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    Abstract- Partial discharge (PD) analysis is an important tool for 

assessing the lifespan of power equipment especially in cables and 

high voltage (HV) transformers. Different PD sources have 

different effects on the condition and performance of power 

equipment insulation system. Therefore, the ability to identify 

different PD sources is a great interest for both system utilities and 

equipment manufacturers. Hence, an experiment has been 

designed at the Tony Davies High Voltage Laboratory, University 

of Southampton to access the methodologies for the identification 

of multiple PD sources within a HV transformer windings. 

Previous work at Southampton developed a non-linear based 

technique that facilitates identification of the location of a PD 

source within an interleaved winding. This project is concerned 

with the feasibility of locating several sources simultaneously 

based only on measurement data from wideband RFCTs placed at 

the neutral to earth point and the bushing tap-point to earth. 

Initial results from a simple experiment are presented and 

development of an analytical approach described. 

 

I.    INTRODUCTION 

  
Condition monitoring of electrical equipment, such as HV 

power transformers, benefits both manufacturers and operators 

in many ways, for example obtaining information of the health 

of equipment, estimating and extend the remaining service life 

of equipment, increase plant availability and planning of 

maintenance schedule [1] [2] [3]. There a number of condition 

monitoring techniques for transformers such as Dissolved Gas 

Analysis (DGA), Thermal Analysis, Vibration Analysis, 

Frequency Response Analysis and also the well-known 

preventive maintenance technique, PD Analysis [4] [5] [6]. 

Even though the approaches are different, they have similar 

objectives; which is to obtain information at early stage before 

a catastrophic failure occurs. This project is primarily 

concerned with PD analysis. 

In a typical environment, PD activity may not only occur 

from a single source and therefore PD in HV transformer 

windings may occur from multiple sources simultaneously. An 

experiment has been designed at the Tony Davies High Voltage 

Laboratory, University of Southampton to access the 

methodologies for identification of multiple PD sources within 

a HV transformer winding. The experiment facilitates the 

testing of transformer winding under conditions similar to those 

found in a large power transformer. Previous work [7], in 

Southampton has developed non-linear based techniques that 

facilitate identification of the location of a PD source within an 

interleaved winding. This project is concerned with the 

feasibility of locating several PD sources simultaneously based 

only on measurement data from a pair of wideband radio 

frequency current transformers (RFCTs) positioned at the 

neutral to earth point and the bushing tap-point to earth. Initial 

results from a simple experiment have been presented and the 

developments of an analytical approach is presented. 
 

II.   EXPERIMENTAL ARRANGEMENT 

 

A.    Measurement System 

The experiment consists of a HV transformer winding 

section, a 60 kV transformer bushing, measurement sensors, PD 

sources and an oscilloscope as shown in Fig. 1. The HV 

transformer winding section was used to study PD signal 

propagation inside a transformer winding. The model of the 

transformer winding was manufactured by Alstom, a large-

scale transformer manufacturing company in the UK. The 

model consists of two sections; an interleaved winding located 

at the top and the bottom part of the winding section consists of 

a plain disc winding. The entire winding section is immersed in 

an oil filled tank filled with oil specification of BS148:1998 

class 1, which is discharge-free up to the 30 kV test voltage [7]. 

In this paper, only PD activity along the interleaved disc type 

winding has been studied. 

The 60 kV transformer bushing is included to be more 

representative of transformers and account for any attenuation 

or distortion of higher frequency components of a discharge that 

are detected via the measurement sensor at the bushing tap 

point.  

 
Fig. 1. Experiment Setup 

 

Two RFCTs were used as the measurement sensors to 

capture the propagated pulses in the winding and were placed 

at the neutral to earth point and the bushing tap-point to earth. 
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The use of an RFCT has been demonstrated to be able to 

capture high frequency transient signals that are proportional to 

the time derivative of current in a conductor. Hence the RFCT 

is an ideal sensor to monitor high frequency discharge currents 

[8]. In order to increase the sensitivity of each RFCT, both 

RFCTs were wrapped with three turns of wire conductor. The 

artificial PD sources that were injected into the winding were 

generated by two sources and a high performance digital 

oscilloscope was used in this experiment with a sampling rate 

set to 100 MSs-1 and a bandwidth of 2.5 GHz respectively. The 

RFCTs used are of the same design and have a comparable 

frequency response up to 200 MHz and were connected to the 

oscilloscope for display, analysis and recording of data. 

 

B.    Artificial PD Sources 

Two different types of equipment were used to produce 

different electrical pulses as, “artificial” PD sources in this 

investigation and they comply with IEC 60270. They were used 

to inject signals at different locations along the transformer 

windings. They were an Agilent Pulse Generator and an 

Omicron PD Calibrator. 

