB2) for a dual spot species, convective GS TRD simulation with
∆H1 = −4 × 10−3 and ∆H2 = 4 × 10−3 at several different times through the
simulation. The time intervals are logarithmically spaced. See an animation of
this simulation in additional digital material.

spot). Note that the matching is not perfect, sometimes there are small deviations in

concentration profile between the two sets of chemicals. However it seems that in general

the endothermic spots have very little chance of sustaining themselves unless they can

parasitise the heat given off by an exothermic spot.

This suggests that there might be ways in which a multi-spot system could start forming

integrated structures of several components, each serving a particular function. In this

case the combined action of the two spots could serve as a temperature homeostasis

mechanism. At excessively high temperatures the number of endothermic spots could

rise rapidly and act to modulate the temperature and prevent any expansive takeover

by a single reactive zone. Conversely at low temperatures the endothermic spots might

‘die back’, allowing the exothermic species to grow and divide producing excess heat to

restore the local temperature to a more amenable value. It would be a valuable study
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(a) t = 20000

(b) t = 30000

(c) t = 40000

(d) t = 50000

Figure 7.22: Temperature and chemical order parameter fields (ψA1 − ψB1)
and (ψA2 − ψB2) for a dual spot species, convective GS TRD simulation with
∆H1 = −4 × 10−3 and ∆H2 = 2 × 10−3 at several different times through the
simulation. The time intervals are linearly spaced. See an animation of this
simulation in additional digital material.

to explore this possibility in depth, possibly by setting up systems with a plethora of

spot species, each with different kinetic properties, and simply allowing some form of

natural selection of stable patterns to filter out the most robust survivors. It would be

interesting to see whether complex aggregations, akin to spatially bounded metabolic

systems, might emerge spontaneously.

Figure 7.21 reveals that in fact the second spot species is so effective in damping the heat

production of the first that both undergo very limited proliferation away from the heated

boundary section. To reduce this damping effect, the second species can be made less

endothermic with ∆H2 = 2×10−3. Both species of spots can then occupy a significantly

greater area, as illustrated in Figure 7.22.

What is striking about this system is that the mutual action of the two spot species has

clearly made their existence more likely. Now, the system sustains a whole region of
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spots, circulating with the two convection cells. This configuration appears to be indef-

initely stable. There is no runaway feedback and no diminishing of the spot population.

A number of spots are existing in the cooled left half of the domain where they cannot

form spontaneously, although they do not remain there due to the action of the fluid

flow, experiencing circulation instead.

There also appears to be quite a range of spot lifetimes. Some disintegrate after un-

dergoing a single journey within the convection cell if they happen to be advected to a

region where the supply of A is locally limited due to overcrowding. Others appear to

be robust for much longer periods, perhaps also undergoing division and spawning new

spots.

As a stronger test of precariousness, the same system was simulated for twice the dura-

tion with a gradual reduction of the lower right boundary temperature from t = 50000

to t = 70000. System states from this simulation are displayed in Figure 7.23.

Upon reflection, the complete demise of the RD structures in this figure is not wholly

surprising. Without a sustained heat supply the endothermic spots soon begin to erode

the temperature in excess of the heating provided by the other, exothermic reaction.

So while the presence of a second, endothermic spot species can stabilise an exothermic

species, the collective configuration of structures, once formed, still cannot sustain itself

in a system maintained at a low temperature.

For the final part of this chapter I will see whether the thermal symbiosis uncovered

above extends when the reaction enthalpies are increased in magnitude significantly.

For example they can be set at ∆H1 = −20 × 10−3 and ∆H2 = 25 × 10−3. With these

values if either RD system exists in isolation, there is no sustained pattern formation.

For the exothermic species, there is a rapid assimilation of the whole domain by the B-

dominant reaction zone. For the endothermic species, the heat absorbed by the reaction

all but damps out any local heat fluxes and the whole system descends to a quiescent,

low temperature state with only small fluctuations in temperature at the boundaries.

The combined system however, supports the existence of both species by their mutual

thermal interactions. Typical examples of system states are shown in Figure 7.24.

The high temperature lower boundary supports larger worm-like structures but in the

bulk of the fluid the temperature remains at intermediate values through the combined
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(a) t = 50000

(b) t = 55000

(c) t = 60000

(d) t = 65000

Figure 7.23: Temperature and chemical order parameter fields (ψA1 − ψB1)
and (ψA2 − ψB2) for a dual spot species, convective GS TRD simulation with
∆H1 = −4 × 10−3 and ∆H2 = 2 × 10−3 at several different times through the
simulation. The time intervals are linearly spaced and the temperature of the
right half of the lower boundary is linearly reduced from Tar = 2 to Tar = 1
between times t = 50000 and t = 70000. See an animation of this simulation in
additional digital material.

heat release and absorption due to the two reactions. Due to the strength of these

thermal effects, the setting in of convective motion appears to be prevented.