An example of pulses produced by the pulse generator is 

shown in Fig. 2(a). The pulse generator was set to generate the 

pulses with a rise time (∆t), of 11.75ns, a peak amplitude (∆V), 

of 3.808V and a peak pulse frequency (1/∆t) of 85.106 MHz. 

While, the second PD pulse, generated by the PD Calibrator is 

shown in Fig. 2(b) has a rise time 6.66 ns, a peak amplitude of 

1.34 V and a peak frequency of 150.2 MHz. However, the rise 

time, peak amplitude and the frequency of the rest of the pulses 

is not the same because the signals produce by the generator 

may suffer distortion and attenuation during the experiments. 

 

 
(a) Pulse from Agilent Pulse Generator 

 
(b) Pulse from Omicron PD Calibrator 

Fig. 2. The generated artificial PD pulses 

 

Although in Fig. 2 (b) there are several reflections, the 

frequency of the pulses are still equivalent to typical internal 

partial discharge frequency ranges. The artificial “PD-like” 

pulse sources were used in this study due to their consistency, 

ease of use and to verify whether the proposed analytical 

technique is feasible. 

 

III. SIGNALS PROCESSING 

 

A.    Signal Extraction 

Due to the operation of the pulse generation hardware, a DC 

offset was produced in the captured signals. Therefore, the DC 

offset was removed from the raw data to allow further 

processing. This was completed by subtracting the mean 

amplitude of the entire cycle from each individual sample. 

Other challenges with the signals captured by the RFCT is the 

background noise. It is important to remove the noise in order 

to extract PD pulses with confidence. In order to remove the 

noise, before setting the threshold value, it is important to 

identify the value of background noise via the signal plot of raw 

data which clearly show the noise level. The threshold value 

must be set carefully, because if the threshold value is too high, 

there is possibility of loss of PD pulse information. Otherwise, 

if the value is too low, noise pulses might be interpreted as PD 

events. After removing the DC offset and the background noise, 

the raw signal at both measurement points is assumed to only 

contain PD pulses of interest. 

 

IV. CLUSTERING AND IDENTIFICATION 

 

A.    Wavelet Analysis 

The original PD pulses were decomposed into nine levels and 

are presented in the form of ten element vectors. The wavelet 

transform works like a pair of complementary high-pass (HPF) 

and low-pass filters (LPF), which divide up of the original 

signal (S), into a series of approximation coefficients (cA1) and 

detail coefficients (cD1) at the 1st level. The process is repeated 

iteratively with each iteration producing another approximation 

(cA) and detail (cD) coefficients. The first approximation 

coefficients (cA1) which are decomposed from the original 

signal (S) will again decompose into the next level, produced a 

new approximation coefficient (cA2) and a new detail 

approximation (cD2) at the 2nd level. This process is repeated 

up to a certain level of decomposition (n-level). Fig. 3 shows 

the iterative decomposition process of the wavelet transform 

where (cA) and (cD) represent the approximate and detailed 

coefficients with the Wavelet filter; LPF and HPF. 

 

 
Fig. 3: Iterative decomposition process 
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By using the series of approximation coefficients (cA) and 

detail coefficients (cD) for n-levels, the distribution of signal 

energy in each decomposition level (ED) and final 

approximation level (EA) can be calculated using (1) and (2) [7] 

[9]: 
 

𝐸𝐷𝑖 =
∑ 𝐶𝑑𝑖𝑗

2𝑁𝑐𝑖
𝑗=1 (𝑡)
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Where n, Cd and Ca are the decomposition level, detail 

decomposition coefficients and approximate decomposition 

coefficients. In term of data dimensionality reduction, these 

energy levels were found to be more effective at representing 

the PD pulse compared to just using wavelet decomposition 

coefficients [9]. 

 

B.    Principle Component Analysis (PCA) 

In order to reduce the number of the element vectors obtained 

from wavelet analysis to three dimensions, PCA has been 

applied. The data first is standardised by subtracting the mean 

value for each dimension to provide zero mean and unity 

variance. The covariance matrix (Cm) can be obtained using the 

Equation 3 below where the wavelet energy (WE) distribution 

data is M and N is the processed PD pulses: 

 

𝐶𝑚 =
𝑀.𝑀𝑇

𝑁−1
                    (3) 

 

From the covariance matrix, the eigenvalues (λ) and 

eigenvectors (υ) are obtained and the eigenvalues are arranged 

in descending order. The matrix (Cm) is transposed into a 

projection, Pi using the eigenvectors (υ) such that in (4): 

 

𝑃𝑖 = υ𝑇 × 𝑀                        (4) 

 

Therefore, each row of the projection, Pi represents principal 

components, with decreasing significance. The new 

representation of the data in 3-D feature space can be plotted 

using the three lower order of the principal components [9] [7] 

[10]. 

 

C.    Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) 

DBSCAN was applied to the data in 3-D space to groups the 

data into specific classes or clusters accordingly based on the 

concept of density. The DBSCAN algorithm uses three 

important parameters which are Epsilon (ɛ), minimum number 

of points (n-minimum) and the volume (v). The basic ideas of 

DBSCAN involve a number of definitions. The first step of 

DBSCAN is that the density represents the number of points 

(n), surrounding a certain point of data (pn), within a small 

volume (v). The volume can be assumed as a hyper-sphere of 

radius ɛ centered at pn. By using n-minimum, the threshold 

density can be specified to make the volume v, significantly 

dense. The point pn can be defined as either a dense point, 

known as a core point, or a non-dense point (border point or 

non-core point). The rules used to define the method are [9] 

[10]: 

 If a number of points (n) contains at least a minimum 

number (n≥ n-minimum) of points within the radius ɛ, 

centred at pn and are included in the volume v, the 

point pn is called a core point. 

 pn is called a border point if a number of points (n) 

contains at less than minimum number (n<n-

minimum) of points within the radius ɛ, centred at pn 

and are included in the volume v. 

 If point q is included in v, within the radius ɛ and pn is 

a core point, point q is called directly-density 

reachable (DDR) from point pn. 

 A point r is called density reachable (DR) from pn 

within volume v with respect to the radius ɛ, if there is 

a chain of objects p1, p2……pk, where p1=pn, pk=r such 

that, pi+1 is DDR from pi. 

 A point s is called density-connected (DC) to pn with 

respect to radius ɛ if there is a point t such that both 

points, s and pn are density reachable from point t with 

respect to the radius ɛ. 

 Any point which not belong to any group of point (pn, 

q, r or s), it is considered as a noise points. 

DBSCAN then check the condition of point pn for any given 

ɛ and n-minimum value. If the point pn is a core point, it selects 

the DR and DDR points and expands the cluster by merging 

neighbouring dense regions together. If pn is a border point then 

no points are DR from pn and DBSCAN visits the next point of 

the database. The point pn initially can be selected randomly or 

resorting to the maximum or minimum weight of a selected 

function. Then, once the border of the first cluster is identified, 

DBSCAN will select another point pn in the 3-D space which 

does not belong to a previous cluster and this process is a 

repetitive process and will terminates when no new point can 

be detected to add to any previous formed clusters [9] [10]. 

 

V. RESULTS 

 

Fig. 4 shows the 3D plot obtained from PCA and DBSCAN 

for multiple PD sources injected simultaneously. There are four 

classes which represent two different sources at two 

measurement points, placed at the neutral to earth point and the 

bushing tap-point to earth. From DBSCAN analysis output, it 

was known that Class 1 and Class 2 are produced from the 

pulses obtained at bushing tap-point to earth while Class 3 and 

Class 4 are produced from the pulses obtained at neutral to earth 

point. The question arises, which classes belong to the first 

source and which classes belong to the second source? 

Fig. 5 and Fig. 6 show the plots for frequency for each pulse 

at terminal 1 and terminal 5. By inspection, there are clear 

similarities in terms of the frequency content of Class 1 and 

Class 3 and Class 2 is most similar to Class 4. 
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(a) Terminal 1                                      (b) Terminal 3 

 
(e) Terminal 5                                       (f) Terminal 7 

 
Fig. 4. 3D plot obtained from PCA and DBSCAN for multiple PD sources 

injected simultaneously 

 

 
(a) Class 1                                           (b) Class 2 

 

 
(c) Class 3                                           (d) Class 4 

Fig. 5. The pulse frequency of each class at terminal 1 

 

 
(c) Class 1                                           (d) Class 2 

 

 
(c) Class 3                                           (d) Class 4 

Fig. 7. The pulse frequency of each class at terminal 5 

 

IV.   CONCLUSION 

 

The use of clustering along with signal frequency analysis 

may allow the identification of two artificial “PD-like” pulses 

within a large transformer. Although the distinct classification 

of individual source types is not currently possible, the relative 

variation in frequency distribution is such that multiple sources 

can be isolated from each other for further analysis. This initial 

study was a feasibility exercise to see if there would be 

significant separation between clustered data from multiple 

sources and whether if may be possible to use information 

within the measured pulses to determine which pulses are 

associated with a particular source. The results obtained are 

very promising and further work will concentrate on refining 

the analytical technique whilst conducting experiments more 

closely matched to conditions in the field. 
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