7.5 Conclusions

In this chapter a set of novel systems have been explored: GS TRD systems embedded

in a thermal fluid susceptible to convective motion. A range of interesting phenom-

ena has been exhibited, from enhanced heat fluxes in simple linear reaction systems, to

the mutual exchange of heat between emergent spot species. The results suggest that

adding additional survival requirements for dissipative structures can induce significant

new types of phenomena to emerge including competition between very different types



152 Chapter 7 Turning up the Heat: Enthalpy Changes and Convection

(a) t = 20000

(b) t = 30000

(c) t = 40000

(d) t = 50000

Figure 7.24: Temperature and chemical order parameter fields (ψA1 − ψB1)
and (ψA2 − ψB2) for a dual spot species, convective GS TRD simulation with
∆H1 = −20 × 10−3 and ∆H2 = 25 × 10−3 at several different times through
the simulation. The time intervals are linearly spaced. See an animation of this
simulation in additional digital material.

of structure (convection cells and RD spots). It was also shown that these extra require-

ments can force different sets of patterns to form symbioses in order to guarantee their

own persistence.

This marks the end of the presentation of results in this thesis. The next chapter will

provide an overview of the key findings of my work and the various ways that the

foundations of this thesis could be built upon will also be described.



Chapter 8

Conclusions and Further Work

In the course of this thesis, we have observed a variety of phenomena, seen long-held

assumptions taken apart, and marvelled at the variety of behaviours that emerge from

purely physical, non-living systems. When embarking on a study of the thermodynamics

of complex pattern-forming systems, it is very difficult to predict where one will end up.

Furthermore it is difficult to know how to start. However, “Not all those who wander

are lost.”(Tolkien, 1954)

My objective was to first establish a numerical framework that was capable of modelling

a variety of physical phenomena. I would then simulate a series of non-equilibrium

systems with an increasing number of degrees of freedom and observe how the emergent

patterns changed, how the thermodynamic variables changed, and whether the systems

exhibited any kind of life-like behaviour.

The aspirations were wide and ranged from the testing of conventional wisdom on the

role of structure in non-equilibrium systems (primarily that dissipative structures always

facilitate increased entropy production), to the generation of new postulates for the con-

nections between chemistry, biology and ecology. My previous work on the emergence

of primitive cells from homogeneous mixtures of simple building blocks (Bartlett et al.,

2010) had raised the question of whether ecological phenomena may have actually pre-

ceded the emergence of biological phenomena. Indeed the intense debate surrounding

this idea continues today (Fernando and Rowe, 2007; Meléndez-Hevia et al., 2008; Vasas

et al., 2012). It has far-reaching consequences for the field of Astrobiology: chemical
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evolution could be ubiquitous in the Universe, while the emergence of life as we know it

on Earth is perhaps much more limited.

The results of simulations such as those presented in this thesis might provide guidance

for biogenesis research. There is the potential for long held ideas about the emergence of

metabolism in prebiotic scenarios to be tested using the modelling framework presented

herein. Furthermore such simulations may highlight the action of hitherto unknown

emergent phenomena, worthy of further research. The model is also sufficiently ver-

satile that specific scenarios relevant to astrobiology could also be modelled, including

hydrothermal vents.

8.1 Theories of Maximum Entropy Production

On the journey that was my PhD there ended up being some stopping points. The

first was the validity of the Maximum Entropy Production Principle (MEPP). The

MEPP had been applied to simple models of the climate system (Paltridge, 1978) and

apparently also predicted the steady state properties of natural convection (NC) systems

(Ozawa et al., 2001). It struck me that no one had modelled a simple fluid system with

the same negative feedback boundary conditions (BCs) of the 2-box model of Paltridge

(1978), even though the properties of such a system had been postulated to also follow

the MEPP (Kleidon, 2009). There had been numerical studies of atmospheric heat

transport using Global Circulation Models (Kleidon et al., 2006; Ozawa et al., 2003)

that confirmed a connection to MEPP, but none of a single phase heated fluid. As a

result, I carried out the numerical investigations presented in chapter 5. The results of

that study, combined with a more meticulous scrutiny of known results for NC systems

with fixed BCs, provided evidence that the MEPP is not compatible with simple NC

systems, despite the assumption that it is, in the literature (Meysman and Bruers, 2010).

I hope that my work in this area will help change the thinking with regard to the MEPP,

that it cannot be simply assumed that non-equilibrium systems obey the principle just

because their steady states show increased energy fluxes compared to a simpler, diffusive

steady state. The work of chapter 5 has been submitted for publication and is currently

under review (Bartlett and Bullock, 2014).
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8.2 New Avenues for Heat Transfer

Having de-constructed an application of the MEPP, I then moved on to reactive systems.

Incorporating space into models of reaction systems is a relatively recent phenomenon

due to the limited computational power of decades past. The study of the transport

properties of non-equilibrium, reacting fluids also seems to be restricted to specific en-

gineering problems (e.g., Chen et al., 2008). Hence I decided to simulate a differentially

heated, closed fluid system with passive scalar species reacting, and releasing and ab-

sorbing heat (subsection 7.3.1). The objective was to assess how the system would

respond to its additional degrees of freedom (compared to the system with no chemical

species). The results showed that the system was able to support a greater heat flux

when the boundary temperatures were held constant. When the boundary heat flux was

held constant, the boundary temperature difference decreased with the presence of the

chemical species and reactions. This suggests that the efficiency of the system’s heat

transfer abilities was enhanced by the reactive processes.

This makes intuitive sense because the fluid on its own would undergo convective flows.

Adding just the passive scalars would cause those scalars to be advected around the

system by the flow. If those scalars are then allowed to react in a reversible cycle,

where one direction releases heat and one takes it up, this can then play a role in the

heat transfer of the whole system. At the hotter boundary, some quantity of thermal

energy can be invested in carrying out the endothermic reaction. The products of that

reaction can then be transported by the fluid flow towards the colder boundary. As they

approach it the exothermic reaction begins to take place, releasing heat. This heat is

then funnelled out of the system by diffusion at the cold boundary.

The presence of the extra components thus represents an extra channel for the transport

of thermal energy. The results of subsection 7.3.1 showed that as the concentration of

chemical species was increased, the system began to reduce the fraction of heat transfer

carried out by convection alone, and increase the fraction carried out by the advection

and reaction of the chemical species. So we saw a change of duty from one mode of

heat flow to another. Such an elementary study of the effects of thermal reactions

on the transport properties of a fluid system doesn’t appear to have been carried out

before. Again, most similar studies always had a specific application in mind (Andres

and Cardoso, 2012; Rongy et al., 2007).
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8.3 The Ecology of Spots

In subsection 7.3.2 the focus switched to the Gray-Scott (GS) reaction diffusion (RD)

system. This classic example of non-linear dynamics has something of a history (the

first study of RD systems was the seminal work of Turing, 1952), but was only brought

into the 2D realm approximately 20 years ago (Pearson, 1993). Since then its entire phe-

nomenological repertoire has been thoroughly investigated (Awazu and Kaneko, 2004;

Mahara et al., 2004; Pearson, 1993). It has long been shown to exhibit self-replicating

spots, a surprising observation given how simple the system is in terms of its constituents

and interactions. Since the isothermal form of the model is well documented, I chose to

investigate the influence of thermal kinetics and fluid convection on the pattern-forming

processes of this system.

The results of subsubsection 7.3.2.2 showed that when the reaction is exothermic, it

produces a positive feedback effect. The heat of reaction has the effect of increasing its

own rate. This then causes the release of more heat and the two effects feed back on one

another. Such a system can enter a steady state if the boundaries are able to remove

heat at a sufficient rate. This depends on the thermal diffusivity of the fluid, since heat

must move out of the system by diffusion.

I then simulated an endothermic system in subsubsection 7.3.2.3. As one might expect,

the effect of the reaction was opposite to that of the exothermic system: the reaction

and emergent structures were self-inhibiting. They reduced their local temperature and

thus diminished the conditions for their own existence. The only way for the reaction

to proceed at any significant rate was near the heated lower boundary of the domain.

This boundary adjusted its heat flux (its temperature was fixed) such that the heat

absorption by the reaction was compensated for.

The aim of subsubsection 7.3.2.4 was to test the precariousness of the spot patterns

simulated in previous sections. Being able to heat their surroundings, it was expected

that the RD spots might be able to move into foreign realms in which they would

not form spontaneously (due to the low temperature) and colonise them. I simulated

systems where only half of the lower boundary was heated, to allow the exothermic spots

to expand into the cold region adjacent to the heated area.
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The emergent configuration consisted of a double tubular vertical structure from which

spots were emitted like spores from a plant. These spots were able to penetrate into the

cold, dead region, but for only a limited time. Their own heating effect was not sufficient

to sustain their existence far into the inhospitable zone. If the enthalpy of reaction was

decreased, eventually the system exhibited a completely different evolution. With a

sufficiently exothermic reaction, the reactive ‘zone’ underwent an exponential expansion

that spread to every corner of the domain. This swamping effect destroyed any hint of

fine-grained structure.

Given the two different types of behaviour found in the exothermic model, it was natural

to ask whether the presence of additional species and reactions could modulate the

phenomena of the two-species system. Therefore in section 7.4 I introduced a second

pair of chemical species and non-linear reaction between them. One reaction was set to

be exothermic and the other endothermic. It was found that indeed the endothermic

structures were able to prevent the runaway feedback that would overcome the system

when only the exothermic species was present. However this did not enable the now

symbiotic spot patterns to survive when the heat flow into the system was removed.

The final system to be simulated consisted of a very strongly exothermic spot species,

sharing the domain with a very strongly endothermic species. The entire system was

differentially heated. If left in isolation, the exothermic species underwent catastrophic

positive feedback, and the endothermic species cooled the system so much that spots

could not persist in any significant quantity. However when both were present, the two

sets of spots could persist indefinitely.

This thermal symbiosis is interesting because it is possible to imagine a scenario where

it might provide some form of thermal homeostasis. If the temperature were to rise

there would be a risk of the structures expanding and undergoing destructive exponen-

tial growth. But the extra growth of the endothermic species would provide an extra

cooling effect that could eliminate the temperature rise. Conversely in a situation of

low temperature, the endothermic spots might recede, allowing the exothermic spots to

reproduce, increase their heat production and bring the temperature back into a viable

range.
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8.4 Further Work

In some respects, this thesis represents a starting point. The version of Lattice Boltz-

mann Model (LBM) presented in chapter 7 could be used to investigate an immense

variety of non-equilibrium systems. In this section some of the most interesting avenues

that could be explored using this modelling framework will be described.

8.4.1 Transport Properties of Closed Systems

In subsection 7.3.1 the transport properties of closed systems consisting of a heated

fluid and two dissolved chemical species undergoing the linear reaction A ⇋ B were

analysed. There was a shift of heat transfer duties from convection and diffusion only

to convection, diffusion and advection and reaction. A natural question is: how general

are these observations? It would be an interesting study to simulate similar systems

involving more complicated reaction schemes and more chemical species. For example a

simple extension would be the ligation reaction A+A ⇋ B, that has a non-linear rate

law.

It would also be informative to experiment with autocatalytic reaction schemes such as

the reversible Gray-Scott (GS) reactions: A + 2B ⇋ 3B. Although the reversible GS

model has been investigated previously (Mahara et al., 2004), it is not clear whether a

closed system is capable of exhibiting the characteristic patterns of the standard system

(where there is supply and removal of chemical species due to external reservoirs).

8.4.2 Open Reaction Diffusion Systems

In subsection 7.3.2 and section 7.4 we saw what could be described as ecological dynamics

in a physico-chemical system. Considering those simulations involved a maximum of four

chemical species, it is likely that opening the system up to greater sets of reactions and

species would reveal even more levels of emergent phenomena. Very large simulations

could be run with a range of different spot species present, each with different thermal

properties and characteristic sizes. It might then be possible to observe some form of

natural selection where a proportion of the structures fail to persist in any number, but

the remainder interact and compete for resources like biological organisms.
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With even the simple systems presented in this thesis, it would also be instructive to

assess the population dynamics of the RD spots. They may exhibit sigmoidal population

growth curves analogous to populations in living systems.

Another interesting option for the four-species system would be to introduce invasive

cross reactions. This would allow one spot species to utilise the resources of the other

for its growth, adding another level of ecological possibilities to the system dynamics.

8.4.3 N-Species Systems

The reactive thermal LBM (RTLBM) presented in chapter 7 can be readily generalised

to handle an almost arbitrary range of reactive systems. In this section the additions

necessary for such an extension will be briefly described.

Imagine a non-isothermal fluid with n passive scalar species dissolved within it. There

are r reactions occurring between the species. One way to represent such a system is

through an n × r stoichiometric matrix N. Each row of the matrix corresponds to a

chemical species and each column to a reaction. A vector v is then required, representing

the velocity of each reaction. Multiplying these two objects together gives a new vector

giving the rate of change of the concentration of each chemical species. To demonstrate,

take the example of the following set of reactions,

a→ 2b (8.1)

b+ c→ d (8.2)

d→ b+ c (8.3)

d+ e→ 2d (8.4)

where reverse reactions are included separately to their forward reactions. The stoichio-

metric matrix reads,

N =























−1 0 0 0

2 −1 1 0

0 −1 1 0

0 1 −1 1

0 0 0 −1























(8.5)
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and the reaction velocity vector,

v =

















A1[a]e
−Ef,1/T

A2[b][c]e
−Ef,2/T

A3[d]e
−Ef,3/T

A4[d][e]e
−Ef,4/T

















(8.6)

where it was assumed that all chemical species have unit molar masses (this assump-

tion could be relaxed by first multiplying the matrix N by a row vector of the molar

masses) and the law of mass action and Arrhenius equation have been used to define

the kinetic parameters. In the RTLBM, an extra set of distribution functions for each

chemical species would be required. Those distribution functions would undergo col-

lision and streaming operations and during the collision operation, the mass changes

due to reactions could be calculated using the vector Nv. Then the various reaction

enthalpies could be summed and added to the collision operation for the internal energy

distribution. The rest of the LBM algorithm remains the same (collision, streaming and

forcing of the velocity distribution functions).

One could then experiment with all kinds of chemical reaction network. The kinetic pa-

rameters could be adjusted such that oscillations in concentration occurred over a range

of time scales. The response of a system driven out of equilibrium by concentration or

temperature gradients could then be analysed. Would the system always use its new

freedoms to increase its heat transport efficiency, or would some classes of reaction net-

work provide significant inhibition to that process? Indeed in subsubsection 7.3.2.3, the

presence of endothermic RD spots prevented the formation of convection cells. Clearly

certain reaction schemes would hinder the transport properties of heated fluids, but only

a thorough investigation can shed light on the details.

8.5 Where are we now?

The process of carrying out and writing this PhD has changed my perspective in all

manner of ways. I see the world through a different lens now. Thermodynamics is

everywhere and it affects us all. To take an example, the current energy crisis is not an

energy crisis at all, but a free energy crisis. As Boltzmann noted, energy is everywhere,
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but energy that can be put to use is not. Along with all other living things we are

gripped by a struggle for the negative of entropy, information, not energy.

It seems that in fact, life is just a point on a continuous scale of dissipative structures.

There is seemingly some kind of natural selection persistence pressure for the ability

to acquire greater access to the driving gradients that created you. Life is one class of

dissipative structure that is characterised by its unusually innate skills at this process

of finding new access to driving gradients (indeed creating new gradients). Like the

enveloping ‘monsters’ of subsection 7.3.2, once life got going there was no stopping it.

It spread to every last hole and crevice.

Life may well be common in the Universe, but probably not our kind of life. Given

the chemical make up and conditions of other planetary bodies, the universe is likely

abundant with simple forms of life, that find isolated niches and evolve rapidly to states of

‘complexity saturation’. What I mean by that is they reach an upper limit of complexity,

defined by the diversity of chemical constituents in their surroundings, the temperature

of their environment, and the chemical (reactive and structural) possibilities available

to them given the aforementioned diversity limit. The complexity saturation point of

our planet is perhaps not bound from above.

We are surrounded by dissipative structures, most of which are not alive and do not

expand and rapidly colonise their environs. On the scale between these simple formations

and life as we know it here on Earth, perhaps there is a tipping point, the life-non-life

threshold, beyond which the explosion of diversity is permitted. Due to the frustrating

(or not) anthropic principle, at the moment, we have no way of shedding light on where

we are on this scale. But we can be ever grateful that at least here on Earth, things are

on the right side of the line.
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Meléndez-Hevia, E., Montero-Gómez, N., and Montero, F. (2008). From prebiotic chem-

istry to cellular metabolism–the chemical evolution of metabolism before Darwinian

natural selection. Journal of theoretical biology, 252(3):505–19.



REFERENCES 169

Meysman, F. J. R. and Bruers, S. (2010). Ecosystem functioning and maximum entropy

production: a quantitative test of hypotheses. Philosophical Transactions of the Royal

Society of London, Series B: Biological Sciences, 365(1545):1405–1416.

Niven, R. (2010). Simultaneous extrema in the entropy production for steady-state fluid

flow in parallel pipes. Journal of Non-Equilibrium Thermodynamics, 35(3):1–13.

O’Brien, D. M. and Stephens, G. L. (1995). Entropy and climate. ii: Simple models.

Quarterly Journal of the Royal Meteorological Society, 121(527):1773–1796.

Otero, J., Wittenberg, R. W., Worthing, R. A., and Doering, C. R. (2002). Bounds on

Rayleigh-Bénard convection with an imposed heat flux. Journal of Fluid Mechanics,

473:191–199.

Ozawa, H., Ohmura, A., Lorenz, R. D., and Pujol, T. (2003). The second law of thermo-

dynamics and the global climate system: A review of the maximum entropy production

principle. Reviews of Geophysics, 41(4):1–24.

Ozawa, H., Shimokawa, S., and Sakuma, H. (2001). Thermodynamics of fluid turbu-

lence: A unified approach to the maximum transport properties. Physical Review E,

64:026303.

Paltridge, G. W. (1978). The steady-state format of global climate. Quarterly Journal

of the Royal Meteorological Society, 104(442):927–945.

Paulus Jr., D. M. and Gaggioli, R. A. (2004). Some observations of entropy extrema in

fluid flow. Energy, 29(1215):2487 – 2500.

Pearson, J. E. (1993). Complex patterns in a simple system. Science, 261(5118):189–192.

Peng, Y., Shu, C., and Chew, Y. T. (2003). Simplified thermal lattice Boltzmann model

for incompressible thermal flows. Physical Review E, 68:026701.

Rongy, L., Goyal, N., Meiburg, E., and De Wit, a. (2007). Buoyancy-driven convection

around chemical fronts traveling in covered horizontal solution layers. The Journal of

chemical physics, 127(11):114710.

Sagan, C. (1973). Extraterrestrial life. In Sagan, C., editor, Communication with Ex-

traterrestrial Intelligence (CETI). MIT Press.



170 REFERENCES

Schneider, E. D. and Sagan, D. (2005). Into the Cool: Energy Flow, Thermodynamics,

and Life. The University of Chicago Press.

Schrödinger, E. (1944). What is life? Mind and Matter. Cambridge University Press.

Shu, C., Peng, Y., and Chew, Y. T. (2002). Simulation of natural convection in a square

cavity by taylor series expansion- and least squares-based lattice Boltzmann method.

International Journal Of Modern Physics C, 13(10):1399–1414.

Sofonea, V. and Sekerka, R. F. (2005). Diffuse-reflection boundary conditions for a

thermal lattice Boltzmann model in two dimensions: Evidence of temperature jump

and slip velocity in microchannels. Physical Review E, 71:066709.

Tang, G. H., Tao, W. Q., and He, Y. L. (2005). Thermal boundary condition for the

thermal lattice Boltzmann equation. Physical Review E, 72:016703.

Tolkien, J. R. R. (1954). The Fellowship of the Ring: The Lord of the Rings, Part 1.

George Allen & Unwin.

Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions

of the Royal Society of London, Series B: Biological Sciences, 237(641):37–72.

Vallino, J. J. (2010). Ecosystem biogeochemistry considered as a distributed metabolic

network ordered by maximum entropy production. Philosophical Transactions of the

Royal Society of London, Series B: Biological Sciences, 365(1545):1417–1427.

Vasas, V., Fernando, C., Santos, M., Kauffman, S., and Szathmary, E. (2012). Evolution

before genes. Biology Direct, 7(1):1.

Verzicco, R. and Sreenivasan, K. (2008). A comparison of turbulent thermal convection

between conditions of constant temperature and constant heat flux. Journal of fluid

mechanics, 595(1):203–219.

Virgo, N. (2010). Thermodynamics and the Structure of Living Systems. PhD thesis,

University of Sussex.

Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J., and Evans, D. J. (2002). Exper-

imental demonstration of violations of the second law of thermodynamics for small

systems and short time scales. Physical Review Letters, 89:050601.



REFERENCES 171

Wolf-Gladrow, D. A. (2000). Lattice-Gas Cellular Automata and Lattice Boltzmann

Models. Springer-Verlag, Berlin.

Zhang, J. and Yan, G. (2012). A lattice Boltzmann model for the reaction-diffusion

equations with higher-order accuracy. Journal of Scientific Computing, 52(1):1–16.

Zou, Q. and He, X. (1997). On pressure and velocity boundary conditions for the lattice

Boltzmann BGK model. Physics of Fluids, 9:1591.
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